WO2023027163A1 - 粒子、組成物、培地、及び細胞構造体の製造方法 - Google Patents

粒子、組成物、培地、及び細胞構造体の製造方法 Download PDF

Info

Publication number
WO2023027163A1
WO2023027163A1 PCT/JP2022/032150 JP2022032150W WO2023027163A1 WO 2023027163 A1 WO2023027163 A1 WO 2023027163A1 JP 2022032150 W JP2022032150 W JP 2022032150W WO 2023027163 A1 WO2023027163 A1 WO 2023027163A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cell
medium
composition
cells
Prior art date
Application number
PCT/JP2022/032150
Other languages
English (en)
French (fr)
Inventor
祐揮 上田
佳臣 広井
康平 鈴木
美耶 廣飯
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2023543994A priority Critical patent/JPWO2023027163A1/ja
Publication of WO2023027163A1 publication Critical patent/WO2023027163A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to resin particles, a medium additive and a medium using the same, preferably a medium for producing cell structures/cell aggregates, a method for producing the particles, and a method for producing cell structures/cell aggregates. .
  • Cell structures or cell aggregates are cell aggregates in which cells self-assemble and aggregate three-dimensionally. can be maintained for a long period of time, and physiological functions have been reported to improve. Therefore, there are increasing expectations for the use of cell aggregates in drug discovery research, cell therapy, and regenerative therapy.
  • the present inventors have investigated the preparation of cell aggregates using a coating agent that induces spontaneous aggregation (self-assembly) of adherent cells and a cell culture vessel that is coated with the same coating agent. reported (see, for example, Patent Document 1).
  • Patent Document 2 discloses a medium additive that enables efficient culture of cells in a well-dispersed state.
  • Patent Document 3 discloses a medium for proliferation of stem cells with good culture results. These existing media additives have insufficient ability to suppress cell suspension, migration, and aggregation during cell structure/cell aggregate production.
  • An object of the present invention is to provide a medium additive capable of suppressing cell suspension, migration, and aggregation in order to produce cell structures or cell aggregates of uniform size.
  • the present invention includes the following.
  • the hydroxyl group-containing resin has the following formula (1): (wherein R 1 to R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms; X 1 and X 2 each independently represent a single bond, an ester bond or an ether bond; , represents an alkylene group having 1 to 5 carbon atoms which may be interrupted by an amide bond or an oxygen atom, m represents the copolymerization mol% ratio, m is 30 to 99.) Two repetitions represented by The particle according to [2], which has a unit. [4] The particles according to any one of [1] to [3], for use as a medium additive.
  • the crosslinked resin according to [11] wherein the particles made of the crosslinked resin have a ratio of lower layer solid content/upper layer solid content of 1.10 or more and a particle size of 10 ⁇ m or less in salting-out evaluation.
  • the particles of the present invention are particles having a ratio of lower layer solid content/upper layer solid content of 1.10 or more and a particle diameter of 10 ⁇ m or less in salting-out evaluation.
  • the above salting-out evaluation is determined, for example, by the method described in Examples.
  • the temperature during the evaluation was room temperature (15° C. to 30° C., 22 to 28° C.).
  • the ratio of lower layer solid content/upper layer solid content is preferably 1.10 or more, for example, 1.20 or more, 1.30 or more, 1.40 or more, or 1.50 or more.
  • the upper limit of the ratio is not particularly limited, it is, for example, 2.00 or less, 1.90 or less, 1.80 or less, or 1.70 or less.
  • the particle size can be measured, for example, using a laser diffraction/scattering particle size distribution analyzer or a dynamic light scattering particle size analyzer described in Examples.
  • the solvent used for particle size measurement is not particularly limited, but is preferably pure water.
  • the temperature during the measurement is room temperature (15°C to 30°C, 22°C to 28°C).
  • the particle size in pure water is 10 ⁇ m or less, for example, 1 ⁇ m or less (1000 nm or less), 500 nm or less, 400 nm or less, 300 nm or less, and 200 nm or less.
  • the lower limit of the particle size is not particularly limited, it is, for example, 5 nm or more, 10 nm or more, or 15 nm or more.
  • the particle size in the present invention is the median size or volume-based average particle size.
  • the particle size measured with a laser diffraction/scattering particle size distribution analyzer is the median size
  • the particle size measured with a dynamic light scattering particle size analyzer is the volume-based average particle size.
  • a laser diffraction/scattering particle size distribution analyzer can measure the particle size (median size) of particles of about 50 nm or more
  • a dynamic light scattering particle size analyzer can measure the particle size of particles of less than about 50 nm (volume-based average particle size) can be measured.
  • the particles may contain a crosslinked hydroxyl-containing resin.
  • crosslinked means that, for example, resins (polymers) or hydroxyl groups present in side chains of resins react with each other, and polymers are bonded with each other. This cross-linking reaction may be carried out by radiation exposure as described below. This cross-linking may be via a cross-linking agent having a plurality of functional groups capable of reacting with hydroxyl groups. A cross-linking agent will be described later.
  • the resin of the present invention is not limited as long as it is a hydroxyl group-containing resin that exhibits the effects of the present invention.
  • the hydroxyl group-containing resin has, for example, the following formula (1): (wherein R 1 to R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms; X 1 and X 2 each independently represent a single bond, an ester bond or an ether bond; , represents an alkylene group having 1 to 5 carbon atoms which may be interrupted by an amide bond or an oxygen atom, m represents the copolymerization mol% ratio, m is 30 to 99.) Two repetitions represented by have units.
  • the hydroxyl-containing resin has, for example, a repeating unit represented by the following formula (1-1) and a repeating unit represented by the following formula (1-2).
  • [( 1-1):(1-2)] is 70:30 to 1:99. (Wherein, R 1 to R 3 , X 1 and X 2 are as defined above.)
  • alkyl group having 1 to 5 carbon atoms examples include methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl -n-butyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclopropyl group, 2-ethyl-cyclopropyl group, 1-ethyl-n-butyl group,
  • alkylene group having 1 to 5 carbon atoms examples include methylene group, ethylene group, n-propylene group, isopropylene group, cyclopropylene group, n-butylene group, isobutylene group, s-butylene group and t-butylene group.
  • the alkylene group having 1 to 5 carbon atoms may be interrupted by an oxygen atom.
  • the phrase "which may be interrupted by an oxygen atom” means that the carbon atoms of the alkylene group are bonded via an ether bond.
  • the method for producing the resin of the present invention is not particularly limited. A method of obtaining a copolymer by hydrolysis may be mentioned. (Wherein, R 1 , R 3 and X 1 are as defined above.)
  • Examples of the method for producing the resin include a method of copolymerizing a compound represented by the following formula (C) and a compound represented by the following formula (D). (Wherein, R 1 to R 3 , X 1 and X 2 are as defined above.)
  • the resin may be a random copolymer or a block copolymer.
  • a commercially available product may be used as the resin.
  • examples of commercially available resins include polyvinyl acetate (manufactured by Nippon Acetate & Poval, trade name JMR-10L (registered trademark)).
  • the molar ratio of the two repeating units represented by the formula (1) can be expressed as (100-m):m.
  • the range of m is 30-99.
  • the lower limit of m may be 40, 50, 60, 70, or 80.
  • the upper limit for m may be 99, 98, 95, or 90.
  • the range of m is, for example, 30-90, 40-80, or 50-70.
  • the preferred degree of saponification is in the range of 30-90 mol%, 40-80 mol%, or 50-70 mol%.
  • the present resin may contain repeating units other than the two repeating units represented by formula (1).
  • the total mol% of the two repeating units represented by formula (1) in the entire resin is not particularly limited, but is preferably 90 mol% or more, more preferably 95 mol% or more, and 99.5 mol%. The above is more preferable, and 100 mol % is particularly preferable.
