WO2023027182A1 - 植物性発酵飲食品用改質剤 - Google Patents

植物性発酵飲食品用改質剤 Download PDF

Info

Publication number
WO2023027182A1
WO2023027182A1 PCT/JP2022/032267 JP2022032267W WO2023027182A1 WO 2023027182 A1 WO2023027182 A1 WO 2023027182A1 JP 2022032267 W JP2022032267 W JP 2022032267W WO 2023027182 A1 WO2023027182 A1 WO 2023027182A1
Authority
WO
WIPO (PCT)
Prior art keywords
drink
fermented
food
fermentation
hemicellulase
Prior art date
Application number
PCT/JP2022/032267
Other languages
English (en)
French (fr)
Inventor
正浩 掃部
周作 多田
寛 山城
卓磨 林
大 橋村
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to EP22861470.7A priority Critical patent/EP4393319A1/en
Priority to JP2023544009A priority patent/JPWO2023027182A1/ja
Priority to CN202280053630.8A priority patent/CN117794386A/zh
Publication of WO2023027182A1 publication Critical patent/WO2023027182A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/10Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins
    • A23C11/103Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins containing only proteins from pulses, oilseeds or nuts, e.g. nut milk
    • A23C11/106Addition of, or treatment with, microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/60Drinks from legumes, e.g. lupine drinks
    • A23L11/65Soy drinks
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • A23L2/382Other non-alcoholic beverages fermented
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/84Clarifying or fining of non-alcoholic beverages; Removing unwanted matter using microorganisms or biological material, e.g. enzymes

