WO2023026591A1 - 絶縁電線 - Google Patents

絶縁電線 Download PDF

Info

Publication number
WO2023026591A1
WO2023026591A1 PCT/JP2022/019515 JP2022019515W WO2023026591A1 WO 2023026591 A1 WO2023026591 A1 WO 2023026591A1 JP 2022019515 W JP2022019515 W JP 2022019515W WO 2023026591 A1 WO2023026591 A1 WO 2023026591A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
insulating layer
insulated wire
ratio
dielectric constant
Prior art date
Application number
PCT/JP2022/019515
Other languages
English (en)
French (fr)
Inventor
昂大 岩本
雅晃 山内
博紹 持田
Original Assignee
住友電気工業株式会社
住友電工ウインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ウインテック株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022575234A priority Critical patent/JPWO2023026591A1/ja
Priority to CN202280004225.7A priority patent/CN117280429A/zh
Priority to US17/925,671 priority patent/US20240145116A1/en
Publication of WO2023026591A1 publication Critical patent/WO2023026591A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/62Insulating-layers or insulating-films on metal bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides

Definitions

  • Patent Document 1 discloses a polyurethane-based insulated wire coating capable of producing an insulated wire with excellent insulation properties by extremely reducing the amount of residual solvent in the insulating film. are doing.
  • the insulated wire of the present disclosure is an insulated wire including a linear conductor and an insulating layer covering the outer peripheral surface of the conductor, wherein the insulating layer contains a first solvent having a relative dielectric constant of 15 or more as a residual solvent. , and a second solvent having a dielectric constant of less than 15, and the first ratio, which is the ratio of the content of the second solvent to the total content of the first solvent and the second solvent contained in the insulating layer, is 50% by mass or more of the content of the second solvent with respect to the total content of the first solvent and the second solvent contained in the insulating layer after the heat treatment of heating the insulated wire at 350 ° C. for 1 minute A second ratio, which is a ratio, is higher than the first ratio.
  • an object of the present disclosure is to provide an insulated wire in which the dielectric constant of the insulating layer is reduced.
  • An insulated wire is an insulated wire including a linear conductor and an insulating layer covering the outer peripheral surface of the conductor, wherein the insulating layer has a relative dielectric constant as a residual solvent A ratio of the content of the second solvent to the total content of the first solvent and the second solvent contained in the insulating layer, including a first solvent of 15 or more and a second solvent having a dielectric constant of less than 15
  • the first ratio is 50% by mass or more, and the above with respect to the total content of the first solvent and the second solvent contained in the insulating layer after the heat treatment of heating the insulated wire at 350 ° C. for 1 minute
  • the second ratio which is the content ratio of the second solvent, is higher than the first ratio.
  • the insulated wire having such characteristics can reduce the dielectric constant of the insulating layer, thereby improving the insulating properties.
  • the insulating layer preferably contains one or more resins selected from the group consisting of polyimide resins, polyamideimide resins, polyesterimide resins and polyetherimide resins. As a result, the dielectric constant can be reduced in the insulating layer containing resin that is commonly used in insulated wires.
  • the insulating layer preferably contains 0.2% by mass or more and 10% by mass or less of the first solvent and the second solvent in total. Thereby, the dielectric constant of the insulating layer can be further reduced.
  • the insulating layer contains 5% by mass or less of the first solvent, and the insulating layer contains 0.1% by mass or more and 5% by mass or less of the second solvent. Thereby, the dielectric constant of the insulating layer can be further reduced.
  • the insulating layer contains a curing agent, and the curing agent is an alicyclic acid anhydride, an aliphatic acid anhydride, an aromatic acid anhydride imidazole, triethylamine, a titanium-based compound, an isocyanate-based compound, a block It preferably contains one or more selected from the group consisting of isocyanate, urea, melamine, melamine compounds and acetylene derivatives. This can facilitate the formation of an insulating layer with the above characteristics from the insulating varnish.
  • solvent means a substance used to dissolve another substance. Therefore, in the present specification, the category of “solvent” includes not only materials that are liquid at room temperature but also materials that are solid at room temperature, as long as they are materials used for dissolving other substances.
  • An insulated wire according to the present embodiment is an insulated wire including a linear conductor and an insulating layer covering the outer peripheral surface of the conductor.
  • the insulating layer contains a first solvent having a dielectric constant of 15 or more and a second solvent having a dielectric constant of less than 15 as residual solvents.
  • a first ratio which is a ratio of the content of the second solvent to the total content of the first solvent and the second solvent contained in the insulating layer, is 50% by mass or more.
  • a second ratio that is the ratio of the content of the second solvent to the total content of the first solvent and the second solvent contained in the insulating layer after the heat treatment of heating the insulated wire at 350 ° C. for 1 minute is higher than the first ratio.
  • the insulated wire having such characteristics can reduce the dielectric constant of the insulating layer, thereby improving the insulating properties.
  • the insulated wire according to the present embodiment contains not only the first solvent with a relative dielectric constant of 15 or more but also the second solvent with a relative dielectric constant of less than 15 as residual solvents in the insulating layer. Furthermore, a first ratio, which is a ratio of the content of the second solvent to the total content of the first solvent and the second solvent contained in the insulating layer, is 50% by mass or more. Since the first solvent has a dielectric constant of 15 or more, it is a high dielectric constant solvent, and the second solvent has a dielectric constant of less than 15, so it is a low dielectric constant solvent. It is considered that the dielectric constant of the insulating layer can be kept low.
  • the content of the second solvent with respect to the total content of the first solvent and the second solvent contained in the insulating layer is higher than the first ratio.
  • the fact that the second ratio is higher than the first ratio means that the first solvent more actively volatilizes from the insulating layer than the second solvent in the heat treatment.
  • the second solvent since the above heat treatment simulates a part of the drying process performed in the manufacturing process of the insulated wire, the second solvent has priority over the insulating layer in the manufacturing process of the insulated wire.
  • the content of the second solvent in the insulating varnish is small and the content of the first solvent is sufficient, thereby maintaining the storage stability of the resin, while the insulated wire is included in the insulating layer. It is understood that more than half of the residual solvent can be the second solvent, thereby reducing the dielectric constant of the insulating layer as described above. From the above, it is presumed that the insulated wire according to the present embodiment can reduce the dielectric constant of the insulating layer while maintaining the storage stability of the insulating varnish, thereby improving the insulating properties. .
  • the insulated wire according to this embodiment includes a linear conductor as described above.
  • the conductor is a conductor.
  • a metal having high electrical conductivity and high mechanical strength is preferable. Specific examples include copper, copper alloys, aluminum, aluminum alloys, nickel, silver, soft iron, steel, and stainless steel.
  • the conductor may be a wire formed by forming these metals into a linear shape, a coated wire in which the surface of the wire is coated with another metal, or a stranded wire in which a plurality of wires are twisted together. There may be.
  • Examples of the coated wire include, but are not limited to, nickel-coated copper wire, silver-coated copper wire, silver-coated aluminum wire, and copper-coated steel wire.
  • the shape of the conductor is not particularly limited, and a round wire, square wire, or the like can be appropriately selected according to the intended use and electrical characteristics of the insulated wire. That is, in a cross section obtained by cutting the insulated wire along a plane perpendicular to its longitudinal direction, the cross-sectional shape of the conductor may be circular or rectangular.
  • the diameter or length of the outer circumference of the conductor is not particularly limited, either, and can be appropriately selected according to the intended use of the insulated wire, the electrical properties, and the like.
  • the "flat angle" which is one of the cross-sectional shapes of the conductor, includes rectangles and squares, and shapes in which the four corners of these rectangles and squares are chamfered, and rounded shapes (R shapes). The shape etc. which have are also included.
  • the lower limit of the cross-sectional area of the conductor is preferably 0.01 mm 2 , more preferably 0.1 mm 2
  • the upper limit is preferably 20 mm 2 , more preferably 10 mm 2 . If the cross-sectional area of the conductor is less than 0.01 mm 2 , the volume ratio of the insulating layer to the conductor increases, and for example, the volumetric efficiency of the coil formed using the insulated wire may decrease. When the cross-sectional area of the conductor exceeds 20mm2 , it becomes necessary to increase the thickness of the insulation layer in order to sufficiently improve the insulation of the insulated wire. it tends to be difficult.
  • the insulated wire according to this embodiment includes an insulating layer covering the outer peripheral surface of the conductor as described above.
  • the insulating layer can contain any of conventionally known resins that are used to form insulating layers in this type of insulated wire.
  • the resin contained in the insulating layer includes polyvinyl formal resin, polyurethane resin, alkyl resin, epoxy resin, phenoxy resin, polyester resin, polyesterimide resin, polyesteramideimide resin, polyamideimide resin, polyimide resin, and the like.
  • examples include thermosetting resins and thermoplastic resins such as polyetherimide resins, polyetheretherketone resins, polyethersulfone resins, and polyimide resins. These resins can be contained singly or in combination of two or more.
  • the insulating layer preferably contains one or more resins selected from the group consisting of polyimide resins, polyamideimide resins, polyesterimide resins and polyetherimide resins.
  • the dielectric constant can be reduced in the insulating layer containing resin that is commonly used in insulated wires.
  • the insulating layer more preferably contains a thermosetting polyimide resin.
  • the polyimide resin preferably contains a small amount of a monomer other than polyimide, or may be a polyimide resin into which a functional group is introduced.
  • the lower limit of the thickness of the insulating layer is preferably 5 ⁇ m, and the upper limit is preferably 200 ⁇ m. If the thickness of the insulating layer is less than 5 ⁇ m, the insulating layer tends to be easily broken, and the insulation of the conductor may become insufficient. If the thickness of the insulating layer exceeds 200 ⁇ m, the volume efficiency of the coil formed using the insulated wire tends to be low.
  • the thickness of the insulating layer is the thickness of two pairs of the outer peripheral surfaces of the conductor in the cross section obtained by cutting the insulated wire along a plane perpendicular to its longitudinal direction. It means the average value of the thickness of the insulating layer covering the opposing surfaces (upper surface, lower surface, left surface and right surface).
  • the surface to be measured is prepared by cutting the insulated wire along a plane perpendicular to its longitudinal direction and polishing the resulting cross section.
  • an image is obtained by imaging the measurement target surface using a digital microscope VHX-7000 (manufactured by Keyence Corporation).
  • the thickness of the insulating layer covering the two pairs of opposite surfaces of the outer peripheral surface of the conductor in the image for example, one point each from the upper surface, the lower surface, the left surface, and the right surface of the conductor is selected.
  • An average value can be calculated from the values obtained by measuring the thickness of the insulating layer at each location, and this can be used as the thickness of the insulating layer.
  • the thickness of the insulating layer when the cross-sectional shape of the conductor is circular is obtained by selecting four measurement points at equal intervals on the annular insulating layer in the image of the surface to be measured taken by the digital microscope, and then The thickness of the insulating layer can be measured at the four measurement points, and the average value of the thicknesses can be obtained.
  • the insulating layer contains a first solvent having a dielectric constant of 15 or more and a second solvent having a dielectric constant of less than 15 as residual solvents.
  • residual solvent refers to the solvent component contained in the insulating varnish applied to the outer periphery of the conductor in the manufacturing process of the insulated wire, and the insulating layer is formed by baking the insulating varnish on the conductor. It means a solvent component that remains in the insulating layer afterward.
  • the insulating varnish may be prepared by diluting the above resin, or a resin precursor thereof, with an organic solvent comprising at least a first solvent and a second solvent.
  • the organic solvent can consist of the first solvent and the second solvent described above.
  • the first solvent is a high dielectric constant solvent having a relative dielectric constant of 15 or more.
  • the first solvent as long as it is a high dielectric constant solvent having a relative dielectric constant of 15 or more, any of conventionally known organic solvents and materials that are solid at room temperature can be used.
  • the first solvent examples include N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide, dimethylsulfoxide, tetramethylurea, hexaethylphosphate
  • NMP N-methyl-2-pyrrolidone
  • DMAc N,N-dimethylacetamide
  • N,N-dimethylformamide dimethylsulfoxide
  • tetramethylurea hexaethylphosphate
  • polar organic solvents such as triamide and ⁇ -butyrolactone
  • ketone organic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • the first solvent one of these organic solvents can be used alone, or two or more of them can be mixed and used.
  • Second solvent is a low dielectric constant solvent having a relative dielectric constant of less than 15.
  • any conventionally known organic solvent which is a low dielectric constant solvent having a relative dielectric constant of less than 15 and which satisfies the conditions described later in relation to the first solvent and a material which is solid at room temperature can be used. can be done.
  • Specific examples of the second solvent include ester organic solvents such as methyl acetate, ethyl acetate, butyl acetate and diethyl oxalate, diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, ethylene glycol monobutyl ether (butyl cellosolve), and diethylene glycol.
  • Ether-based organic solvents such as dimethyl ether and tetrahydrofuran; hydrocarbon-based organic solvents such as hexane, heptane, benzene, toluene, xylene and naphtha; halogen-based organic solvents such as dichloromethane and chlorobenzene; phenol-based organic solvents such as cresol and chlorophenol; Amine-based organic solvents such as pyridine can be exemplified. Paraffin wax etc. can be illustrated as a material which becomes solid at room temperature of a 2nd solvent. As the second solvent, one of these organic solvents and materials that are solid at room temperature can be used alone, or two or more of them can be mixed and used.
  • the "boiling point" of the second solvent is the boiling point of the compound with the highest boiling point (so-called “dry point") contained in the second solvent. shall mean
  • the low dielectric constant solvent that can be used as the second solvent here satisfies the following two conditions in relation to the first solvent (high dielectric constant solvent). That is, the first condition is that the first ratio, which is the ratio of the content of the second solvent to the total content of the first solvent and the second solvent contained in the insulating layer of the insulated wire, is 50% by mass or more. It is to be. Therefore, the second solvent has a relationship of being equal to or greater than the first solvent in terms of mass as a residual solvent contained in the insulating layer.
  • the second condition is the content of the second solvent with respect to the total content of the first solvent and the second solvent contained in the insulating layer after the heat treatment of heating the insulated wire at 350 ° C. for 1 minute.
  • a second ratio which is a ratio, is higher than the first ratio.
  • the first solvent more actively volatilizes than the second solvent in the heat treatment, so the second solvent has a higher boiling point than the first solvent. It is understood. That is, the second solvent preferably has a boiling point higher than that of the first solvent as a residual solvent contained in the insulating layer.
  • the content of the second solvent in the insulating varnish is small and the content of the first solvent is sufficient by satisfying the first condition and the second condition described above. While maintaining the storage stability of the resin, more than half of the residual solvent contained in the insulating layer of the insulated wire can be used as the second solvent to keep the dielectric constant of the insulating layer low.
  • the value is preferably 70% by mass or more, more preferably 80% by mass or more.
  • the upper limit of the 1st ratio is 99.99% by mass.
  • the value of the second ratio is not particularly limited as long as it is higher than the value of the first ratio.
  • the difference between the value of the second ratio and the value of the first ratio is preferably 5 or more, and 10 or more. It is more preferable to have The upper limit of the second ratio is also 100% by mass as an ideal value.