  • the viscosity average degree of polymerization of the present resin (hereinafter sometimes referred to as "degree of polymerization") is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is preferably 100 to 1500, more preferably 100 to 500. 200-300 is particularly preferred.
  • the viscosity-average degree of polymerization is measured in a completely saponified state of the present resin.
  • P indicates the viscosity average degree of polymerization.
  • the viscosity average degree of polymerization can be determined according to JIS K6726.
  • the particles may be particles for use as media additives.
  • a composition of the present invention for example a composition for use as a medium additive, has the following formula (1): (wherein R 1 to R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms; X 1 and X 2 each independently represent a single bond, an ester bond or an ether bond; , represents an alkylene group having 1 to 5 carbon atoms which may be interrupted by an amide bond or an oxygen atom, m represents the copolymerization mol% ratio, m is 30 to 99.) Two repetitions represented by Includes resins with units and solvents.
  • the terms, aspects, and preferred aspects of formula (1) are as described above.
  • the resin content in the composition of the present invention is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and particularly preferably 0.3 to 1% by mass.
  • the content of the resin in the particle-forming component in the composition of the present invention is not particularly limited, but is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the particle-forming component refers to a component obtained by excluding the solvent component from all the components of the composition.
  • solvent examples include water, phosphate-buffered saline (PBS), alcohol, water-soluble organic solvents (excluding alcohol), and pure water is preferred.
  • Alcohols include alcohols having 2 to 6 carbon atoms.
  • Examples of alcohols include ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 2-heptanol, 2,2-dimethyl-1-propanol (neopentyl alcohol), 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl-2-butanol (t-amyl alcohol), 3-methyl-1 -butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol, 3, 3-dimethyl-2-butanol, 2-ethyl-1-butanol, 2-methyl-1
  • a water-soluble organic solvent refers to an organic solvent that can be mixed with water and alcohol in any proportion and that does not separate after mixing.
  • water-soluble organic solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, and propylene glycol monoethyl ether.
  • the composition of the invention may further comprise a cross-linking agent.
  • a cross-linking agent is a compound having a plurality of functional groups capable of reacting with hydroxyl groups.
  • a known compound may be used as the cross-linking agent, and specific examples include 1,3,4,6-tetrakis(methoxymethyl)glycoluril, 1,3,4,6-tetrakis(butoxymethyl)glycoluril, and the like.
  • phenoplast cross-linking agents such as 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane; isocyanate cross-linking agents such as hexamethylene diisocyanate; 1,4-bis(vinyloxy)butane vinyl ether cross-linking agents such as;
  • aldehyde group-containing compounds such as glutaraldehyde may be used.
  • the composition may be irradiated.
  • the irradiation may be performed for cross-linking between resins and/or between hydroxyl groups, and may also be for sterilization for use as a medium composition.
  • the sterilization step is usually performed at ambient temperature (eg, about 0°C to about 40°C, preferably about 10°C to about 30°C, more preferably about 25°C).
  • the radiation to be irradiated is not limited as long as it can perform sterilization, but ⁇ -rays, X-rays, or electron beams are preferable. ⁇ -rays or X-rays are more preferred, and ⁇ -rays are even more preferred.
  • the irradiation dose of ⁇ -rays may be, for example, the dose adopted in a normal sterilization process. For example, irradiation of about 5 to 100 kGy is sufficient, preferably 10 to 50 kGy.
  • the composition may be used as a medium additive.
  • the medium of the present invention contains the particles.
  • the medium may be one in which migration and/or aggregation of cells is suppressed. Suppressing the migration of cells means that the cell aggregate migration distance is 1.84 mm or less, 1.80 mm or less, or 1.70 mm or less according to the cell aggregate migration inhibition evaluation described in the Examples, for example. , 1.60 mm or less, 1.50 mm or less, 1.40 mm or less, 1.30 mm or less, 1.20 mm or less, 1.10 mm or less, 1.00 mm or less, 0.90 mm or less, 0.80 mm or less, 0.70 mm or less, 0.60 mm or less, or 0.50 mm or less.
  • the method for producing particles of the present invention includes the steps of preparing a composition containing the hydroxyl group-containing resin, and irradiating the composition.
  • the composition may further comprise the cross-linking agent.
  • the method for producing a cell structure/cell aggregate of the present invention is produced using the composition and medium described above.
  • Cells to be used are not limited. Skin cells, dendritic cells, keratinocytes, adipocytes, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, hepatocytes, chondrocytes, cumulus cells, nervous system cells, glial cells, neurons, oligos Dendrocytes, microglia, astrocytes, cardiac cells, esophageal cells, muscle cells (e.g.
  • pancreatic beta cells melanocytes, hematopoietic progenitor cells, monocytes, embryonic stem cells ( ES cells), embryonic tumor cells, embryonic germ stem cells, induced pluripotent stem cells (iPS cells), neural stem cells, hematopoietic stem cells, mesenchymal stem cells, liver stem cells, pancreatic stem cells, muscle stem cells, germ stem cells, intestinal stem cells, Cancer stem cells, hair follicle stem cells, and various cell lines (e.g., HCT116, Huh7, HEK293 (human embryonic kidney cells), HeLa (human cervical cancer cell line), HepG2 (human liver cancer cell line), UT7/TPO (human leukemia cell line), CHO (Chinese hamster ovary cell line), MDCK, MDBK, BHK, C-33A, HT-29, AE-1, 3D9, Ns0/1, Jurkat, NIH3T3, PC12, S2, Sf9, S
  • a method for producing the cell structure/cell culture mass may be a known method, including a step of seeding cells in a cell culture vessel, and further including other steps as necessary.
  • the cell culture vessel has a coating film capable of suppressing cell adhesion, and a cell culture layer having cell adhesiveness described in WO 2020/040247, which is arranged in a dot pattern on the coating film. and a cell-seeding surface having a ground membrane. By seeding cells on such a cell seeding surface, cells are selectively cultured on the dot-pattern cell culture base membrane, resulting in three-dimensional cell structures and cell aggregates (e.g., spheroids). can get.
  • the coating film capable of suppressing cell adhesion may be an ion complex material described in International Publication No. 2014/196650, for example, a coating film described in Japanese Patent Application No. 2021-095130 (the following formula (A) and a repeating unit (B) represented by the following formula (B).
  • R 1 to R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • X 1 and X 2 each independently represent a single bond, an ester bond
  • an ether represents an alkylene group having 1 to 5 carbon atoms which may be interrupted by a bond, an amide bond or an oxygen atom.
  • Polyvinyl alcohol (PVA) used in Examples and Comparative Examples is as follows. ⁇ PVA with degree of polymerization: 120, degree of saponification: 67 mol%: JMR-3M (registered trademark) manufactured by Japan Vinyl Acetate Poval Co., Ltd. ⁇ PVA with degree of polymerization: 250, degree of saponification: 65 mol%: JMR-10M (registered trademark) manufactured by Japan Vinyl Acetate Poval Co., Ltd. ⁇ PVA with a degree of polymerization: 360 and a degree of saponification: 66 mol%: JMR-20M (registered trademark) manufactured by Japan Vie Poval Co., Ltd. ⁇ PVA with degree of polymerization: 250, degree of saponification: 82 mol%: JMR-10H (registered trademark) manufactured by Nippon Vinepo Poval Co., Ltd.
  • Example 1 Polyvinyl alcohol having a degree of polymerization of 120 and a degree of saponification of 67 mol % was added to pure water so as to be 1% by mass, and the mixture was stirred at room temperature until uniformly dissolved to prepare a medium additive composition.
  • Example 1 A medium additive composition was prepared in the same manner as in Example 1, except that the degree of polymerization and the degree of saponification of polyvinyl alcohol were changed as shown in Table 1.