Definitions

  • the present invention relates to a modifier for fermented vegetable food and drink. More specifically, the present invention relates to a technique for promoting fermentation during production of a fermented plant-based food and drink and a technique for improving the stringiness of the produced fermented plant-based food and drink.
  • Patent Document 1 fermentation time is shortened by adding a plant cell wall-degrading enzyme during the production of a lactic acid-fermented soybean food made from at least one of soybean flour, defatted soybeans, and soybean protein. , discloses a technique for producing a lactic acid-fermented soybean food having good texture and flavor.
  • Patent Document 2 discloses a technique for producing a fermented soymilk with high viscosity and stringiness by treating soymilk with a neutral protease and then fermenting it with lactic acid bacteria.
  • the main purpose of this technology is to provide a technology that promotes fermentation during the production of fermented plant-based food and drink and improves the stringiness of the manufactured fermented plant-based food and drink.
  • the inventors of the present application have conducted intensive research on techniques for promoting fermentation during the production of fermented plant-based food and drink and improving the stringiness of the manufactured fermented plant-based food and drink.
  • the inventors have found that hemicellulase, which is an enzyme that had not been developed before, has a stronger effect of promoting fermentation and improving spinnability than other enzymes, and completed the present invention.
  • a modifier for fermented vegetable food and drink containing hemicellulase is provided.
  • the modifier for fermented vegetable food and drink according to the present technology has a fermentation-promoting effect.
  • the modifier for fermented vegetable food and drink according to the present technology has an effect of improving spinnability.
  • Microorganism-derived hemicellulase can be used as the hemicellulase used in the modifying agent for fermented vegetable food and drink according to the present technology.
  • the modifier for fermented vegetable food and drink according to the present technology can be used for fermented vegetable milk or lactic acid bacteria beverage.
  • an enzymatic action step of causing hemicellulase to act on part or all of the plant raw material comprising:
  • the enzymatic action step can be performed before and/or simultaneously with the fermentation step.
  • Lactic acid fermentation can be performed in the fermentation step of the method for producing a fermented vegetable food or drink according to the present technology.
  • an enzymatic action step of causing hemicellulase to act on part or all of the plant raw material A fermentation process that ferments, To provide a method for promoting fermentation of a fermented plant-based food and drink, and a method for improving the stringiness of a fermented plant-based food and drink.
  • a modifier for vegetable fermented food and drink according to the present technology contains hemicellulase as an active ingredient.
  • Hemicellulase is an enzyme that hydrolyzes hemicellulose.
  • Hemicellulose is a heteropolysaccharide composed of a plurality of constituent sugars, and generally has a branched structure in which other constituent sugars form side chains on the main chain from which the name is derived.
  • Specific examples of hemicellulose include mannan, ⁇ -1,3-1,4-glucan, glucomannan, xylan, xyloglucan, and glucuronoxylan.
  • Hemicellulases are enzymes that degrade these hemicelluloses.
  • hemicellulases include xylanase, galactanase, mannanase, galactomannanase, arabinase, ⁇ -glucanase, etc. These may be used singly or in combination of two or more. may
  • the origin of the hemicellulase is not particularly limited, and includes basidiomycetes (genus Corticium, genus Pycnoporus), filamentous fungi (genus Aspergillus, genus Humicola, genus Penicillium, genus Trichoderma), actinomycetes (genus Streptomyces), bacteria (genus Bacillus), and the like. It may be an enzyme derived from a microorganism or an artificially synthesized enzyme. Moreover, these may be used individually by 1 type, and may use 2 or more types together. Among these, in the present technology, those derived from filamentous fungi are preferred, those derived from microorganisms of the genus Aspergillus are more preferred, and those derived from Aspergillus niger are even more preferred.
  • the content of hemicellulase in the modifier for fermented vegetable food and beverages according to this technology can be freely set as long as it does not impair the effect of this technology.
  • 8 U/mL or more more preferably 20 U/mL or more, 40 U/mL or more, or 80 U/mL or more.
  • Fermentation can be promoted by using the modifier for fermented plant-based food and drink according to this technology during the production of fermented plant-based food and drink. Further, by using the modifier for fermented plant-based food and drink according to the present technology at the time of production of the fermented plant-based food and drink, it is possible to improve the stringiness of the produced fermented plant-based food and drink. In particular, when fermenting vegetable raw materials, for example, compared to fermented foods and drinks using animal raw materials such as milk, there is a problem that viscosity and stringiness may be inferior.
  • the spinnability of the produced fermented plant milk and lactic acid bacteria beverage can be improved. That is, the modifier for fermented vegetable food and drink according to the present technology can be suitably used for fermented vegetable milk or lactic acid bacteria beverage.
  • the modifier for fermented vegetable food and drink according to the present technology may be composed only of hemicellulase, or one or more other ingredients may be freely selected as long as the effect of the present technology is not impaired. It can also be contained by Examples of other ingredients that can be used include excipients, pH adjusters, colorants, flavoring agents, disintegrants, lubricants, stabilizers, and the like that are commonly used in formulations. Furthermore, it is also possible to use components having functions known or discovered in the future as appropriate depending on the purpose.
  • a method for producing a fermented vegetable food or drink according to the present technology is a method of performing at least an enzymatic action step and a fermentation step.
  • a method for producing a fermented vegetable food or drink according to the present technology is a method of performing at least an enzymatic action step and a fermentation step.
  • the type of fermented plant-based food and drink before and after each process, or at the same time as each process, within the range that does not impair the effect of this technology, for example, general plant It is also possible to carry out the steps necessary for the production of the food and drink. Each step will be described in detail below.
  • the enzyme action step is a step of allowing hemicellulase to act on part or all of the raw material of the fermented vegetable food or drink.
  • the enzyme action step is a step of allowing hemicellulase to act on part or all of the raw material of the fermented vegetable food or drink.
  • the pH, temperature, duration of action, and the like can be set according to the physicochemical properties of the hemicellulase to be used, such as optimum pH, stable pH range, optimum temperature, and temperature stability.
  • the pH can be set to, for example, pH 3.0 to 10.0, preferably pH 5.0 to 7.5, more preferably pH 6.0 to 7.0.
  • the temperature can be set to, for example, 20°C to 60°C, preferably 25°C to 55°C, more preferably 30°C to 45°C, still more preferably 30°C to 40°C.
  • the action time can be set to, for example, 1 to 30 hours, preferably 1.5 to 20 hours, more preferably 4 to 10 hours.
  • the amount of hemicellulase added in the enzymatic action process can be freely set as long as it does not impair the effect of this technology. It is preferable to add 0.5 U/mL or more, more preferably 1 U/mL or more, 2 U/mL or more, 4 U/mL or more, and 6 U/mL or more, 8 U to the raw material of the fermented vegetable food or drink. /mL or more is more preferable, and 20 U/mL or more, 40 U/mL or more, or 80 U/mL or more can also be added.
  • enzymes can be used in addition to hemicellulase as long as the effect of this technology is not impaired.
  • one or more enzymes selected from lactase, protease, transglutaminase, peroxidase, catalase, lipase, cellulase, glucose oxidase, carbohydrate oxidase and amylase can be used in combination.
