WO2024038921A1 - 광학 장치, 및 이를 구비하는 영상투사장치 - Google Patents

광학 장치, 및 이를 구비하는 영상투사장치 Download PDF

Info

Publication number
WO2024038921A1
WO2024038921A1 PCT/KR2022/012227 KR2022012227W WO2024038921A1 WO 2024038921 A1 WO2024038921 A1 WO 2024038921A1 KR 2022012227 W KR2022012227 W KR 2022012227W WO 2024038921 A1 WO2024038921 A1 WO 2024038921A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source device
color
dichroic filter
Prior art date
Application number
PCT/KR2022/012227
Other languages
English (en)
French (fr)
Inventor
최호영
안재훈
김은진
복기소
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2022/012227 priority Critical patent/WO2024038921A1/ko
Publication of WO2024038921A1 publication Critical patent/WO2024038921A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present disclosure relates to an optical device and an image projection device including the same, and more specifically, to an optical device that can simply implement the configuration of the optical device and secure high brightness performance, and an image projection device including the same.
  • An image projection device is a device that projects an image to the outside using an optical device.
  • Korean Patent Publication No. 10-2016-0061373 (hereinafter referred to as prior literature) relates to a projector and discloses a project to reduce speckle noise.
  • red, green, and blue light sources are used in each of the three panels.
  • the purpose of the present disclosure is to provide an optical device that can simply implement the configuration of the optical device and secure high brightness performance, and an image projection device equipped with the same.
  • another object of the present disclosure is to provide an optical device that can simply implement color separation and synthesis of light from a light source device and secure high brightness performance, and an image projection device equipped with the same.
  • another object of the present disclosure is to provide an optical device capable of securing high brightness performance while effectively reducing speckle noise, and an image projection device including the same.
  • another object of the present disclosure is to provide an optical device capable of securing brightness and uniformity performance of output light, and an image projection device equipped with the same.
  • An optical device for achieving the above object, and an image projection device including the same, include a first color area and a second color area, and include light of a plurality of colors from the first light source device.
  • the first color region reflects part of the light in the first direction
  • the second color region reflects the other part in the first direction
  • the second color region reflects some of the plurality of lights from the second light source device in the first direction.
  • a dichroic filter that transmits the other part of the first color region in the first direction
  • a diffusion wheel that transmits light incident from the direction of the dichroic filter by rotation
  • a diffusion wheel that diffuses light from the direction of the diffusion wheel. It includes a diffuser, a reflective mirror that reflects light from the diffuser direction in a second direction, and a fly eye lens disposed between the diffuser and the reflective mirror.
  • the first color region reflects light of a first color among the plurality of colors of light from the first light source device in a first direction, and the first color region reflects the first color of light among the plurality of colors of light from the first light source device.
  • the second color area reflects the light of the second color and the light of the third color in the first direction, and the second color area transmits the light of the first color among the plurality of lights from the second light source device in the first direction.
  • the first color region may transmit light of the second color and light of the third color among the plurality of lights from the second light source device in the first direction.
  • a first color region reflects red light from the first light source device in a first direction
  • a second color region reflects blue light and green light from the first light source device in a first direction
  • the second color region may transmit red light from the second light source device in the first direction
  • the first color region may transmit blue light and green light from the second light source device in the first direction.
  • red light, blue light, and green light from the first light source device may be output, and green light, blue light, and red light from the second light source device may be output.
  • red light, green light, and blue light from the first light source device may be output, and blue light, green light, and red light from the second light source device may be output.
  • the first color area may be a cyan area
  • the second color area may be a red area
  • an optical device and an image projection device including the same include a digital mirror device that outputs a projected image based on light from a reflective mirror, and a plurality of devices that output projected images from the digital mirror device. It may further include an optical lens.
  • the optical device and the image projection device including the same may further include a total reflection prism and an actuator disposed between the digital mirror device and the plurality of optical lenses.
  • the optical device according to an embodiment of the present disclosure and the image projection device including the same further include a condensing lens disposed between the dichroic filter and the diffusion wheel, and an illumination lens disposed between the fly-eye lens and the reflective mirror. can do.
  • the optical device according to an embodiment of the present disclosure and the image projection device including the same may further include a wedge prism disposed between the dichroic filter and the condensing lens.
  • the color area reflects in the first direction
  • the fourth color area reflects another part in the first direction
  • the fourth color area transmits some of the plurality of lights from the fourth light source device in the first direction
  • the fourth color area transmits some of the light from the fourth light source device in the first direction.
  • a second dichroic filter through which a portion of the third color region transmits in the first direction, a first converging lens for changing the path of light from the dichroic filter, and a second dichroic filter for changing the path of light from the second dichroic filter. It may further include a condensing lens, and the diffusion wheel may transmit light incident from the first condensing lens and light incident from the second condensing lens by rotation.
  • An optical device and an image projection device including the same, include a first color area and a second color area, and send some of the light of a plurality of colors from the first light source device to the first color.
  • the area transmits in the first direction
  • the second color area transmits another part in the first direction
  • the second color area reflects some of the plurality of lights from the second light source device in the first direction
  • the other part A dichroic filter whose first color region reflects in a first direction, a reflective mirror that reflects light incident from the direction of the dichroic filter in a second direction, and diffusion that transmits light incident from the reflective mirror by rotation.
  • a wheel, a diffuser for diffusing light from the diffusion wheel direction, a second reflective mirror for reflecting light from the diffuser direction in a third direction opposite to the first direction, and a fly disposed between the diffuser and the second reflective mirror. Includes eye lens.
  • an optical device and an image projection device including the same include a digital mirror device that outputs a projected image based on light from a second reflection mirror, and a projected image from the digital mirror device. It may further include a plurality of optical lenses for output.
  • the optical device and the image projection device including the same may further include a total reflection prism and an actuator disposed between the digital mirror device and the plurality of optical lenses.
  • an optical device and an image projection device including the same include a condensing lens disposed between a dichroic filter and a diffusion wheel, and an illumination lens disposed between a fly-eye lens and a second reflection mirror. may further include.
  • an optical device and an image projection device including the same include a third color area and a fourth color area, and transmit some of the light of a plurality of colors from the third light source device.
  • the third color region transmits a portion in the first direction
  • the fourth color region transmits another portion in the first direction
  • the fourth color region reflects a portion of the plurality of lights from the fourth light source device in the first direction
  • a second dichroic filter that reflects another portion of the third color region in the first direction
  • a first converging lens that changes the path of light from the dichroic filter
  • a second dichroic filter that changes the path of light from the second dichroic filter.
  • It further includes two condensing lenses and a third condensing lens that changes the optical path from the first condensing lens and the optical path from the second condensing lens, and the reflective mirror directs the light incident from the third condensing lens in a second direction. It can be reflected.
  • the second light source device and the fourth light source device may output light in the same direction.
  • the second light source device and the fourth light source device may output light in opposite directions.
  • An optical device and an image projection device including the same, include a first color area and a second color area, and send some of the light of a plurality of colors from the first light source device to the first color area.
  • the second color region reflects some of the light in the first direction
  • the second color region reflects the other part in the first direction
  • the second color region transmits some of the plurality of lights from the second light source device in the first direction, and another part of the light from the second light source device is reflected in the first direction.
  • a dichroic filter through which a first color region transmits in a first direction, a diffusion wheel through rotation to transmit light incident from the direction of the dichroic filter, a diffuser through which light from the direction of the diffusion wheel is diffused, and a diffuser through which light is transmitted from the direction of the diffuser. It includes a reflective mirror that reflects light in a second direction, and a fly-eye lens disposed between the diffuser and the reflective mirror. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured. In addition, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured. Furthermore, it is possible to secure high brightness performance while effectively reducing speckle noise.
  • the first color region reflects light of a first color among the plurality of colors of light from the first light source device in a first direction, and the first color region reflects the first color of light among the plurality of colors of light from the first light source device.
  • the second color area reflects the light of the second color and the light of the third color in the first direction, and the second color area transmits the light of the first color among the plurality of lights from the second light source device in the first direction.
  • the first color region may transmit light of the second color and light of the third color among the plurality of lights from the second light source device in the first direction. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured. In addition, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • a first color region reflects red light from the first light source device in a first direction
  • a second color region reflects blue light and green light from the first light source device in a first direction
  • the second color region may transmit red light from the second light source device in the first direction
  • the first color region may transmit blue light and green light from the second light source device in the first direction. Accordingly, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • red light, blue light, and green light from the first light source device may be output, and green light, blue light, and red light from the second light source device may be output. Accordingly, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • red light, green light, and blue light from the first light source device may be output, and blue light, green light, and red light from the second light source device may be output. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured. In addition, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • the first color area may be a cyan area
  • the second color area may be a red area. Accordingly, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • an optical device and an image projection device including the same include a digital mirror device that outputs a projected image based on light from a reflective mirror, and a plurality of devices that output projected images from the digital mirror device. It may further include an optical lens. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured.
  • the optical device and the image projection device including the same may further include a total reflection prism and an actuator disposed between the digital mirror device and the plurality of optical lenses. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured.
  • the optical device according to an embodiment of the present disclosure and the image projection device including the same further include a condensing lens disposed between the dichroic filter and the diffusion wheel, and an illumination lens disposed between the fly-eye lens and the reflective mirror. can do. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured.
  • the optical device according to an embodiment of the present disclosure and the image projection device including the same may further include a wedge prism disposed between the dichroic filter and the condensing lens. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured.
  • the color area reflects in the first direction
  • the fourth color area reflects another part in the first direction
  • the fourth color area transmits some of the plurality of lights from the fourth light source device in the first direction
  • the fourth color area transmits some of the light from the fourth light source device in the first direction.
  • a second dichroic filter through which a portion of the third color region transmits in the first direction, a first converging lens for changing the path of light from the dichroic filter, and a second dichroic filter for changing the path of light from the second dichroic filter. It may further include a condensing lens, and the diffusion wheel may transmit light incident from the first condensing lens and light incident from the second condensing lens by rotation. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured. In addition, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • an optical device and an image projection device including the same include a first wedge prism disposed between a dichroic filter and a first condensing lens, and a second dichroic filter between the second converging lens and the second condensing lens. It may further include a second wedge prism disposed in and an illumination lens disposed between the fly eye lens and the reflective mirror. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured.
  • An optical device and an image projection device including the same, include a first color area and a second color area, and send some of the light of a plurality of colors from the first light source device to the first color.
  • the area transmits in the first direction
  • the second color area transmits another part in the first direction
  • the second color area reflects some of the plurality of lights from the second light source device in the first direction
  • the other part A dichroic filter whose first color region reflects in a first direction, a reflective mirror that reflects light incident from the direction of the dichroic filter in a second direction, and diffusion that transmits light incident from the reflective mirror by rotation.
  • a wheel a diffuser for diffusing light from the diffusion wheel direction, a second reflective mirror for reflecting light from the diffuser direction in a third direction opposite to the first direction, and a fly disposed between the diffuser and the second reflective mirror.
  • Eye lens the configuration of the optical device can be simply implemented and high brightness performance can be secured.
  • color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • an optical device and an image projection device including the same include a digital mirror device that outputs a projected image based on light from a second reflection mirror, and a projected image from the digital mirror device. It may further include a plurality of optical lenses for output.
  • the optical device and the image projection device including the same may further include a total reflection prism and an actuator disposed between the digital mirror device and the plurality of optical lenses. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured.
  • an optical device and an image projection device including the same include a condensing lens disposed between a dichroic filter and a diffusion wheel, and an illumination lens disposed between a fly-eye lens and a second reflection mirror. may further include. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured.
  • an optical device and an image projection device including the same include a third color area and a fourth color area, and transmit some of the light of a plurality of colors from the third light source device.
  • the third color region transmits a portion in the first direction
  • the fourth color region transmits another portion in the first direction
  • the fourth color region reflects a portion of the plurality of lights from the fourth light source device in the first direction
  • a second dichroic filter that reflects another portion of the third color region in the first direction
  • a first converging lens that changes the path of light from the dichroic filter
  • a second dichroic filter that changes the path of light from the second dichroic filter.
  • It further includes two condensing lenses and a third condensing lens that changes the optical path from the first condensing lens and the optical path from the second condensing lens, and the reflective mirror directs the light incident from the third condensing lens in a second direction. It can be reflected. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured. In addition, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • the second light source device and the fourth light source device may output light in the same direction. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured.
  • the second light source device and the fourth light source device may output light in opposite directions. Accordingly, the configuration of the optical device can be simply implemented and high brightness performance can be secured.
  • Figure 1 illustrates the appearance of an image projection device according to an embodiment of the present disclosure.
  • FIG. 2 is an example of an internal block diagram of the image projection device of FIG. 1.
  • FIG. 3 is an example of an internal block diagram of the signal processing device of FIG. 2.
  • Figure 4 is an example of the structure of an optical device according to an embodiment of the present disclosure.
  • FIGS 5A to 5E are drawings referenced in the description of Figure 4.
  • Figure 6 is an example of the structure of an optical device according to another embodiment of the present disclosure.
  • Figure 7 is an example of the structure of an optical device according to another embodiment of the present disclosure.
  • Figure 8 is an example of the structure of an optical device according to another embodiment of the present disclosure.
  • Figure 9 is an example of the structure of an optical device according to another embodiment of the present disclosure.
  • module and “part” for components used in the following description are simply given in consideration of the ease of writing this specification, and do not in themselves give any particularly important meaning or role. Accordingly, the terms “module” and “unit” may be used interchangeably.
  • the optical device described in this specification is a device capable of outputting visible light. These optical devices can be applied to image projection devices. Alternatively, it is also possible to apply it to a lighting device.
  • the image projection device described in this specification is a device that can project an image to the outside.
  • it may be a projector.
  • the image projection device described in this disclosure can also be mounted as a single component in another device.
  • it can be installed in a mobile terminal, or it can be included in home appliances such as air conditioners, refrigerators, cooking appliances, robot vacuum cleaners, etc., or it can also be installed in vehicles such as cars.
  • Figure 1 illustrates the appearance of an image projection device according to an embodiment of the present disclosure.
  • the image projection device 100 can output a projected image on the screen 200.
  • the screen 200 is illustrated as having a flat surface, but it is also possible to have a curved surface.
  • the user can view the projected image projected on the screen 200.
  • FIG. 2 is an example of an internal block diagram of the image projection device of FIG. 1.
  • the image projection device 100 may include a memory 120, a signal processing device 170, a communication device 135, an image output device 180, and a power supply unit 190. .
  • the image output device 180 may include a driving device 185 and an optical device 210.
  • the driving device 185 can drive the optical device 210.
  • the light source within the optical device 210 can be driven.
  • the optical device 210 may include optical components such as a light source and a lens for light output, particularly visible light output.
  • the optical device 210 can easily implement color separation and synthesis of light. This will be described in detail with reference to FIG. 4 and below.
  • the memory 120 may store programs for processing and controlling the signal processing device 170, and may perform a function for temporary storage of input or output data (e.g., still images, videos, etc.). It may be possible.
  • the communication device 135 serves as an interface with all external devices or networks connected to the image projection device 100 by wire or wirelessly.
  • the communication device 135 can receive data or receive power from such external devices and transmit it to each component inside the image projection device 100, and can transmit data inside the image projection device 100 to an external device. You can.
  • the communication device 135 can receive a wireless signal from an adjacent mobile terminal (not shown).
  • the wireless signal may include various types of data, such as a voice call signal, a video call signal, text data, or video data.
  • the communication device 135 may be equipped with a short-range communication device (not shown).
  • Short-range communication technologies include Bluetooth, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, and Near Field Communication (NFC).
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • ZigBee ZigBee
  • NFC Near Field Communication
  • the signal processing device 170 can perform overall control operations of the image projection device 100. Specifically, the operation of each unit within the image projection device 100 can be controlled.
  • the signal processing device 170 can control a video image stored in the memory 120 or a video image received from the outside through the communication device 135 to be output to the outside as a projection image.
  • the signal processing device 170 can control the optical device 210 or the driving device 185 that outputs visible light such as R, G, and B.
  • R, G, and B signals corresponding to the video image to be displayed may be output to the optical device 210 or the driving device 185.
  • the power supply unit 190 can receive external power or internal power under the control of the signal processing device 170 and supply power necessary for the operation of each component.
  • the power supply unit 190 supplies the power throughout the image projection device 100.
  • a signal processing device 170 that can be implemented in the form of a system on chip (SOC), an image output device 180 for image display, and an audio output unit (not shown) for audio output. Power can be supplied to.
  • SOC system on chip
  • FIG. 3 is an internal block diagram of the control unit of Figure 2.
  • the signal processing device 170 includes a demultiplexer 310, an image processor 320, a processor 330, an OSD generator 340, and a mixer ( 345), a frame rate converter 350, and a formatter 360.
  • it may further include an audio processing unit (not shown) and a data processing unit (not shown).
  • the demultiplexer 310 demultiplexes the input stream.
  • the image processing unit 320 may perform image processing of demultiplexed video signals.
  • the image processing unit 320 may include an image decoder 225 and a scaler 235.
  • the video decoder 225 decodes the demultiplexed video signal, and the scaler 235 performs scaling so that the resolution of the decoded video signal can be output from the video output device 180.
  • the video decoder 225 can be equipped with decoders of various standards.
  • the processor 330 may control overall operations within the image projection device 100 or the signal processing device 170. Additionally, the processor 330 may control the operations of the demultiplexer 310, the image processor 320, and the OSD generator 340 within the signal processing device 170.
  • the OSD generator 340 may generate an OSD signal according to user input or on its own.
  • the mixer 345 may mix the OSD signal generated by the OSD generator 340 and the decoded image signal processed by the image processor 320.
  • the mixed video signal may be provided to the frame rate converter 350.
  • the frame rate converter (FRC) 350 can convert the frame rate of the input video. Meanwhile, the frame rate conversion unit 350 is also capable of outputting the image as is without separate frame rate conversion.
  • the formatter 360 can receive the mixed signal from the mixer 345, that is, the OSD signal and the decoded video signal, and perform signal conversion for input to the video output unit 180.
  • a low voltage differential signal LVDS
  • LVDS low voltage differential signal
  • the block diagram of the signal processing device 170 shown in FIG. 3 is a block diagram for one embodiment of the present disclosure. Each component of the block diagram may be integrated, added, or omitted depending on the specifications of the signal processing device 170 that is actually implemented.
  • the frame rate converter 350 and the formatter 360 may not be provided within the signal processing device 170, but may be provided separately or as a single module.
  • Figure 4 is an example of the structure of an optical device according to an embodiment of the present disclosure.
  • the optical device 210a includes a first light source device 410a that outputs light of a plurality of colors, and a plurality of colors in a direction intersecting the first light source device 410a.
  • a second light source device 410b that outputs light, a dichroic filter 420 that reflects part of the incident light and transmits the other part, and rotates from the direction of the dichroic filter 420.
  • a diffusion wheel 450 that transmits incident light, a diffuser 460 that diffuses light from the direction of the diffusion wheel 450, and a diffuser that reflects light from the direction of the diffuser 460 in the second direction (y direction). It includes a reflective mirror 474 and a fly eye lens 470 disposed between the diffuser 460 and the reflective mirror 474.
  • the dichroic filter 420 includes a first color region (Ara in FIG. 5A) and a second color region (Arb in FIG. 5A), and selects a plurality of colors of light from the first light source device 410a.
  • the first color area (Ara) reflects part of it in the first direction (x-direction)
  • the second color area (Arb) reflects part of it in the first direction (x-direction)
  • the second light source device 410b Some of the plurality of lights from the second color area Arb transmits in the first direction (x-direction), and the other part transmits in the first direction (x-direction) through the first color area Ara.
  • the dichroic filter 420 reflects light of a first color among the plurality of colors of light from the first light source device 410a in the first direction (x direction) in the first color region Ara.
  • the second color area Arb reflects the light of the second color and the light of the third color among the plurality of colors of light from the first light source device 410a in the first direction (x direction), and
  • the second color area Arb transmits the light of the first color among the plurality of lights from the light source device 410b in the first direction (x direction), and the light of the first color among the plurality of lights from the second light source device 410b is transmitted in the first direction (x direction).
  • Light of the second color and light of the third color may be transmitted through the first color area (Ara) in the first direction (x direction). Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured. In addition, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • the dichroic filter 420 reflects the red light from the first light source device 410a in the first direction (x direction) in the first color area Ara, and reflects the red light from the first light source device 410a.