  • Example 2 A medium additive composition was prepared in the same manner as in Example 1 except that the polymerization degree and saponification degree of polyvinyl alcohol and the concentration of the medium additive composition were changed to those shown in Table 1, and ⁇ -ray irradiation (25 kGy) was performed at room temperature. prepared.
  • Example 8 Polyvinyl alcohol having a degree of polymerization of 250 and a degree of saponification of 65 mol % was added to pure water so as to be 0.5 mass %, stirred at room temperature until uniformly dissolved, and nitrogen bubbling was performed for 3 minutes. After that, they were subjected to ⁇ -ray irradiation (25 kGy) in a cold state to prepare a composition for medium addition.
  • nitrogen bubbling for 3 minutes is described as "nitrogen purge”
  • irradiation in a cold storage state is described as "refrigeration”.
  • Example 9 A medium additive resin composition was prepared in the same manner as in Example 8, except that the degree of polymerization and saponification of polyvinyl alcohol and the concentration of the medium additive composition were changed as shown in Table 1.
  • Example 10> In the same manner as in Example 1, except that the polymerization degree and saponification degree of polyvinyl alcohol, and the concentration of the medium additive composition were changed to those shown in Table 1, and electron beam irradiation was performed at room temperature at the irradiation dose shown in Table 1. A medium additive composition was prepared.
  • m is 82 for polyvinyl alcohol with a degree of saponification of 82 mol %.
  • m is 65 for polyvinyl alcohol with a degree of saponification of 65 mol %.
  • m is 66 for polyvinyl alcohol with a degree of saponification of 66 mol %.
  • m is 67 for polyvinyl alcohol with a degree of saponification of 67 mol %.
  • ⁇ Test Example 1 Evaluation of salting out>
  • the medium additive compositions prepared in Examples 1 to 3, 6, 10, and 13 and Comparative Example 1 were diluted with pure water to a concentration of 0.5% by mass to obtain compositions for salting-out evaluation. rice field.
  • the medium additive compositions (concentration 0.5% by mass) prepared in Examples 4 to 5, 7 to 8, 12 and 15 and Comparative Example 2 were used as compositions for salting out evaluation.
  • the medium additive compositions (concentration 0.3% by mass) prepared in Examples 9, 11 and 14 were used as compositions for evaluating salting out.
  • Sodium chloride was added to each composition for salting-out evaluation so that the concentration was 50 g/L to obtain an aqueous solution for evaluation.
  • ⁇ Test Example 2 Particle Size Measurement>
  • the medium additive compositions prepared in Examples 1 to 15 and Comparative Examples 1 to 3 were diluted with pure water to a concentration of 0.05% by mass, and measured with a laser diffraction/scattering particle size distribution analyzer (Horiba, Ltd. The median diameter was measured at 25° C. using LA-960 (manufacturer). Since the medium additive composition prepared in Comparative Example 3 was gelled, it was autoclaved at 121° C./20 minutes to dissolve, and then diluted with pure water. In Examples 1 to 3 and Comparative Example 1, the particle size was small and could not be measured by the laser diffraction/scattering method. (volume basis) was measured. Table 3 shows the results.
  • ⁇ Test Example 3 Cell aggregation inhibition evaluation> (Preparation of medium containing hydroxyl group-containing resin) BME medium (manufactured by Thermo Fisher Scientific) containing 10% FBS (manufactured by Sigma-Aldrich) and L-glutamine-penicillin-streptomycin stabilizing solution (manufactured by Thermo Fisher Scientific) and Examples 1 to 15
  • a medium containing the hydroxyl group-containing resin was prepared by mixing the medium additive compositions obtained in Comparative Examples 1 to 3 so that the concentration of the hydroxyl group-containing resin was 0.1 w/v%.
  • the medium supplement composition obtained in Comparative Example 3 was mixed with the medium after autoclaving at 121° C./20 minutes.
  • Mouse embryo fibroblasts (manufactured by DS Pharma Biomedical) were used as cells.
  • the medium used for cell culture was BME medium (Thermo Fisher Scientific) containing 10% FBS (Sigma-Aldrich) and L-glutamine-penicillin-streptomycin stabilizing solution (Thermo Fisher Scientific). ) was used.
  • the cells were statically cultured in a 10 cm diameter petri dish (10 mL medium) for 2 days or longer in a 37° C./CO 2 incubator while maintaining a 5% carbon dioxide concentration.
  • ⁇ Test Example 4 Cell aggregate formation test> (Preparation of substrate for forming cell aggregates) An aqueous solution of a copolymer of 2-(N,N-dimethylamino)ethyl methacrylate and methacrylic acid was applied to an area of 2 cm square in the center of the culture surface of a Petri dish with low cell adhesion (manufactured by Sumitomo Bakelite Co., Ltd., MS9035X) with an inkjet device ( An appropriate amount was applied using LaboJet-600 manufactured by Microjet. It was dried in a constant temperature dryer at 70° C. for 1 day to prepare a substrate for forming cell aggregates.
  • Cell aggregate formation test 1 mL each of the medium containing the hydroxyl group-containing resin and the cell suspension prepared in the same manner as in Test Example 3 were added to the substrate for forming cell aggregates (hydroxyl group-containing resin concentration: 0.05 w/v%). Cell suspensions were added at a seeding density of 90-120 ⁇ 10 4 cells/mL. After that, the state of cell aggregate formation was observed with an inverted microscope (CytoSMART Lux2 manufactured by Shoshin EM) while still standing in a CO 2 incubator at 37° C. while maintaining a carbon dioxide concentration of 5%. Observation results were evaluated according to the following evaluation criteria, and it was confirmed whether uniform cell aggregates were formed. Table 5 shows the results. [Evaluation criteria] ⁇ : Cell aggregates of uniform size are formed ⁇ : Cell aggregates of non-uniform size are formed
  • ⁇ Test Example 5 Evaluation of suppression of migration of cell aggregates> (Preparation of cell aggregates) 2 mL of the cell suspension prepared in the same manner as in Test Example 3 was added to the cell aggregate formation substrate prepared in the same manner as in Test Example 4 at a seeding density of 45 to 60 ⁇ 10 4 cells/mL, and the concentration of carbon dioxide was 5%. While maintaining the temperature, the cells were statically cultured at 37° C. in a CO 2 incubator for 2 to 3 days.
  • ⁇ Test Example 6 Evaluation of suppression of aggregation between cell aggregates> (Preparation of medium containing hydroxyl group-containing resin) Mesenchymal Stem Cell Growth Medium DXF medium (manufactured by Takara Bio Inc.), which is a serum-free medium, and the medium additive compositions obtained in Example 10 and Comparative Example 3 were mixed with the hydroxyl group-containing resin concentration of 0.05 w / v%.
  • a medium containing a hydroxyl group-containing resin was prepared by mixing so that The medium supplement composition obtained in Comparative Example 3 was mixed with the medium after autoclaving at 121° C./20 minutes.
  • adipose tissue-derived mesenchymal stem cells As the cells, human adipose tissue-derived mesenchymal stem cells (ADSC: manufactured by Cellsource Co., Ltd.) were used. A low serum medium Mesenchymal Stem Cell Growth Medium 2 (manufactured by Takara Bio Inc., serum concentration 2%) was used for cell culture. The cells were statically cultured in a 10 cm diameter petri dish (10 mL medium) for 2 days or longer in a 37° C./CO 2 incubator while maintaining a 5% carbon dioxide concentration.
  • the cells were washed with 3 mL of PBS solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 3 mL of trypsin-EDTA solution (manufactured by Takara Bio Inc.) was added, and the cells were allowed to stand at room temperature for 3 minutes. Cells were detached. Cells were collected by adding 7 mL of Mesenchymal Stem Cell Growth Medium DXF medium (manufactured by Takara Bio Inc.), which is a serum-free medium. After centrifuging this suspension (manufactured by Tomy Seiko, model number LC-200, 1000 rpm/3 min, room temperature), the supernatant was removed, and the above medium was added to prepare a cell suspension.
  • PBS solution manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • trypsin-EDTA solution manufactured by Takara Bio Inc.
  • the cell suspension prepared above was added to the cell aggregate formation substrate at a seeding density of 35 ⁇ 10 4 cells/well, and placed in a CO 2 incubator at 37° C. for 2 hours while maintaining a 5% carbon dioxide concentration. Statically cultured. After confirming that the cells adhered to the inkjet spots and removing the medium, 1 mL of a medium containing a hydroxyl group-containing resin at a concentration of 0.05 w/v% was added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

塩析評価にて下層固形分/上層固形分の比が1.10以上であり、かつ粒子径が10μm以下である、粒子である。前記粒子が、架橋した水酸基含有樹脂を含んでよい。

Description

粒子、組成物、培地、及び細胞構造体の製造方法
 本発明は、樹脂からなる粒子、それを用いた培地添加物及び培地、好ましくは細胞構造体/細胞凝集塊製造用の培地、前記粒子の製造方法、細胞構造体/細胞凝集塊の製造方法に関する。
 細胞構造体又は細胞凝集塊(スフェロイドまたは細胞塊ともいう)は、細胞同士が自己集合し、三次元的に凝集化した細胞集合体であり、生体様構造が構築されることから、細胞の機能を長期間維持でき、生理的機能が向上することが報告されている。そのため、細胞凝集塊の、創薬研究における、又は細胞治療や再生治療における利用についての期待が高まっている。
 それに伴い、細胞構造体又は細胞凝集塊を簡便かつ迅速に、均一かつ大量に作製できる組織工学技術の開発が再生医療の実用化や創薬試験の効率化のための重要課題とされているが、従来の細胞低接着性培養皿(例えば、マルチウェルプレート)を用いた浮遊細胞のランダムな凝集化現象を利用する方法では1ウェルに1個のスフェロイドしか形成しないため、操作性及び量産性に優れないという課題があった。
 本発明者らは、接着細胞の自発的な集合(自己集合化)を誘導するコーティング剤と、同コーティング剤でコーティングされていることを特徴とする細胞培養容器を用いた細胞凝集塊の作製について報告した(例えば、特許文献1参照)。
 大きさが均一な細胞構造体又は細胞凝集塊を製造するためには、細胞の浮遊、移動、凝集を抑制することが必要である。
 特許文献2には、細胞等を良好に分散した状態で効率よく培養することが出来る培地添加物が開示されている。特許文献3には、培養成績のよい幹細胞の増殖用培地が開示されている。これらの既存の培地添加物では、細胞構造体/細胞凝集塊製造時において、細胞の浮遊、移動、及び凝集を抑制する性能は不十分であった。
国際公開第2020/040247号 国際公開第2016/167373号 特開2018-011599号公報
 本発明の目的は、大きさが均一な細胞構造体又は細胞凝集塊を製造するために、細胞の浮遊、移動、及び凝集を抑制することができる培地添加物を提供することである。
 本発明は以下を包含する。
 [1] 塩析評価にて下層固形分/上層固形分の比が1.10以上であり、かつ粒子径が10μm以下である、粒子。
 [2] 前記粒子が、架橋した水酸基含有樹脂を含む、[1]に記載の粒子。
 [3] 前記水酸基含有樹脂が、下記式(1):
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、単結合、エステル結合、エーテル結合、アミド結合又は酸素原子で中断されてもよい炭素原子数1~5のアルキレン基を表し、mは共重合モル%比を表し、mは30~99である。)で表される2つの繰り返し単位を有する、[2]に記載の粒子。
 [4] 培地添加物として用いるための、[1]~[3]何れかに記載の粒子。
 [5] 下記式(1):
Figure JPOXMLDOC01-appb-C000004
(式中、R~Rは、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、単結合、エステル結合、エーテル結合、アミド結合又は酸素原子で中断されてもよい炭素原子数1~5のアルキレン基を表し、mは共重合モル%比を表し、mは30~99である。)で表される2つの繰り返し単位を有する樹脂、及び溶媒を含む、組成物。
 [6] さらに架橋剤を含む、[5]に記載の組成物。
 [7] 放射線照射した、[5]又は[6]に記載の組成物。
 [8] 培地添加物として用いられる、[5]~[7]何れかに記載の組成物。
 [9] [1]~[3]何れかに記載の粒子を含む、培地。
 [10] 細胞の移動及び/又は凝集が抑制された、[9]に記載の培地。
 [11] 水酸基含有樹脂を含む組成物を準備する工程、及び該組成物に放射線照射する工程を含む、架橋した樹脂からなる粒子の製造方法。
 [12] 前記架橋した樹脂からなる粒子が、塩析評価にて下層固形分/上層固形分の比が1.10以上であり、かつ粒子径が10μm以下である、[11]に記載の架橋した樹脂からなる粒子の製造方法。
 [13][8]に記載の組成物を用いた、細胞構造体の製造方法。
 [14][9]又は[10]に記載の培地を用いた、細胞構造体の製造方法。
 本願発明者らが鋭意検討した結果、特定の性能を有する樹脂からなる粒子からなる培地添加物を用いて、細胞構造体や細胞凝集塊を製造すると、細胞の浮遊、移動、及び凝集を抑制することが出来、大きさが均一な細胞構造体又は細胞凝集塊を高効率で製造することが出来ることを見出した。
<粒子>
 本発明の粒子は、塩析評価にて下層固形分/上層固形分の比が1.10以上であり、かつ粒子径が10μm以下である、粒子である。
 上記塩析評価は、例えば実施例に記載の方法で求められる。評価時の温度は室温(15℃~30℃、22~28℃)である。下層固形分/上層固形分の比は、1.10以上であり、例えば1.20以上、1.30以上、1.40以上、又は1.50以上であることが好ましい。
 前記比の上限値は特に限定されないが、例えば、2.00以下、1.90以下、1.80以下、又は1.70以下である。
 上記粒子径は、例えば実施例に記載のレーザー回折/散乱式粒子径分布測定装置や、動的光散乱式粒子径装置を用いて測定することが出来る。粒子径測定時の溶媒は、特に限定は無いが、純水であることが好ましい。測定時の温度は室温(15℃~30℃、22~28℃)である。上記粒子径は純水中で10μm以下であり、例えば1μm以下(1000nm以下)であり、500nm以下であり、400nm以下であり、300nm以下であり、200nm以下である。
 上記粒子径の下限値は特に制限されないが、例えば、5nm以上、10nm以上、又は15nm以上である。
 本発明における粒子径は、メジアン径又は体積基準平均粒子径である。
 例えば、レーザー回折/散乱式粒子径分布測定装置で測定される粒子径は、メジアン径であり、動的光散乱式粒子径装置で測定される粒子径は、体積基準平均粒子径である。
 レーザー回折/散乱式粒子径分布測定装置では、約50nm以上の粒子の粒子径(メジアン径)が測定でき、動的光散乱式粒子径装置では、約50nm未満の粒子の粒子径(体積基準平均粒子径)が測定できる。
 前記粒子が、架橋した水酸基含有樹脂を含んでよい。「架橋した」とは、例えば、樹脂(ポリマー)同士や、樹脂の側鎖に存在する水酸基同士が反応して、ポリマー同士が結合していることを言う。この架橋反応は、後述する放射線放射により行ってよい。この架橋は、水酸基と反応し得る官能基を複数有する架橋剤を介してでもよい。架橋剤については後述する。
 本発明の樹脂は、本発明の効果を奏する水酸基含有樹脂であれば制限は無い。
 前記水酸基含有樹脂が、例えば、下記式(1):
Figure JPOXMLDOC01-appb-C000005
(式中、R~Rは、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、単結合、エステル結合、エーテル結合、アミド結合又は酸素原子で中断されてもよい炭素原子数1~5のアルキレン基を表し、mは共重合モル%比を表し、mは30~99である。)で表される2つの繰り返し単位を有する。
 言い換えれば、前記水酸基含有樹脂は、例えば、下記式(1-1)で表される繰り返し単位と、下記式(1-2)で表される繰り返し単位とを有する。前記水酸基含有樹脂において、前記式(1-1)で表される繰り返し単位(1-1)と、前記式(1-2)で表される繰り返し単位(1-2)とのモル比率〔(1-1):(1-2)〕は、70:30~1:99である。
Figure JPOXMLDOC01-appb-C000006
(式中、R~R、X、及びXは上記と同義である。)
 前記炭素原子数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基などが挙げられる。
 前記炭素原子数1~5のアルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、シクロプロピレン基、n-ブチレン基、イソブチレン基、s-ブチレン基、t-ブチレン基、シクロブチレン基、1-メチル-シクロプロピレン基、2-メチル-シクロプロピレン基、n-ペンチレン基、1-メチル-n-ブチレン基、2-メチル-n-ブチレン基、3-メチル-n-ブチレン基、1,1-ジメチル-n-プロピレン基、1,2-ジメチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基、1-エチル-n-プロピレン基、シクロペンチレン基、1-メチル-シクロブチレン基、2-メチル-シクロブチレン基、3-メチル-シクロブチレン基、1,2-ジメチル-シクロプロピレン基、2,3-ジメチル-シクロプロピレン基、1-エチル-シクロプロピレン基、2-エチル-シクロプロピレン基、n-ヘキシレン基、1-メチル-n-ペンチレン基、2-メチル-n-ペンチレン基、3-メチル-n-ペンチレン基、4-メチル-n-ペンチレン基、1,1-ジメチル-n-ブチレン基、1,2-ジメチル-n-ブチレン基、1,3-ジメチル-n-ブチレン基、2,2-ジメチル-n-ブチレン基、2,3-ジメチル-n-ブチレン基、3,3-ジメチル-n-ブチレン基、1-エチル-n-ブチレン基、2-エチル-n-ブチレン基、1,1,2-トリメチル-n-プロピレン基、1,2,2-トリメチル-n-プロピレン基、1-エチル-1-メチル-n-プロピレン基、1-エチル-2-メチル-n-プロピレン基、1-メチル-シクロペンチレン基、2-メチル-シクロペンチレン基、3-メチル-シクロペンチレン基、1-エチル-シクロブチレン基、2-エチル-シクロブチレン基、3-エチル-シクロブチレン基、1,2-ジメチル-シクロブチレン基、1,3-ジメチル-シクロブチレン基、2,2-ジメチル-シクロブチレン基、2,3-ジメチル-シクロブチレン基、2,4-ジメチル-シクロブチレン基、3,3-ジメチル-シクロブチレン基、1-n-プロピル-シクロプロピレン基、2-n-プロピル-シクロプロピレン基、1-イソプロピル-シクロプロピレン基、2-イソプロピル-シクロプロピレン基、1,2,2-トリメチル-シクロプロピレン基、1,2,3-トリメチル-シクロプロピレン基、2,2,3-トリメチル-シクロプロピレン基、1-エチル-2-メチル-シクロプロピレン基、2-エチル-1-メチル-シクロプロピレン基、2-エチル-2-メチル-シクロプロピレン基及び2-エチル-3-メチル-シクロプロピレン基などが挙げられる。
 前記炭素原子数1~5のアルキレン基は、酸素原子で中断されていてもよい。
 前記「酸素原子で中断されていてもよい」とは、前記アルキレン基の炭素原子が、エーテル結合を介して結合していることを言う。
 本発明の樹脂を製造する方法としては、特に制限されないが、例えば、下記式(C)で表される化合物を重合してホモポリマーを製造し、得られたホモポリマーを公知のけん化反応により部分加水分解して、共重合体を得る方法が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(式中、R、R及びXは上記と同義である。)
 また、前記樹脂を製造する方法としては、例えば、下記式(C)で表される化合物と下記式(D)で表される化合物とを共重合して得る方法が挙げられる。
Figure JPOXMLDOC01-appb-C000008
(式中、R~R、X、及びXは上記と同義である。)
 前記樹脂は、ランダムコポリマーであってもよいし、ブロックコポリマーであってもよい。
 前記樹脂としては、市販品を使用してもよい。前記樹脂の市販品としては、具体的にはポリ酢酸ビニル(日本酢ビ・ポバール製、商品名JMR-10L(登録商標))が挙げられる。
 前記式(1)で表される2つの繰り返し単位のモル比率は、(100-m):mで表すことができる。その場合、mの範囲は30~99である。そして、mの下限は、40、50、60、70、又は80であってよい。mの上限は、99、98、95、又は90であってよい。mの範囲としては、例えば、30~90、40~80、又は50~70である。
 好ましいけん化度としては、30~90モル%、40~80モル%、又は50~70モル%の範囲である。
 本樹脂は、式(1)で表される2つの繰り返し単位以外の繰り返し単位を含んでもよい。樹脂全体に占める、式(1)で表される2つの繰り返し単位の合計のモル%としては、特に制限されないが、90モル%以上が好ましく、95モル%以上がより好ましく、99.5モル%以上がより一層好ましく、100モル%が特に好ましい。
 本樹脂の粘度平均重合度(以下、「重合度」ということがある)は、特に制限されないが、本発明の効果を好適に得る観点から、100~1500が好ましく、100~500がより好ましく、200~300が特に好ましい。
 粘度平均重合度は、本樹脂を完全けん化した状態で測定される。
 完全けん化して得られるポリビニルアルコールの「粘度平均重合度」は、イオン交換水を溶媒としたオストワルド粘度計により30℃で測定した際の極限粘度[η](g/dL)から、下記式により算出される値である。
 log(P)=1.613×log([η]×10/8.29)
 ここで、Pは粘度平均重合度を示す。
 粘度平均重合度は、JIS K 6726に従って求めることができる。
 前記粒子は、培地添加物として用いるための粒子であってよい。
<組成物>
 本発明の組成物、例えば培地添加物として用いるための組成物は、下記式(1):
Figure JPOXMLDOC01-appb-C000009
(式中、R~Rは、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、単結合、エステル結合、エーテル結合、アミド結合又は酸素原子で中断されてもよい炭素原子数1~5のアルキレン基を表し、mは共重合モル%比を表し、mは30~99である。)で表される2つの繰り返し単位を有する樹脂、及び溶媒を含む。
 式(1)の用語、態様、好ましい態様については、上述の通りである。
 本発明の組成物における樹脂の含有量としては、特に制限されないが、0.1~10質量%が好ましく、0.3~5質量%がより好ましく、0.3~1質量%が特に好ましい。
 本発明の組成物中の粒子形成成分における樹脂の含有量としては、特に制限されないが、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が特に好ましい。なお粒子形成成分とは、組成物の全成分から溶媒成分を除いた成分を指す。
<溶媒>
 溶媒としては、例えば、水、リン酸緩衝生理食塩水(PBS)、アルコール、水溶性有機溶媒(ただしアルコールを除く。)などが挙げられるが、純水が好ましい。
 アルコールとしては、炭素原子数2~6のアルコールが挙げられる。
 アルコールとしては、例えば、エタノール、プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘプタノール、2-ヘプタノール、2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール(t-アミルアルコール)、3-メチル-1-ブタノール、3-メチル-3-ペンタノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2,3-ジメチル-2-ブタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル-2-ブタノール、2-エチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、4-メチル-3-ペンタノール及びシクロヘキサノールなどが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 水溶性有機溶媒とは、水及びアルコールと任意の割合で混ぜることが可能であり、混ぜた後に分離が起こらない有機溶媒を指す。
 水溶性有機溶媒としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテートなどが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
<架橋剤>
 本発明の組成物は、さらに架橋剤を含んでよい。架橋剤とは、水酸基と反応し得る官能基を複数有する化合物である。前記架橋剤は公知の化合物を使用してよく、具体的には、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル等のアミノプラスト架橋剤;2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン等のフェノプラスト架橋剤;ヘキサメチレンジイソシアネート等のイソシアネート架橋剤;1,4-ビス(ビニルオキシ)ブタン等のビニルエーテル架橋剤;等が挙げられる。
 また、グルタルアルデヒド等の複数のアルデヒド基含有化合物を用いてもよい。
 前記組成物は、放射線照射したものであってよい。該放射線照射は、樹脂同士及び/又は水酸基同士を架橋するために行うほか、培地組成物として使用するために滅菌を行うためでもよい。
 滅菌工程は、通常、周囲温度(例えば、約0℃~約40℃、好ましくは約10℃~約30℃、より好ましくは約25℃)で実施される。照射される放射線としては、例えば滅菌を行うことができれば限定されないが、γ線、X線又は電子線が好ましい。より好ましくはγ線又はX線、さらに好ましくはγ線である。γ線の照射線量は、例えば、通常の滅菌工程で採用されている線量でよく、例えば、5~100kGy程度の照射で十分であり、好ましくは、10~50kGyがよい。
 前記組成物は、培地添加物として用いられてよい。
 本発明の培地は、前記粒子を含む。
 前記培地は、細胞の移動及び/又は凝集が抑制されたものであってよい。
 細胞の移動を抑制するとは、例えば実施例に記載の細胞凝集塊の移動抑制評価により、細胞凝集塊移動距離が、1.84mm以下であり、1.80mm以下であり、1.70mm以下であり、1.60mm以下であり、1.50mm以下であり、1.40mm以下であり、1.30mm以下であり、1.20mm以下であり、1.10mm以下であり、1.00mm以下であり、0.90mm以下であり、0.80mm以下であり、0.70mm以下であり、0.60mm以下であり、又は0.50mm以下である。
 細胞の凝集が抑制されたとは、例えば実施例に記載の細胞凝集抑制評価において、以下の基準で判断できる。
 ◎:細胞塊が見られず、細胞が均一に分散
 ○:小さな細胞塊が見られるものの、細胞が均一に分散
 ×:大きな細胞塊が存在
 大きな細胞塊が存在するとは、倍率2倍での光学顕微鏡視野中において、最小長さが250μm以上の細胞凝集塊が少なくとも1個存在する場合(n=3以上での平均個数)を言う。
<粒子の製造方法>
 本発明の粒子の製造方法は、前記の水酸基含有樹脂を含む組成物を準備する工程、及び該組成物に放射線照射する工程を含む。前記組成物は、前記架橋剤をさらに含んでよい。
<細胞構造体/細胞凝集塊の製造方法>
 本発明の細胞構造体/細胞凝集塊の製造方法は、前記組成物や培地を用いて製造される。
 用いる細胞としては制限は無く、具体的には細胞としては、例えば、線維芽細胞、骨髄細胞、Bリンパ球、Tリンパ球、好中球、赤血球、血小板、マクロファージ、単球、骨細胞、周皮細胞、樹枝状細胞、ケラチノサイト、脂肪細胞、間葉細胞、上皮細胞、表皮細胞、内皮細胞、血管内皮細胞、肝実質細胞、軟骨細胞、卵丘細胞、神経系細胞、グリア細胞、ニューロン、オリゴデンドロサイト、マイクログリア、星状膠細胞、心臓細胞、食道細胞、筋肉細胞(例えば、平滑筋細胞又は骨格筋細胞)、膵臓ベータ細胞、メラニン細胞、造血前駆細胞、単核細胞、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、癌幹細胞、毛包幹細胞、及び各種細胞株(例えば、HCT116、Huh7、HEK293(ヒト胎児腎細胞)、HeLa(ヒト子宮頸癌細胞株)、HepG2(ヒト肝癌細胞株)、UT7/TPO(ヒト白血病細胞株)、CHO(チャイニーズハムスター卵巣細胞株)、MDCK、MDBK、BHK、C-33A、HT-29、AE-1、3D9、Ns0/1、Jurkat、NIH3T3、PC12、S2、Sf9、Sf21、High Five、Vero)等が挙げられる。
 細胞構造体/細胞培養塊の製造方法は、公知の方法でよく、細胞培養容器に細胞が播種される工程を含み、更に必要に応じてその他の工程を含む。
 例えば、細胞培養容器は、細胞付着抑制が可能なコーティング膜と、コーティング膜上にドットパターン状で配された、例えば国際公開第2020/040247号公報に記載の細胞接着性を有する細胞培養の下地膜とを有する細胞播種面を有する。そのような細胞播種面に細胞が播種されることで、ドットパターンの細胞培養下地膜上で選択的に細胞が培養される結果、三次元細胞構造体や、細胞凝集塊(例えば、スフェロイド)が得られる。前記細胞付着抑制が可能なコーティング膜としては、国際公開第2014/196650号公報に記載のイオンコンプレックス材料であってよく、例えば、特願2021-095130号に記載のコーティング膜(下記式(A)で表される繰り返し単位(A)、及び下記式(B)で表される繰り返し単位(B)を有する共重合体を含有するコーティング膜)であってよい。
Figure JPOXMLDOC01-appb-C000010
(式中、R~Rは、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXは、それぞれ独立して、単結合、エステル結合、エーテル結合、アミド結合又は酸素原子で中断されてもよい炭素原子数1~5のアルキレン基を表す。)
 国際公開第2020/040247号公報及び特願2021-095130号の全開示は、本願の参酌として援用される。
 以下に実施例等を参照して本発明を更に詳しく説明するが、本発明は以下の実施例等によってなんら制限を受けるものではない。
 実施例、比較例で使用したポリビニルアルコール(PVA)は、以下のとおりである。
 ・重合度:120、けん化度:67mol%のPVA:日本酢ビ・ポバール社製、JMR-3M(登録商標)
 ・重合度:250、けん化度:65mol%のPVA:日本酢ビ・ポバール社製、JMR-10M(登録商標)
 ・重合度:360、けん化度:66mol%のPVA:日本酢ビ・ポバール社製、JMR-20M(登録商標)
 ・重合度:250、けん化度:82mol%のPVA:日本酢ビ・ポバール社製、JMR-10H(登録商標)
<実施例1>
 重合度:120、けん化度:67mol%のポリビニルアルコールを純水に対し1質量%となるように加え、室温で均一に溶解するまで撹拌し、培地添加用組成物を調製した。
<実施例2、3、比較例1>
 ポリビニルアルコールの重合度、及びけん化度を表1の記載に変更した以外は実施例1と同様に培地添加用組成物を調製した。
<実施例4~7、比較例2>
 ポリビニルアルコールの重合度、及びけん化度、並びに培地添加用組成物の濃度を表1の記載に変更し、常温でγ線照射(25kGy)した以外は実施例1と同様に培地添加用組成物を調製した。
<実施例8>
 重合度:250、けん化度:65mol%のポリビニルアルコールを純水に対し0.5質量%となるように加え、室温で均一に溶解するまで撹拌し、3分間窒素バブリングを行った。その後、保冷状態でγ線照射(25kGy)し、培地添加用組成物を調製した。
 なお、表1では、3分間の窒素バブリングを「窒素パージ」と記し、保冷状態での照射を「冷蔵」と記する。
<実施例9>
 ポリビニルアルコールの重合度、及びけん化度、並びに培地添加用組成物の濃度を表1の記載に変更した以外は実施例8と同様に培地添加用樹脂組成物を調製した。
<実施例10>
 ポリビニルアルコールの重合度、及びけん化度、並びに培地添加用組成物の濃度を表1の記載に変更し、表1に記載の照射線量で常温にて電子線照射した以外は実施例1と同様に培地添加用組成物を調製した。
<比較例3>
 低分子寒天(伊那食品工業社製、ウルトラ寒天イーナ)を純水に対し1質量%となるように加え、90℃で均一に溶解するまで撹拌した。その後、室温まで放冷し培地添加用組成物を調製した。
Figure JPOXMLDOC01-appb-T000011
 実施例1~15及び比較例1~2におけるポリビニルアルコールのけん化度と、式(1)におけるmとの関係は以下の通りである。
 けん化度82モル%のポリビニルアルコールのmは82である。
 けん化度65モル%のポリビニルアルコールのmは65である。
 けん化度66モル%のポリビニルアルコールのmは66である。
 けん化度67モル%のポリビニルアルコールのmは67である。
<試験例1:塩析評価>
 実施例1~3、6、10、13、比較例1で調製した培地添加用組成物を濃度0.5質量%となるように純水で希釈して、塩析評価用の組成物を得た。
 実施例4~5、7~8、12、15、比較例2で調製した培地添加用組成物(濃度0.5質量%)を塩析評価用の組成物として用いた。
 実施例9、11、14で調製した培地添加用組成物(濃度0.3質量%)を塩析評価用の組成物として用いた。
 上記の各塩析評価用の組成物に塩化ナトリウムを濃度50g/Lとなるように加え、評価用水溶液を得た。続いて、評価用水溶液10mLを有栓メスシリンダーに加え25℃で24時間静置した後、上層1mLの固形分をハロゲン水分計(メトラー・トレド社製、HR83-P、設定温度:120℃)で測定し、続けて残り9mLのうち上層8mLを除去した後に下層1mLの固形分を測定した。上層及び下層の固形分測定値(n=2平均値)と下層固形分/上層固形分の比を表2に示す。
Figure JPOXMLDOC01-appb-T000012
 実施例1~15では下層固形分/上層固形分の比が1.10以上となっており、塩析効果によって水酸基含有樹脂が底に偏在していることが示された。一方、比較例1、2では下層固形分/上層固形分の比がほぼ1.00となっており、水酸基含有樹脂が均一に存在していることが確認された。
<試験例2:粒子径測定>
 実施例1~15、比較例1~3で調製した培地添加用組成物を濃度0.05質量%となるように純水で希釈し、レーザー回折/散乱式粒子径分布測定装置(堀場製作所社製、LA-960)を用いて25℃においてメジアン径を測定した。なお、比較例3で調製した培地添加用組成物はゲル化しているため、121℃/20分でオートクレーブをかけて溶解させた後に純水で希釈した。実施例1~3、及び比較例1は粒子径が小さくレーザー回折/散乱式では測定できなかったため、動的光散乱式粒子径装置(Malvern社製、ゼータサイザーナノZS)を用いて平均粒子径(体積基準)を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000013
<試験例3:細胞凝集抑制評価>
(水酸基含有樹脂を含む培地の調製)
 10%FBS(Sigma-Aldrich社製)、及びL-グルタミン-ペニシリン-ストレプトマイシン安定化溶液(サーモフィッシャーサイエンティフィック社製)を含むBME培地(サーモフィッシャーサイエンティフィック社製)と実施例1~15、比較例1~3で得られた培地添加用組成物を水酸基含有樹脂の濃度が0.1w/v%となるように混合し、水酸基含有樹脂を含む培地を調製した。なお、比較例3で得られた培地添加用組成物は121℃/20分でオートクレーブした後に培地と混合した。
(細胞の調製)
 細胞はマウス胚線維芽細胞(DSファーマバイオメディカル社製)を用いた。細胞の培養に用いた培地は、10%FBS(Sigma-Aldrich社製)とL-グルタミン-ペニシリン-ストレプトマイシン安定化溶液(サーモフィッシャーサイエンティフィック社製)を含むBME培地(サーモフィッシャーサイエンティフィック社製)を用いた。細胞は37℃/COインキュベーター内にて5%二酸化炭素濃度を保った状態で、直径10cmのシャーレ(培地10mL)を用いて2日間以上静置培養した。引き続き、本細胞をPBS5mLで洗浄した後、0.25w/v%トリプシン-1mmoL/L EDTA溶液(富士フイルム和光純薬社製)1mLを添加して細胞を剥がし、上記の培地10mLにてそれぞれ懸濁した。本懸濁液を遠心分離(トミー精工社製、型番LC-200、1000rpm/3min、室温)後、上清を除き、上記の培地を添加して細胞懸濁液を調製した。
(細胞凝集抑制評価)
 水酸基含有樹脂を含む培地を細胞低吸着プレート(住友ベークライト社製、MS9024X)に1mL加え、上記にて調製した細胞懸濁液を播種密度40×10cells/mLで1mL加えた(水酸基含有樹脂濃度:0.05w/v%)。その後、5%二酸化炭素濃度を保った状態で、37℃で3日間COインキュベーター内にて静置培養した。培養3日間後、ウェルの細胞状態を倒立型顕微鏡(オリンパス社製、CKX53)により観察(倍率:2倍)した。観察結果を以下の評価基準で評価し、細胞凝集抑制効果を確認した。結果を表4に示す。
[評価基準]
 ◎:細胞塊が見られず、細胞が均一に分散
 ○:小さな細胞塊が見られるものの、細胞が均一に分散
 ×:大きな細胞塊が存在
Figure JPOXMLDOC01-appb-T000014
<試験例4:細胞凝集塊形成試験>
(細胞凝集塊形成用基板の調製)
 細胞低接着シャーレ(住友ベークライト社製、MS9035X)の培養表面の中央部の2cm四方の範囲に、2-(N,N-ジメチルアミノ)エチルメタクリレートとメタクリル酸の共重合体の水溶液をインクジェット装置(マイクロジェット社製、LaboJet-600)を用いて適量塗布した。70℃の恒温乾燥機で1日間乾燥させて細胞凝集塊形成用基板を調製した。
(細胞凝集塊形成試験)
 試験例3と同様にして調製した水酸基含有樹脂を含む培地と細胞懸濁液を細胞凝集形成用基板に1mLずつ加えた(水酸基含有樹脂濃度:0.05w/v%)。細胞懸濁液は播種密度90~120×10cells/mLで加えた。その後、5%二酸化炭素濃度を保った状態で、37℃でCOインキュベーター内にて静置したまま、倒立顕微鏡(ショーシンEM社製、CytoSMART Lux2)で細胞凝集塊形成の様子を観察した。観察結果を以下の評価基準で評価し、均一な細胞凝集塊が形成するか確認した。結果を表5に示す。
[評価基準]
 ○:均一なサイズの細胞凝集塊を形成
 ×:不均一なサイズの細胞凝集塊を形成
Figure JPOXMLDOC01-appb-T000015
 実施例1~15では添加物なしの場合と同様に均一なサイズの細胞凝集塊を形成することを確認できた。一方、比較例3では細胞が浮遊している様子が確認され、不均一に細胞凝集塊が形成されていた。
<試験例5:細胞凝集塊の移動抑制評価>
(細胞凝集塊の調製)
 試験例3と同様にして調製した細胞懸濁液を播種密度45~60×10cells/mLで試験例4と同様にして調製した細胞凝集塊形成用基板に2mL加え、5%二酸化炭素濃度を保った状態で、37℃でCOインキュベーター内にて2~3日間静置培養した。細胞凝集塊が形成していることを確認し、上澄み1mLを除去した後、濃度0.1w/v%の水酸基含有樹脂を含む培地を1mL加え混合した(水酸基含有樹脂濃度:0.05w/v%)。
(細胞凝集塊の移動抑制評価)
 上記にて調製した細胞凝集塊と水酸基含有樹脂を含む混合液を細胞低吸着プレート(住友ベークライト社製、MS9024X)に加え、5%二酸化炭素濃度を保った状態で、37℃でCOインキュベーター内にて1週間静置したまま、倒立顕微鏡(ショーシンEM社製、CytoSMART Lux2)で細胞凝集塊が移動する様子を観察した。画像処理ソフトImageJを用いて細胞凝集塊が移動した直線距離を測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000016
 添加物がない場合、細胞凝集塊は視野範囲(1.84mm×1.84mm)以上に移動している様子が確認されたが、実施例2、6で調製した培地添加用組成物を添加すると細胞凝集塊の移動を抑制できることが確認できた。
<試験例6:細胞凝集塊同士の凝集抑制評価>
(水酸基含有樹脂を含む培地の調製)
 無血清培地のMesenchymal Stem Cell Growth Medium DXF培地(タカラバイオ(株)社製)と実施例10、比較例3で得られた培地添加用組成物を水酸基含有樹脂の濃度が0.05w/v%となるように混合し、水酸基含有樹脂を含む培地を調製した。なお、比較例3で得られた培地添加用組成物は121℃/20分でオートクレーブした後に培地と混合した。
(細胞の調製)
 細胞は、ヒト脂肪組織由来間葉系幹細胞(ADSC:セルソース(株)製)を用いた。細胞の培養には、低血清培地Mesenchymal Stem Cell Growth Medium 2(タカラバイオ(株)社製:血清濃度2%)を用いた。細胞は、37℃/COインキュベーター内にて5%二酸化炭素濃度を保った状態で、直径10cmのシャーレ(培地10mL)を用いて2日間以上静置培養した。引き続き、本細胞をPBS溶液(富士フイルム和光純薬(株)社製)3mLで洗浄した後、トリプシン-EDTA溶液(タカラバイオ(株)社製)3mLを添加して室温で3分間静置し細胞を剥離した。無血清培地のMesenchymal Stem Cell Growth Medium DXF培地(タカラバイオ(株)社製)を7mL添加して細胞を回収した。本懸濁液を遠心分離(トミー精工社製、型番LC-200、1000rpm/3min、室温)後、上清を除き、上記の培地を添加して細胞懸濁液を調製した。
(細胞凝集塊形成用基板の調製)
 細胞低接着シャーレ(住友ベークライト社製、MS90240)の培養表面に2-(N,N-ジメチルアミノ)エチルメタクリレートとメタクリル酸とエチレングリコールジメタクリレートの共重合体に対してRecombinant Human Vitronectin(Peprotech社製)を20phr添加した水溶液をインクジェット装置(マイクロジェット社製、LaboJet-600)を用いて形成する細胞凝集塊の直径が100~300μmとなるように適量塗布した。70℃の恒温乾燥機で1日間乾燥させて細胞凝集塊形成用基板を調製した。
(細胞凝集塊同士の凝集抑制評価)
 上記で調製した細胞懸濁液を播種密度35×10cells/wellで細胞凝集塊形成用基板に加え、5%二酸化炭素濃度を保った状態で、37℃でCOインキュベーター内にて2時間静置培養した。細胞がインクジェットスポット上に接着していることを確認し、培地を除去した後、濃度0.05w/v%の水酸基含有樹脂を含む培地を1mL加えた。その後、5%二酸化炭素濃度を保った状態で、37℃でCOインキュベーター内にて静置培養し、1日おきにCell3iMager duos2を用いてターゲットとなる直径100~300μmの細胞凝集塊の個数を測定した。細胞凝集塊同士の凝集抑制評価として[7日後の個数]/[1日後の個数]の維持率を指標とした。維持率が高いほど細胞凝集塊同士の凝集抑制効果が高いことを表す。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000017
 添加物がない場合、細胞塊同士の凝集が進行しターゲット直径の細胞凝集塊の維持率は23%まで低下した。比較例3で調製した培地添加用組成物を添加すると維持率は44%であった一方、実施例10で調製した培地添加用組成物を添加した場合、維持率は92%となり細胞凝集塊同士の凝集抑制効果が高いことが示された。
 本発明によれば、細胞の浮遊、移動、凝集を抑制することができる培地添加物や培地が提供できる。

 

Claims (14)

  1.  塩析評価にて下層固形分/上層固形分の比が1.10以上であり、かつ粒子径が10μm以下である、粒子。
  2.  前記粒子が、架橋した水酸基含有樹脂を含む、請求項1に記載の粒子。
  3.  前記水酸基含有樹脂が、下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~Rは、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、単結合、エステル結合、エーテル結合、アミド結合又は酸素原子で中断されてもよい炭素原子数1~5のアルキレン基を表し、mは共重合モル%比を表し、mは30~99である。)で表される2つの繰り返し単位を有する、請求項2に記載の粒子。
  4.  培地添加物として用いるための、請求項1に記載の粒子。
  5.  下記式(1):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~Rは、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、単結合、エステル結合、エーテル結合、アミド結合又は酸素原子で中断されてもよい炭素原子数1~5のアルキレン基を表し、mは共重合モル%比を表し、mは30~99である。)で表される2つの繰り返し単位を有する樹脂、及び溶媒を含む、組成物。
  6.  さらに架橋剤を含む、請求項5に記載の組成物。
  7.  放射線照射したものである、請求項5に記載の組成物。
  8.  培地添加物として用いられる、請求項5に記載の組成物。
  9.  請求項1~3何れか1項に記載の粒子を含む、培地。
  10.  細胞の移動及び/又は凝集が抑制された、請求項9に記載の培地。
  11.  水酸基含有樹脂を含む組成物を準備する工程、及び該組成物に放射線照射する工程を含む、架橋した樹脂からなる粒子の製造方法。
  12.  前記架橋した樹脂からなる粒子が、塩析評価にて下層固形分/上層固形分の比が1.10以上であり、かつ粒子径が10μm以下である、請求項11に記載の架橋した樹脂からなる粒子の製造方法。
  13.  請求項8に記載の組成物を用いた、細胞構造体の製造方法。
  14.  請求項9に記載の培地を用いた、細胞構造体の製造方法。

     
PCT/JP2022/032150 2021-08-27 2022-08-26 粒子、組成物、培地、及び細胞構造体の製造方法 WO2023027163A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023543994A JPWO2023027163A1 (ja) 2021-08-27 2022-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-138688 2021-08-27
JP2021138688 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023027163A1 true WO2023027163A1 (ja) 2023-03-02

Family

ID=85322960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032150 WO2023027163A1 (ja) 2021-08-27 2022-08-26 粒子、組成物、培地、及び細胞構造体の製造方法

Country Status (2)

Country Link
JP (1) JPWO2023027163A1 (ja)
WO (1) WO2023027163A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193992A (en) * 1975-02-15 1976-08-18 Bifunjogansuigeruno seizohoho
US20040209361A1 (en) * 2003-04-18 2004-10-21 Hemperly John J. UV-cross-linked PVA-based polymer particles for cell culture
JP2006174826A (ja) * 2004-11-24 2006-07-06 Sanyo Chem Ind Ltd 細胞培養用感温膨潤性樹脂ビーズ
JP2010143830A (ja) * 2008-12-16 2010-07-01 Shiseido Co Ltd ポリビニルアルコール微粒子を含有する化粧料
JP2016190898A (ja) * 2015-03-30 2016-11-10 積水化学工業株式会社 ポリビニルアルコールハイドロゲル粒子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193992A (en) * 1975-02-15 1976-08-18 Bifunjogansuigeruno seizohoho
US20040209361A1 (en) * 2003-04-18 2004-10-21 Hemperly John J. UV-cross-linked PVA-based polymer particles for cell culture
JP2006174826A (ja) * 2004-11-24 2006-07-06 Sanyo Chem Ind Ltd 細胞培養用感温膨潤性樹脂ビーズ
JP2010143830A (ja) * 2008-12-16 2010-07-01 Shiseido Co Ltd ポリビニルアルコール微粒子を含有する化粧料
JP2016190898A (ja) * 2015-03-30 2016-11-10 積水化学工業株式会社 ポリビニルアルコールハイドロゲル粒子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUI JIWEI, FARIA MATTHEW, BJÖRNMALM MATTIAS, JU YI, SUMA TOMOYA, GUNAWAN SYLVIA T., RICHARDSON JOSEPH J., HEIDARI HAMED, BALS SARA: "A Framework to Account for Sedimentation and Diffusion in Particle–Cell Interactions", LANGMUIR, AMERICAN CHEMICAL SOCIETY, US, vol. 32, no. 47, 29 November 2016 (2016-11-29), US , pages 12394 - 12402, XP093038991, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.6b01634 *
MASUDA, FUSAYOSHI: "Some Charactors of Hydrogel from Super Absorbent Polymer", JOURNAL OF THE JAPAN SOCIETY OF COLOUR MATERIAL, SHIKIZAI KYOKAI, TOKYO, JP, vol. 59, no. 4, 1 January 1986 (1986-01-01), JP , pages 221 - 226, XP009543748, ISSN: 0010-180X, DOI: 10.4011/shikizai1937.59.221 *

Also Published As

Publication number Publication date
JPWO2023027163A1 (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
Zhang et al. Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole
EP3006554B1 (en) Cell cultivator
De Luca et al. Positively charged polymers modulate the fate of human mesenchymal stromal cells via ephrinB2/EphB4 signaling
Li et al. Effects of RGD nanospacing on chondrogenic differentiation of mesenchymal stem cells
WO2017213226A1 (ja) 高分子化合物およびこれを用いた細胞操作方法
Gajbhiye et al. Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives
Metzger et al. Evaluation of cell-surface interaction using a 3D spheroid cell culture model on artificial extracellular matrices
EP3868863A1 (en) Cell culture substrate, method for producing cell culture substrate, and method for producing spheroids
US11499136B2 (en) Cell culture substrate
Manini et al. Synthetic mycomelanin thin films as emergent bio-inspired interfaces controlling the fate of embryonic stem cells
WO2023027163A1 (ja) 粒子、組成物、培地、及び細胞構造体の製造方法
Baek et al. Photopatterning of cell-adhesive-modified poly (ethyleneimine) for guided neuronal growth
Du et al. Mediating the migration of mesenchymal stem cells by dynamically changing the density of cell-selective peptides immobilized on β-cyclodextrin-modified cell-resisting polymer brushes
Song et al. Exploring adipogenic differentiation of a single stem cell on poly (acrylic acid) and polystyrene micropatterns
Sobolčiak et al. Photoimmobilization of zwitterionic polymers on surfaces to reduce cell adhesion
Cheng et al. Photosensitive chitosan to control cell attachment
Guo et al. Fabrication of gelatin-micropatterned surface and its effect on osteogenic differentiation of hMSCs
Li et al. Effects of self-assembled monolayers with different chemical groups on ovarian cancer cell line behavior in vitro
WO2019124386A1 (ja) 硬化膜形成組成物、配向材および位相差材
Kawazoe et al. Adipogenic differentiation of mesenchymal stem cells on micropatterned polyelectrolyte surfaces
JP2018164412A (ja) 細胞凝集塊形成用基材、細胞凝集塊の形成方法、物質のスクリーニング方法、細胞の機能探索方法、細胞培養基材用コーティング剤、及び細胞凝集塊形成促進剤
Hwang et al. Simple and non-toxic fabrication of poly (vinyl alcohol)-patterned polymer surface for the formation of cell patterns
US9487750B2 (en) Methods and compositions for growth of cells and embryonic tissue on a synthetic polymer matrix
Biazar et al. Cell adhesion and surface properties of polystyrene surfaces grafted with poly (N-isopropylacrylamide)
JP6314458B2 (ja) 温度応答性を有する細胞培養基材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543994

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE