WO2023026578A1 - 変圧器の診断システム - Google Patents

変圧器の診断システム Download PDF

Info

Publication number
WO2023026578A1
WO2023026578A1 PCT/JP2022/017216 JP2022017216W WO2023026578A1 WO 2023026578 A1 WO2023026578 A1 WO 2023026578A1 JP 2022017216 W JP2022017216 W JP 2022017216W WO 2023026578 A1 WO2023026578 A1 WO 2023026578A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
temperature
diagnostic system
oil
winding
Prior art date
Application number
PCT/JP2022/017216
Other languages
English (en)
French (fr)
Inventor
拓弥 岩崎
明樹 皆川
明 山岸
亮佑 杉田
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN202280043863.XA priority Critical patent/CN117529787A/zh
Priority to US18/572,335 priority patent/US20240288512A1/en
Priority to EP22859546.8A priority patent/EP4394815A1/en
Publication of WO2023026578A1 publication Critical patent/WO2023026578A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • H01F2027/404Protective devices specially adapted for fluid filled transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • H01F2027/406Temperature sensor or protection

Definitions

  • the present invention relates to a diagnostic system for transformers.
  • Patent Document 1 estimates the degree of polymerization from the temperature sensor and moisture content at the bottom.
  • Patent document 2 monitors without taking in the load factor or other temperature information by the upper and lower temperature sensors.
  • Patent Literature 3 diagnoses deterioration based on temperature rise.
  • JP 2019-102694 Japanese Patent Laid-Open No. 5-283240 JP 2006-24800
  • Patent document 3 diagnoses abnormalities centered on temperature rise, but the parameters that determine the life of a transformer are the deterioration of insulating paper, the deterioration of insulating oil, the presence or absence of discharge, and other factors. Diagnosis should also be considered. However, Patent Document 3 does not consider such a highly accurate diagnosis.
  • Patent Document 1 Patent Document 2, and Patent Document 3 are not sufficient for diagnosing the life of a transformer with high accuracy.
  • the purpose of the present invention is to provide a transformer diagnostic system that enables highly accurate diagnosis.
  • An example of the invention is a diagnostic system for a transformer having insulating oil and windings, comprising: a detection unit that detects the temperature and hydrogen of the upper and lower portions of the insulating oil;
  • the diagnostic system for the transformer has a calculation unit for determining abnormality based on the detection value from the detection unit.
  • a diagnostic system for transformers capable of highly accurate diagnosis can be realized.
  • FIG. 1 is a configuration diagram for explaining a transformer and a diagnostic system in Example 1.
  • FIG. 4 is a diagram showing the relationship between winding temperature and oil temperature in Example 1.
  • FIG. 11 is a configuration diagram illustrating a transformer and a diagnostic system in Example 2;
  • Fig. 1 is a configuration diagram explaining the transformer and the diagnostic system in the first embodiment.
  • the transformer 1 includes an iron core, windings attached to the iron core and insulated by insulating paper (winding insulation paper), and insulating oil for immersing the windings and the iron core. It is a vessel.
  • the hydrogen detection unit 2 detects the hydrogen gas component based on the data from the sensor that detects the hydrogen gas component in the insulating oil in the lower part of the transformer 1. Here, it is also a detection unit that also detects the temperature in the lower part of the insulating oil of the transformer 1 .
  • a detection unit for detecting hydrogen and a temperature detection unit for detecting the temperature in the lower part of the transformer 1 may be separate sensors.
  • the temperature detection unit 3 detects the temperature based on data from a temperature sensor (such as a resistance temperature detector) that detects the temperature in the upper part of the insulating oil of the transformer 1 .
  • a temperature sensor such as a resistance temperature detector
  • the current detection unit 4 detects the load current (secondary current) flowing through the load.
  • the converter 6 converts the detection data from the hydrogen detection unit 2, the temperature detection unit 3, and the current detection unit 4 for processing by a PC (personal computer) 7 for calculation.
  • the calculation PC 7 (calculation unit) is a computer device that includes a processor (processing device) such as a CPU, a main memory, a storage device, a communication device, and the like, and processes various types of information.
  • a processor (processing device) of the calculation PC 7 executes calculations to be described later, and diagnoses abnormality determination and life prediction of the transformer.
  • the diagnostic system for the transformer of this embodiment includes a temperature detection unit 2 that detects the temperature of hydrogen and insulating oil at the bottom, a detection unit 3 that detects the temperature of the top of the insulating oil, and a load current (secondary current) flowing through the load. , an insulating paper pocket 5 for collecting an insulating paper sample, a converter 6 for data conversion, and an arithmetic PC 7 for performing abnormality diagnosis and life prediction of the transformer.
  • the diagnostic system for the transformer of this embodiment measures the winding maximum temperature at the load factor, the upper oil temperature, and the lower oil temperature, and the computer PC 7 acquires the temperature history information by wire or wirelessly. At the same time, the computing PC 7 acquires the information of the hydrogen sensor and diagnoses abnormality from its behavior.
  • a load factor can be calculated from the load current from the current detection unit 4 .
  • the current to be detected is not limited to the load current, and the load current may be detected from the current on the primary side of the transformer.
  • the winding highest point temperature ⁇ H is defined by the following formula 1 (Transformer Reliability Investigation Special Committee “Oil-filled Transformer Operation Guidelines” The Institute of Electrical Engineers of Japan Technical Report (Part 1) No. 143 November 1986 P.1-2).
  • Equation 1 the parameters that can be directly measured are ⁇ a and K, and the parameters unique to the transformer that can be specified at the time of shipment are ⁇ 0N, R, m, and n. Therefore, the unknown value is ⁇ gN, and this estimation technique has been variously defined.
  • the parameters resulting from them can be analyzed, and in addition to the estimation by machine learning, the maximum temperature of the winding can be estimated with high accuracy.
  • FIG. 2 is a diagram showing the relationship between the winding temperature and the insulating oil temperature in the first embodiment.
  • the vertical axis of FIG. 2 indicates the height of the windings of the transformer 1 and the horizontal axis indicates the temperature rise of the transformer 1 .
  • the part surrounded by a solid line indicates the part where the temperature is actually measured.
  • a portion surrounded by a dotted line indicates a portion where the temperature is calculated from the actually measured temperature.
  • the average winding temperature in Fig. 2 can be measured by conducting a temperature test before the transformer is put into operation.
  • the upper oil temperature (maximum oil temperature) and the lower (bottom) oil temperature can be measured respectively from the upper insulating oil temperature detection section and the lower insulating oil temperature detection section during operation of the transformer.
  • the processing unit of the computing PC 7 calculates the average oil temperature from the actually measured upper and lower (bottom) oil temperatures and the known winding height, Calculate the "average temperature difference between windings and oil” ⁇ wo from the difference between Then, the processing unit of the calculation PC 7 calculates the "average upper winding temperature” from the actually measured upper oil temperature (maximum oil temperature) and the “average temperature difference between the winding and the oil” ⁇ wo. From the temperatures actually measured in this way, the "average winding top temperature" can be calculated. From information such as the "average upper winding temperature” and the actually measured upper oil temperature (maximum oil temperature), the processor of the computing PC 7 can accurately estimate the highest temperature of the winding.
  • the maximum oil temperature of the transformer and the winding average temperature were usually measured, but the difference between the maximum oil temperature and the winding maximum temperature was defined as 15°C. If the type or design of the oil is different, the slope of the winding temperature rise and the slope of the oil temperature rise will change, and there will be cases where these values cannot be applied as they are.
  • the processor of the computing PC 7 of this embodiment measures the oil temperature at two points, the upper part and the lower part, calculates the average oil temperature from the information on the height of the winding, and calculates the average temperature of the winding obtained by actual measurement.
  • ⁇ gN which is the “difference between the maximum winding point temperature and the maximum oil temperature at rated load” mentioned above, can be defined based on actual measurement instead of being constant at 15°C.
  • the processing unit of the computing PC 7 of the present embodiment has a maximum oil temperature and a maximum winding point temperature according to changes in the gradient of the winding temperature rise and the gradient of the oil temperature rise when the type and design of the oil are different.
  • the difference ⁇ gN can be calculated.