  • the fermentation step is a step of fermenting part or all of the raw materials of the fermented vegetable food or drink.
  • the fermentation step can be performed after the enzyme action step, or can be performed simultaneously with the enzyme action step.
  • fermentation can be performed using one or more microorganisms selected from anaerobic microorganisms, aerobic microorganisms, and facultative anaerobic microorganisms.
  • Microorganisms that can be used in this technology are one type of microorganism that can be used in the production of general fermented food and drink according to the type of fermented vegetable food and drink to be manufactured, as long as the effect of this technology is not impaired. The above can be freely selected and used.
  • microorganisms include lactic acid bacteria, yeast, filamentous fungi, Bacillus subtilis, and Acetobacteraceae.
  • lactic acid fermentation can be performed.
  • the lactic acid bacterium used for lactic acid fermentation one or more types of lactic acid bacteria that can be used for general lactic acid-fermented food and drink production are selected according to the type and purpose of the lactic acid-fermented food and drink to be produced, as long as the effect of the present technology is not impaired. , can be freely selected and used.
  • Examples of lactic acid bacteria include Lactococcus, Streptococcus, Pediococcus, lactic acid bacteria belonging to Leuconostoc, lactic acid bacteria belonging to Lactobacillus, and Bifidobacterium. etc., preferably Lactococcus delbrueckii subsp. delbureckii.
  • fermentation conditions, heating conditions, etc. can be set according to the type of microorganism used.
  • the fermentation temperature can be set at, for example, 20°C to 50°C, preferably 25°C to 45°C, more preferably 30°C to 40°C.
  • Fermentation time can be set to, for example, 1 to 30 hours, preferably 2 to 20 hours, more preferably 4 to 10 hours.
  • Heating conditions include, for example, high-temperature short-time sterilization (HTST) method, high-temperature cooking (UHT) method, retort method, etc., and the temperature of food and drink materials is 90 ° C. or higher, preferably about 95 ° C. Just do it. Examples include a method of treating food and beverage materials at 90° C. to 100° C. for 1 to 5 minutes, and a method of treating them at 90° C. to 95° C. for 1 to 3 minutes.
  • the time for the fermentation process can be shortened by performing the enzyme action process.
  • the fermentation time can be shortened by one hour or more compared to the case where the enzyme action step is not performed.
  • the fermentation process can be performed in a shorter time than when the enzyme action process is not performed.
  • the fermentation process can be performed in a short time of 1 hour or more.
  • Recovery step is a step of recovering the fermented vegetable food and drink that have undergone the enzymatic action step and the fermentation step.
  • a specific recovery method one or two or more recovery methods in the production of general plant-based food and drink can be used in combination, depending on the type of fermented plant-based food and drink to be produced.
  • the fermented vegetable food and drink that have undergone the enzyme action step and the fermentation step are characterized by high stringiness.
  • the plant-based fermented food or drink that has undergone the enzyme action step and the fermentation step has an outflow time of more than 30 seconds in the Zahncup method. That is, in the present technology, it is possible to perform a recovery step of recovering the fermented vegetable food and drink with improved stringiness. can be performed.
  • the outflow time in the Zahnkapp method can be extended by more than 30 seconds compared to the case where the enzymatic action step is not performed.
  • the enzyme A recovery step can be performed to recover the plant-based fermented food or drink whose outflow time is extended by more than 30 seconds in the Zahncup method compared to the case where the action step is not performed.
  • “fermented plant-based food and drink” refers to food and drink obtained by fermenting plant-based food and drink materials. Specifically, for example, vegetable fermented milk (vegetable yogurt), vegetable lactic acid beverage, vegetable yogurt paste, vegetable cheese-like food, alcoholic beverages (sake, beer, wine, shochu, etc.), various fermented seasonings ( soy sauce, miso, vinegar, etc.), rice bran pickles, kimchi, natto, and kuzumochi.
  • the term “fermented vegetable food and drink” also includes secondary processed food and drink using these fermented vegetable food and drink.
  • vegetable fermented milk refers to fermented vegetable milk
  • vegetable milk includes, for example, peas, soybeans, broad beans, chickpeas, barley, wheat, oats, and rice.
  • buckwheat millet, millet, hemp, algae, almonds, cashews, hazelnuts, pecans, macadamia nuts, pistachios, walnuts, brazil nuts, peanuts, coconut milk.
  • a method for promoting fermentation of a fermented vegetable food and drink and a method for improving stringiness according to the present technology are methods of performing at least an enzyme action step and a fermentation step.
  • a process that is carried out in the production and reforming method of natural food and drink is also possible to carry out.
  • the present technology can also have the following configuration.
  • a modifier for vegetable fermented food and drink containing hemicellulase (2) The modifier for fermented vegetable food and drink according to (1), which has a fermentation-promoting action.
  • a fermentation process that ferments A method for producing a fermented vegetable food or drink, comprising: (7) The method for producing a fermented vegetable food or drink according to (6), wherein the enzymatic action step is performed before and/or simultaneously with the fermentation step. (8) The method for producing a fermented vegetable food or drink according to (6) or (7), wherein lactic acid fermentation is performed in the fermentation step.
  • an enzymatic action step of causing hemicellulase to act on part or all of the plant raw material A fermentation process that ferments, A method for promoting fermentation of a fermented vegetable food or drink, comprising: (10) an enzymatic action step of causing hemicellulase to act on part or all of the plant raw material; A fermentation process that ferments, A method for improving the stringiness of a fermented vegetable food or drink, comprising:
  • the following measurement method was used as a method for measuring hemicellulase activity.
  • Activity measurement method An appropriate amount of the enzyme was weighed, dissolved or uniformly dispersed by adding water, and diluted appropriately to prepare a sample solution. 0.50 g of xylan was weighed, about 30 mL of water was added, heated while stirring, and boiled for 3 minutes after it started to boil. After cooling, water was added to this liquid to make 50 mL, which was used as a substrate solution.
  • the absorbance at a wavelength of 500 nm was measured for the test solution and the comparison solution using water as a control. Under these conditions, the amount of enzyme that produces reducing sugars equivalent to 1 mg of xylose per minute was defined as 100 units, and the enzyme activity was calculated.
  • Aspergillus niger-derived hemicellulase (“Hemicellulase 'Amano'90" manufactured by Amano Enzyme Co., Ltd.) was added to 0.1 (w/v)% (90 U/mL) and incubated at 50°C for 2 hours. Enzymatic treatment was carried out by stirring for hours. After deactivation treatment at 95° C. for 5 minutes, the mixture was cooled, placed in a strainer bag, and the enzyme-treated crushed soybean liquid was strained to prepare enzyme-treated soymilk. 30 mL of the prepared enzyme-treated soymilk was dispensed into a 50 mL tube and sterilized at 95° C. for 5 minutes.
  • the sterilized, enzyme-treated soymilk is water-cooled, and the Lactococcus delbrueckii subsp. 0.6 mL of lactic acid bacteria starter containing delbureckii was added, and fermentation was carried out overnight at 37°C. The pH was monitored with a pH sensor during the fermentation. An example without hemicellulase treatment was designated as an enzyme-free group.
  • Soymilk (“Organic non-adjusted soymilk” manufactured by Marsanai Co., Ltd.) was dispensed into 15 mL tubes by 10 mL, and hemicellulase derived from Aspergillus niger (“Hemicellulase “Amano” manufactured by Amano Enzyme Co., Ltd.) was dispensed into each 15 mL tube. 90") to 0.1 (w/v)% (90 U/mL), or Aspergillus niger-derived cellulase (manufactured by Amano Enzyme Co., Ltd. "Cellulase A 'Amano'3") to 0.1 (w /v)% and mixed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Dairy Products (AREA)

Abstract

植物性発酵飲食品の製造時における発酵を促進し、かつ、製造された植物性発酵飲食品の曵糸性を向上させる技術を提供すること。 本技術では、ヘミセルラーゼを含む、植物性発酵飲食品用改質剤を提供する。本技術では、また、植物性原料の一部または全部にヘミセルラーゼを作用させる酵素作用工程と、発酵を行う発酵工程と、を含む、植物性発酵飲食品の製造方法、発酵促進方法、および曵糸性向上方法を提供する。

Description

植物性発酵飲食品用改質剤
 本発明は、植物性発酵飲食品用改質剤に関する。より具体的には、本発明は、植物性発酵飲食品の製造時における発酵を促進する技術および製造された植物性発酵飲食品の曵糸性を向上させる技術に関する。
 近年、植物性タンパク質が注目されており、酵素による味や食感の改変にニーズがある。また、近年の健康志向ブームにより、発酵飲食品への関心も非常に高まっている。このような状況下において、植物性タンパク質を用いた発酵飲食品の製造技術の開発も進められている。
 例えば、特許文献1には、大豆粉、脱脂大豆、大豆たん白の少なくともいずれか一つを原料とする乳酸発酵大豆食品の製造時に、植物細胞壁分解酵素を添加することにより、発酵時間が短縮し、良好な食感や風味を有する乳酸発酵大豆食品を製造する技術が開示されている。
 大豆等を原料とした植物性ミルクに乳酸菌を用いて発酵させても、乳由来のヨーグルトのような粘性、曳糸性が得られない場合がある。これに対して、例えば、特許文献2では、豆乳に中性プロテアーゼ処理を行った後に、乳酸菌を用いて発酵させることにより、粘性や曳糸性の高い豆乳発酵物を製造する技術が開示されている。
特開2011-135832号公報 国際公開第2016/152590号パンフレット
 前述の通り、植物性タンパク質を用いた発酵飲食品の発酵効率を向上させる技術や曵糸性を向上させる技術は様々に開発されつつあるが、更なる開発が望まれているのが実情である。
 そこで、本技術では、植物性発酵飲食品の製造時における発酵を促進し、かつ、製造された植物性発酵飲食品の曵糸性を向上させる技術を提供することを主目的とする。
 本願発明者らは、植物性発酵飲食品の製造時における発酵を促進し、かつ、製造された植物性発酵飲食品の曵糸性を向上させる技術について鋭意研究を行った結果、これまで特に注目されていなかった酵素であるヘミセルラーゼに、他の酵素に比べて強い発酵促進作用および曵糸性向上作用があることを見出し、本発明を完成するに至った。
 即ち、本技術では、まず、ヘミセルラーゼを含む、植物性発酵飲食品用改質剤を提供する。
 本技術に係る植物性発酵飲食品用改質剤は、発酵促進作用を有する。
 また、本技術に係る植物性発酵飲食品用改質剤は、曵糸性向上作用を有する。
 本技術に係る植物性発酵飲食品用改質剤に用いるヘミセルラーゼは、微生物由来のヘミセルラーゼを用いることができる。
 本技術に係る植物性発酵飲食品用改質剤は、植物性発酵乳又は植物性乳酸菌飲料に用いることができる。
 本技術では、次に、植物性原料の一部または全部にヘミセルラーゼを作用させる酵素作用工程と、
 発酵を行う発酵工程と、
 を含む、植物性発酵飲食品の製造方法を提供する。
 本技術に係る植物性発酵飲食品の製造方法において、前記酵素作用工程は、前記発酵工程の前及び/又は前記発酵工程と同時に行うことができる。
 本技術に係る植物性発酵飲食品の製造方法の前記発酵工程では、乳酸発酵を行うことができる。
 本技術では、さらに、植物性原料の一部または全部にヘミセルラーゼを作用させる酵素作用工程と、
 発酵を行う発酵工程と、
 を含む、植物性発酵飲食品の発酵促進方法、および、植物性発酵飲食品の曵糸性向上方法を提供する。
 本技術によれば、植物性発酵飲食品の製造時における発酵を促進し、かつ、製造された植物性発酵飲食品の曵糸性を向上させることができる。
 以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
 <1.植物性発酵飲食品用改質剤>
 本技術に係る植物性発酵飲食品用改質剤は、ヘミセルラーゼを有効成分として含有する。ヘミセルラーゼは、ヘミセルロースを加水分解する酵素である。ヘミセルロースは、ヘテロ多糖であり、複数の構成糖で構成されており、一般的に、名前の由来となる主鎖に対し、別の構成糖が側鎖を形成した分岐構造を有する。ヘミセルロースの具体的な一例としては、例えば、マンナン、β-1,3-1,4-グルカン、グルコマンナン、キシラン、キシログルカン、グルクロノキシラン等が挙げられる。これらのヘミセルロースを分解する酵素がヘミセルラーゼである。
 ヘミセルラーゼの具体例としては、例えば、キシラナーゼ、ガラクタナーゼ、マンナナーゼ、ガラクトマンナナーゼ、アラビナーゼ、β-グルカナーゼ等が挙げられ、これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 ヘミセルラーゼの由来は特に限定されず、担子菌(Corticium属、Pycnoporus属)、糸状菌(Aspergillus属、Humicola属、Penicillium属、Trichoderma属)、放線菌(Streptomyces属)又は細菌(Bacillus属)等の微生物由来であっても、人工的に合成された酵素であってもよい。また、これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、本技術では、糸状菌由来が好ましく、Aspergillus属微生物由来がより好ましく、Aspergillus niger由来が更に好ましい。
 本技術に係る植物性発酵飲食品用改質剤におけるヘミセルラーゼの含有量は、本技術の効果を損なわない限り自由に設定することができる。例えば、植物性発酵飲食品の原料に対して、0.5U/mL以上含有することが好ましく、1U/mL以上、2U/mL以上、4U/mL以上含有することがより好ましく、6U/mL以上、8U/mL以上含有することが更に好ましく、更に、20U/mL以上、40U/mL以上、80U/mL以上含有させることもできる。
 本技術に係る植物性発酵飲食品用改質剤を、植物性発酵飲食品の製造時に用いることにより、発酵を促進させることができる。また、本技術に係る植物性発酵飲食品用改質剤を、植物性発酵飲食品の製造時に用いることにより、製造された植物性発酵飲食品の曵糸性を向上させることができる。特に、植物性原料を発酵させる場合、例えば、牛乳のような動物性原料を用いた発酵飲食品に比べて、粘性や曵糸性が劣る場合があるといった問題があったが、本技術に係る植物性発酵飲食品用改質剤を、植物性発酵乳又は植物性乳酸菌飲料の製造時に用いることにより、製造された植物性発酵乳および植物性乳酸菌飲料の曵糸性を向上させることができる。即ち、本技術に係る植物性発酵飲食品用改質剤は、植物性発酵乳又は植物性乳酸菌飲料に、好適に用いることができる。
 本技術に係る植物性発酵飲食品用改質剤は、ヘミセルラーゼのみで構成されていてもよいし、本技術の効果を損なわない限り、他の成分を1種又は2種以上、自由に選択して含有させることもできる。他の成分としては、例えば、通常製剤化に用いられている賦形剤、pH調整剤、着色剤、矯味剤、崩壊剤、滑沢剤、安定剤等の成分を用いることができる。更に、公知の又は将来的に見出される機能を有する成分を、適宜目的に応じて併用することも可能である。
 <2.植物性発酵飲食品の製造方法>
 本技術に係る植物性発酵飲食品の製造方法は、酵素作用工程と、発酵工程と、を少なくとも行う方法である。その他、植物性発酵飲食品の種類等に応じて、各工程の前後や各工程と同時に、本技術の効果を損なわない範囲において、例えば、植物性発酵飲食品の回収工程等、一般的な植物性飲食品の製造に必要な工程を行うことも可能である。以下、各工程について詳細に説明する。
 (1)酵素作用工程
 酵素作用工程は、植物性発酵飲食品の原料の一部または全部にヘミセルラーゼを作用させる工程である。本技術では、原料にヘミセルラーゼを作用させることで、後述する発酵工程における発酵時間を短縮することができる。また、製造された植物性発酵飲食品の曵糸性を向上させることができる。
 酵素作用工程の各種条件は、本技術の効果を損なわない限り、自由に設定することができる。例えば、用いるヘミセルラーゼの至適pH、安定pH範囲、至適温度、温度安定性などの理化学的性質に応じて、pH、温度、作用時間等を設定することができる。pHは、例えばpH3.0~10.0、好ましくはpH5.0~7.5、より好ましくはpH6.0~7.0に設定することができる。温度は、例えば20℃~60℃、好ましくは25℃~55℃、より好ましくは30℃~45℃、更に好ましくは30℃~40℃に設定することができる。作用時間は、例えば1~30時間、好ましくは1.5~20時間、より好ましくは4~10時間に設定することができる。