  • the second color area Arb reflects blue light and green light in the first direction (x direction), and the second color area Arb reflects red light from the second light source device 410b in the first direction (x direction).
  • the first color area Ara may transmit the blue light and green light from the second light source device 410b in the first direction (x direction). Accordingly, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • the optical device 210 using a plurality of color areas (Ara, Arb), some of the light of a plurality of colors from the first light source device 410a is transmitted to the first color area (Ara, Arb).
  • Ara reflects in the first direction (x-direction)
  • the second color area (Arb) reflects the other part in the first direction (x-direction), and some of the plurality of lights from the second light source device 410b
  • the second color area Arb transmits in the first direction (x direction), and the second color area Arb transmits another part of the plurality of lights from the second light source device 410b in the first direction (x direction). ) is transmitted.
  • the dichroic filter 420 uses a plurality of color coatings and a plurality of color regions (Ara, Arb) to perform some reflection and some transmission, etc. Most of the light output from the first light source device 410a and the second light source device 410b can be reflected or transmitted.
  • the dichroic filter 420 since the dichroic filter 420 according to an embodiment of the present disclosure does not use polarization characteristics, a separate retarder for polarization characteristics can be omitted, thereby simplifying color separation and synthesis of light. It can be implemented and high brightness performance can be secured. Additionally, the number of components of the optical device 210 can be reduced.
  • the first light source device 410a and the second light source device 410b may include laser diodes that output red light, blue light, and green light, respectively.
  • the first light source device 410a may include four laser diodes that output red light, red light, blue light, and green light, respectively, in the -y-axis direction
  • the second light source device 410b may include x In the axial direction, it may include four laser diodes that output green light, blue light, red light, and red light, respectively.
  • the first light source device 410a may include four laser diodes that output red light, red light, green light, and blue light, respectively, in the -y-axis direction
  • the second light source device 410b may include four laser diodes that output red light, green light, and blue light, respectively, in the -y-axis direction. In each direction, it may include four laser diodes that output blue light, green light, red light, and red light, respectively.
  • the diffusion wheel 450 in the optical device 210 diffuses light by rotating a motor, etc., so it may be called a dynamic diffuser, and the diffuser 460 is fixed and diffuses light. Therefore, it can be called a static diffuser.
  • the effect can be maximized while minimizing the size.
  • the optical device 210 includes a condenser lens 440 disposed between the dichroic filter 420 and the diffusion wheel 450, a fly eye lens 470, and An illumination lens 472 disposed between the reflective mirrors 474 may be further included. Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • the optical device 210 may further include a wedge prism 430 disposed between the dichroic filter 420 and the converging lens 440. Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • the optical device 210 may further include a collimator lens 465 between the diffuser 460 and the fly eye lens 470.
  • the collimator lens 465 and the condenser lens 440 in the optical device 210 can efficiently transmit the focused light without loss, thereby improving light efficiency. You can.
  • the fly-eye lens 470 in the optical device 210 can solve the non-uniformity of incident light and improve uniformity. Additionally, the size of the entire optical device 210 can be reduced and optical efficiency can be improved.
  • the optical device 210 includes a digital mirror device 480 that outputs a projected image based on light from the reflective mirror 474, and a projected image from the digital mirror device 480. It may further include a plurality of optical lenses 486 that output . At this time, the plurality of optical lenses 486 may include projection lenses.
  • the digital mirror device 480 may include a digital micro-mirror device (DMD).
  • DMD digital micro-mirror device
  • the digital mirror device 480 improves light efficiency by reducing light loss through the operation of the micromirror, has excellent color reproducibility, and can output a 4K projection image or an 8K projection image.
  • the optical device 210 includes a total internal reflection (TIR) prism 482 and an actuator disposed between the digital mirror device 480 and a plurality of optical lenses 486. )(484) may be further included. Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • TIR total internal reflection
  • FIGS. 5A to 5E are diagrams referenced in the description of FIG. 4 .
  • FIG. 5A is a diagram showing an example of the first light source device 410a and the second light source device 410b.
  • the first light source device 410a may include four laser diodes that output red light (R), red light (R), blue light (B), and green light (G), respectively, in the -y-axis direction. You can.
  • the first light source device 410a emits red light (R), red light (R), and blue light (B) in the direction from the first color region (Ara) to the second color region (Arb) of the dichroic filter 420. ), and may include four laser diodes that each output green light (G). In particular, four laser diodes can output light in three colors.
  • the red light (R) and the red light (R) output in the -y-axis direction from the first light source device 410a are reflected in the first color region (Ara) of the dichroic filter 420, and are reflected in the first direction ( x direction).
  • the blue light (B) and green light (G) output from the first light source device 410a in the -y-axis direction are reflected in the second color region (Arb) of the dichroic filter 420, and are reflected in the first direction ( x direction).
  • the second light source device 410b may include four laser diodes that output green light (G), blue light (B), red light (R), and red light (R), respectively, in the x-axis direction.
  • the second light source device 410b emits green light (G), blue light (B), and red light (R) in the direction from the first color region (Ara) to the second color region (Arb) of the dichroic filter 420. ), and may include four laser diodes that each output red light (R). In particular, four laser diodes can output light in three colors.
  • the green light (G) and blue light (B) output from the second light source device 410b in the x-axis direction are transmitted in the first color region (Ara) of the dichroic filter 420, and are transmitted in the first direction (x direction) can be output.
  • the red light (R) output from the second light source device 410b in the x-axis direction is transmitted in the second color region (Arb) of the dichroic filter 420, and is transmitted in the first direction (x direction) can be output.
  • the first color area (Ara) may be a cyan area coated with cyan color
  • the second color area (Arb) may be a red area coated with red. Accordingly, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • FIG. 5B is a diagram showing another example of the first light source device 410aa and the second light source device 410ba.
  • the first light source device 410aa and the second light source device 410ba of FIG. 5B are similar to the first light source device 410a and the second light source device 410b of FIG. 5A, but emit blue light (B). ) and the difference lies in the change in the arrangement position of the green light (G).
  • the first light source device 410aa emits red light (R), red light (R), and green light (G) in the direction from the first color region (Ara) to the second color region (Arb) of the dichroic filter 420.
  • four laser diodes can output light in three colors.
  • the red light R output from the first light source device 410aa in the -y-axis direction is reflected in the first color region Ara of the dichroic filter 420, and is reflected in the first direction ( x direction).
  • the green light (G) and blue light (B) output in the -y-axis direction from the first light source device 410aa are in the second color region (Arb) of the dichroic filter 420.
  • the second light source device 410ba may be reflected from the dichroic filter and output in the first direction (x direction).
  • the second color area (Arb) may be changed from the first color area (Ara) of the 420 to the second color area (Arb). It may include four laser diodes that output blue light (B), green light (G), red light (R), and red light (R) in each direction. In particular, four laser diodes can output light in three colors.
  • the blue light (B) and green light (G) output from the second light source device 410ba in the x-axis direction are transmitted in the first color region (Ara) of the dichroic filter 420, and are transmitted in the first direction (x direction) can be output.
  • the red light R output from the second light source device 410ba in the x-axis direction is transmitted in the second color region Arb of the dichroic filter 420 and is transmitted in the first direction (x direction) can be output.
  • the first color area (Ara) may be a cyan area coated with cyan color
  • the second color area (Arb) may be a red area coated with red. Accordingly, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • FIG. 5C is a diagram illustrating various examples of a dichroic filter according to an embodiment of the present disclosure.
  • red light (R), green light (G), and blue light (B) are incident.
  • red light (R) and blue light (B) related to magenta are transmitted, and magenta and Green light (G), which is a complementary color, can be reflected.
  • red light (R), green light (G), and blue light (B) are incident.
  • red light (R) and green light (G) related to yellow are transmitted, and yellow and Blue light (B), which is a complementary color, can be reflected.
  • red light (R), green light (G), and blue light (B) are incident.
  • red light (R), green light (G), and blue light (B) are incident.
  • GRb frequency spectrum curve
  • blue light (B) and green light (G) related to cyan are transmitted, and cyan and Red light (R), which is a complementary color, can be reflected.
  • the dichroic filter 420 reflects light of a first color among the plurality of colors of light from the first light source device 410a in the first direction (x direction) by the first color region Ara
  • the second color area Arb reflects the light of the second color and the light of the third color among the plurality of colors of light from the first light source device 410a in the first direction (x direction), and the second color area Arb reflects the light of the third color in the first direction (x direction)
  • the second color area Arb transmits the light of the first color among the plurality of lights from 410b in the first direction (x direction), and the light of the first color among the plurality of lights from the second light source device 410b is transmitted.
  • the light of and the third color may be transmitted through the first color area (Ara) in the first direction (x direction). Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured. In addition, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • FIG. 5D is a diagram illustrating an example of a dichroic filter according to an embodiment of the present disclosure.
  • the first color area (Ara) of the dichroic filter 420 may be a cyan area
  • the second color area (Arb) may be a red area
  • the first color area (Ara) transmits blue light (B) and green light (G) and reflects red light (R), and the second color area (Arb) transmits red light (R) and blue light (B ), reflects green light (G). Accordingly, color separation and synthesis of light from the light source device can be easily implemented and high brightness performance can be secured.
  • FIG. 5E is a diagram illustrating the fly eye lens 470 of FIG. 4.
  • the fly eye lens 470 has a plurality of convex shapes, and through the plurality of convex shapes, the non-uniformity of incident light can be resolved and uniformity improved. Additionally, the size of the entire optical device 210 can be reduced and optical efficiency can be improved.
  • Figure 6 is an example of the structure of an optical device according to another embodiment of the present disclosure.
  • an optical device 210b is similar to the optical device 210 of FIG. 4, but the dichroic filter 420 transmits light from the first light source device 410a. The difference lies in transmitting and reflecting the light of the second light source device 410b.
  • the optical device 210b compared to the optical device 210 of FIG. 4, the optical device 210b according to another embodiment of the present disclosure reflects light incident from the direction of the dichroic filter 420 in the second direction (y direction). The difference lies in the additional provision of a reflective mirror 445.
  • the optical device 210b includes a first light source device 410a that outputs light of a plurality of colors in a first direction (-y-axis direction), and a first light source device 410a.
  • a second light source device 410b that outputs light of a plurality of colors in a direction intersecting with, a dichroic filter 420 that reflects part of the incident light and transmits the other part, and a dichroic filter (
  • a reflection mirror 445 that reflects light incident from the direction 420) in the second direction (x direction)
  • a diffusion wheel 450 that transmits light incident from the reflection mirror 445 by rotation
  • a diffuser 460 that diffuses light from the (450) direction
  • a second reflection mirror 474 that reflects light from the diffuser 460 direction in the third direction (y direction)
  • a diffuser 460 and a second reflection mirror 474 that reflect light from the diffuser 460 direction in the third direction (y direction)
  • the dichroic filter 420 includes a first color region (Ara in FIG. 5A) and a second color region (Arb in FIG. 5A), and selects a plurality of colors of light from the first light source device 410a.
  • Part of the first color area (Ara) transmits in the first direction (-y direction)
  • part of the second color area (Arb) transmits in the first direction (-y direction)
  • the second light source device The second color area (Arb) reflects some of the plurality of lights from 410b) in the first direction (-y direction)
  • the first color area (Ara) reflects the other part in the first direction (-y direction). Reflect.
  • a portion of the light of a plurality of colors from the first light source device 410a is transmitted to the first color region using a plurality of color regions Ara and Arb.
  • (Ara) is transmitted in the first direction (-y direction)
  • the other part of the second color area (Arb) is transmitted in the first direction (-y direction)
  • a plurality of light sources from the second light source device 410b are transmitted.
  • the second color area Arb reflects some of the light in the first direction (-y direction)
  • the second color area Arb reflects another part of the plurality of lights from the second light source device 410b in the first direction (-y direction). Reflects in direction (-y direction).
  • the dichroic filter 420 uses a plurality of color coatings and a plurality of color regions (Ara, Arb) to perform some reflection and some transmission, etc. Most of the light output from the first light source device 410a and the second light source device 410b can be reflected or transmitted.
  • the dichroic filter 420 since the dichroic filter 420 according to an embodiment of the present disclosure does not use polarization characteristics, a separate retarder for polarization characteristics can be omitted, thereby simplifying color separation and synthesis of light. It can be implemented and high brightness performance can be secured. Additionally, the number of components of the optical device 210 can be reduced.
  • the first light source device 410a and the second light source device 410b may include laser diodes that output red light, blue light, and green light, respectively.
  • the first light source device 410a may include four laser diodes that output red light, red light, blue light, and green light, respectively, in the first direction (-y-axis direction)
  • the second light source device ( 410b) may include four laser diodes that output green light, blue light, red light, and red light, respectively, in the second direction (x-axis direction).
  • the first light source device 410a may include four laser diodes that output red light, red light, green light, and blue light, respectively, in the first direction (-y-axis direction)
  • the second light source device 410b may include four laser diodes that output blue light, green light, red light, and red light, respectively, in the second direction (x-axis direction).
  • the optical device 210b includes a condenser lens 440 disposed between the dichroic filter 420 and the diffusion wheel 450, and a fly eye lens 470. It may further include an illumination lens 472 disposed between the second reflective mirror 474 and the second reflective mirror 474 . Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • the optical device 210b may further include a wedge prism 430 disposed between the dichroic filter 420 and the converging lens 440. Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • the optical device 210b may further include a collimator lens 465 between the diffuser 460 and the fly eye lens 470.
  • the optical device 210b includes a digital mirror device 480 that outputs a projected image based on light from the second reflection mirror 474, and a digital mirror device 480 that outputs a projected image based on light from the second reflection mirror 474. It may further include a plurality of optical lenses 486 that output a projected image. At this time, the plurality of optical lenses 486 may include projection lenses.
  • the optical device 210b includes a total internal reflection (TIR) prism 482 and an actuator ( Actuator) (484) may be further included. Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • TIR total internal reflection
  • Actuator Actuator
  • Figure 7 is an example of the structure of an optical device according to another embodiment of the present disclosure.
  • an optical device 210c is similar to the optical device 210 of FIG. 4, but includes a third light source device 410c, a fourth light source device 410d, and a third light source device 410d. The difference lies in that it further includes a dichroic filter 420b, a second converging lens 440b, etc.
  • the third light source device 410c and the fourth light source device 410d may correspond to the first light source device 410a and the second light source device 410b, respectively, and may include the second dichroic filter 420b and the second light source device 410b.
  • the two converging lenses 440b may correspond to the first dichroic filter 420a and the first condensing lens 440a, respectively.
  • the optical device 210c includes a first light source device 410a that outputs light of a plurality of colors in the -y axis direction, and an x that intersects the first light source device 410a.
  • a second light source device 410b that outputs light of a plurality of colors in the axial direction, a first dichroic filter 420a that reflects part of the incident light and transmits the other part, and a plurality of light sources.
  • a third light source device 410c that outputs light of a color in the -y-axis direction, and a fourth light source device 410d that outputs light of a plurality of colors in the x-axis direction that intersects the third light source device 410c.
  • a second dichroic filter 420b that reflects part of the incident light and transmits the other part
  • a first condenser lens 440a that changes the path of light from the first dichroic filter 420a
  • a second A second condensing lens 440b that changes the path of light from the dichroic filter 420b, and rotates to separate the light incident from the first condensing lens 440a and the light incident from the second condensing lens 440b.
  • a diffusion wheel 450 that transmits, a diffuser 460 that diffuses light from the direction of the diffusion wheel 450, and a reflection mirror 474 that reflects light from the direction of the diffuser 460 in the second direction (y direction). ) and a fly eye lens 470 disposed between the diffuser 460 and the reflective mirror 474.
  • the second dichroic filter 420b includes a third color area (not shown) and a fourth color area (not shown), and is supplied from the third light source device 410c.
  • the third color area reflects some of the light of the plurality of colors in the first direction (x direction), and the fourth color area reflects the other part in the first direction (x direction), and the fourth light source device 410d )
  • the fourth color region transmits some of the plurality of lights in the first direction (x-direction), and the other portion passes through the third color region in the first direction (x-direction).
  • the second dichroic filter 420b may operate similarly to the first dichroic filter 420a.
  • speckle noise of light can be reduced by the diffusion wheel 450 and the diffuser 460 in the optical device 210c according to another embodiment of the present disclosure.
  • laser speckle noise that may occur when the first light source device 410a, the second light source device 410b, the third light source device 410c, and the fourth light source device 410d are laser diodes. Speckle Noise) can be reduced.
  • the effect can be maximized while minimizing the size.
  • the optical device 210c may further include an illumination lens 472 disposed between the fly eye lens 470 and the reflection mirror 474. Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • the optical device 210c includes a first wedge prism 430a disposed between the first dichroic filter 420a and the first converging lens 440a, and a second dichroic filter. It may further include a second wedge prism (430b) disposed between the optical filter (420b) and the second condensing lens (440b). Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • speckle noise of light can be reduced by using the first wedge prism 430a and the second wedge prism 430b to refract the light and focus the light in the direction of the diffusion wheel 450. It becomes possible.
  • the optical device 210c may further include a collimator lens 465 between the diffuser 460 and the fly eye lens 470.
  • the light focused by the collimator lens 465, the first condenser lens 440a, and the second condenser lens 440b in the optical device 210c can be transmitted efficiently without loss, improving light efficiency.
  • the fly-eye lens 470 in the optical device 210c can solve the non-uniformity of incident light and improve uniformity. Additionally, the size of the entire optical device 210 can be reduced and optical efficiency can be improved.
  • the optical device 210c includes a digital mirror device 480 that outputs a projected image based on light from the second reflection mirror 474, and a digital mirror device 480. It may further include a plurality of optical lenses 486 that output projected images from. At this time, the plurality of optical lenses 486 may include projection lenses.
  • the optical device 210c includes a total internal reflection (TIR) prism 482 and an actuator disposed between the digital mirror device 480 and a plurality of optical lenses 486. (Actuator) 484 may be further included. Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • TIR total internal reflection
  • Actuator actuator disposed between the digital mirror device 480 and a plurality of optical lenses 486.
  • Figure 8 is an example of the structure of an optical device according to another embodiment of the present disclosure.
  • an optical device 210d is similar to the optical device 210b of FIG. 6, but includes a third light source device 410c, a fourth light source device 410d, and a third light source device 410d. The difference lies in that it further includes a dichroic filter 420b, a second converging lens 440b, etc.
  • the third light source device 410c and the fourth light source device 410d may correspond to the first light source device 410a and the second light source device 410b, respectively, and may include the second dichroic filter 420b and the second light source device 410b.
  • the two converging lenses 440b may correspond to the first dichroic filter 420a and the first condensing lens 440a, respectively.
  • the optical device 210d includes a first light source device 410a that outputs light of a plurality of colors in a first direction (-y-axis direction), and a first light source device 410a. ), a second light source device 410b that outputs light of a plurality of colors in a second direction (x-axis direction) intersecting with ), and a first dichroic filter 420a that reflects part of the incident light and transmits the other part. and a third light source device 410c that outputs light of a plurality of colors in a first direction (-y-axis direction), and a plurality of colors in a second direction (x-axis direction) that intersects the third light source device 410c. It includes a fourth light source device 410d that outputs light, and a second dichroic filter 420b that reflects part of the incident light and transmits the other part.
  • the optical device 210d includes a first converging lens 440a that changes the path of light from the first dichroic filter 420a, and a second dichroic filter 420b.
  • a second condensing lens 440b that changes the path of light from the first condensing lens 440a and a third condensing lens 447a that changes the optical path from the second condensing lens 440b;
  • a reflection mirror 445 that reflects the light incident from the direction of the third condenser lens 447a in the second direction (x direction), and a diffusion wheel that transmits the light incident from the reflection mirror 445 by rotation ( 450, a diffuser 460 that diffuses light from the direction of the diffusion wheel 450, and a second reflection mirror 474 that reflects light from the direction of the diffuser 460 in a third direction (y direction)
  • the second dichroic filter 420b includes a third color area (not shown) and a fourth color area (not shown), and is supplied from the third light source device 410c.
  • a portion of the light of the plurality of colors is transmitted through the third color region in the first direction (-y-axis direction), the other portion is transmitted through the fourth color region in the first direction (-y-axis direction), and the fourth color region transmits the other portion of the light of the plurality of colors in the first direction (-y-axis direction).
  • the fourth color area reflects some of the plurality of lights from the light source device 410d in the first direction (-y-axis direction), and the third color area reflects the other part in the first direction (-y-axis direction). do.
  • the second dichroic filter 420b may operate similarly to the first dichroic filter 420a.
  • the second light source device 410b and the fourth light source device 410d may output light in the same second direction (x-axis direction).
  • the optical device 210d may further include an illumination lens 472 disposed between the fly eye lens 470 and the reflection mirror 474. Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • the optical device 210d may further include a fourth converging lens 447b disposed between the reflection mirror 445 and the diffusion wheel 450.
  • the third converging lens 447a and the fourth condensing lens 447b may be referred to as a first relay lens and a second relay lens, respectively.
  • the optical device 210d includes a first wedge prism 430a disposed between the first dichroic filter 420a and the first converging lens 440a, and a second dichroic filter. It may further include a second wedge prism (430b) disposed between the optical filter (420b) and the second condensing lens (440b). Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • the optical device 210d may further include a collimator lens 465 between the diffuser 460 and the fly eye lens 470.
  • the optical device 210d includes a digital mirror device 480 that outputs a projected image based on light from the second reflection mirror 474, and a digital mirror device 480. It may further include a plurality of optical lenses 486 that output projected images from. At this time, the plurality of optical lenses 486 may include projection lenses.
  • the optical device 210d includes a total internal reflection (TIR) prism 482 and an actuator disposed between the digital mirror device 480 and a plurality of optical lenses 486. (Actuator) 484 may be further included. Accordingly, the configuration of the optical device 210 can be simply implemented and high brightness performance can be secured.
  • TIR total internal reflection
  • Actuator actuator disposed between the digital mirror device 480 and a plurality of optical lenses 486.
  • Figure 9 is an example of the structure of an optical device according to another embodiment of the present disclosure.
  • the optical device 210e according to another embodiment of the present disclosure shown in FIG. 9 has the same internal configuration as the optical device 210d according to another embodiment of the present disclosure shown in FIG. 8 , however, The difference between the second light source device 410b and the fourth light source device 410d is that they output light in opposite directions.
  • the second light source device 410b can output light in the -x-axis direction
  • the fourth light source device 410d can output light in the x-axis direction.
  • optical device and the image projection device including the same according to the embodiment of the present disclosure are not limited to the configuration and method of the embodiments described above, but the embodiments are each so that various modifications can be made. All or part of the embodiments may be selectively combined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

본 개시는 광학 장치, 및 이를 구비하는 영상투사장치이다. 본 개시의 실시예에 따른 광학 장치는, 제1 색상 영역과 제2 색상 영역을 포함하며, 제1 광원 장치로부터의 복수의 색상의 광 중 일부를 제1 색상 영역이 제1 방향으로 반사하며, 다른 일부를 제2 색상 영역이 제1 방향으로 반사하며, 제2 광원 장치로부터의 복수의 광 중 일부를 제2 색상 영역이 제1 방향으로 투과하며, 다른 일부를 제1 색상 영역이 제1 방향으로 투과하는 이색성 필터와, 회전에 의해, 이색성 필터 방향으로부터 입사되는 광을 투과하는 확산 휠과, 확산 휠 방향로부터의 광을 확산시키는 디퓨저와, 디퓨저 방향으로부터의 광을 제2 방향으로 반사하는 반사 미러와, 디퓨저와 반사 미러 사이에 배치되는 플라이 아이 렌즈를 포함한다. 이에 의해, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.

Description

광학 장치, 및 이를 구비하는 영상투사장치
본 개시는 광학 장치, 및 이를 구비하는 영상투사장치이며, 더욱 상세하게는 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있는 광학 장치, 및 이를 구비하는 영상투사장치이다.
영상투사장치는, 광학 장치를 이용하여, 외부로 영상을 투사하는 장치이다.
영상투사장치의 고휘도 성능 확보를 위해, 고휘도 출력이 가능한 레이저 다이오드 등의 채용 등의 다양한 노력이 시도되고 있다.
한국공개특허공보 제10-2016-0061373호(이하, 선행 문헌 이라 함)는, 프로젝터에 관한 것으로서, 스펙클 노이즈를 저감하기 위한 프로젝트를 개시한다.
선행 문헌에 따르면, 고휘도 성능을 확보하기 위해, 3개의 패널에 각각 적색, 녹색, 청색 광원을 이용한다.
그러나, 선행 문헌에 의하면, 3개의 패널을 이용함으로, 광학 구성이 복잡해지는 단점이 있다. 특히, 광원 장치의 구성이 복잡해지는 단점이 있다.
본 개시의 목적은, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있는 광학 장치, 및 이를 구비하는 영상투사장치를 제공함에 있다.
한편, 본 개시의 다른 목적은, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있는 광학 장치, 및 이를 구비하는 영상투사장치를 제공함에 있다.
한편, 본 개시의 또 다른 목적은, 스페클 노이즈를 효과적으로 저감하면서 고휘도의 성능을 확보할 수 있는 광학 장치, 및 이를 구비하는 영상투사장치를 제공함에 있다.
한편, 본 개시의 또 다른 목적은, 출력되는 광의 밝기 및 균일도 성능을 확보할 수 있는 광학 장치, 및 이를 구비하는 영상투사장치를 제공함에 있다.
상기 목적을 달성하기 위한 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 제1 색상 영역과 제2 색상 영역을 포함하며, 제1 광원 장치로부터의 복수의 색상의 광 중 일부를 제1 색상 영역이 제1 방향으로 반사하며, 다른 일부를 제2 색상 영역이 제1 방향으로 반사하며, 제2 광원 장치로부터의 복수의 광 중 일부를 제2 색상 영역이 제1 방향으로 투과하며, 다른 일부를 제1 색상 영역이 제1 방향으로 투과하는 이색성 필터와, 회전에 의해, 이색성 필터 방향으로부터 입사되는 광을 투과하는 확산 휠과, 확산 휠 방향로부터의 광을 확산시키는 디퓨저와, 디퓨저 방향으로부터의 광을 제2 방향으로 반사하는 반사 미러와, 디퓨저와 반사 미러 사이에 배치되는 플라이 아이 렌즈를 포함한다.
한편, 이색성 필터는, 제1 광원 장치로부터의 복수의 색상의 광 중 제1 색상의 광을 제1 색상 영역이 제1 방향으로 반사하며, 제1 광원 장치로부터의 복수의 색상의 광 중 제2 색상의 광과 제3 색상의 광을 제2 색상 영역이 제1 방향으로 반사하며, 제2 광원 장치로부터의 복수의 광 중 제1 색상의 광을 제2 색상 영역이 제1 방향으로 투과하며, 제2 광원 장치로부터의 복수의 광 중 제2 색상의 광과 제3 색상의 광을 제1 색상 영역이 제1 방향으로 투과할 수 있다.
한편, 이색성 필터는, 제1 광원 장치로부터의 적색광을 제1 색상 영역이 제1 방향으로 반사하며, 제1 광원 장치로부터의 청색광과 녹색광을 제2 색상 영역이 제1 방향으로 반사하며, 제2 광원 장치로부터의 적색광을 제2 색상 영역이 제1 방향으로 투과하며, 제2 광원 장치로부터의 청색광과 녹색광을 제1 색상 영역이 제1 방향으로 투과할 수 있다.
한편, 이색성 필터의 제1 색상 영역에서 제2 색상 영역 방향으로, 제1 광원 장치의 적색광, 청색광, 녹색광이 출력되며, 제2 광원 장치의 녹색광, 청색광, 적생광이 출력될 수 있다.
한편, 이색성 필터의 제1 색상 영역에서 제2 색상 영역 방향으로, 제1 광원 장치의 적색광, 녹색광, 청색광이 출력되며, 제2 광원 장치의 청색광, 녹색광, 적생광이 출력될 수 있다.
한편, 제1 색상 영역은 시안 영역이며, 제2 색상 영역은 적색 영역일 수 있다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 반사 미러로부터의 광에 기초하여 투사 영상을 출력하는 디지털 미러 장치와, 디지털 미러 장치로부터의 투사 영상을 출력하는 복수의 광학 렌즈를 더 포함할 수 있다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 디지털 미러 장치와 복수의 광학 렌즈 사이에 배치되는 전반사 프리즘과 액츄에이터를 더 포함할 수 있다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 이색성 필터와 확산 휠 사이에 배치되는 집광 렌즈와, 플라이 아이 렌즈와 반사 미러 사이에 배치되는 조명 렌즈를 더 포함할 수 있다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 이색성 필터와 집광 렌즈 사이에 배치되는 웨지 프리즘을 더 포함할 수 있다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 제3 색상 영역과 제4 색상 영역을 포함하며, 제3 광원 장치로부터의 복수의 색상의 광 중 일부를 제3 색상 영역이 제1 방향으로 반사하며, 다른 일부를 제4 색상 영역이 제1 방향으로 반사하며, 제4 광원 장치로부터의 복수의 광 중 일부를 제4 색상 영역이 제1 방향으로 투과하며, 다른 일부를 제3 색상 영역이 제1 방향으로 투과하는 제2 이색성 필터와, 이색성 필터로부터의 광의 경로를 변경하는 제1 집광 렌즈와, 제2 이색성 필터로부터의 광의 경로를 변경하는 제2 집광 렌즈를 더 포함하고, 확산 휠은, 회전에 의해, 제1 집광 렌즈로부터 입사되는 광과 제2 집광 렌즈로부터 입사되는 광을 투과할 수 있다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 이색성 필터와 제1 집광 렌즈 사이에 배치되는 제1 웨지 프리즘과, 제2 이색성 필터와 제2 집광 렌즈 사이에 배치되는 제2 웨지 프리즘과, 플라이 아이 렌즈와 반사 미러 사이에 배치되는 조명 렌즈를 더 포함할 수 있다.
본 개시의 다른 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 제1 색상 영역과 제2 색상 영역을 포함하며, 제1 광원 장치로부터의 복수의 색상의 광 중 일부를 제1 색상 영역이 제1 방향으로 투과하며, 다른 일부를 제2 색상 영역이 제1 방향으로 투과하며, 제2 광원 장치로부터의 복수의 광 중 일부를 제2 색상 영역이 제1 방향으로 반사하며, 다른 일부를 제1 색상 영역이 제1 방향으로 반사하는 이색성 필터와, 이색성 필터 방향으로부터 입사되는 광을 제2 방향으로 반사하는 반사 미러와, 회전에 의해, 반사 미러로부터 입사되는 광을 투과하는 확산 휠과, 확산 휠 방향로부터의 광을 확산시키는 디퓨저와, 디퓨저 방향으로부터의 광을 제1 방향과 반대인 제3 방향으로 반사하는 제2 반사 미러와, 디퓨저와 제2 반사 미러 사이에 배치되는 플라이 아이 렌즈를 포함한다.
한편, 본 개시의 다른 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 제2 반사 미러로부터의 광에 기초하여 투사 영상을 출력하는 디지털 미러 장치와, 디지털 미러 장치로부터의 투사 영상을 출력하는 복수의 광학 렌즈를 더 포함할 수 있다.
한편, 본 개시의 다른 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 디지털 미러 장치와 복수의 광학 렌즈 사이에 배치되는 전반사 프리즘과 액츄에이터를 더 포함할 수 있다.
한편, 본 개시의 다른 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 이색성 필터와 확산 휠 사이에 배치되는 집광 렌즈와, 플라이 아이 렌즈와 제2 반사 미러 사이에 배치되는 조명 렌즈를 더 포함할 수 있다.
한편, 본 개시의 다른 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 제3 색상 영역과 제4 색상 영역을 포함하며, 제3 광원 장치로부터의 복수의 색상의 광 중 일부를 제3 색상 영역이 제1 방향으로 투과하며, 다른 일부를 제4 색상 영역이 제1 방향으로 투과하며, 제4 광원 장치로부터의 복수의 광 중 일부를 제4 색상 영역이 제1 방향으로 반사하며, 다른 일부를 제3 색상 영역이 제1 방향으로 반사하는 제2 이색성 필터와, 이색성 필터로부터의 광의 경로를 변경하는 제1 집광 렌즈와, 제2 이색성 필터로부터의 광의 경로를 변경하는 제2 집광 렌즈와, 제1 집광 렌즈로부터의 광 경로와 제2 집광 렌즈로부터의 광 경로를 변경하는 제3 집광 렌즈를 더 포함하고, 반사 미러는, 제3 집광 렌즈부터 입사되는 광을 제2 방향으로 반사할 수 있다.
한편, 제2 광원 장치와 제4 광원 장치는 동일한 방향으로 광을 출력할 수 있다.
한편, 제2 광원 장치와 제4 광원 장치는 반대 방향으로 광을 출력할 수 있다.
본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 제1 색상 영역과 제2 색상 영역을 포함하며, 제1 광원 장치로부터의 복수의 색상의 광 중 일부를 제1 색상 영역이 제1 방향으로 반사하며, 다른 일부를 제2 색상 영역이 제1 방향으로 반사하며, 제2 광원 장치로부터의 복수의 광 중 일부를 제2 색상 영역이 제1 방향으로 투과하며, 다른 일부를 제1 색상 영역이 제1 방향으로 투과하는 이색성 필터와, 회전에 의해, 이색성 필터 방향으로부터 입사되는 광을 투과하는 확산 휠과, 확산 휠 방향로부터의 광을 확산시키는 디퓨저와, 디퓨저 방향으로부터의 광을 제2 방향으로 반사하는 반사 미러와, 디퓨저와 반사 미러 사이에 배치되는 플라이 아이 렌즈를 포함한다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다. 또한, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다. 나아가, 스페클 노이즈를 효과적으로 저감하면서 고휘도의 성능을 확보할 수 있게 된다.
한편, 이색성 필터는, 제1 광원 장치로부터의 복수의 색상의 광 중 제1 색상의 광을 제1 색상 영역이 제1 방향으로 반사하며, 제1 광원 장치로부터의 복수의 색상의 광 중 제2 색상의 광과 제3 색상의 광을 제2 색상 영역이 제1 방향으로 반사하며, 제2 광원 장치로부터의 복수의 광 중 제1 색상의 광을 제2 색상 영역이 제1 방향으로 투과하며, 제2 광원 장치로부터의 복수의 광 중 제2 색상의 광과 제3 색상의 광을 제1 색상 영역이 제1 방향으로 투과할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다. 또한, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 이색성 필터는, 제1 광원 장치로부터의 적색광을 제1 색상 영역이 제1 방향으로 반사하며, 제1 광원 장치로부터의 청색광과 녹색광을 제2 색상 영역이 제1 방향으로 반사하며, 제2 광원 장치로부터의 적색광을 제2 색상 영역이 제1 방향으로 투과하며, 제2 광원 장치로부터의 청색광과 녹색광을 제1 색상 영역이 제1 방향으로 투과할 수 있다. 이에 따라, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 이색성 필터의 제1 색상 영역에서 제2 색상 영역 방향으로, 제1 광원 장치의 적색광, 청색광, 녹색광이 출력되며, 제2 광원 장치의 녹색광, 청색광, 적생광이 출력될 수 있다. 이에 따라, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 이색성 필터의 제1 색상 영역에서 제2 색상 영역 방향으로, 제1 광원 장치의 적색광, 녹색광, 청색광이 출력되며, 제2 광원 장치의 청색광, 녹색광, 적생광이 출력될 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다. 또한, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 제1 색상 영역은 시안 영역이며, 제2 색상 영역은 적색 영역일 수 있다. 이에 따라, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 반사 미러로부터의 광에 기초하여 투사 영상을 출력하는 디지털 미러 장치와, 디지털 미러 장치로부터의 투사 영상을 출력하는 복수의 광학 렌즈를 더 포함할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 디지털 미러 장치와 복수의 광학 렌즈 사이에 배치되는 전반사 프리즘과 액츄에이터를 더 포함할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 이색성 필터와 확산 휠 사이에 배치되는 집광 렌즈와, 플라이 아이 렌즈와 반사 미러 사이에 배치되는 조명 렌즈를 더 포함할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 이색성 필터와 집광 렌즈 사이에 배치되는 웨지 프리즘을 더 포함할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 제3 색상 영역과 제4 색상 영역을 포함하며, 제3 광원 장치로부터의 복수의 색상의 광 중 일부를 제3 색상 영역이 제1 방향으로 반사하며, 다른 일부를 제4 색상 영역이 제1 방향으로 반사하며, 제4 광원 장치로부터의 복수의 광 중 일부를 제4 색상 영역이 제1 방향으로 투과하며, 다른 일부를 제3 색상 영역이 제1 방향으로 투과하는 제2 이색성 필터와, 이색성 필터로부터의 광의 경로를 변경하는 제1 집광 렌즈와, 제2 이색성 필터로부터의 광의 경로를 변경하는 제2 집광 렌즈를 더 포함하고, 확산 휠은, 회전에 의해, 제1 집광 렌즈로부터 입사되는 광과 제2 집광 렌즈로부터 입사되는 광을 투과할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다. 또한, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 이색성 필터와 제1 집광 렌즈 사이에 배치되는 제1 웨지 프리즘과, 제2 이색성 필터와 제2 집광 렌즈 사이에 배치되는 제2 웨지 프리즘과, 플라이 아이 렌즈와 반사 미러 사이에 배치되는 조명 렌즈를 더 포함할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