  • the maximum winding point temperature ⁇ H can be calculated from Equation (1) with higher accuracy.
  • the processing device of the computing PC 7 of the present embodiment includes information on various parameters (oil type, capacity, winding height, number of cooling ducts, wire cross-sectional area, wire shape, loss, etc.) determined at the time of design, and actual measurement. Based on information such as the upper and lower (bottom) oil temperatures and the average winding temperature, machine learning is performed using multiple regression curves to estimate the maximum temperature of the winding. By reflecting the estimated maximum winding point temperature in the new design, it is possible to accurately predict the service life at the design stage.
  • various parameters oil type, capacity, winding height, number of cooling ducts, wire cross-sectional area, wire shape, loss, etc.
  • the processor of the computing PC 7 of this embodiment predicts the life of the transformer.
  • the service life of a transformer is defined by the deterioration of the insulating paper, and according to the Arrhenius law, it can be approximated by Montsinger's formula within the temperature range of 80°C to 150°C. can be derived.
  • Y0 Service life (25 to 30 years) under continuous operation at maximum temperature of 95°C
  • Y Life when operated continuously at maximum temperature
  • Maximum temperature ⁇ (can be defined by winding maximum temperature ⁇ H)
  • Equation 2 makes it possible to estimate the remaining life of the transformer from information on the heat history actually used.
  • an insulating paper sample is collected from the insulating paper pocket 5 attached to the top of the transformer 1 and analyzed to measure the average degree of polymerization.
  • the measured average degree of polymerization is used as the corrected formula 2, and the processor of the calculation PC 7 of the present embodiment executes the estimation calculation according to the corrected formula. In this way, it is possible to perform double monitoring by online monitoring and offline monitoring. With such a configuration, a more reliable diagnostic system can be configured.
  • a hydrogen detection unit 2 is provided under the tank of the transformer 1 so that a serious accident will not occur if a sudden abnormality such as local heating is overlooked and left unattended.
  • the processor of the computing PC 7 diagnoses that the transformer is abnormal by determining that the hydrogen component obtained from the hydrogen detector 2 exceeds a predetermined value (threshold value).
  • Hydrogen is the cause of all abnormal phenomena, and it also exerts its effect on discharge, heating, and deterioration of insulating paper. Deterioration of insulating paper is sometimes substituted by water content in oil, but in this case, if the temperature at the time of sampling changes, the saturated water content in the oil will change, and the precipitated water will move to the insulating paper. There is a risk of misinterpreting the measurement results. On the other hand, in the case of gaseous hydrogen, although there is a change in solubility due to a change in temperature, the change is several times smaller than the amount of water, so the analysis accuracy is greatly improved.
  • the detection data of the transformer described above is taken into the calculation PC 7 through the converter 6, and by performing various calculations, the abnormality determination and remaining life diagnosis of the transformer are executed.
  • Fig. 3 is a configuration diagram explaining the transformer and the diagnostic system in the second embodiment.
  • the computing PC 7 of the first embodiment is not required, and the first wireless communication device 9 is used.
  • the data server 10 via the second wireless communication device 11 can perform diagnosis of abnormality determination and life prediction of the transformer.
  • the data server 10 can store detection data such as the temperature of the upper and lower portions of the insulating oil, hydrogen, load current, and the like.
  • the touch panel 8 acquires detection data such as the temperature of the upper and lower portions of the insulating oil, hydrogen, load current, etc. via the converter 6 .
  • the user can monitor these detection data using the touch panel 8 .
  • the first wireless communication device 9 and the second wireless communication device 11 communicate data between the touch panel 8 and the data server 10 .
  • the data server 10 Based on the detection data from the transformer 1 acquired from the second wireless communication device 11, the data server 10 performs abnormality determination and remaining life diagnosis of the transformer in the same manner as the computing PC 7 of the first embodiment.
  • detection data of a plurality of transformers can be stored in the data server 10, and diagnosis of each transformer can be centrally managed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

絶縁油と、巻線とを有する変圧器の診断システムであって、絶縁油の上部と下部の温度および水素を検出する検出部と、検出部からの検出値に基づいて、異常を判定する演算部とを有する変圧器の診断システム。

Description

変圧器の診断システム
 本発明は、変圧器の診断システムに関する。
 変圧器の異常を診断する技術として、特許文献1は、下部の温度センサと水分量により重合度を推定している。
  特許文献2は、上下の温度センサにより負荷率や他の温度情報を取り込まずに監視する。
  特許文献3は、温度上昇により劣化診断を行っている。
特開2019-102694 特開平5-283240 特開2006-24800
 油中水分量はその温度によって含有できる量が異なるため、変圧器の下部で水分量を測定した場合には稼働時よりも低い水分量となり、重合度推定値の誤差が大きくなる可能性がある。下部の温度センサと水分量により重合度を推定している特許文献1では、重合度推定値の誤差が大きくなる可能性がある。
 巻線と油の間では時定数が存在しており、油種や巻線構造によりその時定数が変化してしまうことや、絶縁紙へのダメージを考慮する上では、巻線の温度上昇がキーであり、負荷率を取り込まないで監視をする特許文献2では、異常診断の監視は不十分である。
 特許文献3は、温度上昇を中心に異常診断をしているが、変圧器の寿命を決定するパラメータは絶縁紙の劣化に加え、絶縁油の劣化や放電の有無など、他の要因についての異常診断も配慮すべきである。しかし、特許文献3では、そのような精度の高い診断は配慮されていない。
 特許文献1、特許文献2、および特許文献3の技術では、変圧器の寿命を高精度に診断するには十分ではない。
 本発明の目的は、高精度な診断を可能とする変圧器の診断システムを提供することにある。
 本発明の一例としては、絶縁油と、巻線とを有する変圧器の診断システムであって、
前記絶縁油の上部と下部の温度および水素を検出する検出部と、
前記検出部からの検出値に基づいて、異常を判定する演算部とを有する変圧器の診断システムである。
 本発明によれば、高精度な診断が行える変圧器の診断システムを実現できる。
実施例1おける変圧器と診断システムを説明する構成図である。 実施例1における巻線温度と油温度との関係を示す図である。 実施例2における変圧器と診断システムを説明する構成図である。
 以下、本発明の実施例について、図面を用いて説明する。
 図1は、実施例1における変圧器と診断システムを説明する構成図である。
 変圧器1は、図示は省略するが、鉄心と、鉄心に装着され、絶縁紙(巻線絶縁紙)により絶縁された巻線と、巻線及び鉄心を浸漬する絶縁油とを備える油入変圧器である。
 水素検出部2は、変圧器1の下部の絶縁油における水素ガス成分を検出するセンサからのデータに基づいて水素ガス成分を検出する。ここでは、変圧器1の絶縁油の下部における温度も検出する検出部でもある。水素を検出する検出部と変圧器1の下部における温度を検出する温度検出部を別々のセンサとしてもよい。
 温度検出部3は、変圧器1の絶縁油の上部における温度を検出する温度センサ(測温抵抗体など)からのデータに基づいて温度を検出する。
 電流検出部4は、負荷に流れる負荷電流(二次電流)を検出する。
 変換器6は、水素検出部2、温度検出部3、および電流検出部4からの検出データを、演算用PC(personal computer)7で処理するためにデータ変換を行う。
 演算用PC7(演算部)は、CPUなどのプロセッサー(処理装置)、メインメモリ、記憶装置、通信装置等を備え、各種情報の処理を行うコンピュータ装置である。演算用PC7のプロセッサー(処理装置)が、後述する演算を実行して、変圧器の異常判定の診断や寿命予測を実行する。
 本実施例の変圧器の診断システムは、水素ならびに絶縁油の下部の温度を検出する温度検出部2、絶縁油の上部の温度を検出する検出部3、負荷に流れる負荷電流(二次電流)を検出する電流検出部(CT)4、絶縁紙サンプルを採取する絶縁紙ポケット5、データ変換を行う変換器6、および変圧器の異常診断や寿命予測を実行する演算用PC7を有する。
 本実施例の変圧器の診断システムは、負荷率、上部油温、下部油温にて巻線最高点温度を測定し、温度履歴情報を有線または無線にて演算用PC7が取得する。併せて、演算用PC7が水素センサの情報を取得し、その挙動から異常診断を行う。負荷率は、電流検出部4からの負荷電流から算出できる。検出する電流は負荷電流に限らず、変圧器の一次側の電流から負荷電流を検出するようにしてもよい。
 巻線最高点温度 θ Hは、以下の式1にて定義されている(変圧器信頼性調査専門委員会「油入変圧器運転指針」社団法人電気学会電気学会技術報告(1部)第143号昭61年11月P.1-2)。
Figure JPOXMLDOC01-appb-M000001
ここで、
θ H :巻線最高点温度(℃)
θ a :周囲温度(℃)(冷却空気または冷却水温度)
θ 0 N:定格負荷時の最高油温上昇(K)
θ g N:定格負荷時の巻線最高点温度と最高油温の差(K)
K:実負荷Pの定格負荷PNに対する比(ここでは負荷率)
R:定格負荷時の負荷損と無負荷損の比(ここではR=Wc(負荷損)/Wi(無負荷損))
m:冷却方式により定まる定数
n:冷却方式により定まる定数
 式1の中で直接測定可能なパラメータはθa、Kであり、変圧器固有のパラメータで出荷時に規定が可能なパラメータはθ0N、R、m、nである。よって、未知の値はθgNであり、この推定技術が、いろいろと定義されている。
 事前に測定した値を用いて推定する技術が多く採用されていたが、新規設計の場合、これまでの知見が生かされず事前測定の結果とは異なる問題点があった。
 本実施例では、実測結果に加えて、それらに起因するパラメータを分析して、機械学習による推定に加え、高精度に巻線最高点温度を推定できる。
 図2は、実施例1における巻線温度と絶縁油温度との関係を示す図である。
  図2の縦軸は、変圧器1の巻線の高さを示し、横軸は変圧器1の温度上昇を示す。
 実線の丸で囲まれた部位は温度が実測される部位を示す。点線の丸で囲まれた部位は実測された温度から温度が計算される部位を示す。
 図2の平均巻線温度は、変圧器の運転前の温度試験をすることで実測できる。上部油温(最高油温度)および下部(底部)油温は、変圧器の運転中に上部の絶縁油の温度検出部および下部の絶縁油の温度検出部から、それぞれで温度が実測できる。
 演算用PC7の処理装置は、実測される上部油温と下部(底部)油温と、既知である巻線の高さから平均油温を計算し、実測された平均巻線温度と平均油温との差から「巻線と油の平均的温度差」Δθwoを計算する。そして、演算用PC7の処理装置は、実測された上部油温(最高油温度)と「巻線と油の平均的温度差」Δθwoから「平均巻線上部温度」を計算する。このように実測した温度から、「平均巻線上部温度」を算出することができる。「平均巻線上部温度」、実測された上部油温(最高油温度)などの情報から、演算用PC7の処理装置は、巻線最高点温度を精度よく推定できる。
 今までは、通常、変圧器の最高油温度と巻線平均温度を測定しているが、最高点油温と巻線最高点温度との差は15℃で定義されていた。油の種類や設計が異なると巻線温度上昇の傾きと油温度上昇の傾きに変化が生じ、この値がそのまま適用できない例が発生する。
 本実施例の演算用PC7の処理装置は、油温を上部と下部の2か所で測定、巻線高さの情報からその平均油温を算出し、実測で得られた巻線平均温度との差分を取ることで前述した「定格負荷時の巻線最高点温度と最高油温度の差」であるθgNを15℃一定ではなく、実測に基づいて定義できる。
 そして、本実施例の演算用PC7の処理装置は、油の種類や設計が異なる場合の巻線温度上昇の傾きと油温度上昇の傾きの変化に従った、最高油温度と巻線最高点温度との差θgNを計算できる。そして、より精度高く巻線最高点温度θHを式1から計算できる。
 さらに、本実施例の演算用PC7の処理装置は、設計時に決定する各種パラメータ(油種、容量、巻線高さ、冷却ダクト本数、電線断面積、電線形状、損失など)の情報、実測される上部油温と下部(底部)油温、および平均巻線温度などの情報から重回帰曲線により、機械学習をして巻線最高点温度を推定する。推定する巻線最高点温度を、新規設計へ反映することで設計段階での寿命予測を高精度に行うことが可能となる。
 上記によって得られた巻線最高点温度を用いて、本実施例の演算用PC7の処理装置は、変圧器の寿命予測を行う。変圧器の寿命は絶縁紙の劣化で定義されており、アレニウスの法則にて温度が80℃から150℃の範囲内ではMontsingerの式に近似でき、6℃半減則にて定義すると以下の式2が導出できる。
Figure JPOXMLDOC01-appb-M000002
ここで、
Y0:最高点温度95℃で連続運転した場合の寿命(25~30年)
Y:最高点温度θで連続運転した場合の寿命
θ:最高点温度θ(巻線最高点温度θHで定義できる)
 本実施例の演算用PC7の処理装置は、式2に従い、Y/Y0を算出する。式2により、実際に使用した熱履歴の情報から変圧器の余寿命が推定できるようになる。
 さらに、実際の絶縁紙の劣化についても、変圧器1の上部に取り付けた絶縁紙ポケット5より絶縁紙サンプルを採取し分析することで平均重合度を測定する構成とする。寿命推定が分析結果と合わない場合などに、測定した平均重合度から、補正した式2とし、補正後の式に従って、本実施例の演算用PC7の処理装置が推定演算を実行する。このようにオンライン監視とオフライン監視とで2重に監視をすることができる。そのような構成にすることで、より信頼性の高い、診断システムが構成できる。
 局所加熱など突発的に発生する異常を見逃したまま放置してしまい、重大な事故が発生しないように、本実施例では、変圧器1のタンク下部に水素検出部2を設ける。演算用PC7の処理装置は、水素検出部2から取得した水素成分があらかじめ定めておいた値(閾値)を超えたことを判定することで、変圧器の異常であると診断をする。
 水素は全ての異常現象の起因となり、放電、加熱、絶縁紙の劣化に対してもその効果を発揮する。絶縁紙の劣化は油中水分量で代用される場合もあるが、この場合、採取時の温度が変化すると油中の飽和水分量が異なり、析出した水分が絶縁紙へ移行してしまうため、測定結果を見誤る危険性が存在する。その点、気体である水素の場合では、温度変化による溶解度の変化は存在するものの水分量よりはその変化が数倍小さいため、分析精度が格段に向上する。
 上記した変圧器の検出データは、変換器6を通じて演算用PC7へ取り込まれ、各種演算を実施することで変圧器の異常判定や余寿命診断が実行される。
 本実施例によれば、高精度な診断が行える変圧器の診断システムを実現できる。
 図3は、実施例2における変圧器と診断システムを説明する構成図である。
 実施例2では、タッチパネル8と第1の無線通信機器9、第2の無線通信機器11、データサーバ10を備えることで、実施例1の演算用PC7を不要とし、第1の無線通信機器9、第2の無線通信機器11を介してデータサーバ10で、変圧器の異常判定や寿命予測の診断が可能である。また、本実施例では絶縁油の上部と下部の温度、水素、負荷電流などの検出データはデータサーバ10に格納可能である。以下、実施例1と同じ事項の説明は省略する。
 タッチパネル8は、絶縁油の上部と下部の温度、水素、負荷電流などの検出データを変換器6経由で取得する。利用者は、タッチパネル8により、これらの検出データをモニタすることができる。
 第1の無線通信機器9、第2の無線通信機器11は、タッチパネル8とデータサーバ10との間のデータを通信する。
 データサーバ10は、第2の無線通信機器11から取得した変圧器1からの検出データに基づいて、実施例1の演算用PC7と同様に、変圧器の異常判定や余寿命診断を行う。
 本実施例によれば、実施例1の効果に加えて、データサーバ10に複数の変圧器の検出データを格納して、それぞれの変圧器の診断を、集中して管理することができる。
1:変圧器、2:水素検出部、3:温度検出部、4:電流検出部、5:絶縁紙ポケット、6:変換器、7:演算用PC、8:タッチパネル、9:第1の無線通信機器、10:データサーバ、11:第2の無線通信機器

Claims (9)

  1. 絶縁油と、巻線とを有する変圧器の診断システムであって、
    前記絶縁油の上部と下部の温度および水素を検出する検出部と、
    前記検出部からの検出値に基づいて、異常を判定する演算部とを有する変圧器の診断システム。
  2. 請求項1に記載の変圧器の診断システムにおいて、
    前記巻線に流れる負荷電流を検出する電流検出部を有し、
    前記演算部は、検出した負荷電流値から負荷率を演算する変圧器の診断システム。
  3. 請求項1に記載の変圧器の診断システムにおいて、
    水素と下部の油温の温度は同じ検出部であり
    前記演算部は、
    検出した水素の量が、定めておいた閾値を超えると、異常と判定する変圧器の診断システム。
  4. 請求項1に記載の変圧器の診断システムにおいて、
    前記演算部は、
    前記上部と前記下部の前記絶縁油の温度から平均油温を算出し、
    平均巻線温度と前記平均油温から前記巻線と前記絶縁油の平均温度差を算出し、
    前記平均温度差と前記上部の絶縁油温度から巻線上部平均温度を算出する変圧器の診断システム。
  5. 請求項4に記載の変圧器の診断システムにおいて、
    前記演算部は、
    巻線最高点温度を算出し、
    算出した巻線最高点温度から寿命推定をする変圧器の診断システム。
  6. 請求項4に記載の変圧器の診断システムにおいて、
    前記演算部は、
    設計の際に定めるパラメータから巻線最高点温度を推定する変圧器の診断システム。
  7. 請求項1に記載の変圧器の診断システムにおいて、
    絶縁紙ポケットを有し、
    前記絶縁紙ポケットから採取された絶縁紙を分析した結果に基づいて、前記演算部は、寿命推定する変圧器の診断システム。
  8. 鉄心と、鉄心に装着され、絶縁紙により絶縁された巻線と、巻線及び鉄心を浸漬する絶縁油とを備える変圧器であって、
    請求項1に記載の変圧器の診断システムを有する変圧器。
  9. 絶縁油と、巻線とを有する変圧器の診断システムであって、
    前記絶縁油の上部と下部の温度、および水素の検出データを通信する通信装置と、
    前記通信装置から前記検出データを受け取るデータ処理部とを有し、
    前記データ処理部は、
    前記検出データに基づいて、異常であると診断する変圧器の診断システム。
PCT/JP2022/017216 2021-08-23 2022-04-07 変圧器の診断システム WO2023026578A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280043863.XA CN117529787A (zh) 2021-08-23 2022-04-07 变压器的诊断系统
US18/572,335 US20240288512A1 (en) 2021-08-23 2022-04-07 Transformer Diagnostics System
EP22859546.8A EP4394815A1 (en) 2021-08-23 2022-04-07 Diagnostic system for transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-135779 2021-08-23
JP2021135779A JP7518046B2 (ja) 2021-08-23 2021-08-23 変圧器の診断システム

Publications (1)

Publication Number Publication Date
WO2023026578A1 true WO2023026578A1 (ja) 2023-03-02

Family

ID=85322661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017216 WO2023026578A1 (ja) 2021-08-23 2022-04-07 変圧器の診断システム

Country Status (5)

Country Link
US (1) US20240288512A1 (ja)
EP (1) EP4394815A1 (ja)
JP (1) JP7518046B2 (ja)
CN (1) CN117529787A (ja)
WO (1) WO2023026578A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818909A (ja) * 1981-07-27 1983-02-03 Shikoku Electric Power Co Inc 油入電気機器の自動異常診断装置
JPH05283240A (ja) 1992-04-01 1993-10-29 Toshiba Corp 油入変圧器
JPH07297038A (ja) * 1994-04-20 1995-11-10 Hitachi Ltd 電気機器の内部異常検出装置及び内部異常検出方法
JP2003289008A (ja) * 2002-03-28 2003-10-10 Daihen Corp 油入変圧器の劣化診断装置
JP2005073478A (ja) * 2003-08-28 2005-03-17 Tm T & D Kk 機器監視装置及び機器監視システム
JP2006024800A (ja) 2004-07-09 2006-01-26 Aichi Electric Co Ltd 油入変圧器の余寿命・異常診断システム
JP2011171413A (ja) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp 油入電気機器の寿命診断装置、油入電気機器の寿命診断方法、油入電気機器の劣化抑制装置、および油入電気機器の劣化抑制方法
JP2019102694A (ja) 2017-12-05 2019-06-24 株式会社東光高岳 変圧器の診断システム、変圧器の診断方法、及び変圧器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818909A (ja) * 1981-07-27 1983-02-03 Shikoku Electric Power Co Inc 油入電気機器の自動異常診断装置
JPH05283240A (ja) 1992-04-01 1993-10-29 Toshiba Corp 油入変圧器
JPH07297038A (ja) * 1994-04-20 1995-11-10 Hitachi Ltd 電気機器の内部異常検出装置及び内部異常検出方法
JP2003289008A (ja) * 2002-03-28 2003-10-10 Daihen Corp 油入変圧器の劣化診断装置
JP2005073478A (ja) * 2003-08-28 2005-03-17 Tm T & D Kk 機器監視装置及び機器監視システム
JP2006024800A (ja) 2004-07-09 2006-01-26 Aichi Electric Co Ltd 油入変圧器の余寿命・異常診断システム
JP2011171413A (ja) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp 油入電気機器の寿命診断装置、油入電気機器の寿命診断方法、油入電気機器の劣化抑制装置、および油入電気機器の劣化抑制方法
JP2019102694A (ja) 2017-12-05 2019-06-24 株式会社東光高岳 変圧器の診断システム、変圧器の診断方法、及び変圧器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Transformer Reliability Investigation Technical Committee, ''Oil-immersed transformer operation guidelines", IEEJ TECHNICAL REPORT (PART 1, no. 143, November 1986 (1986-11-01), pages 1 - 2

Also Published As

Publication number Publication date
JP7518046B2 (ja) 2024-07-17
JP2023030570A (ja) 2023-03-08
US20240288512A1 (en) 2024-08-29
CN117529787A (zh) 2024-02-06
EP4394815A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
US7222518B2 (en) Transformer monitoring system
US6446027B1 (en) Intelligent analysis system and method for fluid-filled electrical equipment
CN116879662A (zh) 基于数据分析的变压器故障检测方法
CN112598298A (zh) 电力变压器健康管理系统及管理方法
JP5494034B2 (ja) 信頼度評価装置、信頼度評価プログラムおよび信頼度評価方法
EP1085635A2 (en) Fluid-filled electrical equipment intelligent analysis system and method
CN114638280A (zh) 基于本地设备网络的防爆电机轴承温度异常监测系统
CN106021759B (zh) 变压器故障识别方法及系统
KR100931992B1 (ko) 절연 열화 및 이상 온도를 자기 진단하는 수배전반 시스템 및 방법
TW201316266A (zh) 偵測異常之發生的方法、設備及電腦程式
JP2011520254A (ja) 絶縁性液体が充填された電気機器の相対湿度を判定するための方法および装置
CN114910756B (zh) 一种低压母线槽的绝缘性能评估方法及系统
JP2019102694A (ja) 変圧器の診断システム、変圧器の診断方法、及び変圧器
CN111239515A (zh) 电力设备载流故障预测方法及系统
WO2023026578A1 (ja) 変圧器の診断システム
CN117826025A (zh) 变压器空负载损耗、容量及短路阻抗的测量方法及系统
CN110865250A (zh) 融合电流监测的配电设备状态监测装置及发热检测方法
JP2019027810A (ja) 電気機器の余寿命診断方法および余寿命診断装置
RU82867U1 (ru) Система диагностики маслонаполненных измерительных трансформаторов
JPH0794334A (ja) 油入変圧器の劣化診断システムおよび寿命予測システム
US8854068B2 (en) Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
CN115864310A (zh) 一种多参量融合电力变压器缺陷辨识、状态分级与主动安全保护方法
WO2022004139A1 (ja) 変圧器の診断方法および診断システム
CN213397008U (zh) 一种索夹滑移自动化在线监测装置和系统
KR20080102880A (ko) 삼상 교류 회전 기기 절연 상태 진단 장치, 방법, 및 상기방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을기록한 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18572335

Country of ref document: US

Ref document number: 202280043863.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022859546

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022859546

Country of ref document: EP

Effective date: 20240325