  • the insulation layer contains the first solvent and the second solvent in a total amount of 0.2% by mass or more and 10% by mass. % or less is preferable. Thereby, the dielectric constant of the insulating layer can be further reduced.
  • the insulating layer contains the first solvent and the second solvent in a total amount of 0.5% by mass or more and 5% by mass or less, and more preferably 1% by mass or more and 4% by mass or less.
  • the insulating layer contains 5 mass % or less of the first solvent, and the insulating layer contains 0.1 mass % or more and 5 mass % or less of the second solvent. Also in this case, the dielectric constant of the insulating layer can be further reduced.
  • the lower limit of the content of the first solvent may be 0.02% by mass. If the content of the second solvent in the insulating layer before the heat treatment is less than 0.1% by mass, the effect of reducing the dielectric constant based on the second solvent may be insufficient. If the content of the second solvent exceeds 5% by mass, the strength of the insulating layer before the heat treatment may be impaired.
  • the insulating layer before the heat treatment more preferably contains the first solvent in an amount of 3% by mass or less, more preferably 1.5% by mass or less.
  • the insulating layer more preferably contains 0.5% by mass or more and 4.5% by mass or less of the second solvent, and more preferably 1.5% by mass or more and 4% by mass or less.
  • Each content of the first solvent and the second solvent in the insulation layer of the insulated wire can be measured by, for example, a pyrolysis gas chromatography mass spectrometer (Py-GC/MS, trade name: “6890N/5973 Network", Agilent technologies (manufactured).
  • the atmosphere is He gas and the flow rate is 1 mL/min.
  • the thermal decomposition temperature 500° C. ⁇ 1 min. and
  • Pyrolyzer Double-Shot Pyrolyzer (trade name: "PY-2020iD", manufactured by Frontier Laboratories) and MicroJet Cryotrap (Trade name: MJT-1030E, manufactured by Frontier Laboratories) Column: UA-5 (inner diameter 0.25 mm x length 30 m, film thickness 0.25 ⁇ m, manufactured by Frontier Labs) Thermal decomposition (temperature x time): 500°C x 1 min.
  • each content (each residual amount) of the first solvent and the second solvent remaining in the insulating layer after the heat treatment of heating the insulated wire at 350 ° C. for 1 minute is the above-mentioned first solvent of the insulating layer of the insulated wire.
  • 1 solvent and the second solvent can be obtained by using the above pyrolysis gas chromatography mass spectrometer in which the atmosphere is He gas (flow rate 1 mL/min). That is, from the respective contents of the first solvent and the second solvent remaining in the insulating layer, the thermal decomposition temperature among the above-described measurement conditions was determined as 350° C. ⁇ 1 min. By subtracting the amount of solvent generated by measuring under the changed conditions, each remaining amount after heat treatment can be obtained.
  • the insulating layer preferably contains a curing agent.
  • the curing agent includes alicyclic acid anhydrides, aliphatic acid anhydrides, aromatic acid anhydrides imidazole, triethylamine, titanium compounds, isocyanate compounds, blocked isocyanates, urea, melamine, melamine compounds and acetylene derivatives. It preferably contains one or more selected from the group consisting of This can facilitate the formation of an insulating layer with a reduced dielectric constant from the insulating varnish.
  • These curing agents are appropriately selected depending on the type of resin or resin precursor in the insulating varnish, and imidazole, melamine, melamine compounds, etc. are preferably used.
  • the insulated wire according to the present embodiment can be obtained by applying a conventionally known manufacturing method for this type of insulated wire, except for preparing a predetermined insulating varnish containing at least the first solvent and the second solvent. can.
  • the insulated wire according to the present embodiment is preferably obtained using the following method for manufacturing an insulated wire, for example, from the viewpoint of manufacturing with high yield.
  • the method for manufacturing an insulated wire according to the present embodiment preferably includes a step of preparing a conductor and an insulating varnish (first step) and a step of coating the outer peripheral surface with an insulating layer (second step). Further, the covering step (second step) preferably includes a step of applying insulating varnish to the outer peripheral surface (step A) and a step of baking the insulating varnish on the conductor (step B).
  • first step preparing a conductor and an insulating varnish
  • second step preferably includes a step of applying insulating varnish to the outer peripheral surface (step A) and a step of baking the insulating varnish on the conductor (step B).
  • the first step is to prepare the conductor and insulating varnish.
  • Conductors can be prepared, for example, by obtaining commercial products. It can also be prepared by casting, stretching, wire-drawing, and further softening the metals mentioned above as conductor materials.
  • the insulating varnish can be prepared by diluting the resin described above as the material of the insulating layer or its resin precursor with an organic solvent containing at least the first solvent and the second solvent described above.
  • the lower limit of the resin solid content concentration in the insulating varnish is preferably 15% by mass, more preferably 20% by mass, and the upper limit is preferably 50% by mass, more preferably 30% by mass.
  • the resin solid content concentration means the concentration of the resin precursor.
  • the insulating varnish can contain a curing agent in addition to the first solvent, the second solvent, and the resin or its resin precursor, and may further contain fillers, various additives, and the like.
  • the insulating varnish may further contain a solvent other than the first solvent and second solvent described above.
  • the content of the first solvent contained in the insulating varnish can be 55-97% by mass, and the content of the second solvent contained in the insulating varnish can be 0.1-30% by mass.
  • the curing agent that can be contained in the insulating varnish one that has the function of curing the resin or the function of promoting the polymerization of the resin precursor can be used.
  • alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, aliphatic acid anhydrides, aromatic acid anhydrides imidazole, triethylamine, titanium compounds, isocyanate compounds, blocked isocyanates, urea, melamine compounds and acetylene derivatives and the like.
  • These curing agents are appropriately selected according to the type of resin or resin precursor in the insulating varnish.
  • the insulating varnish contains a thermosetting polyimide precursor, imidazole or the like is preferably used as the curing agent.
  • titanium-based compounds examples include tetrapropyl titanate, tetraisopropyl titanate, tetramethyl titanate, tetrabutyl titanate, tetrahexyl titanate, and the like.
  • isocyanate-based compounds include aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), p-phenylene diisocyanate, and naphthalene diisocyanate; hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexane diisocyanate, Aliphatic diisocyanates having 3 to 12 carbon atoms such as lysine diisocyanate; 1,4-cyclohexane diisocyanate (CDI), isophorone diisocyanate (IPDI), 4,4'-dicyclohexylmethane diisocyanate (hydrogenated MDI), methylcyclo
  • blocked isocyanate examples include diphenylmethane-4,4'-diisocyanate (MDI), diphenylmethane-3,3'-diisocyanate, diphenylmethane-3,4'-diisocyanate, diphenylether-4,4'-diisocyanate, benzophenone-4,4 '-diisocyanate, diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, naphthylene-1,5-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, etc.
  • MDI diphenylmethane-4,4'-diisocyanate
  • diphenylmethane-3,3'-diisocyanate diphenylmethane-3,4'-diisocyanate
  • Examples of the melamine compound include melamine, methylated melamine, butylated melamine, methylolated melamine, and butyrolated melamine.
  • Examples of the acetylene derivative include ethynylaniline and ethynylphthalic anhydride.
  • the second step is to cover the outer peripheral surface of the conductor with an insulating layer.
  • the second step can include a step of applying insulating varnish to the outer peripheral surface of the conductor (step A) and a step of baking the insulating varnish on the conductor (step B).
  • the A process is a process of applying the insulating varnish prepared in the first process to the outer peripheral surface of the conductor. Specifically, step A can be performed by passing the conductor coated with the insulating varnish through an opening of a die. In the A process, it is preferable to apply the insulating varnish to the outer peripheral surface of the conductor with a uniform thickness by using a die having an opening.
  • Step B is a step of baking the insulating varnish on the conductor.
  • the B step can be performed by placing the conductor coated with the insulating varnish through the A step in a baking furnace and baking the insulating varnish on the conductor.
  • the solvent in the insulating varnish is gasified and the resin is solidified, thereby forming an insulating layer on the outer peripheral surface of the conductor.
  • the baking temperature and time of the insulating varnish in the baking furnace are appropriately selected from temperature conditions and time conditions known for manufacturing this type of insulated wire, depending on the type of resin and organic solvent in the insulating varnish. can do. Specifically, first, the amount of heat that is sufficient to form an insulating layer on the outer peripheral surface of the conductor and the desired amount of residual solvent is obtained according to the type of the resin, and then the amount of heat is determined. Baking temperature and time can be determined by The amount of heat can correspond to the product of baking temperature and time. If the baking temperature is high, the amount of heat can be dealt with by shortening the time. If the baking temperature is low, the amount of heat can be dealt with by lengthening the time.
  • one or more insulating layers are laminated by repeating the application of the insulating varnish and the baking of the insulating varnish so that the insulating layer has a predetermined thickness.
  • Conventionally known methods can be used for the method of applying the insulating varnish and the method of baking. After that, an insulated wire can be obtained by drying the insulating layer by a conventionally known method.
  • an insulating layer obtained by applying an insulating varnish and baking the insulating varnish once is referred to as a “single layer” insulating layer.
  • the insulating layer obtained by baking the varnish is referred to as a "multi-layered" insulating layer.
  • the insulated wire according to the present embodiment can be manufactured. Since the dielectric constant of the insulating layer of the insulated wire manufactured by the manufacturing method described above is reduced, the insulation properties can be improved.
  • An insulated wire including a linear conductor and an insulating layer covering the outer peripheral surface of the conductor,
  • the insulating layer contains a first solvent having a relative dielectric constant of 15 or more and a second solvent having a relative dielectric constant of less than 15 as residual solvents,
  • a first ratio which is a ratio of the content of the second solvent to the total content of the first solvent and the second solvent contained in the insulating layer, is 50% by mass or more,
  • the insulated wire wherein the boiling point of the second solvent is higher than the boiling point of the first solvent.
  • ⁇ Appendix 2> The insulated wire according to appendix 1, wherein the insulating layer contains one or more resins selected from the group consisting of polyimide resins, polyamideimide resins, polyesterimide resins, and polyetherimide resins.
  • ⁇ Appendix 3> The insulated wire according to appendix 1 or appendix 2, wherein the insulating layer contains 0.2% by mass or more and 10% by mass or less of the first solvent and the second solvent in total.
  • the insulating layer contains 5% by mass or less of the first solvent,
  • the insulated wire according to any one of additional remarks 1 to 3, wherein the insulating layer contains 0.1% by mass or more and 5% by mass or less of the second solvent.
  • Insulated wires of samples 2, 4, 6, 8, 10 and 12, which will be described later, are examples, and samples 1, 3, 5, 7, 9, 11, 13 and 13 are examples. 14 insulated wires are comparative examples.
  • the thickness (unit: ⁇ m) of the insulating layer was obtained by using a digital microscope VHX-7000 (manufactured by KEYENCE CORPORATION) based on the measurement method described above.
  • the dielectric constant of the insulating layer was obtained by using an impedance analyzer (trade name (model number): "ZA5405", manufactured by NF Circuit Design Block Co., Ltd.). Furthermore, in each test described later, the difference in dielectric constant in the insulating layer between the samples was also calculated.
  • step 2 Second step The insulating varnish was applied to the outer peripheral surface of the conductor by immersing the conductor prepared in the first step in the insulating varnish prepared in the first step.
  • the conductor coated with the insulating varnish was passed through an opening of a coating die having a cross-sectional shape similar to that of the conductor (step A).
  • the conductor, to which the insulating varnish was uniformly applied through the above step A was baked in a baking furnace to coat the outer peripheral surface of the conductor with an insulating layer (step B).
  • a predetermined amount of heat (+++) sufficient to form the insulating layer was calculated, and the baking temperature and time for applying the amount of heat (+++) were determined.
  • Example 2 In the first step, naphtha (relative dielectric constant: 1.8, boiling point: 247° C.) as a second solvent is added to the first solvent, and the mass ratio of the first solvent and the second solvent is the first solvent:
  • An insulated wire of sample 2 was obtained in the same manner as sample 1 except that the insulating varnish was prepared by adding the second solvent in a ratio of 9:1.
  • sample 3 The insulated wire of sample 3 was made in the same manner as sample 1, except that the amount of heat (++) used to execute the baking treatment was two-thirds that of sample 1 in step B in the second step. got
  • Example 4 In the first step, naphtha (relative dielectric constant: 1.8, boiling point: 247° C.) as a second solvent is added to the first solvent, and the mass ratio of the first solvent and the second solvent is the first solvent:
  • An insulated wire of sample 4 was obtained in the same manner as sample 3 except that the insulating varnish was prepared by adding the second solvent in a ratio of 9:1.
  • Example 6 In the first step, naphtha (relative dielectric constant: 1.8, boiling point: 247° C.) as a second solvent is added to the first solvent, and the mass ratio of the first solvent and the second solvent is the first solvent:
  • An insulated wire of Sample 6 was obtained in the same manner as Sample 5 except that the insulating varnish was prepared by adding the second solvent in a ratio of 9:1.
  • Example 8 In the first step, naphtha (relative dielectric constant: 1.8, boiling point: 247° C.) as a second solvent is added to the first solvent, and the mass ratio of the first solvent and the second solvent is the first solvent:
  • An insulated wire of Sample 8 was obtained in the same manner as Sample 7, except that the insulating varnish was prepared by adding the second solvent in a ratio of 9:1.
  • An insulated wire of Sample 10 was obtained in the same manner as Sample 9, except that the insulating varnish was prepared by adding 0.5:1.5.
  • sample 11 In the first step, pyromellitic dianhydride and 3,3',4,4'-biphenyltetracarboxylic acid are used at a molar ratio of 3:7 as tetracarboxylic dianhydrides that are raw materials for polyamic acid.
  • An insulated wire of sample 11 was obtained in the same manner as sample 3 except that the insulating varnish was prepared by the method. The insulating varnish does not contain a second solvent.
  • Example 12 In the first step, naphtha (relative dielectric constant: 1.8, boiling point: 247° C.) as a second solvent is added to the first solvent, and the mass ratio of the first solvent and the second solvent is the first solvent:
  • An insulated wire of sample 12 was obtained in the same manner as sample 11 except that the insulating varnish was prepared by adding the second solvent in a ratio of 9:1.
  • Example 14 In the first step, naphtha (relative permittivity: 1.8, boiling point: 175° C.) is added as a second solvent to the first solvent, and the mass ratio of the first solvent and the second solvent is the first solvent:
  • An insulated wire of sample 14 was obtained in the same manner as sample 13 except that the insulating varnish was prepared by adding the second solvent in a ratio of 8:2.
  • the insulating layer contains the first solvent and the second solvent as residual solvents
  • the second solvent is the ratio of the content of the second solvent to the total content of the first solvent and the second solvent contained in the insulating layer. 1 ratio is 50% by mass or more, and the ratio of the residual amount of the second solvent to the total residual amount of the first solvent and the second solvent remaining in the insulating layer after the heat treatment of heating the insulated wire at 350 ° C. for 1 minute is higher than the first ratio, the effect of reducing the dielectric constant was confirmed. That is, in the first test, sample 2 had a lower dielectric constant in the insulating layer than sample 1. In the second test, sample 4 had a lower dielectric constant in the insulating layer than sample 3.
  • sample 6 the dielectric constant of the insulating layer was lower than that of the sample 5.
  • sample 8 had a lower dielectric constant in the insulating layer than sample 7;
  • sample 10 had a lower dielectric constant in the insulating layer than sample 9;
  • sample 12 had a lower dielectric constant in the insulating layer than sample 11.
  • the boiling point of naphtha as the second solvent is 175°C, which is lower than the boiling point (204°C) of NMP as the first solvent, and naphtha (second solvent) volatilized in a large amount compared to NMP (first solvent).
  • the insulated wire of Sample 14 had a first ratio of less than 50% by mass and a second ratio lower than the first ratio, so that the dielectric constant did not decrease as compared with Sample 13. From the above, it is understood that the insulated wires of Sample 2, Sample 4, Sample 6, Sample 8, Sample 10 and Sample 12 have a reduced dielectric constant of the insulating layer, thereby improving the insulating properties.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