본 개시의 다른 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 제1 색상 영역과 제2 색상 영역을 포함하며, 제1 광원 장치로부터의 복수의 색상의 광 중 일부를 제1 색상 영역이 제1 방향으로 투과하며, 다른 일부를 제2 색상 영역이 제1 방향으로 투과하며, 제2 광원 장치로부터의 복수의 광 중 일부를 제2 색상 영역이 제1 방향으로 반사하며, 다른 일부를 제1 색상 영역이 제1 방향으로 반사하는 이색성 필터와, 이색성 필터 방향으로부터 입사되는 광을 제2 방향으로 반사하는 반사 미러와, 회전에 의해, 반사 미러로부터 입사되는 광을 투과하는 확산 휠과, 확산 휠 방향로부터의 광을 확산시키는 디퓨저와, 디퓨저 방향으로부터의 광을 제1 방향과 반대인 제3 방향으로 반사하는 제2 반사 미러와, 디퓨저와 제2 반사 미러 사이에 배치되는 플라이 아이 렌즈를 포함한다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다. 또한, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다. 나아가, 스페클 노이즈를 효과적으로 저감하면서 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 다른 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 제2 반사 미러로부터의 광에 기초하여 투사 영상을 출력하는 디지털 미러 장치와, 디지털 미러 장치로부터의 투사 영상을 출력하는 복수의 광학 렌즈를 더 포함할 수 있다.
한편, 본 개시의 다른 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 디지털 미러 장치와 복수의 광학 렌즈 사이에 배치되는 전반사 프리즘과 액츄에이터를 더 포함할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 다른 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 이색성 필터와 확산 휠 사이에 배치되는 집광 렌즈와, 플라이 아이 렌즈와 제2 반사 미러 사이에 배치되는 조명 렌즈를 더 포함할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 다른 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는, 제3 색상 영역과 제4 색상 영역을 포함하며, 제3 광원 장치로부터의 복수의 색상의 광 중 일부를 제3 색상 영역이 제1 방향으로 투과하며, 다른 일부를 제4 색상 영역이 제1 방향으로 투과하며, 제4 광원 장치로부터의 복수의 광 중 일부를 제4 색상 영역이 제1 방향으로 반사하며, 다른 일부를 제3 색상 영역이 제1 방향으로 반사하는 제2 이색성 필터와, 이색성 필터로부터의 광의 경로를 변경하는 제1 집광 렌즈와, 제2 이색성 필터로부터의 광의 경로를 변경하는 제2 집광 렌즈와, 제1 집광 렌즈로부터의 광 경로와 제2 집광 렌즈로부터의 광 경로를 변경하는 제3 집광 렌즈를 더 포함하고, 반사 미러는, 제3 집광 렌즈부터 입사되는 광을 제2 방향으로 반사할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다. 또한, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 제2 광원 장치와 제4 광원 장치는 동일한 방향으로 광을 출력할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 제2 광원 장치와 제4 광원 장치는 반대 방향으로 광을 출력할 수 있다. 이에 따라, 광학 장치의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
도 1은 본 개시의 일 실시예에 따른 영상투사장치의 외관을 예시한다.
도 2는 도 1의 영상투사장치의 내부 블록도의 일예이다.
도 3은 도 2의 신호 처리 장치의 내부 블록도의 일예이다.
도 4는 본 개시의 일 실시예에 따른 광학 장치의 구조의 일예이다.
도 5a 내지 도 5e는 도 4의 설명에 참조되는 도면이다.
도 6은 본 개시의 다른 실시예에 따른 광학 장치의 구조의 일예이다.
도 7은 본 개시의 또 다른 실시예에 따른 광학 장치의 구조의 일예이다.
도 8은 본 개시의 또 다른 실시예에 따른 광학 장치의 구조의 일예이다.
도 9는 본 개시의 또 다른 실시예에 따른 광학 장치의 구조의 일예이다.
이하에서는 도면을 참조하여 본 개시를 보다 상세하게 설명한다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.
본 명세서에서 기술되는 광학장치는, 가시광을 출력할 수 있는 장치이다. 이러한 광학장치는, 영상투사장치에 적용될 수 있다. 또는, 조명장치에 적용되는 것도 가능하다.
한편, 본 명세서에서 기술되는 영상투사장치는, 외부에 영상을 투사할 수 있는 장치이다. 예를 들어, 프로젝터(projector)일 수 있다.
한편, 본 개시에서 기술되는 영상투사장치는, 하나의 부품으로서 다른 기기 내에 장착되는 것도 가능하다. 예를 들어, 이동 단말기에 장착되는 것이 가능하며, 또는 에어컨, 냉장고, 조리기기, 로봇 청소기 등의 가전기기 내에 포함되는 것도 가능하며, 또는 자동차 등의 차량 내에 장착되는 것도 가능하다.
이하에서는 이러한 영상투사장치에 대해 상세히 기술한다.
도 1은 본 개시의 일 실시예에 따른 영상투사장치의 외관을 예시한다.
도면을 참조하면, 영상투사장치(100)는, 스크린(200) 상에 투사 영상을 출력할 수 있다.
도면에서는, 스크린(200)이 평평한 면을 가지는 것으로 예시하나, 곡면을 가지는 것도 가능하다.
사용자는, 스크린(200) 상에 투사된 투사 영상을 시청할 수 있게 된다.
도 2는 도 1의 영상투사장치의 내부 블록도의 일예이다.
도면을 참조하면, 영상투사장치(100)는, 메모리(120), 신호처리장치(170), 통신 장치(135), 영상출력장치(180), 및 전원 공급부(190) 등을 구비할 수 있다.
한편, 영상출력장치(180)는, 구동 장치(185)와, 광학 장치(210)를 구비할 수 있다.
구동 장치(185)는, 광학 장치(210)를 구동할 수 있다. 특히, 광학 장치(210) 내의 광원을 구동할 수 있다.
광학 장치(210)는, 광 출력, 특히 가시광 출력을 위해, 광원, 렌즈 등의 광학 부품을 구비할 수 있다.
특히, 본 개시의 실시예에 따른 광학장치(210)는, 광의 색 분리 및 합성을 간단하게 구현할 수 있다. 이에 대해서는, 도 4 이하를 참조하여 상술한다.
메모리(120)는 신호처리장치(170)의 처리 및 제어를 위한 프로그램이 저장될 수도 있고, 입력되거나 출력되는 데이터들(예를 들어, 정지영상, 동영상 등)의 임시 저장을 위한 기능을 수행할 수도 있다.
통신 장치(135)는 영상투사장치(100)에 유선 또는 무선으로 연결되는 모든 외부기기 또는 네트워크와의 인터페이스 역할을 수행한다. 통신 장치(135)는 이러한 외부 기기로부터 데이터를 전송받거나 전원을 공급받아 영상투사장치(100) 내부의 각 구성 요소에 전달할 수 있고, 영상투사장치(100) 내부의 데이터가 외부 기기로 전송되도록 할 수 있다.
특히, 통신 장치(135)는, 인접하는 이동 단말기(미도시)로부터 무선 신호를 수신할 수 있다. 여기서, 무선 신호는, 음성 호 신호, 화상 통화 호 신호, 또는 문자 데이터, 영상 데이터 등 다양한 형태의 데이터를 포함할 수 있다.
이를 위해, 통신 장치(135)는, 근거리 통신 장치(미도시)를 구비할 수 있다. 근거리 통신 기술로 블루투스(Bluetooth), RFID(Radio Frequency Identification), 적외선 통신(IrDA, infrared Data Association), UWB(Ultra Wideband), 지그비(ZigBee), NFC(Near Field Communication) 등이 이용될 수 있다.
신호처리장치(170)는, 영상투사장치(100)의 전반적인 제어 동작을 수행할 수 있다. 구체적으로, 영상투사장치(100) 내의 각 유닛의 동작을 제어할 수 있다.
신호처리장치(170)는, 메모리(120)에 저장되는 비디오 영상, 또는 통신 장치(135)을 통해 외부로부터 수신되는 비디오 영상을, 투사 영상으로서, 외부에 출력되도록 제어할 수 있다.
이를 위해, 신호처리장치(170)는, R,G,B 등의 가시광을 출력하는 광학 장치(210) 또는 구동 장치(185)를 제어할 수 있다. 구체적으로, 표시할 비디오 영상에 대응하는 R,G,B 신호를, 광학 장치(210) 또는 구동 장치(185)에 출력할 수 있다.
전원 공급부(190)는 신호처리장치(170)의 제어에 의해 외부의 전원 또는 내부의 전원을 인가받아 각 구성요소들의 동작에 필요한 전원을 공급할 수 있다.
전원 공급부(190)는, 영상투사장치(100) 전반에 걸쳐 해당 전원을 공급한다. 특히, 시스템 온 칩(System On Chip,SOC)의 형태로 구현될 수 있는 신호처리장치(170)와, 영상 표시를 위한 영상출력장치(180), 및 오디오 출력을 위한 오디오 출력부(미도시)에 전원을 공급할 수 있다.
도 3은 도 2의 제어부의 내부 블록도이다.
도면을 참조하여 설명하면, 본 개시의 일실시예에 의한 신호처리장치(170)는, 역다중화부(310), 영상 처리부(320), 프로세서(330), OSD 생성부(340), 믹서(345), 프레임 레이트 변환부(350), 및 포맷터(360)를 포함할 수 있다. 그 외 오디오 처리부(미도시), 데이터 처리부(미도시)를 더 포함할 수 있다.
역다중화부(310)는, 입력되는 스트림을 역다중화한다.
영상 처리부(320)는, 역다중화된 영상 신호의 영상 처리를 수행할 수 있다. 이를 위해, 영상 처리부(320)는, 영상 디코더(225), 및 스케일러(235)를 구비할 수 있다.
영상 디코더(225)는, 역다중화된 영상신호를 복호화하며, 스케일러(235)는, 복호화된 영상신호의 해상도를 영상출력장치(180)에서 출력 가능하도록 스케일링(scaling)을 수행한다. 영상 디코더(225)는 다양한 규격의 디코더를 구비하는 것이 가능하다.
프로세서(330)는, 영상투사장치(100) 내 또는 신호처리장치(170) 내의 전반적인 동작을 제어할 수 있다. 또한, 프로세서(330)는, 신호처리장치(170) 내의 역다중화부(310), 영상 처리부(320), OSD 생성부(340) 등의 동작을 제어할 수 있다.
OSD 생성부(340)는, 사용자 입력에 따라 또는 자체적으로 OSD 신호를 생성할 수 있다.
믹서(345)는, OSD 생성부(340)에서 생성된 OSD 신호와 영상 처리부(320)에서 영상 처리된 복호화된 영상 신호를 믹싱할 수 있다. 믹싱된 영상 신호는 프레임 레이트 변환부(350)에 제공될 수 있다.
프레임 레이트 변환부(Frame Rate Conveter, FRC)(350)는, 입력되는 영상의 프레임 레이트를 변환할 수 있다. 한편, 프레임 레이트 변환부(350)는, 별도의 프레임 레이트 변환 없이, 그대로 출력하는 것도 가능하다.
한편, 포맷터(Formatter)(360)는, 믹서(345)에서 믹싱된 신호, 즉 OSD 신호와 복호화된 영상 신호를 입력받아, 영상 출력부(180)로 입력을 위한, 신호 변환을 수행할 수 있다. 예를 들어, 낮은 전압 차분 신호(LVDS)를 출력할 수 있다.
한편, 도 3에 도시된 신호처리장치(170)의 블록도는 본 개시의 일실시예를 위한 블록도이다. 블록도의 각 구성요소는 실제 구현되는 신호처리장치(170)의 사양에 따라 통합, 추가, 또는 생략될 수 있다.
특히, 프레임 레이트 변환부(350), 및 포맷터(360)는 신호처리장치(170) 내에 마련되지 않고, 각각 별도로 구비되거나, 하나의 모듈로서 별도로 구비될 수도 있다.
도 4는 본 개시의 일 실시예에 따른 광학 장치의 구조의 일예이다.
도면을 참조하면, 본 개시의 실시예에 따른 광학 장치(210a)는, 복수의 색상의 광을 출력하는 제1 광원 장치(410a), 제1 광원 장치(410a)와 교차하는 방향으로 복수의 색상의 광을 출력하는 제2 광원 장치(410b), 입사되는 광의 일부를 반사하며, 다른 일부를 투과하는 이색성 필터(Dichroic Filter)(420)와, 회전에 의해, 이색성 필터(420) 방향으로부터 입사되는 광을 투과하는 확산 휠(450)과, 확산 휠(450) 방향로부터의 광을 확산시키는 디퓨저(460)와, 디퓨저(460) 방향으로부터의 광을 제2 방향(y 방향)으로 반사하는 반사 미러(474)와, 디퓨저(460)와 반사 미러(474) 사이에 배치되는 플라이 아이 렌즈(470)를 포함한다.
한편, 이색성 필터(420)는, 제1 색상 영역(도 5a의 Ara)과 제2 색상 영역(도 5a의 Arb)을 포함하며, 제1 광원 장치(410a)로부터의 복수의 색상의 광 중 일부를 제1 색상 영역(Ara)이 제1 방향(x 방향)으로 반사하며, 다른 일부를 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 반사하며, 제2 광원 장치(410b)로부터의 복수의 광 중 일부를 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 투과하며, 다른 일부를 제1 색상 영역(Ara)이 제1 방향(x 방향)으로 투과한다.
예를 들어, 이색성 필터(420)는, 제1 광원 장치(410a)로부터의 복수의 색상의 광 중 제1 색상의 광을 제1 색상 영역(Ara)이 제1 방향(x 방향)으로 반사하며, 제1 광원 장치(410a)로부터의 복수의 색상의 광 중 제2 색상의 광과 제3 색상의 광을 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 반사하며, 제2 광원 장치(410b)로부터의 복수의 광 중 제1 색상의 광을 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 투과하며, 제2 광원 장치(410b)로부터의 복수의 광 중 제2 색상의 광과 제3 색상의 광을 제1 색상 영역(Ara)이 제1 방향(x 방향)으로 투과할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다. 또한, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
구체적으로, 이색성 필터(420)는, 제1 광원 장치(410a)로부터의 적색광을 제1 색상 영역(Ara)이 제1 방향(x 방향)으로 반사하며, 제1 광원 장치(410a)로부터의 청색광과 녹색광을 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 반사하며, 제2 광원 장치(410b)로부터의 적색광을 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 투과하며, 제2 광원 장치(410b)로부터의 청색광과 녹색광을 제1 색상 영역(Ara)이 제1 방향(x 방향)으로 투과할 수 있다. 이에 따라, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
본 개시의 실시예에 따른 광학 장치(210)에 의하면, 복수의 색상 영역(Ara,Arb)을 이용하여, 제1 광원 장치(410a)로부터의 복수의 색상의 광 중 일부를 제1 색상 영역(Ara)이 제1 방향(x 방향)으로 반사하며, 다른 일부를 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 반사하며, 제2 광원 장치(410b)로부터의 복수의 광 중 일부를 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 투과하며, 제2 광원 장치(410b)로부터의 복수의 광 중 다른 일부를 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 투과한다.
특히, 본 개시의 실시예에 따른 이색성 필터(420)가, 복수의 색상 코팅을 이용하여, 복수의 색상 영역(Ara,Arb)을 이용하여, 일부 반사, 다른 일부 투과 등을 수행함으로써, 제1 광원 장치(410a)와 제2 광원 장치(410b)에서 출력되는 광의 대부분을 반사 또는 투과할 수 있게 된다.
특히, 본 개시의 실시예에 따른 이색성 필터(420)가, 편광 특성을 이용하지 않으므로, 편광 특성을 위한 별도의 리타더(retarder) 등을 생략할 수 있어, 광의 색 분리 및 합성을 간단하게 구현할 수 있으며, 고휘도의 성능을 확보할 수 있게 된다. 또한, 광학 장치(210)의 부품 개수를 줄일 수 있게 된다.
한편, 제1 광원 장치(410a)와 제2 광원 장치(410b)는, 각각 적색광, 청색광, 녹색광을 출력하는 레이저 다이오드를 포함할 수 있다.
예를 들어, 제1 광원 장치(410a)는, -y축 방향으로, 각각 적색광, 적색광, 청색광, 녹색광을 출력하는 4개의 레이저 다이오드들을 포함할 수 있으며, 제2 광원 장치(410b)는, x축 방향으로, 각각 녹색광, 청색광, 적색광, 적색광을 출력하는 4개의 레이저 다이오드들을 포함할 수 있다.
다른 예로, 제1 광원 장치(410a)는, -y축 방향으로, 각각 적색광, 적색광, 녹색광, 청색광을 출력하는 4개의 레이저 다이오드들을 포함할 수 있으며, 제2 광원 장치(410b)는, x축 방향으로, 각각 청색광, 녹색광, 적색광, 적색광을 출력하는 4개의 레이저 다이오드들을 포함할 수 있다.
한편, 본 개시의 실시예에 따른 광학 장치(210) 내의 확산 휠(450)은, 모터의 회전 등에 의해 광을 확산시키므로 동적 디퓨저라 명명할 수도 있으며, 디퓨저(460)는, 고정되어 광을 확산시키므로 정적 디퓨저라 명명할수 있다.
이러한 확산 휠(450)과, 디퓨저(460)에 의해, 광의 스페클 노이즈(Speckle Noise)를 저감할 수 있게 된다.
특히, 제1 광원 장치(410a)와 제2 광원 장치(410b)가, 레이저 다이오드인 경우에 발생할 수 있는, 레이저 스페클 노이즈(Laser Speckle Noise)를 저감할 수 있게 된다.
한편, 광학 장치(210) 내의 확산 휠(450)과 디퓨저(460)를 렌즈의 초점 부위에 배치함으로써, 사이즈를 최소화하면서 효과는 극대화할 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치(210)는, 이색성 필터(420)와 확산 휠(450) 사이에 배치되는 집광 렌즈(Condenser Lens)(440)와, 플라이 아이 렌즈(470)와 반사 미러(474) 사이에 배치되는 조명 렌즈(Illumination Lens)(472)를 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치(210)는, 이색성 필터(420)와 집광 렌즈(440) 사이에 배치되는 웨지 프리즘(Wedge Prism)(430)을 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
특히, 웨지 프리즘(430)을 이용하여, 광을 굴절시킴으로써, 확산 휠(450) 방향으로 광이 집속되도록 함으로써, 광의 스페클 노이즈(Speckle Noise)를 저감할 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치(210)는, 디퓨저(460)와 플라이 아이 렌즈(470) 사이에 시준 렌즈(Collimato Lens)(465)를 더 포함할 수 있다.
한편, 본 개시의 실시예에 따른 광학 장치(210) 내의 시준 렌즈(Collimato Lens)(465)와, 집광 렌즈(440) 등에 의해, 집속되는 광을 손실없이 효율적으로 전달할 수 있어, 광효율을 향상시킬 수 있다.
한편, 본 개시의 실시예에 따른 광학 장치(210) 내의 플라이 아이 렌즈(470)에 의해, 입사되는 광의 불균일성을 해결하여 균일성(uniformity)을 향상시킬 수 있다. 또한, 전체 광학 장치(210)의 사이즈가 축소되도록 하고, 광학 효율의 향상 시킬 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치(210)는, 반사 미러(474)로부터의 광에 기초하여 투사 영상을 출력하는 디지털 미러 장치(480)와, 디지털 미러 장치(480)로부터의 투사 영상을 출력하는 복수의 광학 렌즈(486)를 더 포함할 수 있다. 이때의 복수의 광학 렌즈(486)는, 프로젝션 렌즈(Projection Lens)를 포함할 수 있다.
한편, 디지털 미러 장치(480)는, 디지털 마이크로미러 장치(digital micro-mirror device; DMD)를 포함할 수 있다.
이에 따라, 디지털 미러 장치(480)는, 마이크로 미러의 동작에 의해, 광 손실이 적어 광 효율이 향상되며, 색 재현성이 뛰어나, 4K 투사 영상 또는 8K 투사 영상을 출력할 수 있게 된다.
한편, 본 개시의 실시예에 따른 광학 장치(210)는, 디지털 미러 장치(480)와 복수의 광학 렌즈(486) 사이에 배치되는 전반사(Total Internal Reflection; TIR) 프리즘(482)과 액츄에이터(Actuator)(484)를 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
도 5a 내지 도 5e는 도 4의 설명에 참조되는 도면이다.
먼저, 도 5a는 제1 광원 장치(410a)와 제2 광원 장치(410b)의 일예를 도시하는 도면이다.
도면을 참조하면, 제1 광원 장치(410a)는, -y축 방향으로, 각각 적색광(R), 적색광(R), 청색광(B), 녹색광(G)을 출력하는 4개의 레이저 다이오드들을 포함할 수 있다.
구체적으로, 제1 광원 장치(410a)는, 이색성 필터(420)의 제1 색상 영역(Ara)에서 제2 색상 영역(Arb) 방향으로, 적색광(R), 적색광(R), 청색광(B), 녹색광(G)을 각각 출력하는 4개의 레이저 다이오드들을 포함할 수 있다. 특히, 4개의 레이저 다이오드가 3 색상의 광을 출력할 수 있다.
한편, 제1 광원 장치(410a)에서 -y축 방향으로 출력되는 적색광(R)과 적색광(R)은, 이색성 필터(420)의 제1 색상 영역(Ara)에서 반사되어, 제1 방향(x 방향)으로 출력될 수 있다.
한편, 제1 광원 장치(410a)에서 -y축 방향으로 출력되는 청색광(B)과 녹색광(G)은, 이색성 필터(420)의 제2 색상 영역(Arb)에서 반사되어, 제1 방향(x 방향)으로 출력될 수 있다.
제2 광원 장치(410b)는, x축 방향으로, 각각 녹색광(G), 청색광(B), 적색광(R), 적색광(R)을 출력하는 4개의 레이저 다이오드들을 포함할 수 있다.
구체적으로, 제2 광원 장치(410b)는, 이색성 필터(420)의 제1 색상 영역(Ara)에서 제2 색상 영역(Arb) 방향으로, 녹색광(G), 청색광(B), 적색광(R), 적색광(R)을 각각 출력하는 4개의 레이저 다이오드들을 포함할 수 있다. 특히, 4개의 레이저 다이오드가 3 색상의 광을 출력할 수 있다.
한편, 제2 광원 장치(410b)에서 x축 방향으로 출력되는 녹색광(G)과 청색광(B)은, 이색성 필터(420)의 제1 색상 영역(Ara)에서 투과되어, 제1 방향(x 방향)으로 출력될 수 있다.
한편, 제2 광원 장치(410b)에서 x축 방향으로 출력되는 적색광(R)과 적색광(R)은, 이색성 필터(420)의 제2 색상 영역(Arb)에서 투과되어, 제1 방향(x 방향)으로 출력될 수 있다.
이를 위해, 제1 색상 영역(Ara)은 시안(cyan) 색상이 코팅된 시안 영역이며, 제2 색상 영역(Arb)은 적색(red)이 코팅된 적색 영역일 수 있다. 이에 따라, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
다음, 도 5b는 제1 광원 장치(410aa)와 제2 광원 장치(410ba)의 다른 예를 도시하는 도면이다.
도면을 참조하면, 도 5b의 제1 광원 장치(410aa)와 제2 광원 장치(410ba)는, 도 5a의 제1 광원 장치(410a)와 제2 광원 장치(410b)와 유사하나, 청색광(B)과 녹색광(G)의 배열 위치가 달라지는 것에 그 차이가 있다.
즉, 도 5a에 따르면, 이색성 필터(420)의 제1 색상 영역(Ara)의 제2 색상 영역(Arb)의 경계 부근에, 제1 광원 장치(410a)의 청색광(B)과 제2 광원 장치(410b)의 청색광(B)이 입사되나, 도 5b에 따르면, 이색성 필터(420)의 제1 색상 영역(Ara)의 제2 색상 영역(Arb)의 경계 부근에, 제1 광원 장치(410aa)의 녹색광(G)과 제2 광원 장치(410ba)의 녹색광(G)이 입사되는 것에 그 차이가 있다.
즉, 제1 광원 장치(410aa)는, 이색성 필터(420)의 제1 색상 영역(Ara)에서 제2 색상 영역(Arb) 방향으로, 적색광(R), 적색광(R), 녹색광(G), 청색광(B) 을 각각 출력하는 4개의 레이저 다이오드들을 포함할 수 있다. 특히, 4개의 레이저 다이오드가 3 색상의 광을 출력할 수 있다.
한편, 제1 광원 장치(410aa)에서 -y축 방향으로 출력되는 적색광(R)과 적색광(R)은, 이색성 필터(420)의 제1 색상 영역(Ara)에서 반사되어, 제1 방향(x 방향)으로 출력될 수 있다.
한편, 제1 광원 장치(410aa)에서 -y축 방향으로 출력되는 녹색광(G)과 청색광(B)은, 이색성 필터(420)의 제2 색상 영역(Arb)
한편, 제2 광원 장치(410ba)는, 이색성 필터(에서 반사되어, 제1 방향(x 방향)으로 출력될 수 있다.420)의 제1 색상 영역(Ara)에서 제2 색상 영역(Arb) 방향으로, 청색광(B), 녹색광(G), 적색광(R), 적색광(R)을 각각 출력하는 4개의 레이저 다이오드들을 포함할 수 있다. 특히, 4개의 레이저 다이오드가 3 색상의 광을 출력할 수 있다.
한편, 제2 광원 장치(410ba)에서 x축 방향으로 출력되는 청색광(B)과 녹색광(G)은, 이색성 필터(420)의 제1 색상 영역(Ara)에서 투과되어, 제1 방향(x 방향)으로 출력될 수 있다.
한편, 제2 광원 장치(410ba)에서 x축 방향으로 출력되는 적색광(R)과 적색광(R)은, 이색성 필터(420)의 제2 색상 영역(Arb)에서 투과되어, 제1 방향(x 방향)으로 출력될 수 있다.
이를 위해, 제1 색상 영역(Ara)은 시안(cyan) 색상이 코팅된 시안 영역이며, 제2 색상 영역(Arb)은 적색(red)이 코팅된 적색 영역일 수 있다. 이에 따라, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
도 5c는 본 개시의 실시예에 따른 이색성 필터의 다양한 예를 설명하는 도면이다.
도 5c의 (a)와 같이, 이색성 필터(420)의 일부 영역(420pa)이 마젠타(magenta) 코팅이 수행된 상태에서, 적색광(R), 녹색광(G), 청색광(B)이 입사되는 경우, 도 5c의 (b)의 마젠타(magenta) 코팅의 주파수 스펙트럼 곡선(GRa)에 기초하여, 마젠타(magenta)와 관련 있는 적색광(R), 청색광(B)은 투과되고, 마젠타(magenta)와 보색(Complementary color) 관계인 녹색광(G)은 반사될 수 있다.
도 5c의 (c)와 같이, 이색성 필터(420)의 일부 영역(420pb)이 옐로우(yellow) 코팅이 수행된 상태에서, 적색광(R), 녹색광(G), 청색광(B)이 입사되는 경우, 도 5c의 (d)의 옐로우(yellow) 코팅의 주파수 스펙트럼 곡선(GRb)에 기초하여, 옐로우(yellow)와 관련 있는 적색광(R), 녹색광(G)은 투과되고, 옐로우(yellow)와 보색(Complementary color) 관계인 청색광(B)은 반사될 수 있다.
도 5c의 (e)와 같이, 이색성 필터(420)의 일부 영역(420pb)이 시안(cyan) 코팅이 수행된 상태에서, 적색광(R), 녹색광(G), 청색광(B)이 입사되는 경우, 도 5c의 (f)의 옐로우(yellow) 코팅의 주파수 스펙트럼 곡선(GRb)에 기초하여, 시안(cyan)과 관련 있는 청색광(B), 녹색광(G)은 투과되고, 시안(cyan)과 보색(Complementary color) 관계인 적색광(R)은 반사될 수 있다.
즉, 이색성 필터(420)는, 제1 광원 장치(410a)로부터의 복수의 색상의 광 중 제1 색상의 광을 제1 색상 영역(Ara)이 제1 방향(x 방향)으로 반사하며, 제1 광원 장치(410a)로부터의 복수의 색상의 광 중 제2 색상의 광과 제3 색상의 광을 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 반사하며, 제2 광원 장치(410b)로부터의 복수의 광 중 제1 색상의 광을 제2 색상 영역(Arb)이 제1 방향(x 방향)으로 투과하며, 제2 광원 장치(410b)로부터의 복수의 광 중 제2 색상의 광과 제3 색상의 광을 제1 색상 영역(Ara)이 제1 방향(x 방향)으로 투과할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다. 또한, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
도 5d는 본 개시의 실시예에 따른 이색성 필터의 일예를 도시한 도면이다.
도면을 참조하면, 이색성 필터(420)의 제1 색상 영역(Ara)은 시안 영역이며, 제2 색상 영역(Arb)은 적색 영역일 수 있다.
제1 색상 영역(Ara)은, 청색광(B), 녹색광(G)을 투과하고, 적색광(R)을 반사하며, 제2 색상 영역(Arb)은, 적색광(R)을 투과하고, 청색광(B), 녹색광(G)을 반사하게 된다. 이에 따라, 광원 장치로부터의 광의 색 분리 및 합성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
도 5e는 도 4의 플라이 아이 렌즈(470)를 도시한 도면이다.
도면을 참조하면, 플라이 아이 렌즈(470)는, 복수의 볼록 형상을 구비하며, 복수의 볼록 형상을 통해, 입사되는 광의 불균일성을 해결하여 균일성(uniformity)을 향상시킬 수 있다. 또한, 전체 광학 장치(210)의 사이즈가 축소되도록 하고, 광학 효율의 향상 시킬 수 있게 된다.
도 6은 본 개시의 다른 실시예에 따른 광학 장치의 구조의 일예이다.
도면을 참조하면, 본 개시의 다른 실시예에 따른 광학 장치(210b)는, 도 4의 광학 장치(210)와 유사하나, 이색성 필터(420)가, 제1 광원 장치(410a)의 광을 투과하고, 제2 광원 장치(410b)의 광을 반사하는 것에 그 차이가 있다.
또한, 본 개시의 다른 실시예에 따른 광학 장치(210b)는, 도 4의 광학 장치(210)와 비교하여, 이색성 필터(420) 방향으로부터 입사되는 광을 제2 방향(y 방향)으로 반사하는 반사 미러(445)를 더 구비하는 것에 그 차이가 있다.
즉, 본 개시의 다른 실시예에 따른 광학 장치(210b)는, 복수의 색상의 광을 제1 방향(-y축 방향)으로 출력하는 제1 광원 장치(410a), 제1 광원 장치(410a)와 교차하는 방향으로 복수의 색상의 광을 출력하는 제2 광원 장치(410b), 입사되는 광의 일부를 반사하며, 다른 일부를 투과하는 이색성 필터(Dichroic Filter)(420)와, 이색성 필터(420) 방향으로부터 입사되는 광을 제2 방향(x 방향)으로 반사하는 반사 미러(445)와, 회전에 의해, 반사 미러(445)로부터 입사되는 광을 투과하는 확산 휠(450)과, 확산 휠(450) 방향로부터의 광을 확산시키는 디퓨저(460)와, 디퓨저(460) 방향으로부터의 광을 제3 방향(y 방향)으로 반사하는 제2 반사 미러(474)와, 디퓨저(460)와 제2 반사 미러(474) 사이에 배치되는 플라이 아이 렌즈(470)를 포함한다.
한편, 이색성 필터(420)는, 제1 색상 영역(도 5a의 Ara)과 제2 색상 영역(도 5a의 Arb)을 포함하며, 제1 광원 장치(410a)로부터의 복수의 색상의 광 중 일부를 제1 색상 영역(Ara)이 제1 방향(-y 방향)으로 투과하며, 다른 일부를 제2 색상 영역(Arb)이 제1 방향(-y 방향)으로 투과하며, 제2 광원 장치(410b)로부터의 복수의 광 중 일부를 제2 색상 영역(Arb)이 제1 방향(-y 방향)으로 반사하며, 다른 일부를 제1 색상 영역(Ara)이 제1 방향(-y 방향)으로 반사한다.
본 개시의 다른 실시예에 따른 광학 장치(210b)에 의하면, 복수의 색상 영역(Ara,Arb)을 이용하여, 제1 광원 장치(410a)로부터의 복수의 색상의 광 중 일부를 제1 색상 영역(Ara)이 제1 방향(-y 방향)으로 투과하며, 다른 일부를 제2 색상 영역(Arb)이 제1 방향(-y 방향)으로 투과하며, 제2 광원 장치(410b)로부터의 복수의 광 중 일부를 제2 색상 영역(Arb)이 제1 방향(-y 방향)으로 반사하며, 제2 광원 장치(410b)로부터의 복수의 광 중 다른 일부를 제2 색상 영역(Arb)이 제1 방향(-y 방향)으로 반사한다.
특히, 본 개시의 실시예에 따른 이색성 필터(420)가, 복수의 색상 코팅을 이용하여, 복수의 색상 영역(Ara,Arb)을 이용하여, 일부 반사, 다른 일부 투과 등을 수행함으로써, 제1 광원 장치(410a)와 제2 광원 장치(410b)에서 출력되는 광의 대부분을 반사 또는 투과할 수 있게 된다.
특히, 본 개시의 실시예에 따른 이색성 필터(420)가, 편광 특성을 이용하지 않으므로, 편광 특성을 위한 별도의 리타더(retarder) 등을 생략할 수 있어, 광의 색 분리 및 합성을 간단하게 구현할 수 있으며, 고휘도의 성능을 확보할 수 있게 된다. 또한, 광학 장치(210)의 부품 개수를 줄일 수 있게 된다.
한편, 제1 광원 장치(410a)와 제2 광원 장치(410b)는, 각각 적색광, 청색광, 녹색광을 출력하는 레이저 다이오드를 포함할 수 있다.
예를 들어, 제1 광원 장치(410a)는, 제1 방향(-y축 방향)으로, 각각 적색광, 적색광, 청색광, 녹색광을 출력하는 4개의 레이저 다이오드들을 포함할 수 있으며, 제2 광원 장치(410b)는, 제2 방향(x축 방향)으로, 각각 녹색광, 청색광, 적색광, 적색광을 출력하는 4개의 레이저 다이오드들을 포함할 수 있다.
다른 예로, 제1 광원 장치(410a)는, 제1 방향(-y축 방향)으로, 각각 적색광, 적색광, 녹색광, 청색광을 출력하는 4개의 레이저 다이오드들을 포함할 수 있으며, 제2 광원 장치(410b)는, 제2 방향(x축 방향)으로, 각각 청색광, 녹색광, 적색광, 적색광을 출력하는 4개의 레이저 다이오드들을 포함할 수 있다.
한편, 본 개시의 다른 실시예에 따른 광학 장치(210b)는, 이색성 필터(420)와 확산 휠(450) 사이에 배치되는 집광 렌즈(Condenser Lens)(440)와, 플라이 아이 렌즈(470)와 제2 반사 미러(474) 사이에 배치되는 조명 렌즈(Illumination Lens)(472)를 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 다른 실시예에 따른 광학 장치(210b)는, 이색성 필터(420)와 집광 렌즈(440) 사이에 배치되는 웨지 프리즘(430)을 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 다른 실시예에 따른 광학 장치(210b)는, 디퓨저(460)와 플라이 아이 렌즈(470) 사이에 시준 렌즈(Collimato Lens)(465)를 더 포함할 수 있다.
한편, 본 개시의 다른 실시예에 따른 광학 장치(210b)는, 제2 반사 미러(474)로부터의 광에 기초하여 투사 영상을 출력하는 디지털 미러 장치(480)와, 디지털 미러 장치(480)로부터의 투사 영상을 출력하는 복수의 광학 렌즈(486)를 더 포함할 수 있다. 이때의 복수의 광학 렌즈(486)는, 프로젝션 렌즈(Projection Lens)를 포함할 수 있다.
한편, 본 개시의 다른 실시예에 따른 광학 장치(210b)는, 디지털 미러 장치(480)와 복수의 광학 렌즈(486) 사이에 배치되는 전반사(Total Internal Reflection; TIR) 프리즘(482)과 액츄에이터(Actuator)(484)를 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
도 7은 본 개시의 또 다른 실시예에 따른 광학 장치의 구조의 일예이다.
도면을 참조하면, 본 개시의 또 다른 실시예에 따른 광학 장치(210c)는, 도 4의 광학 장치(210)와 유사하나, 제3 광원 장치(410c), 제4 광원 장치(410d), 제2 이색성 필터(420b), 제2 집광 렌즈(440b) 등을 더 포함하는 것에 그 차이가 있다.
한편, 제3 광원 장치(410c)와 제4 광원 장치(410d)는, 각각 제1 광원 장치(410a)와 제2 광원 장치(410b)에 대응할 수 있으며, 제2 이색성 필터(420b)와 제2 집광 렌즈(440b)는, 각각 제1 이색성 필터(420a)와 제1 집광 렌즈(440a)에 대응할 수 있다.
즉, 본 개시의 또 다른 실시예에 따른 광학 장치(210c)는, 복수의 색상의 광을 -y축 방향으로 출력하는 제1 광원 장치(410a), 제1 광원 장치(410a)와 교차하는 x축 방향으로 방향으로 복수의 색상의 광을 출력하는 제2 광원 장치(410b), 입사되는 광의 일부를 반사하며, 다른 일부를 투과하는 제1 이색성 필터(Dichroic Filter)(420a)와, 복수의 색상의 광을 -y축 방향으로 출력하는 제3 광원 장치(410c), 제3 광원 장치(410c)와 교차하는 x축 방향으로 방향으로 복수의 색상의 광을 출력하는 제4 광원 장치(410d), 입사되는 광의 일부를 반사하며, 다른 일부를 투과하는 제2 이색성 필터(420b)와, 제1 이색성 필터(420a)로부터의 광의 경로를 변경하는 제1 집광 렌즈(440a)와, 제2 이색성 필터(420b)로부터의 광의 경로를 변경하는 제2 집광 렌즈(440b)와, 회전에 의해, 제1 집광 렌즈(440a)로부터 입사되는 광과 제2 집광 렌즈(440b)로부터 입사되는 광을 투과하는 확산 휠(450)과, 확산 휠(450) 방향로부터의 광을 확산시키는 디퓨저(460)와, 디퓨저(460) 방향으로부터의 광을 제2 방향(y 방향)으로 반사하는 반사 미러(474)와, 디퓨저(460)와 반사 미러(474) 사이에 배치되는 플라이 아이 렌즈(470)를 포함한다.
한편, 본 개시의 또 다른 실시예에 따른 제2 이색성 필터(420b)는, 제3 색상 영역(미도시)과 제4 색상 영역(미도시)을 포함하며, 제3 광원 장치(410c)로부터의 복수의 색상의 광 중 일부를 제3 색상 영역이 제1 방향(x 방향)으로 반사하며, 다른 일부를 제4 색상 영역이 제1 방향(x 방향)으로 반사하며, 제4 광원 장치(410d)로부터의 복수의 광 중 일부를 제4 색상 영역이 제1 방향(x 방향)으로 투과하며, 다른 일부를 제3 색상 영역이 제1 방향(x 방향)으로 투과한다.
즉, 본 개시의 또 다른 실시예에 따른 제2 이색성 필터(420b)는, 제1 이색성 필터(420a)와 유사하게 동작할 수 있다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210c) 내의 확산 휠(450)과, 디퓨저(460)에 의해, 광의 스페클 노이즈(Speckle Noise)를 저감할 수 있게 된다.
특히, 제1 광원 장치(410a)와 제2 광원 장치(410b)와 제3 광원 장치(410c)와 제4 광원 장치(410d)가, 레이저 다이오드인 경우에 발생할 수 있는, 레이저 스페클 노이즈(Laser Speckle Noise)를 저감할 수 있게 된다.
한편, 광학 장치(210) 내의 확산 휠(450)과 디퓨저(460)를 렌즈의 초점 부위에 배치함으로써, 사이즈를 최소화하면서 효과는 극대화할 수 있게 된다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210c)는, 플라이 아이 렌즈(470)와 반사 미러(474) 사이에 배치되는 조명 렌즈(Illumination Lens)(472)를 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210c)는, 제1 이색성 필터(420a)와 제1 집광 렌즈(440a) 사이에 배치되는 제1 웨지 프리즘(430a)과, 제2 이색성 필터(420b)와 제2 집광 렌즈(440b) 사이에 배치되는 제2 웨지 프리즘(430b)을 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
특히, 제1 웨지 프리즘(430a)과 제2 웨지 프리즘(430b)을 이용하여, 광을 굴절시킴으로써, 확산 휠(450) 방향으로 광이 집속되도록 함으로써, 광의 스페클 노이즈(Speckle Noise)를 저감할 수 있게 된다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210c)는, 디퓨저(460)와 플라이 아이 렌즈(470) 사이에 시준 렌즈(Collimato Lens)(465)를 더 포함할 수 있다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210c) 내의 시준 렌즈(Collimato Lens)(465)와, 제1 집광 렌즈(440a), 제2 집광 렌즈(440b) 등에 의해, 집속되는 광을 손실없이 효율적으로 전달할 수 있어, 광효율을 향상시킬 수 있다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210c) 내의 플라이 아이 렌즈(470)에 의해, 입사되는 광의 불균일성을 해결하여 균일성(uniformity)을 향상시킬 수 있다. 또한, 전체 광학 장치(210)의 사이즈가 축소되도록 하고, 광학 효율의 향상 시킬 수 있게 된다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210c)는, 제2 반사 미러(474)로부터의 광에 기초하여 투사 영상을 출력하는 디지털 미러 장치(480)와, 디지털 미러 장치(480)로부터의 투사 영상을 출력하는 복수의 광학 렌즈(486)를 더 포함할 수 있다. 이때의 복수의 광학 렌즈(486)는, 프로젝션 렌즈(Projection Lens)를 포함할 수 있다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210c)는, 디지털 미러 장치(480)와 복수의 광학 렌즈(486) 사이에 배치되는 전반사(Total Internal Reflection; TIR) 프리즘(482)과 액츄에이터(Actuator)(484)를 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
도 8은 본 개시의 또 다른 실시예에 따른 광학 장치의 구조의 일예이다.
도면을 참조하면, 본 개시의 또 다른 실시예에 따른 광학 장치(210d)는, 도 6의 광학 장치(210b)와 유사하나, 제3 광원 장치(410c), 제4 광원 장치(410d), 제2 이색성 필터(420b), 제2 집광 렌즈(440b) 등을 더 포함하는 것에 그 차이가 있다.
한편, 제3 광원 장치(410c)와 제4 광원 장치(410d)는, 각각 제1 광원 장치(410a)와 제2 광원 장치(410b)에 대응할 수 있으며, 제2 이색성 필터(420b)와 제2 집광 렌즈(440b)는, 각각 제1 이색성 필터(420a)와 제1 집광 렌즈(440a)에 대응할 수 있다.
즉, 본 개시의 또 다른 실시예에 따른 광학 장치(210d)는, 복수의 색상의 광을 제1 방향(-y축 방향)으로 출력하는 제1 광원 장치(410a), 제1 광원 장치(410a)와 교차하는 제2 방향(x축 방향)으로 복수의 색상의 광을 출력하는 제2 광원 장치(410b), 입사되는 광의 일부를 반사하며, 다른 일부를 투과하는 제1 이색성 필터(420a)와, 복수의 색상의 광을 제1 방향(-y축 방향)으로 출력하는 제3 광원 장치(410c), 제3 광원 장치(410c)와 교차하는 제2 방향(x축 방향)으로 복수의 색상의 광을 출력하는 제4 광원 장치(410d), 입사되는 광의 일부를 반사하며, 다른 일부를 투과하는 제2 이색성 필터(420b)를 포함한다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210d)는, 제1 이색성 필터(420a)로부터의 광의 경로를 변경하는 제1 집광 렌즈(440a)와, 제2 이색성 필터(420b)로부터의 광의 경로를 변경하는 제2 집광 렌즈(440b)와, 제1 집광 렌즈(440a)로부터의 광 경로와 제2 집광 렌즈(440b)로부터의 광 경로를 변경하는 제3 집광 렌즈(447a)와, 제3 집광 렌즈(447a) 방향으로부터 입사되는 광을 제2 방향(x 방향)으로 반사하는 반사 미러(445)와, 회전에 의해, 반사 미러(445)로부터 입사되는 광을 투과하는 확산 휠(450)과, 확산 휠(450) 방향로부터의 광을 확산시키는 디퓨저(460)와, 디퓨저(460) 방향으로부터의 광을 제3 방향(y 방향)으로 반사하는 제2 반사 미러(474)와, 디퓨저(460)와 제2 반사 미러(474) 사이에 배치되는 플라이 아이 렌즈(470)를 포함한다.
한편, 본 개시의 또 다른 실시예에 따른 제2 이색성 필터(420b)는, 제3 색상 영역(미도시)과 제4 색상 영역(미도시)을 포함하며, 제3 광원 장치(410c)로부터의 복수의 색상의 광 중 일부를 제3 색상 영역이 제1 방향(-y축 방향)으로 투과하며, 다른 일부를 제4 색상 영역이 제1 방향(-y축 방향)으로 투과하며, 제4 광원 장치(410d)로부터의 복수의 광 중 일부를 제4 색상 영역이 제1 방향(-y축 방향)으로 반사하며, 다른 일부를 제3 색상 영역이 제1 방향(-y축 방향)으로 반사한다.
즉, 본 개시의 또 다른 실시예에 따른 제2 이색성 필터(420b)는, 제1 이색성 필터(420a)와 유사하게 동작할 수 있다.
도면에 따르면, 제2 광원 장치(410b)와 제4 광원 장치(410d)는 동일한 방향인 제2 방향(x 축 방향)으로 광을 출력할 수 있다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210d)는, 플라이 아이 렌즈(470)와 반사 미러(474) 사이에 배치되는 조명 렌즈(Illumination Lens)(472)를 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210d)는, 반사 미러(445)와 확산 휠(450) 사이에 배치되는 제4 집광 렌즈(447b)를 더 포함할 수 있다.
한편, 제3 집광 렌즈(447a)와 제4 집광 렌즈(447b)는, 각각 제1 릴레이 렌즈(relay lens)와 제2 릴레이 렌즈라 명명할 수도 있다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210d)는, 제1 이색성 필터(420a)와 제1 집광 렌즈(440a) 사이에 배치되는 제1 웨지 프리즘(430a)과, 제2 이색성 필터(420b)와 제2 집광 렌즈(440b) 사이에 배치되는 제2 웨지 프리즘(430b)을 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210d)는, 디퓨저(460)와 플라이 아이 렌즈(470) 사이에 시준 렌즈(Collimato Lens)(465)를 더 포함할 수 있다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210d)는, 제2 반사 미러(474)로부터의 광에 기초하여 투사 영상을 출력하는 디지털 미러 장치(480)와, 디지털 미러 장치(480)로부터의 투사 영상을 출력하는 복수의 광학 렌즈(486)를 더 포함할 수 있다. 이때의 복수의 광학 렌즈(486)는, 프로젝션 렌즈(Projection Lens)를 포함할 수 있다.
한편, 본 개시의 또 다른 실시예에 따른 광학 장치(210d)는, 디지털 미러 장치(480)와 복수의 광학 렌즈(486) 사이에 배치되는 전반사(Total Internal Reflection; TIR) 프리즘(482)과 액츄에이터(Actuator)(484)를 더 포함할 수 있다. 이에 따라, 광학 장치(210)의 구성을 간단하게 구현하며 고휘도의 성능을 확보할 수 있게 된다.
도 9는 본 개시의 또 다른 실시예에 따른 광학 장치의 구조의 일예이다.
도면을 참조하면, 도 9는 본 개시의 또 다른 실시예에 따른 광학 장치(210e)는, 도 8의 본 개시의 또 다른 실시예에 따른 광학 장치(210d)의 내부 구성이 동일하며, 다만, 제2 광원 장치(410b)와 제4 광원 장치(410d)는 반대 방향으로 광을 출력하는 것에 그 차이가 있다.
즉, 제2 광원 장치(410b)는, -x축 방향으로 광을 출력하며, 제4 광원 장치(410d)는, x축 방향으로 광을 출력할 수 있다.
본 개시의 실시예에 따른 광학 장치, 및 이를 구비하는 영상투사장치는 상기한 바와 같이 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
또한, 이상에서는 본 개시의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 개시는 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 개시의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 개시의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (20)

  1. 제1 색상 영역과 제2 색상 영역을 포함하며, 제1 광원 장치로부터의 복수의 색상의 광 중 일부를 상기 제1 색상 영역이 제1 방향으로 반사하며, 다른 일부를 상기 제2 색상 영역이 상기 제1 방향으로 반사하며, 제2 광원 장치로부터의 복수의 광 중 일부를 상기 제2 색상 영역이 상기 제1 방향으로 투과하며, 다른 일부를 상기 상기 제1 색상 영역이 상기 제1 방향으로 투과하는 이색성 필터;
    회전에 의해, 상기 이색성 필터 방향으로부터 입사되는 광을 투과하는 확산 휠;
    상기 확산 휠 방향로부터의 광을 확산시키는 디퓨저;
    상기 디퓨저 방향으로부터의 광을 제2 방향으로 반사하는 반사 미러;
    상기 디퓨저와 상기 반사 미러 사이에 배치되는 플라이 아이 렌즈;를 포함하는 광학 장치.
  2. 제1항에 있어서,
    상기 이색성 필터는,
    상기 제1 광원 장치로부터의 복수의 색상의 광 중 제1 색상의 광을 상기 제1 색상 영역이 제1 방향으로 반사하며, 상기 제1 광원 장치로부터의 상기 복수의 색상의 광 중 제2 색상의 광과 제3 색상의 광을 상기 제2 색상 영역이 상기 제1 방향으로 반사하며,
    상기 제2 광원 장치로부터의 복수의 광 중 제1 색상의 광을 상기 제2 색상 영역이 상기 제1 방향으로 투과하며, 상기 제2 광원 장치로부터의 복수의 광 중 상기 제2 색상의 광과 상기 제3 색상의 광을 상기 제1 색상 영역이 상기 제1 방향으로 투과하는 것인 광학 장치.
  3. 제1항에 있어서,
    상기 이색성 필터는,
    상기 제1 광원 장치로부터의 적색광을 상기 제1 색상 영역이 제1 방향으로 반사하며, 상기 제1 광원 장치로부터의 청색광과 녹색광을 상기 제2 색상 영역이 상기 제1 방향으로 반사하며,
    상기 제2 광원 장치로부터의 적색광을 상기 제2 색상 영역이 상기 제1 방향으로 투과하며, 상기 제2 광원 장치로부터의 청색광과 녹색광을 상기 제1 색상 영역이 상기 제1 방향으로 투과하는 것인 광학 장치.
  4. 제1항에 있어서,
    상기 이색성 필터의 상기 제1 색상 영역에서 상기 제2 색상 영역 방향으로, 상기 제1 광원 장치의 적색광, 청색광, 녹색광이 출력되며, 상기 제2 광원 장치의 녹색광, 청색광, 적생광이 출력되는 것인 광학 장치.
  5. 제1항에 있어서,
    상기 이색성 필터의 상기 제1 색상 영역에서 상기 제2 색상 영역 방향으로, 상기 제1 광원 장치의 적색광, 녹색광, 청색광이 출력되며, 상기 제2 광원 장치의 청색광, 녹색광, 적생광이 출력되는 것인 광학 장치.
  6. 제3항 내지 제5항 중 어느 한 항에 있어서,
    상기 제1 색상 영역은 시안 영역이며, 상기 제2 색상 영역은 적색 영역인 것인 광학 장치.
  7. 제1항에 있어서,
    상기 반사 미러로부터의 광에 기초하여 투사 영상을 출력하는 디지털 미러 장치;
    상기 디지털 미러 장치로부터의 상기 투사 영상을 출력하는 복수의 광학 렌즈;를 더 포함하는 것인 광학 장치.
  8. 제1항에 있어서,
    상기 상기 디지털 미러 장치와 상기 복수의 광학 렌즈 사이에 배치되는 전반사 프리즘과 액츄에이터;를 더 포함하는 것인 광학 장치.
  9. 제1항에 있어서,
    상기 이색성 필터와 상기 확산 휠 사이에 배치되는 집광 렌즈;
    상기 플라이 아이 렌즈와 상기 반사 미러 사이에 배치되는 조명 렌즈;를 더 포함하는 것인 광학 장치.
  10. 제9항에 있어서,
    상기 이색성 필터와 상기 집광 렌즈 사이에 배치되는 웨지 프리즘;을 더 포함하는 것인 광학 장치.
  11. 제3 색상 영역과 제4 색상 영역을 포함하며, 제3 광원 장치로부터의 복수의 색상의 광 중 일부를 상기 제3 색상 영역이 상기 제1 방향으로 반사하며, 다른 일부를 상기 제4 색상 영역이 상기 제1 방향으로 반사하며, 제4 광원 장치로부터의 복수의 광 중 일부를 상기 제4 색상 영역이 상기 제1 방향으로 투과하며, 다른 일부를 상기 상기 제3 색상 영역이 상기 제1 방향으로 투과하는 제2 이색성 필터;
    상기 이색성 필터로부터의 광의 경로를 변경하는 제1 집광 렌즈;
    상기 제2 이색성 필터로부터의 광의 경로를 변경하는 제2 집광 렌즈;를 더 포함하고,
    상기 확산 휠은,
    회전에 의해, 상기 제1 집광 렌즈로부터 입사되는 광과 상기 제2 집광 렌즈로부터 입사되는 광을 투과하는 것인 광학 장치.
  12. 제11항에 있어서,
    상기 이색성 필터와 상기 제1 집광 렌즈 사이에 배치되는 제1 웨지 프리즘;
    상기 제2 이색성 필터와 상기 제2 집광 렌즈 사이에 배치되는 제2 웨지 프리즘;
    상기 플라이 아이 렌즈와 상기 반사 미러 사이에 배치되는 조명 렌즈;를 더 포함하는 것인 광학 장치.
  13. 제1 색상 영역과 제2 색상 영역을 포함하며, 제1 광원 장치로부터의 복수의 색상의 광 중 일부를 상기 제1 색상 영역이 제1 방향으로 투과하며, 다른 일부를 상기 제2 색상 영역이 상기 제1 방향으로 투과하며, 제2 광원 장치로부터의 복수의 광 중 일부를 상기 제2 색상 영역이 상기 제1 방향으로 반사하며, 다른 일부를 상기 상기 제1 색상 영역이 상기 제1 방향으로 반사하는 이색성 필터;
    상기 이색성 필터 방향으로부터 입사되는 광을 제2 방향으로 반사하는 반사 미러;
    회전에 의해, 상기 반사 미러로부터 입사되는 광을 투과하는 확산 휠;
    상기 확산 휠 방향로부터의 광을 확산시키는 디퓨저;
    상기 디퓨저 방향으로부터의 광을 상기 제1 방향과 반대인 제3 방향으로 반사하는 제2 반사 미러;
    상기 디퓨저와 상기 제2 반사 미러 사이에 배치되는 플라이 아이 렌즈;를 포함하는 광학 장치.
  14. 제13항에 있어서,
    상기 제2 반사 미러로부터의 광에 기초하여 투사 영상을 출력하는 디지털 미러 장치;
    상기 디지털 미러 장치로부터의 상기 투사 영상을 출력하는 복수의 광학 렌즈;를 더 포함하는 것인 광학 장치.
  15. 제13항에 있어서,
    상기 상기 디지털 미러 장치와 상기 복수의 광학 렌즈 사이에 배치되는 전반사 프리즘과 액츄에이터;를 더 포함하는 것인 광학 장치.
  16. 제13항에 있어서,
    상기 이색성 필터와 상기 확산 휠 사이에 배치되는 집광 렌즈;
    상기 플라이 아이 렌즈와 상기 제2 반사 미러 사이에 배치되는 조명 렌즈;를 더 포함하는 것인 광학 장치.
  17. 제13항에 있어서,
    제3 색상 영역과 제4 색상 영역을 포함하며, 제3 광원 장치로부터의 복수의 색상의 광 중 일부를 상기 제3 색상 영역이 상기 제1 방향으로 투과하며, 다른 일부를 상기 제4 색상 영역이 상기 제1 방향으로 투과하며, 제4 광원 장치로부터의 복수의 광 중 일부를 상기 제4 색상 영역이 상기 제1 방향으로 반사하며, 다른 일부를 상기 상기 제3 색상 영역이 상기 제1 방향으로 반사하는 제2 이색성 필터;
    상기 이색성 필터로부터의 광의 경로를 변경하는 제1 집광 렌즈;
    상기 제2 이색성 필터로부터의 광의 경로를 변경하는 제2 집광 렌즈;
    상기 제1 집광 렌즈로부터의 광 경로와 상기 제2 집광 렌즈로부터의 광 경로를 변경하는 제3 집광 렌즈;를 더 포함하고,
    상기 반사 미러는,
    상기 제3 집광 렌즈부터 입사되는 광을 제2 방향으로 반사하는 것인 광학 장치.
  18. 제17항에 있어서,
    상기 제2 광원 장치와 상기 제4 광원 장치는 동일한 방향으로 광을 출력하는 것인 광학 장치.
  19. 제17항에 있어서,
    상기 제2 광원 장치와 상기 제4 광원 장치는 반대 방향으로 광을 출력하는 것인 광학 장치.
  20. 제1항 내지 제19항 중 어느 한 항의 광학 장치를 포함하는 영상투사장치.
PCT/KR2022/012227 2022-08-17 2022-08-17 광학 장치, 및 이를 구비하는 영상투사장치 WO2024038921A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/012227 WO2024038921A1 (ko) 2022-08-17 2022-08-17 광학 장치, 및 이를 구비하는 영상투사장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/012227 WO2024038921A1 (ko) 2022-08-17 2022-08-17 광학 장치, 및 이를 구비하는 영상투사장치

Publications (1)

Publication Number Publication Date
WO2024038921A1 true WO2024038921A1 (ko) 2024-02-22

Family

ID=89941906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012227 WO2024038921A1 (ko) 2022-08-17 2022-08-17 광학 장치, 및 이를 구비하는 영상투사장치

Country Status (1)

Country Link
WO (1) WO2024038921A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026383A1 (en) * 1999-10-06 2001-04-12 Optical Coating Laboratory, Inc. Off-axis image projection display system
JP2003279889A (ja) * 2002-01-15 2003-10-02 Eastman Kodak Co レーザ投影ディスプレイシステム
US20160004148A1 (en) * 2014-07-01 2016-01-07 Coretronic Corporation Projection apparatus and illumination system
JP2018004817A (ja) * 2016-06-29 2018-01-11 株式会社リコー 画像表示装置およびヘッドアップディスプレイシステム
US20190129290A1 (en) * 2015-06-03 2019-05-02 Hisense Co., Ltd. Dual-color projector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026383A1 (en) * 1999-10-06 2001-04-12 Optical Coating Laboratory, Inc. Off-axis image projection display system
JP2003279889A (ja) * 2002-01-15 2003-10-02 Eastman Kodak Co レーザ投影ディスプレイシステム
US20160004148A1 (en) * 2014-07-01 2016-01-07 Coretronic Corporation Projection apparatus and illumination system
US20190129290A1 (en) * 2015-06-03 2019-05-02 Hisense Co., Ltd. Dual-color projector
JP2018004817A (ja) * 2016-06-29 2018-01-11 株式会社リコー 画像表示装置およびヘッドアップディスプレイシステム

Similar Documents

Publication Publication Date Title
WO2010143891A2 (en) Projection system
WO2018166038A1 (zh) 光源装置及投影系统
WO2016161932A1 (zh) 发光装置和投影显示设备
WO2010027132A1 (en) Projection display device
WO2014163322A1 (ko) 입체 영상 장치
WO2014180309A1 (zh) 显示均匀补偿方法、光调制装置、信号处理器和投影系统
WO2010143797A1 (ko) 프로젝터의 제어방법
WO2015183053A1 (en) Optical device and image projection apparatus including the same
WO2024038921A1 (ko) 광학 장치, 및 이를 구비하는 영상투사장치
WO2021132993A1 (en) Projector
US20070153237A1 (en) Projector
WO2016017885A1 (en) Screen and laser display apparatus using the same
WO2017217800A1 (en) Mems scanner package and scanning projector including the same
WO2017003141A1 (ko) 스캐닝 프로젝터
WO2023027204A1 (ko) 형광체 휠 장치, 및 이를 구비하는 영상투사장치
WO2023277232A1 (ko) 영상투사장치
WO2024167116A1 (ko) 투사 장치 및 그 제어 방법
WO2023096142A1 (ko) 각도 조절 장치 및 전자장치의 각도 조절 방법
WO2023120756A1 (ko) 형광체 휠 및 이를 구비하는 영상투사장치
WO2024136033A1 (ko) 영상을 투사할 수 있는 전자장치
WO2024147374A1 (ko) 형광체 휠 장치 및 이를 구비하는 영상투사장치
WO2023038160A1 (ko) 디스플레이 장치
WO2015008915A1 (en) Rear projection type display apparatus capable of sensing touch input and gesture input
WO2023249271A1 (ko) 영상을 크롭하여 투사하는 전자 장치 및 그 제어 방법
WO2024101616A1 (ko) 전자 장치 및 이의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955798

Country of ref document: EP

Kind code of ref document: A1