 酵素作用工程におけるヘミセルラーゼの添加量は、本技術の効果を損なわない限り自由に設定することができる。植物性発酵飲食品の原料に対して、0.5U/mL以上添加することが好ましく、1U/mL以上、2U/mL以上、4U/mL以上添加することがより好ましく、6U/mL以上、8U/mL以上添加することが更に好ましく、更に、20U/mL以上、40U/mL以上、80U/mL以上添加することもできる。
 酵素作用工程では、本技術の効果を損なわない限り、ヘミセルラーゼに加えて、他の酵素を併用することができる。例えば、ラクターゼ、プロテアーゼ、トランスグルタミナーゼ、パーオキシダーゼ、カタラーゼ、リパーゼ、セルラーゼ、グルコースオキシダーゼ、糖質酸化酵素およびアミラーゼから選択される1以上の酵素を併用することが可能である。
 (2)発酵工程
 発酵工程では、植物性発酵飲食品の原料の一部または全部を、発酵させる工程である。発酵工程は、前記酵素作用工程後に行うこともできるし、前記酵素作用工程と同時に行うこともできる。
 本技術の発酵工程では、嫌気性微生物、好気性微生物、および通性嫌気性微生物から選択される1種以上の微生物を用いて発酵を行うことができる。本技術で用いることができる微生物は、本技術の効果を損なわない限り、製造する植物性発酵飲食品の種類等に応じて、一般的な発酵飲食品の製造に用いることができる微生物を1種以上、自由に選択して用いることができる。例えば、微生物としては、乳酸菌、酵母、糸状菌、枯草菌(Bacillus subtilis)、酢酸菌(Acetobacteraceae)、等が挙げられる。
 本技術の発酵工程では、乳酸発酵を行うことができる。乳酸発酵時に用いる乳酸菌としては、本技術の効果を損なわない限り、製造する乳酸発酵飲食品の種類や目的に応じて、一般的な乳酸発酵飲食品の製造に用いることができる乳酸菌を1種以上、自由に選択して用いることができる。乳酸菌としては、例えば、ラクトコッカス(Lactococcus)、ストレプトコッカス(Streptococcus)、ペディオコッカス(Pediococcus)、ロイコノストック(Leuconostoc)に属する乳酸球菌、ラクトバチルス(Lactobacillus)に属する乳酸桿菌、ビフィズス菌(Bifidobacterium)等が挙げられ、好ましくは、Lactococcus delbrueckii subsp. delbureckiiが挙げられる。
 発酵工程を行う場合の各種条件は、本技術の効果を損なわない限り、自由に設定することができる。例えば、用いる微生物の種類に応じて、発酵条件、加熱条件等を設定することができる。発酵温度は、例えば20℃~50℃、好ましくは25℃~45℃、より好ましくは30℃~40℃に設定することができる。発酵時間は、例えば1~30時間、好ましくは2~20時間、より好ましくは4~10時間に設定することができる。加熱条件は、例えば、高温短時間殺菌(HTST)法、高温加熱調理(UHT)法、レトルト法等が挙げられ、飲食品材料の温度が90℃以上、好ましくは95℃程度になる条件であればよい。飲食品材料を90℃~100℃にて1~5分間で処理する方法や、90℃~95℃にて1~3分間で処理する方法等が挙げられる。
 本技術では、前記酵素作用工程を行うことにより、発酵工程の時間を短縮することができる。具体的には、例えば、前記酵素作用工程を行わない場合に比べて、発酵時間を1時間以上短縮することができる。換言すると、本技術では、前記酵素作用工程を行わない場合に比べて、短い時間で発酵する発酵工程を行うことができ、具体的には、例えば、前記酵素作用工程を行わない場合に比べて、1時間以上短い時間で発酵する発酵工程を行うことができる。
 (3)回収工程
 回収工程は、前記酵素作用工程と前記発酵工程を経た植物性発酵飲食品を回収する工程である。具体的な回収方法は、製造する植物性発酵飲食品の種類に応じて、一般的な植物性飲食品の製造における回収方法を、1種または2種以上自由に組み合わせて用いることができる。
 前記酵素作用工程と前記発酵工程を経た植物性発酵飲食品は、曵糸性が高いことを特徴とする。具体的には、前記酵素作用工程と前記発酵工程を経た植物性発酵飲食品は、ザーンカップ法における流出時間が30秒超である。即ち、本技術では、曵糸性が向上した植物性発酵飲食品を回収する回収工程を行うことができ、具体的には、ザーンカップ法における流出時間が30秒超である植物性発酵飲食品を回収する回収工程を行うことができる。
 また、本技術では、前記酵素作用工程を行うことにより、植物性発酵飲食品の曵糸性を向上させることができる。具体的には、例えば、前記酵素作用工程を行わない場合に比べて、ザーンカップ法における流出時間を30秒超延長させることができる。換言すると、本技術では、前記酵素作用工程を行わない場合に比べて、曵糸性が向上した植物性発酵飲食品を回収する回収工程を行うことができ、具体的には、例えば、前記酵素作用工程を行わない場合に比べて、ザーンカップ法における流出時間が30秒超延長された植物性発酵飲食品を回収する回収工程を行うことができる。
 以上説明した植物性発酵飲食品の製造方法を用いれば、様々な植物性発酵飲食品を効率的に製造することができる。本技術において、「植物性発酵飲食品」とは、植物性の飲食品材料を発酵することにより得られる飲食品をいう。具体的には、例えば、植物性発酵乳(植物性ヨーグルト)、植物性乳酸菌飲料、植物性ヨーグルトペースト、植物性チーズ様食品、酒類(日本酒、ビール、ワイン、焼酎等)、各種発酵調味料(醤油、味噌、酢等)、ぬか漬け、キムチ、納豆、くずもち等が挙げられる。また、本技術において、「植物性発酵飲食品」には、これらの植物性発酵飲食品を用いた二次加工飲食品も包含する。
 本技術において、「植物性発酵乳」とは、植物性ミルクを発酵させたものを指し、植物性ミルクとは、例えば、エンドウ豆、大豆、そら豆、ひよこ豆、大麦、小麦、オーツ麦、米、そば、ひえ、あわ、ヘンプ、藻類、アーモンド、カシューナッツ、ヘーゼルナッツ、ペカンナッツ、マカダミアナッツ、ピスタチオ、クルミ、ブラジルナッツ、ピーナッツ、ココナッツ由来の植物性ミルクが挙げられる。
 本技術に係る植物性発酵飲食品の製造方法における各工程では、植物性飲食品材料(植物性乳、穀物、野菜、果物、豆類等)、各種酵素、各種微生物の他に、本技術の効果を損なわない限り、一般的な飲食品の製造時に用いる原料を自由に選択して用いることができる。例えば、各種調味料、pH調整剤、着色剤、矯味剤、安定剤等を用いることができる。また、植物性発酵飲食品を用いた二次加工飲食品を製造する場合は、植物性材料に限らず、動物性乳、魚介類、肉類等の動物性材料を用いることも可能である。
 <3.植物性発酵飲食品の発酵促進方法、および、曵糸性向上方法>
 本技術に係る植物性発酵飲食品の発酵促進方法、および、曵糸性向上方法は、酵素作用工程と、発酵工程と、を少なくとも行う方法である。その他、植物性発酵飲食品の種類等に応じて、各工程の前後や各工程と同時に、本技術の効果を損なわない範囲において、例えば、植物性発酵飲食品の回収工程等、一般的な植物性飲食品の製造や改質方法等に行われる工程を行うことも可能である。なお、本技術に係る植物性発酵飲食品の発酵促進方法、および、曵糸性向上方法で行う酵素作用工程、発酵工程、及び回収工程法の詳細は、前述した植物性発酵飲食品の製造方法における酵素作用工程、発酵工程、及び回収工程と同一であるため、ここでは説明を割愛する。
 なお、本技術では、以下の構成を取ることもできる。
(1)
 ヘミセルラーゼを含む、植物性発酵飲食品用改質剤。
(2)
 発酵促進作用を有する(1)に記載の植物性発酵飲食品用改質剤。
(3)
 曵糸性向上作用を有する(1)または(2)に記載の植物性発酵飲食品用改質剤。
(4)
 前記ヘミセルラーゼが、微生物由来のヘミセルラーゼである、(1)から(3)のいずれかに記載の植物性発酵飲食品用改質剤。
(5)
 前記植物性発酵飲食品が、植物性発酵乳又は植物性乳酸菌飲料である、(1)から(4)のいずれかに記載の植物性発酵飲食品用改質剤。
(6)
 植物性原料の一部または全部にヘミセルラーゼを作用させる酵素作用工程と、
 発酵を行う発酵工程と、
 を含む、植物性発酵飲食品の製造方法。
(7)
 前記酵素作用工程は、前記発酵工程の前及び/又は前記発酵工程と同時に行われる、(6)に記載の植物性発酵飲食品の製造方法。
(8)
 前記発酵工程では乳酸発酵が行われる、(6)または(7)に記載の植物性発酵飲食品の製造方法。
(9)
 植物性原料の一部または全部にヘミセルラーゼを作用させる酵素作用工程と、
 発酵を行う発酵工程と、
 を含む、植物性発酵飲食品の発酵促進方法。
(10)
 植物性原料の一部または全部にヘミセルラーゼを作用させる酵素作用工程と、
 発酵を行う発酵工程と、
 を含む、植物性発酵飲食品の曵糸性向上方法。
 以下、実施例に基づいて本発明を更に詳細に説明する。なお、以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
 なお、本技術では、ヘミセルラーゼの活性測定法として、以下の測定方法を用いた。
 [活性測定法]
 適当量の酵素を量り、水を加えて溶解若しくは均一に分散し、適宜希釈したものを試料液とした。キシラン0.50gを量り、水約30mLを加えてかき混ぜながら加熱し、沸騰し始めてから3分間煮沸した。冷却後、この液に水を加えて50mLとしたものを基質溶液とした。試験管に基質溶液1mLを量り、0.1mol/L酢酸緩衝液(pH4.5)3mLを加えて40℃で10分間加温した後、試料液1mLを加えて振り混ぜ、40℃で30分間加温した。この液にソモギー試液(III)2mLを加えて混和し、試験管に栓をして沸騰水浴中で20分間加熱し、直ちに冷却した。冷却後、この液にネルソン試液1mLを加え、赤色沈殿が完全に溶けるまでよく振りまぜ、室温で約20分間放置した後、水を加えて25mLとした。この液を25℃で毎分3000回転で10分間遠心分離し、上澄液を検液とした。
 別に試験管に基質溶液1mLを量り、0.1mol/L酢酸緩衝液(pH4.5)3mL及びソモギー試液(III)2mLを加えて振り混ぜた後、試料液1mLを加え、試験管に栓をして沸騰水浴中で20分間加熱し、直ちに冷却した。以下検液の調製と同様に操作し、比較液とした。
 検液及び比較液につき、水を対照として波長500nmにおける吸光度を測定した。本条件下、1分間に1mgのキシロースに相当する還元糖を生成する酵素量を100単位とし、酵素活性を算出した。
 <実験例1>
 実験例1では、植物性原料の発酵前に、ヘミセルラーゼを用いた場合の発酵時間への影響を調べた。植物性原料として、大豆(豆乳)を用いた。
 (1)実験方法
 大豆100gに常水を400g入れ、24時間浸漬した。浸漬大豆を取り出し、100gをミキサーで粉砕(2分程度)し、大豆粉砕物(ご汁)を調製した。得られた大豆粉砕物(ご汁)に、大豆粉砕物(ご汁)の7倍の水を加えながら、ミキサーでさらに細かく破砕し、大豆破砕液を調製した。得られた大豆破砕液を鍋に入れ、沸騰してから中火~弱火で焦げつかないようにヘラで混ぜながら10分間火入れした。冷却後、Aspergillus niger由来のヘミセルラーゼ(天野エンザイム株式会社製「ヘミセルラーゼ「アマノ」90」)を0.1(w/v)%(90U/mL)となるよう添加し、50℃にて2時間撹拌して酵素処理を行った。95℃にて5分間失活処理を行った後、冷却し、こし袋に入れ、酵素処理大豆破砕液を漉して、酵素処理豆乳を調製した。調製した酵素処理豆乳を、50mLチューブに30mL分注し、95℃で5分間殺菌した。
 殺菌した酵素処理豆乳を水冷し、クリーンベンチにてLactococcus delbrueckii subsp. delbureckiiを含む乳酸菌スターターを0.6mL添加し、37℃で一晩発酵を行った。発酵中、pHセンサーでpHをモニターした。なお、ヘミセルラーゼ処理を行わなかった例を酵素無添加区とした。
 (2)結果
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (3)考察
 表1に示す通り、酵素無添加区では豆乳原料のカードが形成されるpH4.5に到達するまでに9.3時間要したが、ヘミセルラーゼ添加区では7.3時間と2時間も発酵時間が短縮されることが認められた。この結果から、本技術を用いれば発酵時間を短縮できることが明らかとなった。
 <実験例2>
 実験例2では、植物性原料の発酵時に、ヘミセルラーゼを用いた場合とセルラーゼを用いた場合の発酵時間への影響を調べた。植物性原料として、豆乳を用いた。
 (1)実験方法
 豆乳(マルサンアイ株式会社製「オーガニック 成分無調整豆乳」)を、15mLチューブに、10mLずつ分注し、Aspergillus niger由来のヘミセルラーゼ(天野エンザイム株式会社製「ヘミセルラーゼ「アマノ」90」)を0.1(w/v)%(90U/mL)となるように、またはAspergillus niger由来のセルラーゼ(天野エンザイム株式会社製「セルラーゼA「アマノ」3」)を0.1(w/v)%となるように添加、混合した。酵素添加後の豆乳に、Lactococcus delbrueckii subsp. delbureckiiを含む乳酸菌スターターを0.2mL添加し、37℃で一晩発酵を行い、3時間、6時間、10時間経過後にpHセンサーを用いてpHを確認した。なお、酵素を添加しなかった例を酵素無添加区とした。
 (2)結果
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (3)考察
 表2に示す通り、酵素無添加区に比べて、ヘミセルラーゼ処理を行った場合、pH低下の速度が各段に速い結果が得られた。また、セルラーゼ添加区では、酵素無添加区に比べるとpH低下の速度の向上が見られたが、pH低下の速度の向上効果は、ヘミセルラーゼ添加区でより顕著であった。
 <実験例3>
 実験例3では、植物性原料の発酵時に、ヘミセルラーゼを用いた場合とセルラーゼを用いた場合の曵糸性への影響を調べた。植物性原料として、豆乳を用いた。
 (1)実験方法
 滅菌済み300mLビーカーに、豆乳(マルサンアイ株式会社製「オーガニック 成分無調整豆乳」)を280mL分注し、水冷後、クリーンベンチにてLactococcus delbrueckii subsp. delbureckiiを含む乳酸菌スターターを5.6mLと、Aspergillus niger由来のヘミセルラーゼ(天野エンザイム株式会社製「ヘミセルラーゼ「アマノ」90」)を0.1(w/v)%(90U/mL)となるように、またはAspergillus niger由来のセルラーゼ(新日本化学工業株式会社製「スミチームAC」)を0.1(w/v)%となるように添加し、37℃で一晩発酵を行った。発酵後、豆乳ヨーグルトの曵糸性について、ザーンカップを用いて流出時間を計測した。なお、酵素を添加しなかった例を酵素無添加区とした。
 (2)結果
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 (3)考察
 表3に示す通り、酵素無添加区では流出時間が6秒であるところ、ヘミセルラーゼ添加区では流出時間が67秒と、飛躍的に曵糸性が向上していた。また、セルラーゼ添加区では、酵素無添加区に比べると曵糸性の向上が見られたが、曵糸性の向上効果は、ヘミセルラーゼ添加区でより顕著であった。この結果から、本技術を用いれば、曵糸性を向上させることが明らかとなった。
 <実験例4>
 実験例4では、ヘミセルラーゼの添加量の違いによる曵糸性向上効果への影響を調べた。植物性原料として、豆乳を用いた。
 (1)実験方法
 滅菌済み300mLビーカーに、豆乳(マルサンアイ株式会社製「オーガニック 成分無調整豆乳」)を280mL分注し、水冷後、クリーンベンチにてLactococcus delbrueckii subsp. delbureckiiを含む乳酸菌スターターを5.6mLと、Aspergillus niger由来のヘミセルラーゼ(天野エンザイム株式会社製「ヘミセルラーゼ「アマノ」90」)を下記の表4に示す量になるように添加し、37℃で一晩発酵を行った。発酵後、豆乳ヨーグルトの曵糸性について、ザーンカップを用いて流出時間を計測した。
 (2)結果
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 (3)考察
 表4に示す通り、ヘミセルラーゼの添加量が0.9U/mLの場合に比べて、9U/mL以上添加した場合、飛躍的に流出時間が延びていた。この結果から、曵糸性向上を確実に実現するためには、ヘミセルラーゼを8U/mL以上添加することが好ましいことが分かった。

Claims (10)

  1.  ヘミセルラーゼを含む、植物性発酵飲食品用改質剤。
  2.  発酵促進作用を有する請求項1に記載の植物性発酵飲食品用改質剤。
  3.  曵糸性向上作用を有する請求項1に記載の植物性発酵飲食品用改質剤。
  4.  前記ヘミセルラーゼが、微生物由来のヘミセルラーゼである、請求項1から3のいずれか一項に記載の植物性発酵飲食品用改質剤。
  5.  前記植物性発酵飲食品が、植物性発酵乳又は植物性乳酸菌飲料である、請求項1から3のいずれか一項に記載の植物性発酵飲食品用改質剤。
  6.  植物性原料の一部または全部にヘミセルラーゼを作用させる酵素作用工程と、
     発酵を行う発酵工程と、
     を含む、植物性発酵飲食品の製造方法。
  7.  前記酵素作用工程は、前記発酵工程の前及び/又は前記発酵工程と同時に行われる、請求項6に記載の植物性発酵飲食品の製造方法。
  8.  前記発酵工程では乳酸発酵が行われる、請求項6または7に記載の植物性発酵飲食品の製造方法。
  9.  植物性原料の一部または全部にヘミセルラーゼを作用させる酵素作用工程と、
     発酵を行う発酵工程と、
     を含む、植物性発酵飲食品の発酵促進方法。
  10.  植物性原料の一部または全部にヘミセルラーゼを作用させる酵素作用工程と、
     発酵を行う発酵工程と、
     を含む、植物性発酵飲食品の曵糸性向上方法。
PCT/JP2022/032267 2021-08-27 2022-08-26 植物性発酵飲食品用改質剤 WO2023027182A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22861470.7A EP4393319A1 (en) 2021-08-27 2022-08-26 Modifier for fermented vegetable drinks and foods
JP2023544009A JPWO2023027182A1 (ja) 2021-08-27 2022-08-26
CN202280053630.8A CN117794386A (zh) 2021-08-27 2022-08-26 植物性发酵饮食品用改性剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-138778 2021-08-27
JP2021138778 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023027182A1 true WO2023027182A1 (ja) 2023-03-02

Family

ID=85322965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032267 WO2023027182A1 (ja) 2021-08-27 2022-08-26 植物性発酵飲食品用改質剤

Country Status (4)

Country Link
EP (1) EP4393319A1 (ja)
JP (1) JPWO2023027182A1 (ja)
CN (1) CN117794386A (ja)
WO (1) WO2023027182A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061434A (ja) * 1999-08-26 2001-03-13 Sawa Sangyo Kk 植物性農水産物加工食材の製造方法および植物性農水産物加工食材
JP2004154122A (ja) * 2002-06-04 2004-06-03 Select:Kk 乳酸発酵オカラおよびそれを含有する食品並びに乳酸発酵オカラの製造法
JP2009273412A (ja) * 2008-05-15 2009-11-26 Sawa Sangyo Kk 紅色の機能性豆乳ヨーグルト
JP2011135832A (ja) 2009-12-28 2011-07-14 Showa Sangyo Co Ltd 乳酸発酵大豆食品の製造方法
WO2016152590A1 (ja) 2015-03-25 2016-09-29 フジッコ株式会社 豆乳発酵物の製法およびそれにより得られた豆乳発酵物
JP2021042289A (ja) * 2019-09-10 2021-03-18 日鉄エンジニアリング株式会社 有機溶媒可溶性リグニンの回収システム及び回収方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061434A (ja) * 1999-08-26 2001-03-13 Sawa Sangyo Kk 植物性農水産物加工食材の製造方法および植物性農水産物加工食材
JP2004154122A (ja) * 2002-06-04 2004-06-03 Select:Kk 乳酸発酵オカラおよびそれを含有する食品並びに乳酸発酵オカラの製造法
JP2009273412A (ja) * 2008-05-15 2009-11-26 Sawa Sangyo Kk 紅色の機能性豆乳ヨーグルト
JP2011135832A (ja) 2009-12-28 2011-07-14 Showa Sangyo Co Ltd 乳酸発酵大豆食品の製造方法
WO2016152590A1 (ja) 2015-03-25 2016-09-29 フジッコ株式会社 豆乳発酵物の製法およびそれにより得られた豆乳発酵物
JP2021042289A (ja) * 2019-09-10 2021-03-18 日鉄エンジニアリング株式会社 有機溶媒可溶性リグニンの回収システム及び回収方法

Also Published As

Publication number Publication date
CN117794386A (zh) 2024-03-29
EP4393319A1 (en) 2024-07-03
JPWO2023027182A1 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
Singh et al. Enzymes used in the food industry: Friends or foes?
CN109068684A (zh) 粘度增加的燕麦基料和发酵的燕麦基料产品
JP6029150B2 (ja) 澱粉由来ヨーグルト様飲料の製造方法
CA2312024C (fr) Preparation de produits alimentaires par fermentation de jus de soja par streptococcus thermophilus
AU2002258085A2 (en) Non-dairy containing milk substitute products
WO2022014542A1 (ja) 植物性タンパク質食品の製造方法
Simpson et al. Enzymes in food processing
WO2005097967A1 (ja) 液体麹の製造方法
US20230292778A1 (en) Method for producing plant-based milk fermentation product
JP2020065448A (ja) 発酵コーヒーエキスの製造方法
WO2023027182A1 (ja) 植物性発酵飲食品用改質剤
Platt et al. Fermentation and human nutrition
Saxena et al. Role of fungal enzymes in food processing
US20050056152A1 (en) Solid fermentation starter having improved storage stability
US20050003044A1 (en) Liquefaction of food material
KR20060105719A (ko) 배즙을 함유하는 청국장 음료와 이의 제조방법
KR101925095B1 (ko) 곡물발효효소가 코팅되어 소화가 용이한 견과류를 포함하는 식품의 제조방법
KR19990008908A (ko) 효소처리된 두유를 이용한 두유발효유의 제조방법
JPH0851955A (ja) 水溶性ビタミン高含有溶液の製造方法
WO2024172065A1 (ja) 植物性粘性飲食品製造用酵素剤
Dominguez-Ramirez et al. Maize (Zea mays L. subsp. mays) Fermentation
WO2023027110A1 (ja) 植物性タンパク質発酵飲食品の製造方法
KR101171401B1 (ko) 액체국의 제조방법
CN107373261A (zh) 一种谷物发酵饮料的制备方法
JPH04166055A (ja) 納豆の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280053630.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023544009

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022861470

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022861470

Country of ref document: EP

Effective date: 20240327