絶縁電線は、線状の導体と、前記導体の外周面を被覆する絶縁層とを含む絶縁電線であって、前記絶縁層は、残留溶剤として比誘電率15以上の第1溶剤と、比誘電率15未満の第2溶剤とを含み、前記絶縁層に含まれる前記第1溶剤および前記第2溶剤の合計含有量に対する前記第2溶剤の含有量の比率である第1比率は、50質量%以上であり、前記絶縁電線を350℃で1分間加熱する加熱処理後の前記絶縁層に含まれる前記第1溶剤および前記第2溶剤の合計含有量に対する前記第2溶剤の含有量の比率である第2比率は、前記第1比率に比べて高い。

Description

絶縁電線
 本開示は、絶縁電線に関する。本出願は、2021年8月24日に出願した日本特許出願である特願2021-136332号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 従来から線状の導体と、上記導体の外周面を被覆する絶縁層とを備える絶縁電線が公知である。上記絶縁電線は、たとえばモータ、トランス等のコイルとして好適に使用されている。特開2004-269770号公報(特許文献1)は、絶縁皮膜中の残留溶剤量を極めて少なくすることによって、絶縁特性に優れた絶縁電線を製造することが可能なポリウレタン系絶縁電線用塗料を開示している。
特開2004-269770号公報
 本開示の絶縁電線は、線状の導体と、上記導体の外周面を被覆する絶縁層とを含む絶縁電線であって、上記絶縁層は、残留溶剤として比誘電率15以上の第1溶剤と、比誘電率15未満の第2溶剤とを含み、上記絶縁層に含まれる上記第1溶剤および上記第2溶剤の合計含有量に対する上記第2溶剤の含有量の比率である第1比率は、50質量%以上であり、上記絶縁電線を350℃で1分間加熱する加熱処理後の上記絶縁層に含まれる上記第1溶剤および上記第2溶剤の合計含有量に対する上記第2溶剤の含有量の比率である第2比率は、上記第1比率に比べて高い。
 [本開示が解決しようとする課題]
 製造コスト低減の観点から、導体の外周面に塗布および焼付けした絶縁ワニスを短時間かつ低温で乾燥させることにより、上記導体の外周面を絶縁層で被覆することが要請されている。この場合、絶縁層中に絶縁ワニス由来の極性溶剤が残留しやすく、上記絶縁層の誘電率が上昇することによって絶縁特性が阻害される傾向がある。一方、極性溶剤は、樹脂の保存安定性等の観点から絶縁ワニスに所定量含有させる必要がある。したがって、絶縁ワニスを短時間かつ低温で乾燥させることによって絶縁層を形成する絶縁電線において、極性溶剤を所定量含むことによって上記絶縁ワニスの保存安定性を維持しつつも、上記絶縁層の誘電率を低減することができ、もって絶縁特性を向上させることができる絶縁電線の開発が切望されている。
 上記実情に鑑み、本開示は、絶縁層の誘電率が低減された絶縁電線を提供することを目的とする。
 [本開示の効果]
 本開示によれば、絶縁層の誘電率が低減された絶縁電線を提供することができる。
 [本開示の実施形態の説明]
 本発明者らは、上記課題を解決するために鋭意検討を重ね、本開示を完成させた。具体的には、絶縁層を形成するための絶縁ワニスに低誘電率溶剤を極性溶剤(以下、「高誘電率溶剤」とも記す)とともに添加することによって、絶縁層中の高誘電率溶剤の残留量を低減させることに注目した。その結果、驚くべきことに、沸点が高誘電率溶剤のそれよりも高い低誘電率溶剤を添加した絶縁ワニスを用いて導体の外周面に絶縁層を形成した場合、上記絶縁層の誘電率を低減することができ、もって絶縁特性を向上できることを知見し、本開示に到達した。
 最初に本開示の実施態様を列記して説明する。
 [1]本開示の一態様に係る絶縁電線は、線状の導体と、上記導体の外周面を被覆する絶縁層とを含む絶縁電線であって、上記絶縁層は、残留溶剤として比誘電率15以上の第1溶剤と、比誘電率15未満の第2溶剤とを含み、上記絶縁層に含まれる上記第1溶剤および上記第2溶剤の合計含有量に対する上記第2溶剤の含有量の比率である第1比率は、50質量%以上であり、上記絶縁電線を350℃で1分間加熱する加熱処理後の上記絶縁層に含まれる上記第1溶剤および上記第2溶剤の合計含有量に対する上記第2溶剤の含有量の比率である第2比率は、上記第1比率に比べて高い。このような特徴を有する絶縁電線は、絶縁層の誘電率を低減することができ、もって絶縁特性を向上させることができる。
 [2]上記絶縁層は、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂およびポリエーテルイミド樹脂からなる群より選択される1以上の樹脂を含むことが好ましい。これにより、絶縁電線にて汎用される樹脂を含む絶縁層において誘電率を低減することができる。
 [3]上記絶縁層は、上記第1溶剤および上記第2溶剤を合計で0.2質量%以上10質量%以下含むことが好ましい。これにより、絶縁層の誘電率をより一層低減することができる。
 [4]上記絶縁層は、上記第1溶剤を5質量%以下含み、上記絶縁層は、上記第2溶剤を0.1質量%以上5質量%以下含むことが好ましい。これにより、絶縁層の誘電率をより一層低減することができる。
 [5]上記絶縁層は、硬化剤を含有し、上記硬化剤は、脂環式酸無水物、脂肪族酸無水物、芳香族酸無水物イミダゾール、トリエチルアミン、チタン系化合物、イソシアネート系化合物、ブロックイソシアネート、尿素、メラミン、メラミン化合物およびアセチレン誘導体からなる群より選択される1種以上を含むことが好ましい。これにより絶縁ワニスから、上記の特徴を備えた絶縁層の形成を促進することができる。
 [本開示の実施形態の詳細]
 以下、本開示の実施形態(以下、「本実施形態」とも記す)についてさらに詳細に説明する。ここで本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。さらに本明細書において「誘電率」および「比誘電率」の用語は、いずれも媒質の導電性を表す指標として同じ文脈で用いられる。本明細書において「高誘電率」とは、比誘電率が15以上であることを意味し、「低誘電率」とは、比誘電率が15未満であることを意味する。また本明細書において「溶剤」とは、他の物質を溶解させるのに用いる物質を意味する。このため本明細書において「溶剤」の範疇には、他の物質を溶解させるのに用いる材料である限り、室温において液体である材料はもちろん、固体である材料も含まれるものとする。
 〔絶縁電線〕
 本実施形態に係る絶縁電線は、線状の導体と、上記導体の外周面を被覆する絶縁層とを含む絶縁電線である。上記絶縁層は、残留溶剤として比誘電率15以上の第1溶剤と、比誘電率15未満の第2溶剤とを含む。上記絶縁層に含まれる上記第1溶剤および上記第2溶剤の合計含有量に対する上記第2溶剤の含有量の比率である第1比率は、50質量%以上である。さらに上記絶縁電線を350℃で1分間加熱する加熱処理後の上記絶縁層に含まれる上記第1溶剤および上記第2溶剤の合計含有量に対する上記第2溶剤の含有量の比率である第2比率は、上記第1比率に比べて高い。このような特徴を有する絶縁電線は、上記絶縁層の誘電率を低減することができ、もって絶縁特性を向上させることができる。
 上記絶縁電線が絶縁層の誘電率を低減することができ、もって絶縁特性を向上させることができる理由は、詳細は不明ながら次のとおりであると推定される。
 すなわち本実施形態に係る絶縁電線は、上記絶縁層中に残留溶剤として比誘電率15以上の第1溶剤だけでなく、比誘電率15未満の第2溶剤を含む。さらに、上記絶縁層に含まれる上記第1溶剤および上記第2溶剤の合計含有量に対する上記第2溶剤の含有量の比率である第1比率は、50質量%以上である。第1溶剤は、比誘電率15以上であるので高誘電率溶剤であり、第2溶剤は、比誘電率15未満であるので低誘電率溶剤であるため、残留溶剤の半分以上が第2溶剤である絶縁層は、誘電率が低く抑えられると考えられる。
 さらに本実施形態において、上記絶縁電線を350℃で1分間加熱する加熱処理を行った場合、上記絶縁層に含まれる上記第1溶剤および上記第2溶剤の合計含有量に対する上記第2溶剤の含有量の比率(第2比率)は、上記第1比率に比べて高い。第2比率が第1比率に比べて高いことは、当該加熱処理において上記絶縁層から第2溶剤よりも第1溶剤が積極的に揮発することを意味する。ここで上記の加熱処理は、絶縁電線の製造工程にて行う乾燥工程の一部を模擬しているため、上記絶縁電線の製造工程においては第1溶剤よりも第2溶剤が上記絶縁層に優先して残留することが理解される。これにより、絶縁ワニスにおいて第2溶剤の含有量を些少とし、かつ第1溶剤の含有量を十分とすることによって樹脂の保存安定性を維持しつつ、上記絶縁電線においては上記絶縁層に含まれる残留溶剤の半分以上を第2溶剤とすることができ、もって上述のように上記絶縁層の誘電率を低減することができると理解される。以上から、本実施形態に係る絶縁電線は、上記絶縁ワニスの保存安定性を維持しつつも上記絶縁層の誘電率を低減することができ、もって絶縁特性を向上させることができると推定される。
 <導体>
 本実施形態に係る絶縁電線は、上述のように線状の導体を含む。上記導体は、導電体である。導体の材料としては、導電性が高くかつ機械的強度の高い金属が好ましい。具体的には、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、銀、軟鉄、鋼、ステンレス鋼などが挙げられる。導体は、これらの金属を線状に形成した素線であってもよく、素線の表面を他の金属で被覆した被覆線であってもよく、複数の素線を撚り合わせた撚線であってもよい。上記被覆線としては、ニッケル被覆銅線、銀被覆銅線、銀被覆アルミニウム線、銅被覆鋼線などが挙げられるが、これらに限定されるものではない。
 上記導体の形状は、特に限定されず、絶縁電線の使用用途、電気特性などに応じて、丸線、角線などを適宜選択することができる。すなわち絶縁電線をその長手方向に対して垂直となる面で切断することにより現れる断面において、導体の断面形状は、円であってもよく、平角であってもよい。導体の径または外周の長さなども特に制限されず、絶縁電線の使用用途、電気特性などに応じて適宜選択することができる。
 ここで本明細書において、導体の断面形状の一つである「平角」には、長方形および正方形が含まれ、かつこれらの長方形および正方形の四隅が面取りされ形状、ならびにアール形状(R形状)を有する形状等も含まれる。
 導体の断面積の下限値は0.01mm2が好ましく、0.1mm2がより好ましく、上限値は20mm2が好ましく、10mm2がより好ましい。導体の断面積が0.01mm2に満たない場合、導体に対する絶縁層の体積の割合が大きくなり、たとえば、絶縁電線を用いて形成されるコイルの体積効率が低下するおそれがある。導体の断面積が20mm2を超える場合、絶縁電線の絶縁性を十分に高めるために、絶縁層を厚くする必要が生じ、結果的に、絶縁電線が大径化し、コアに高密度で捲付けることが困難となる傾向がある。
 <絶縁層>
 本実施形態に係る絶縁電線は、上述のように導体の外周面を被覆する絶縁層を含む。上記絶縁層は、この種の絶縁電線において絶縁層を構成するために採用される従来公知の樹脂をいずれも含むことができる。
 具体的には、絶縁層に含まれる樹脂としては、ポリビニルホルマール樹脂、ポリウレタン樹脂、アルキル樹脂、エポキシ樹脂、フェノキシ樹脂、ポリエステル樹脂、ポリエステルイミド樹脂、ポリエステルアミドイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂などの熱硬化性樹脂、およびポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルサルフォン樹脂、ポリイミド樹脂などの熱可塑性樹脂を例示することができる。これらの樹脂を、それぞれ1つ単独で、あるいは2つ以上を混合して含むことができる。
 特に上記絶縁層は、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂およびポリエーテルイミド樹脂からなる群より選択される1以上の樹脂を含むことが好ましい。これにより、絶縁電線にて汎用される樹脂を含む絶縁層において誘電率を低減することができる。上記絶縁層は、強度および耐熱性を向上させる観点から、熱硬化性のポリイミド樹脂を含むことがより好ましい。
 さらに上記絶縁層は、ポリイミド樹脂を含む場合、上記ポリイミド樹脂は、ポリイミド以外のモノマーを少量含む、あるいは官能基を導入したポリイミド樹脂であっても好ましい。
 絶縁層の厚みの下限値は5μmが好ましく、上限値は200μmが好ましい。絶縁層の厚みが5μmに満たないと、絶縁層に破れが生じ易い傾向があり、導体の絶縁が不十分となるおそれがある。絶縁層の厚みが200μmを超えると、絶縁電線を用いて形成されるコイルなどの体積効率が低くなる傾向がある。
 上記導体の断面形状が平角である場合、絶縁層の厚みは、絶縁電線をその長手方向に対して垂直となる面で切断することにより現れた断面において、導体の外周面のうち2対の正対する面(上面、下面、左面および右面)を被覆している絶縁層の厚みの平均値を意味する。具体的には、絶縁電線をその長手方向に対して垂直となる面で切断することにより現れた断面を研磨することにより測定対象面を作製する。次いで、上記測定対象面をデジタルマイクロスコープVHX-7000(株式会社キーエンス製)を用いて撮像することにより画像を得る。最後に上記画像中の導体の外周面のうち2対の正対する面を被覆している絶縁層の厚みとして、たとえば導体の上面、下面、左面および右面から各1箇所を選択し、これら合計4箇所における絶縁層の厚みを測定することにより求めた値から平均値を算出し、これを絶縁層の厚みとすることができる。上記導体の断面形状が円である場合の絶縁層の厚みは、上記デジタルマイクロスコープで撮像した上記測定対象面の画像中の環状の絶縁層において、等間隔に4つの測定箇所を選択し、次いで当該4つの測定箇所における上記絶縁層の厚みを測定し、その厚みの平均値として求めることができる。
 (残留溶剤)
 上記絶縁層は、残留溶剤として比誘電率15以上の第1溶剤と、比誘電率15未満の第2溶剤とを含む。本明細書において「残留溶剤」とは、絶縁電線の製造過程において導体の外周に塗布される絶縁ワニスに含まれる溶剤成分のうち、当該絶縁ワニスが導体に焼付けられることによって絶縁層が形成された後にも上記絶縁層中に残留する溶剤成分を意味する。上記絶縁ワニスは、上述した樹脂、またはその樹脂前駆体が少なくとも第1溶剤および第2溶剤を含む有機溶剤によって希釈されることにより準備される場合がある。上記有機溶剤は、上述した第1溶剤および第2溶剤からなることができる。
 1) 第1溶剤
 第1溶剤は、比誘電率15以上の高誘電率溶剤である。第1溶剤としては、比誘電率15以上の高誘電率溶剤である限り、従来公知の有機溶剤および室温において固体となる材料をいずれも用いることができる。第1溶剤としては、具体的には、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ-ブチロラクトンなどの極性有機溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系有機溶剤などを例示することができる。第1溶剤としては、これらの有機溶剤をそれぞれ1種単独で用いることができ、あるいは2種以上を混合して用いることができる。
 2) 第2溶剤
 第2溶剤は、比誘電率15未満の低誘電率溶剤である。第2溶剤としては、比誘電率15未満の低誘電率溶剤であって、かつ第1溶剤との関係において後述する条件を満たす従来公知の有機溶剤および室温において固体となる材料をいずれも用いることができる。第2溶剤としては、具体的には、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチルなどのエステル系有機溶剤、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル系有機溶剤、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、ナフサなどの炭化水素系有機溶剤、ジクロロメタン、クロロベンゼンなどのハロゲン系有機溶剤、クレゾール、クロルフェノールなどのフェノール系有機溶剤、ピリジンなどのアミン系有機溶剤などを例示することができる。第2溶剤の室温において固体となる材料としては、パラフィンワックスなどを例示することができる。第2溶剤としては、これらの有機溶剤および室温において固体となる材料をそれぞれ1種単独で用いることができ、あるいは2種以上を混合して用いることができる。
 本明細書において、第2溶剤がナフサまたはパラフィンワックスである場合、当該第2溶剤の「沸点」とは、当該第2溶剤に含まれる最も高い沸点を有する化合物の沸点(所謂「乾点」)を意味するものとする。
 ここで第2溶剤として用いることができる低誘電率溶剤は、第1溶剤(高誘電率溶剤)との関係で、次の2つの条件を満たす。すなわち第1の条件は、上記絶縁電線の絶縁層に含まれる上記第1溶剤および上記第2溶剤の合計含有量に対する上記第2溶剤の含有量の比率である第1比率が、50質量%以上であることである。したがって第2溶剤は、上記絶縁層に含まれる残留溶剤として、第1溶剤に対し質量換算で同量か、それ以上となる関係を有する。
 さらに第2の条件は、上記絶縁電線を350℃で1分間加熱する加熱処理後の上記絶縁層に含まれる上記第1溶剤および上記第2溶剤の合計含有量に対する上記第2溶剤の含有量の比率である第2比率が、上記第1比率よりも高いことである。この場合、本実施形態に係る絶縁電線の絶縁層では、上記加熱処理において第2溶剤よりも第1溶剤が積極的に揮発することとなるため、第2溶剤が第1溶剤よりも沸点が高いことが理解される。すなわち第2溶剤は、上記絶縁層に含まれる残留溶剤として、沸点が上記第1溶剤のそれよりも高いことが好ましいという関係を有する。本実施形態に係る絶縁電線は、上述した第1の条件および第2の条件を満たすことにより、絶縁ワニスにおいて第2溶剤の含有量を些少とし、かつ第1溶剤の含有量を十分とすることによって樹脂の保存安定性を維持しつつ、上記絶縁電線の上記絶縁層に含まれる残留溶剤の半分以上を第2溶剤として絶縁層の誘電率を低く抑えることができる。
 上記第1比率に関し、上記絶縁層の誘電率をより一層低減する観点から、その値は70質量%以上であることが好ましく、80質量%以上であることがより好ましい。上記1比率の上限値は、上記第2比率が100質量%となり得ることを考慮すれば、99.99質量%である。上記第2比率の値は、上記第1比率の値より高くなる限り、特に限定されない。上記第2比率の値は、絶縁層の誘電率をより一層低減する観点から、第1比率の値との差(第2比率-第1比率)が5以上であることが好ましく、10以上であることがより好ましい。なお上記第2比率の上限値も、理想値としての100質量%である。
 3) 絶縁電線の絶縁層中の第1溶剤および第2溶剤の各含有量および合計含有量等
 上記絶縁層は、上記第1溶剤および上記第2溶剤を合計で0.2質量%以上10質量%以下含むことが好ましい。これにより、上記絶縁層の誘電率をより一層低減することができる。
 上記絶縁層において上記第1溶剤および上記第2溶剤の含有量が合計で0.2質量%に満たない場合、上記第2溶剤の含有による誘電率低減効果が十分に確認できない可能性がある。上記絶縁層において上記第1溶剤および上記第2溶剤の含有量が合計で10質量%を超える場合、第1溶剤に基づく誘電率の上昇と絶縁層の強度低下とが懸念される可能性がある。上記絶縁層は、上記第1溶剤および上記第2溶剤を合計で0.5質量%以上5質量%以下含むことがより好ましく、1質量%以上4質量%以下含むことがさらに好ましい。
 さらに上記絶縁層は、上記第1溶剤を5質量%以下含み、上記絶縁層は、上記第2溶剤を0.1質量%以上5質量%以下含むことが好ましい。この場合においても上記絶縁層の誘電率をより一層低減することができる。
 上記絶縁層は、上記第1溶剤の含有量が5質量%を超える場合、第1溶剤に基づく誘電率の上昇が懸念される可能性がある。一方、上記絶縁層は、上記第1溶剤の含有量の下限値は、0.02質量%とすることができる。上記加熱処理前の上記絶縁層は、上記第2溶剤の含有量が0.1質量%に満たない場合、第2溶剤に基づいた誘電率を低減させる効果が不十分となる可能性がある。上記加熱処理前の上記絶縁層は、上記第2溶剤の含有量が5質量%を超える場合、絶縁層の強度が損なわれる可能性がある。上記加熱処理前の上記絶縁層は、上記第1溶剤を3質量%以下含むことがより好ましく、1.5質量%以下含むことがさらに好ましい。上記絶縁層は、上記第2溶剤を0.5質量%以上4.5質量%以下含むことがより好ましく、1.5質量%以上4質量%以下含むことがさらに好ましい。
 (測定方法)
 絶縁電線の絶縁層中の上記第1溶剤および上記第2溶剤の各含有量は、たとえば熱分解ガスクロマトグラフィー質量分析計(Py-GC/MS、商品名:「6890N/5973Network」、Agilent technologies社製)を用いることにより求めることができる。この場合において、雰囲気はHeガスであり、流量は1mL/minである。さらに熱分解温度については、残留溶剤が全て揮発するのに十分な条件となる500℃×1min.とする。
 上記Py-GC/MSを用いた絶縁層中の第1溶剤および上記第2溶剤の各含有量の測定条件の詳細を、以下に示す。
熱分解装置: ダブルショット・パイロライザー(商品名:「PY-2020iD」、フロンティアラボ社製)およびマイクロジェット・クライオトラップ((商品名:MJT-1030E、フロンティアラボ社製)
カラム: UA-5(内径0.25mm×長さ30m、膜厚0.25μm、フロンティアラボ社製)
熱分解(温度×時間): 500℃×1min.
注入口: 300℃、スプリット比100:1
トラップ: -150℃
オーブン: 50℃→(25℃/min.)→320℃(5min.)
イオン化法: 電子イオン化法(EI)
MS温度: 230℃(イオン源),150℃(四重極)
質量範囲: 33~550a.m.u.。
 さらに絶縁電線を350℃で1分間加熱する加熱処理後の絶縁層に残存する上記第1溶剤および上記第2溶剤の各含有量(各残存量)は、上述した絶縁電線の絶縁層の上記第1溶剤および上記第2溶剤の各含有量の測定方法と同様に、雰囲気をHeガス(流量1mL/min)とした上記の熱分解ガスクロマトグラフィー質量分析計を用いることにより求めることができる。すなわち、絶縁層に残存する上記第1溶剤および上記第2溶剤の各含有量から、上述した測定条件のうち熱分解温度を、350℃×1min.に変更した条件で測定して発生した溶剤量を差し引くことで、加熱処理後の各残存量を求めることができる。
 (硬化剤)
 上記絶縁層は、硬化剤を含有することが好ましい。この場合において、硬化剤は、脂環式酸無水物、脂肪族酸無水物、芳香族酸無水物イミダゾール、トリエチルアミン、チタン系化合物、イソシアネート系化合物、ブロックイソシアネート、尿素、メラミン、メラミン化合物およびアセチレン誘導体からなる群より選択される1種以上を含むことが好ましい。これにより絶縁ワニスから、誘電率が低減された絶縁層を形成することを促進することができる。これらの硬化剤は、絶縁ワニス中の樹脂または樹脂前駆体の種類に応じて適宜選択されるが、たとえばイミダゾール、メラミン、メラミン化合物などが好ましく用いられる。
 〔絶縁電線の製造方法〕
 本実施形態に係る絶縁電線は、第1溶剤および第2溶剤を少なくとも含む所定の絶縁ワニスを準備すること以外については、この種の絶縁電線に関する従来公知の製造方法を適用することにより得ることができる。本実施形態に係る絶縁電線は、たとえば歩留まり良く製造する観点から、以下の絶縁電線の製造方法を用いて得ることが好ましい。
 すなわち本実施形態に係る絶縁電線の製造方法は、導体および絶縁ワニスを準備する工程(第1工程)と、上記外周面に絶縁層を被覆する工程(第2工程)とを含むことが好ましい。さらに上記被覆する工程(第2工程)は、外周面に絶縁ワニスを塗布する工程(A工程)と、上記絶縁ワニスを導体に焼付ける工程(B工程)とを含むことが好ましい。以下、本実施形態に係る絶縁電線の製造方法に含まれる各工程について説明する。
 <第1工程>
 第1工程は、導体および絶縁ワニスを準備する工程である。導体は、たとえば市販品を入手することによって準備することができる。また導体の材料として上述した金属を鋳造し、延伸し、線状に伸線し、さらに軟化させることによって準備することもできる。
 絶縁ワニスは、絶縁層の材料として上述した樹脂、またはその樹脂前駆体を、少なくとも上述した第1溶剤および第2溶剤を含む有機溶剤で希釈することにより準備することができる。上記絶縁ワニスにおける樹脂固形分濃度は、たとえば下限値としては15質量%が好ましく、20質量%がより好ましく、上限値としては50質量%が好ましく、30質量%がより好ましい。絶縁ワニスに樹脂前駆体が含まれる場合、上記の樹脂固形分濃度とは、上記樹脂前駆体の濃度を意味するものとする。さらに絶縁ワニスは、第1溶剤および第2溶剤、ならびに樹脂またはその樹脂前駆体に加え、硬化剤を含むことができ、さらにフィラー、各種の添加剤などを含んでいてもよい。絶縁ワニスは、上述した第1溶剤および第2溶剤とは別の溶剤をさらに含むこともできる。
 ここで絶縁ワニスに含まれる第1溶剤および第2溶剤に関し、第1溶剤または第2溶剤として用いるのに必要となる溶剤の条件(比誘電率、沸点、および加熱処理前後の残存量等)、および具体的な溶剤名等の重複する説明は繰り返さない。さらに絶縁ワニスに含まれる樹脂または樹脂前駆体の具体的な樹脂名等の重複する説明も繰り返さない。絶縁ワニスに含まれる第1溶剤および第2溶剤の量比については、質量比で第1溶剤:第2溶剤=99.8:0.2~70:30とすることが好ましい。絶縁ワニスに含まれる第1溶剤の含有量は、55~97質量%とすることができ、絶縁ワニスに含まれる第2溶剤の含有量は、0.1~30質量%とすることができる。
 絶縁ワニスに含み得る硬化剤としては、樹脂を硬化させる機能、または樹脂前駆体の重合を促進させる機能を有するものを用いることができる。具体的には、メチルテトラヒドロ無水フタル酸などの脂環式酸無水物、脂肪族酸無水物、芳香族酸無水物イミダゾール、トリエチルアミン、チタン系化合物、イソシアネート系化合物、ブロックイソシアネート、尿素、メラミン化合物およびアセチレン誘導体などが挙げられる。これらの硬化剤は、絶縁ワニス中の樹脂または樹脂前駆体の種類に応じて適宜選択される。たとえば絶縁ワニスに熱硬化ポリイミド前駆体が含まれる場合、硬化剤としてイミダゾールなどが好ましく用いられる。
 上記チタン系化合物としては、テトラプロピルチタネート、テトライソプロピルチタネート、テトラメチルチタネート、テトラブチルチタネート、テトラヘキシルチタネートなどが挙げられる。上記イソシアネート系化合物としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、p-フェニレンジイソシアネート、ナフタレンジイソシアネートなどの芳香族ジイソシアネート;ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルヘキサンジイソシアネート、リジンジイソシアネートなどの炭素数3~12の脂肪族ジイソシアネート;1,4-シクロヘキサンジイソシアネート(CDI)、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水添MDI)、メチルシクロヘキサンジイソシアネート、イソプロピリデンジシクロヘキシル-4,4’-ジイソシアネート、1,3-ジイソシアナトメチルシクロヘキサン(水添XDI)、水添TDI、2,5-ビス(イソシアナートメチル)-ビシクロ[2,2,1]ヘプタン、2,6-ビス(イソシアナートメチル)-ビシクロ[2,2,1]ヘプタンなどの炭素数5~18の脂環式イソシアネート;キシリレインジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)などの芳香環を有する脂肪族ジイソシアネート;これらの変性物などが例示される。
 上記ブロックイソシアネートとしては、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネートなどが例示される。上記メラミン化合物としては、メラミン、メチル化メラミン、ブチル化メラミン、メチロール化メラミン、ブチロール化メラミンなどが例示される。上記アセチレン誘導体としては、エチニルアニリン、エチニルフタル酸無水物などが例示される。
 <第2工程>
 第2工程は、導体の外周面に絶縁層を被覆する工程である。第2工程は、導体の外周面に絶縁ワニスを塗布する工程(A工程)と、上記絶縁ワニスを導体に焼付ける工程(B工程)とを含むことができる。
 (A工程)
 A工程は、導体の外周面に第1工程により準備された絶縁ワニスを塗布する工程である。A工程は、具体的には、上記絶縁ワニスを塗布した上記導体をダイスの開口部に通過させることにより実行することができる。A工程では、開口部を有するダイスを用いることにより、導体の外周面に絶縁ワニスを均一な厚さで塗布することが好ましい。
 (B工程)
 B工程は、上記絶縁ワニスを導体に焼付ける工程である。B工程では、具体的には、A工程を経ることによって絶縁ワニスが塗布された導体を焼付け炉内に配置し、上記絶縁ワニスを導体に焼付けることにより実行することができる。これにより絶縁ワニス中の溶剤がガス化するとともに樹脂が固化し、もって導体の外周面に絶縁層を形成することができる。
 上記焼付け炉における絶縁ワニスの焼付温度および時間は、この種の絶縁電線の製造する場合に知られた温度条件および時間条件の中から、絶縁ワニス中の樹脂および有機溶媒の種類に応じて適宜選択することができる。具体的には、まず上記樹脂の種類に応じて導体の外周面に絶縁層を形成するために十分であって、かつ残留溶剤が所望量となるような熱量を求め、続いて当該熱量に応じて焼付温度および時間を決定すればよい。上記熱量は、焼付温度および時間の積に対応させることができる。上記熱量は、焼付温度が高温であれば、時間を短くすることにより対応することができ、焼付温度が低温であれば、時間を長くすることにより対応することができる。
 さらに第2工程では、上記絶縁ワニスの塗布および上記絶縁ワニスの焼付けを繰り返すことによって絶縁層を1層または複数層積層し、絶縁層を所定の厚みとすることが好ましい。絶縁ワニスの塗布方法および焼付け方法は、従来公知の方法を用いることができる。その後、従来公知の方法により絶縁層を乾燥させることにより絶縁電線を得ることができる。
 ここで本明細書においては、1回の絶縁ワニスの塗布および当該絶縁ワニスの焼付けを行うことによって得られる絶縁層を「1層」の絶縁層といい、複数回の絶縁ワニスの塗布および当該絶縁ワニスの焼付けを行うことによって得られる絶縁層を「複数層」の絶縁層というものとする。
 <作用効果>
 以上により、本実施形態に係る絶縁電線を製造することができる。上述した製造方法により製造された絶縁電線は、絶縁層の誘電率が低減されるため、絶縁特性を向上させることができる。
 〔付記〕
 以上の説明は、以下に付記する実施形態を含む。
 <付記1>
 線状の導体と、前記導体の外周面を被覆する絶縁層とを含む絶縁電線であって、
 前記絶縁層は、残留溶剤として比誘電率15以上の第1溶剤と、比誘電率15未満の第2溶剤とを含み、
 前記絶縁層に含まれる前記第1溶剤および前記第2溶剤の合計含有量に対する前記第2溶剤の含有量の比率である第1比率は、50質量%以上であり、
 前記第2溶剤の沸点は、前記第1溶剤の沸点よりも高い、絶縁電線。
 <付記2>
 前記絶縁層は、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂およびポリエーテルイミド樹脂からなる群より選択される1以上の樹脂を含む、付記1に記載の絶縁電線。
 <付記3>
 前記絶縁層は、前記第1溶剤および前記第2溶剤を合計で0.2質量%以上10質量%以下含む、付記1または付記2に記載の絶縁電線。
 <付記4>
 前記絶縁層は、前記第1溶剤を5質量%以下含み、
 前記絶縁層は、前記第2溶剤を0.1質量%以上5質量%以下含む、付記1から付記3のいずれか1項に記載の絶縁電線。
 以下、実施例を挙げて本開示をより詳細に説明するが、本開示はこれらに限定されるものではない。後述する試料2、試料4、試料6、試料8、試料10および試料12の絶縁電線が実施例であり、試料1、試料3、試料5、試料7、試料9、試料11、試料13および試料14の絶縁電線が比較例である。
 〔測定評価方法〕
 はじめに、本実施例において行なった評価項目およびその測定方法について説明する。
 <絶縁層の厚み>
 実施例および比較例の各絶縁電線に対し、上述した測定方法に基づき、デジタルマイクロスコープVHX-7000(株式会社キーエンス製)を用いることによって、絶縁層の厚み(単位はμm)を求めた。
 <絶縁電線の絶縁層中の第1溶剤および第2溶剤の各含有量、第1比率>
 実施例および比較例の各絶縁電線に対し、上述した測定方法に基づき、熱分解ガスクロマトグラフィー質量分析計(Py-GC/MS、商品名:「6890N/5973Network」、Agilent technologies社製)を用いることによって、絶縁層中の第1溶剤および第2溶剤の各含有量(単位はppm)を求めた。当該各含有量の合計から第2溶剤の含有量の比率(第1比率)についても算出した。
 <加熱処理後の絶縁層に残存する第1溶剤および第2溶剤の各含有量、第2比率>
 実施例および比較例の各絶縁電線に対し、上述した測定方法に基づき熱分解ガスクロマトグラフィー質量分析計(Py-GC/MS、商品名:「6890N/5973Network」、Agilent technologies社製)を用いることにより加熱処理を行うと共に、加熱処理後に絶縁層に残存する第1溶剤および第2溶剤の各含有量(各残存量、単位はppm)を求めた。さらに当該各含有量の合計から、加熱処理後の絶縁層に残存する第2溶剤の含有量の比率(第2比率)についても算出した。ここで上記加熱処理の条件については上述のとおり、加熱温度350℃、加熱時間1分、圧力1atom、およびHe雰囲気(流量:1mL/min.)とした。
 <誘電率の測定>
 実施例および比較例の各絶縁電線に対し、インピーダンスアナライザ(商品名(型番):「ZA5405」、株式会社エヌエフ回路設計ブロック製)を用いることによって、絶縁層における誘電率を求めた。さらに後述する各試験において試料間の絶縁層における誘電率の差についても算出した。
 〔第1試験〕
 <試料の作製>
 (試料1)
 1) 第1工程
 銅合金からなり、断面形状が平角形状(断面積:5mm2)を有する線状の市販の導体
を準備した。さらにN-メチル-2-ピロリドン(NMP、比誘電率:32.2、沸点:204℃)からなる第1溶剤に、テトラカルボン酸二無水物およびジアミンを等モル比で溶解させた後、縮合重合反応を促進することにより絶縁ワニスであるポリアミック酸(ポリアミド前駆体)を調製した。テトラカルボン酸二無水物についてはピロメリット酸二無水物を用いた。ジアミンについては4,4’-ジアミノジフェニルエーテルを用いた。当該絶縁ワニスに第2溶剤は含まれていない。
 2) 第2工程
 第1工程にて調製した絶縁ワニスに第1工程にて準備した導体を浸漬させることにより、上記導体の外周面に上記絶縁ワニスを塗布した。次いで導体の断面形状と相似形状を有する塗布ダイスの開口部に、上述した絶縁ワニスを塗布した導体を通過させた(A工程)。さらに上記A工程を経ることによって絶縁ワニスが均一に塗布された導体に対し、焼付け炉において焼付け処理を実行することにより、導体の外周面を絶縁層で被覆した(B工程)。上記焼付け処理においては、絶縁層を形成するのに十分な所定の熱量(+++)を算出し、当該熱量(+++)を付与できる焼付温度および時間を決定した。
 次に、第2工程にて形成した絶縁層に対し、当該絶縁層上で上述した絶縁ワニスの塗布および絶縁ワニスの焼付けを繰り返すことによって、複数層の絶縁層を有する試料1の絶縁電線を得た。
 (試料2)
 第1工程において、第1溶剤に対し、第2溶剤としてナフサ(比誘電率:1.8、沸点:247℃)を、第1溶剤および第2溶剤の量比が質量比で第1溶剤:第2溶剤=9:1となるように添加することによって絶縁ワニスを調製したこと以外、試料1と同じ要領とすることにより試料2の絶縁電線を得た。
 <絶縁電線の評価>
 試料1および試料2の各絶縁電線に対し、絶縁層の材料名および厚みと、絶縁層の誘電率と、絶縁電線の絶縁層中の第1溶剤および第2溶剤の各含有量の合計基づく第2溶剤の含有量の比率(第1比率)と、加熱処理後の絶縁層に残存する第1溶剤および第2溶剤の各残存量、ならびに上記各残存量に基づく第2溶剤の残存量の比率(第2比率)とをそれぞれ求めた。結果を表1に示す。表1では、第1溶剤として用いたNMPの誘電率および沸点、ならびに第2溶剤として用いたナフサの誘電率および沸点についても示した。
 〔第2試験〕
 <試料の作製>
 (試料3)
 第2工程中のB工程において、焼付け処理を実行するために用いる熱量を試料1の3分の2の熱量(++)としたこと以外、試料1と同じ要領とすることにより試料3の絶縁電線を得た。
 (試料4)
 第1工程において、第1溶剤に対し、第2溶剤としてナフサ(比誘電率:1.8、沸点:247℃)を、第1溶剤および第2溶剤の量比が質量比で第1溶剤:第2溶剤=9:1となるように添加することによって絶縁ワニスを調製したこと以外、試料3と同じ要領とすることにより試料4の絶縁電線を得た。
 <絶縁電線の評価>
 試料3および試料4の各絶縁電線に対し、上述した第1試験と同じ評価項目について各種の測定を行った。結果を表1に示す。
 〔第3試験〕
 <試料の作製>
 (試料5)
 第2工程中のB工程において、焼付け処理を実行するために用いる熱量を試料1の3分の1の熱量(+)としたこと以外、試料1と同じ要領とすることにより試料5の絶縁電線を得た。
 (試料6)
 第1工程において、第1溶剤に対し、第2溶剤としてナフサ(比誘電率:1.8、沸点:247℃)を、第1溶剤および第2溶剤の量比が質量比で第1溶剤:第2溶剤=9:1となるように添加することによって絶縁ワニスを調製したこと以外、試料5と同じ要領とすることにより試料6の絶縁電線を得た。
 <絶縁電線の評価>
 試料5および試料6の各絶縁電線に対し、上述した第1試験と同じ評価項目について各種の測定を行った。結果を表1に示す。
 〔第4試験〕
 <試料の作製>
 (試料7)
 第1工程において、NMPに代えてN,N-ジメチルアセトアミド(DMAc、比誘電率:37.8、沸点:165℃)からなる第1溶剤を用いて絶縁ワニスを調製したこと以外、試料5と同じ要領とすることにより試料7の絶縁電線を得た。当該絶縁ワニスに第2溶剤は含まれていない。
 (試料8)
 第1工程において、第1溶剤に対し、第2溶剤としてナフサ(比誘電率:1.8、沸点:247℃)を、第1溶剤および第2溶剤の量比が質量比で第1溶剤:第2溶剤=9:1となるように添加することによって絶縁ワニスを調製したこと以外、試料7と同じ要領とすることにより試料8の絶縁電線を得た。
 <絶縁電線の評価>
 試料7および試料8の各絶縁電線に対し、上述した第1試験と同じ評価項目について各種の測定を行った。結果を表2に示す。表2では、第1溶剤として用いたDMAcおよびNMPの誘電率および沸点、ならびに第2溶剤として用いたナフサの誘電率および沸点についても示した。
 〔第5試験〕
 <試料の作製>
 (試料9)
 試料5と同じ絶縁電線を準備することにより、試料9の絶縁電線を得た。
 (試料10)
 第1溶剤に対し、第2溶剤としてナフサ(比誘電率:1.8、沸点:247℃)を、第1溶剤および第2溶剤の量比が質量比で第1溶剤:第2溶剤=8.5:1.5となるように添加することによって絶縁ワニスを調製したこと以外、試料9と同じ要領とすることにより試料10の絶縁電線を得た。
 <絶縁電線の評価>
 試料9および試料10の各絶縁電線に対し、上述した第1試験と同じ評価項目について各種の測定を行った。結果を表2に示す。
 〔第6試験〕
 <試料の作製>
 (試料11)
 第1工程において、ポリアミド酸の原料となるテトラカルボン酸二無水物としてピロメリット酸二無水物及び3,3’,4,4’-ビフェニルテトラカルボン酸を3:7のモル比率で使用することによって絶縁ワニスを調製したこと以外、試料3と同じ要領とすることにより試料11の絶縁電線を得た。当該絶縁ワニスに第2溶剤は含まれていない。
 (試料12)
 第1工程において、第1溶剤に対し、第2溶剤としてナフサ(比誘電率:1.8、沸点:247℃)を、第1溶剤および第2溶剤の量比が質量比で第1溶剤:第2溶剤=9:1となるように添加することによって絶縁ワニスを調製したこと以外、試料11と同じ要領とすることにより試料12の絶縁電線を得た。
 <絶縁電線の評価>
 試料11および試料12の各絶縁電線に対し、上述した第1試験と同じ評価項目について各種の測定を行った。結果を表2に示す。
 〔第7試験〕
 <試料の作製>
 (試料13)
 試料5と同じ絶縁電線を準備することにより、試料13の絶縁電線を得た。
 (試料14)
 第1工程において、第1溶剤に対し、第2溶剤としてナフサ(比誘電率:1.8、沸点:175℃)を、第1溶剤および第2溶剤の量比が質量比で第1溶剤:第2溶剤=8:2となるように添加することによって絶縁ワニスを調製したこと以外、試料13と同じ要領とすることにより試料14の絶縁電線を得た。
 <絶縁電線の評価>
 試料13および試料14の各絶縁電線に対し、上述した第1試験と同じ評価項目について各種の測定を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <考察>
 表1によれば、絶縁層が残留溶剤として第1溶剤および第2溶剤を含み、絶縁層に含まれる第1溶剤および第2溶剤の合計含有量に対する第2溶剤の含有量の比率である第1比率が50質量%以上であり、かつ絶縁電線を350℃で1分間加熱する加熱処理後の絶縁層に残存する第1溶剤および第2溶剤の合計残存量に対する第2溶剤の残存量の比率である第2比率が第1比率に比べて高い場合、誘電率が低減する効果が確認された。すなわち第1試験においては試料2が試料1に比して絶縁層における誘電率が低減し、第2試験においては試料4が試料3に比して絶縁層における誘電率が低減し、第3試験においては試料6が試料5に比して絶縁層における誘電率が低減した。同様に、第4試験においては試料8が試料7に比して絶縁層における誘電率が低減し、第5試験においては試料10が試料9に比して絶縁層における誘電率が低減し、第6試験においては試料12が試料11に比して絶縁層における誘電率が低減した。
 一方、第7試験において試料14は、第2溶剤としてのナフサの沸点が175℃であって、第1溶剤としてのNMPの沸点(204℃)よりも低く、上記第2工程においてナフサ(第2溶剤)がNMP(第1溶剤)に比して大量に揮発した。これにより試料14の絶縁電線は、第1比率が50質量%未満となり、かつ第2比率が第1比率に比べて低くなり、もって試料13に比して誘電率が低減しなかった。以上から試料2、試料4、試料6、試料8、試料10および試料12の絶縁電線は、絶縁層の誘電率が低減し、もって絶縁特性を向上させることができると理解される。
 以上のように本開示の実施の形態および実施例について説明を行ったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (5)

  1.  線状の導体と、前記導体の外周面を被覆する絶縁層とを含む絶縁電線であって、
     前記絶縁層は、残留溶剤として比誘電率15以上の第1溶剤と、比誘電率15未満の第2溶剤とを含み、
     前記絶縁層に含まれる前記第1溶剤および前記第2溶剤の合計含有量に対する前記第2溶剤の含有量の比率である第1比率は、50質量%以上であり、
     前記絶縁電線を350℃で1分間加熱する加熱処理後の前記絶縁層に含まれる前記第1溶剤および前記第2溶剤の合計含有量に対する前記第2溶剤の含有量の比率である第2比率は、前記第1比率に比べて高い、絶縁電線。
  2.  前記絶縁層は、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂およびポリエーテルイミド樹脂からなる群より選択される1以上の樹脂を含む、請求項1に記載の絶縁電線。
  3.  前記絶縁層は、前記第1溶剤および前記第2溶剤を合計で0.2質量%以上10質量%以下含む、請求項1または請求項2に記載の絶縁電線。
  4.  前記絶縁層は、前記第1溶剤を5質量%以下含み、
     前記絶縁層は、前記第2溶剤を0.1質量%以上5質量%以下含む、請求項1から請求項3のいずれか1項に記載の絶縁電線。
  5.  前記絶縁層は、硬化剤を含有し、
     前記硬化剤は、脂環式酸無水物、脂肪族酸無水物、芳香族酸無水物イミダゾール、トリエチルアミン、チタン系化合物、イソシアネート系化合物、ブロックイソシアネート、尿素、メラミン、メラミン化合物およびアセチレン誘導体からなる群より選択される1種以上を含む、請求項1から請求項4のいずれか1項に記載の絶縁電線。
PCT/JP2022/019515 2021-08-24 2022-05-02 絶縁電線 WO2023026591A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022575234A JPWO2023026591A1 (ja) 2021-08-24 2022-05-02
CN202280004225.7A CN117280429A (zh) 2021-08-24 2022-05-02 绝缘电线
US17/925,671 US20240145116A1 (en) 2021-08-24 2022-05-02 Insulated wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021136332 2021-08-24
JP2021-136332 2021-08-24

Publications (1)

Publication Number Publication Date
WO2023026591A1 true WO2023026591A1 (ja) 2023-03-02

Family

ID=85321705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019515 WO2023026591A1 (ja) 2021-08-24 2022-05-02 絶縁電線

Country Status (4)

Country Link
US (1) US20240145116A1 (ja)
JP (1) JPWO2023026591A1 (ja)
CN (1) CN117280429A (ja)
WO (1) WO2023026591A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517582A (ja) * 2014-03-26 2017-06-29 エランタス イタリア エス.アール.エル.Elantas Italia S.R.L. ポリアミド−イミド用およびポリイミド用の新規溶媒
CN109251657A (zh) * 2018-08-20 2019-01-22 安徽晟然绝缘材料有限公司 一种高软化击穿赛克改性聚酯亚胺漆包线漆及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517582A (ja) * 2014-03-26 2017-06-29 エランタス イタリア エス.アール.エル.Elantas Italia S.R.L. ポリアミド−イミド用およびポリイミド用の新規溶媒
CN109251657A (zh) * 2018-08-20 2019-01-22 安徽晟然绝缘材料有限公司 一种高软化击穿赛克改性聚酯亚胺漆包线漆及其制备方法

Also Published As

Publication number Publication date
US20240145116A1 (en) 2024-05-02
JPWO2023026591A1 (ja) 2023-03-02
CN117280429A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
US10832829B2 (en) Insulated electric wire and varnish for forming insulating layer
JP5609732B2 (ja) 絶縁塗料及びそれを用いた絶縁電線
DE102013213890A1 (de) Isolierter elektrischer Draht
EP1011107B1 (en) Insulated wire
WO2018199211A1 (ja) 絶縁電線
CN110234717A (zh) 电沉积液及使用了该电沉积液的带绝缘覆膜的导体的制造方法
WO2018180080A1 (ja) 絶縁電線
CN108431905B (zh) 绝缘电线
US10607750B2 (en) Insulated wire
WO2013150991A1 (ja) 絶縁電線及びその製造方法
WO2023026591A1 (ja) 絶縁電線
WO2021210336A1 (ja) 絶縁電線およびその製造方法
WO2018180847A1 (ja) 絶縁電線
JP2011187262A (ja) ポリアミドイミド樹脂絶縁塗料およびそれを用いた絶縁電線
CN109935392B (zh) 绝缘电线用清漆、绝缘电线以及电机
CN116829659B (zh) 绝缘层形成用树脂清漆
KR20110130179A (ko) 절연전선
JP7165288B1 (ja) 絶縁電線及びその製造方法
WO2022180794A1 (ja) 絶縁電線およびその製造方法
WO2022190657A1 (ja) 絶縁電線
WO2022224486A1 (ja) 絶縁電線
JP5364939B2 (ja) 絶縁電線
JP2012051966A (ja) エポキシ変性ポリフェニレンエーテル及びそれを用いた絶縁電線、電機コイル、モータ
JP2012097216A (ja) 絶縁塗料およびそれを用いた絶縁電線
JPH0963360A (ja) 耐熱絶縁電線

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280004225.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 17925671

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022575234

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE