WO2023025396A1 - Verfahren zur rückgewinnung von restmonomeren bei der herstellung von vinylester-ethylen-mischpolymerisaten - Google Patents

Verfahren zur rückgewinnung von restmonomeren bei der herstellung von vinylester-ethylen-mischpolymerisaten Download PDF

Info

Publication number
WO2023025396A1
WO2023025396A1 PCT/EP2021/073747 EP2021073747W WO2023025396A1 WO 2023025396 A1 WO2023025396 A1 WO 2023025396A1 EP 2021073747 W EP2021073747 W EP 2021073747W WO 2023025396 A1 WO2023025396 A1 WO 2023025396A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
ethylene
vinyl ester
vinyl
polymerization
Prior art date
Application number
PCT/EP2021/073747
Other languages
English (en)
French (fr)
Inventor
Michael ANGERER
Bernhard Eckl
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Priority to EP21772699.1A priority Critical patent/EP4225815A1/de
Priority to US18/267,792 priority patent/US20240084059A1/en
Priority to PCT/EP2021/073747 priority patent/WO2023025396A1/de
Priority to CN202180079598.6A priority patent/CN116568712A/zh
Publication of WO2023025396A1 publication Critical patent/WO2023025396A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate

Definitions

  • the invention relates to processes for preparing vinyl ester-ethylene copolymers by means of free-radically initiated polymerization of vinyl esters, ethylene and optionally other ethylenically unsaturated monomers in an aqueous medium at a pressure of from 5 to 120 bar abs. with recovery of unreacted monomers.
  • Polymers based on vinyl esters, ethylene and optionally other monomers such as vinyl chloride or (meth)acrylic acid esters are used in many applications, particularly in the form of aqueous dispersions or water-redispersible polymer powders, for example in coating materials or adhesives for a wide variety of substrates.
  • Such polymers are generally stabilized by protective colloids, such as polyvinyl alcohols, or low molecular weight, surface-active compounds.
  • monomers which are liquid under polymerization conditions such as vinyl acetate or vinyl chloride
  • ethylene is between 5 and 120 bar abs. partly in the form of a gas, so that generally not such high ethylene conversion rates can be achieved under the industrially customary polymerization conditions.
  • ethylene polymerizes more slowly than, for example, vinyl acetate, and on the other hand, a large fraction of ethylene is present in the gas phase and cannot take part in the polymerization there under the usual conditions of emulsion or suspension polymerization, since in such polymerization processes the polymerization reaction only takes place in the liquid phase takes place with the participation of the ethylene fraction, which is dissolved in water, monomer and particles. For economic reasons, the large-scale polymerization should be completed in the shortest possible time, but this inevitably means that the ethylene used cannot be polymerized completely.
  • the polymerization is usually carried out with an ethylene residual gas content of ⁇ 10% by weight. -%, preferably ⁇ 5 wt.
  • the depressurization process usually includes the transfer of the reaction mixture (polymer dispersion+residual gas) from a pressure reactor to a pressureless reactor, with the remaining ethylene being separated off.
  • the latex obtained can then be further demonomerized in a known manner.
  • the excess ethylene is disposed of, generally incinerated.
  • the object of the present invention was to provide processes for the preparation of vinyl ester-ethylene copolymers which make it possible to reuse the largest possible proportion of the residual gas produced economically for the free-radically initiated polymerization of vinyl esters and ethylene and preferably to increase the space-time yield increase .
  • the invention relates to processes for preparing vinyl ester-ethylene copolymers by means of free-radically initiated polymerization of vinyl esters, ethylene and, if appropriate, other ethylenically unsaturated monomers in an aqueous medium at a pressure of from 5 to 120 bar abs. , characterized in that a ) the polymerization mixture is pressurized to a pressure of from 1 to 15 bar abs .
  • the polymerization mixture from stage a) is generally an aqueous dispersion which is obtained by free-radically initiated polymerization of vinyl esters, ethylene and optionally other ethylenically unsaturated monomers in an aqueous medium at a pressure of from 5 to 120 bar abs. is obtained .
  • the conversion of the monomers, in particular the monomers which are liquid under the polymerization conditions is preferably from 85 to 99% by weight, more preferably from 87 to 98% by weight and particularly preferably from 90 to 96% by weight.
  • the conversion of the monomers is generally the quotient of the weight of the vinyl ester-ethylene copolymers present in the polymerization mixture of stage a) and the total weight of the vinyl ester-ethylene copolymers and monomers present in the polymerization mixture of stage a).
  • the polymerization mixture is pressurized to a pressure of from 1 to 15 bar abs. , preferably 2 to 10 bar abs. and particularly preferably 2 to 5 bar abs. relaxed.
  • the polymerization mixture is generally transferred into a phase separation apparatus or low-pressure vessel which is under the appropriate pressure.
  • a gas phase containing ethylene and an aqueous phase containing vinyl ester and vinyl ester-ethylene copolymers are generally formed.
  • the ethylene-containing gas phase of stage a) contains preferably >75% by weight, more preferably >85% by weight and most preferably >95% by weight of ethylene, based on the total weight of that contained in the polymerization mixture of stage a). Ethylene, or based on the total weight of the ethylene contained in the gas phase and the aqueous phase of stage a).
  • the ethylene-containing gas phase of stage a) contains preferably 50 to 95% by weight, more preferably 70 to 90% by weight and most preferably 75 to 90% by weight of ethylene, based on the total weight of the ethylene-containing gas phase stage a) .
  • the ethylene-containing gas phase can also contain other components, such as vinyl esters, other monomers, water or inerts, for example nitrogen, argon or saturated hydrocarbons such as ethane.
  • the share of the other Constituents is preferably 5 to 50% by weight, particularly preferably 10 to 30% by weight and most preferably 10 to 25% by weight, based on the total weight of the ethylene-comprising gas phase of stage a).
  • the gas phase of stage a) preferably contains ⁇ 20% by weight, particularly preferably ⁇ 10% by weight, of vinyl ester, based on the total weight of vinyl ester in the gas phase and the aqueous phase of stage a).
  • the gas phase of stage a) preferably contains d 2% by weight, particularly preferably d 1% by weight, of water, based on the total weight of water in the gas phase and the aqueous phase of stage a).
  • the aqueous phase of stage a) preferably contains from 35 to 65% by weight, particularly preferably from 40 to 60% by weight, of vinyl ester-ethylene copolymers.
  • the aqueous phase of stage a) preferably contains 0.5 to 5% by weight, particularly preferably 1 to 3% by weight, of monomers, in particular vinyl esters such as vinyl acetate.
  • the aqueous phase of stage a) preferably contains 34.5 to 64.5% by weight, particularly preferably 39 to 59% by weight, of water. The percentages by weight are based on the total weight of the aqueous phase of stage a).
  • the relaxation in stage a) is preferably carried out adiabatically.
  • the temperature of the polymerization mixture is preferably from 75.degree. C. to 120.degree. C., particularly preferably from 80.degree. C. to 110.degree.
  • the temperature of the polymerization mixture is preferably from 75.degree. C. to 120.degree. C., particularly preferably from 80.degree. C. to 110.degree.
  • stage b) the ethylene-containing gas phase and the aqueous phase of stage a) containing vinyl esters and vinyl ester-ethylene copolymers can be separated in a conventional manner, for example using a phase separator.
  • the ethylene-containing gas phase b) is generally divided into vinyl ester, ie generally a starting material for the polymerization recorded .
  • This can take place, for example, in mixing devices, for example static mixers, agitators, mixing tubes or, in particular, absorption systems.
  • Preferred absorption systems are in the form of columns, in particular packed columns or structured columns.
  • Inert materials such as nitrogen, argon or saturated hydrocarbons are preferably separated off from the mixing device, in particular at the top of the mixing device, for example via a pressure maintenance system, and discharged from the process.
  • the vinyl esters are preferably brought to a temperature of 5° C. to 20° C. before they enter the mixing device.
  • the vinyl esters are fed into the mixing device in countercurrent to the ethylene-containing gas phase b); the ethylene-comprising gas phase b) is taken up in vinyl ester.
  • Any other substances present in the ethylene-containing gas phase b), in particular vinyl esters passed into the ethylene-containing gas phase in stage a), are preferably condensed in the mixing device and preferably exit the mixing device together with the ethylene absorbed in vinyl ester.
  • the mixture obtained in this way is generally fed into the reactor for the free-radically initiated polymerization of vinyl esters, ethylene and, if appropriate, other ethylenically unsaturated monomers.
  • the mixture can be compressed to the reactor pressure, for example by means of a pump, preferably after leaving the mixing device and/or before being introduced into the reactor.
  • the mixture obtained in stage b) preferably contains 0.5 to 5% by weight. -% ethylene, based on the amount of vinyl ester.
  • This can be beneficial in increasing ethylene recovery rates.
  • a compression ratio of preferably 1.5 to 3 is selected.
  • the compression ratio is the ratio of compressor outlet pressure to compressor inlet pressure. Compression of the ethylene-comprising gas phase from stage a) is particularly preferably dispensed with.
  • the aqueous phase from stage a) is pressurized to a pressure of from 0.1 to 0.5 bar abs. , preferably 0.15 to 0.4 bar abs. , particularly preferably from 0.2 to 0.3 bar abs., expanded, forming a gas phase containing vinyl ester and water and an aqueous phase containing vinyl ester-ethylene copolymers.
  • the gas phase comprising vinyl esters and water from stage c) is generally separated off, then condensed and then used in the free-radically initiated polymerization of vinyl esters, ethylene and, if appropriate, other ethylenically unsaturated monomers.
  • any ethylene remaining in the aqueous phase in stage a) is in stage c), preferably almost completely, converted into the gas phase of stage c) and preferably completely or largely dissolved in the condensate of stage c) and preferably used in the free-radically initiated polymerization.
  • Any ethylene not condensed in stage c) or not dissolved in the condensate from stage c) is preferably removed via a vacuum pump, in particular together with non-condensed water and vinyl ester and, if appropriate, inerts.
  • the relaxation in stage c) is preferably carried out adiabatically.
  • the aqueous phase has a temperature of preferably 75.degree. C. to 120.degree. C., particularly preferably 80.degree. C. to 110.degree. C., before the expansion in stage c) is carried out. Cooling by preferably 20° C. to 50° C., in particular 20° C. to 40° C., takes place in the course of the depressurization in stage c).
  • the gas phase which forms in stage c) and contains vinyl ester and water has a temperature of preferably 50.degree. C. to less than 80.degree. C., in particular less than 75.degree.
  • the expansion in stage c) can take place, for example, in a conventional phase separator. Alternatively, heat can also be supplied in stage c), for example by heating or preferably by means of steam. Steam and the aqueous phase are particularly preferably passed countercurrently through a separating apparatus, for example a packed column or structured column.
  • the condensation in stage c) is preferably carried out at a temperature of from 0.degree. C. to 15.degree. C., particularly preferably from 5.degree. C. to 10.degree.
  • the condensation in stage c) is carried out in two stages.
  • the first stage is preferably carried out at a temperature of 15°C to 40°C, more preferably 20°C to 35°C.
  • the second stage preferably takes place at a temperature of 0°C to 15°C, more preferably 5°C to 10°C.
  • water and vinyl ester can be condensed out one after the other.
  • This procedure is characterized by particular energy efficiency.
  • the two-stage condensation has the advantage that mainly water is obtained in the first stage and mainly vinyl ester as condensate in the second stage. This enables separate processing.
  • the recirculation can be carried out only partially in order to remove water-soluble or vinyl ester-soluble impurities.
  • the condensate is preferably completely recycled into the free-radically initiated polymerization.
  • the condensers are preferably connected to the phase separator of stage c) on the gas side.
  • the condensate from stage c) preferably contains from 25 to 75% by weight, particularly preferably from 40 to 60% by weight, of vinyl ester.
  • the condensate from stage c) preferably contains from 25 to 75% by weight, particularly preferably from 40 to 60% by weight, of water. These figures in % by weight are based in each case on the total weight of the condensate from stage c).
  • the condensate from stage c) preferably contains 25 to 75% by weight, particularly preferably 35 to 65% by weight, of vinyl esters, based on the total weight of the vinyl esters, which are contained in the aqueous phase of stage a containing vinyl esters and vinyl ester-ethylene copolymers ) were included.
  • the condensate preferably contains 50 to 100% by weight, particularly preferably 90 to 100% by weight, of vinyl esters, based on the total weight of the vinyl esters were contained in the aqueous phase of stage a) containing vinyl esters and vinyl ester-ethylene copolymers.
  • Stage c) condensate is reused in the free radical initiated polymerization of vinyl esters and ethylene.
  • the condensate is preferably introduced directly or immediately, optionally after temperature control, into the reactor for the free-radically initiated polymerization of vinyl esters and ethylene, for example using a pump.
  • stage c after the gas phase comprising vinyl ester and water has been separated off, there generally remains an aqueous phase comprising vinyl ester-ethylene copolymers (aqueous phase from stage c)).
  • This aqueous phase preferably contains ⁇ 2% by weight, particularly preferably 0 to 1% by weight, of vinyl ester, based on the total weight of this aqueous phase containing vinyl ester-ethylene copolymers.
  • This aqueous phase formed in stage c) preferably contains ⁇ 10 ppm, particularly preferably 0 to 5 ppm, ethylene.
  • the residual monomer content of the polymer dispersion remaining after stage c) is preferably 1 to 10,000 ppm, particularly preferably 500 to 5000 ppm. If additional energy is supplied to stage c), for example in the form of heat output or steam, the residual monomer content is preferably 1 to 1000 ppm, particularly preferably 10 to 100 ppm.
  • the vinyl ester content of the polymer dispersion after stage c) is, for example, 50 to 80% by weight lower than at the reactor exit. If additional energy is supplied to stage c), for example in the form of heat output or steam, the vinyl ester content is >99% by weight lower than at the reactor outlet.
  • the aqueous phase formed in stage c) has a temperature of preferably 50°C to less than 80°C.
  • the aqueous phase from stage c) can be post-polymerized for further residual monomer removal using known methods, generally by post-polymerization initiated with a redox catalyst.
  • Volatile residual monomers can also be removed (stripping) by means of distillation, preferably under reduced pressure, and optionally with passing through or overflowing of inert entraining gases such as air, nitrogen or steam.
  • the aqueous phase from step a) can be subjected to post-polymerization or stripping.
  • the two-stage decompression in steps a) and c) can be combined with a two-stage post-polymerization by post-polymerizing both the aqueous phase from stage a) (first post-polymerization) and the aqueous phase from stage c) (second post-polymerization).
  • the first post-polymerization polymerizes preferably from 25 to 90% by weight, particularly preferably from 50 to 75% by weight, of the vinyl esters present in the aqueous phase of stage a).
  • the vinyl esters remaining after the first post-polymerization preferably 25 to 75% by weight, particularly preferably 50 to 75% by weight, are converted into the gas phase in stage c).
  • the vinyl esters then still remaining in the aqueous phase from stage c) can be polymerized to completion in a second post-polymerization.
  • This process variant makes it particularly advantageous to achieve low residual monomer contents, preferably ⁇ 100 ppm, particularly preferably ⁇ 50 ppm.
  • Post-polymerization and stripping can be dispensed with in the process according to the invention, or post-polymerization or stripping can be carried out in a shorter period of time than in conventional processes, since the residual monomer content has already been reduced by steps a) to c) of the process according to the invention.
  • the process according to the invention is generally suitable for batch or semi-batch processes and is particularly advantageous for continuous processes.
  • the aqueous polymer dispersions obtainable therewith have a solids content of 30 to 75% by weight. -%, preferably from 50 to 60 wt. -% .
  • Suitable vinyl esters are those of carboxylic acids having 1 to 18 carbon atoms. Preference is given to vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl laurate, 1-methyl vinyl acetate, vinyl pivalate and vinyl esters of a-branched monocarboxylic acids having 9 to 13 carbon atoms, for example VeoVa ⁇ or VeoVal fl (trade names from Shell). Vinyl acetate is particularly preferred.
  • suitable monomers which can be copolymerized with vinyl esters and ethylene are acrylic esters or methacrylic esters of unbranched or branched alcohols having 1 to 18 carbon atoms.
  • Preferred methacrylic acid esters or acrylic acid esters are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate, 2-ethylhexyl acrylate.
  • Methyl acrylate, methyl methacrylate, n-butyl acrylate, t-butyl acrylate and 2-ethylhexyl acrylate are particularly preferred.
  • Vinyl halides such as vinyl chloride are also suitable.
  • auxiliary monomers are copolymerized. 0.1 to 15% by weight are preferred.
  • auxiliary monomers are ethylenically unsaturated mono- and dicarboxylic acids; ethylenically unsaturated carboxylic acid amides and carboxylic acid nitriles; ethylenically unsaturated sulfonic acids or their salts.
  • pre-crosslinking comonomers such as polyethylenically unsaturated comonomers, or post-crosslinking comonomers, for example N-methylolacrylamide (NMA).
  • NMA N-methylolacrylamide
  • epoxy functional comonomers such as glycidyl methacrylate and silicon functional comonomers.
  • Mixtures of vinyl acetate and ethylene are preferably used; and mixtures of vinyl acetate and other vinyl esters such as vinyl laurate or vinyl esters of a-branched monocarboxylic acids having 9 to 13 carbon atoms and ethylene; and mixtures of vinyl chloride, ethylene and vinyl esters, for example vinyl laurate.
  • the selection of monomers or the selection of the proportions by weight of the comonomers is carried out in such a way that a glass transition temperature Tg of ⁇ 50° C. to +50° C., preferably ⁇ 20° C. to +20° C., generally results.
  • the glass transition temperature Tg of the polymers can be determined in a known manner by means of differential scanning calorimetry (DSC).
  • Tg n the glass transition temperature in Kelvin of the homopolymer of monomer n. Tg values for homopolymers are listed in Polymer Handbook 2nd Edition, J. Wiley & Sons, New York (1975).
  • the preparation of the polymers by means of free-radically initiated polymerization in an aqueous medium is preferably carried out by the suspension polymerization process and in particular by the emulsion polymerization process, preferably in the presence of protective colloids and/or emulsifiers. Such methods are known per se.
  • the polymerization temperature is generally from 40°C to 100°C, preferably from 60°C to 90°C
  • the polymerization is generally carried out at a pressure of from 5 to 120 bar abs. worked.
  • the polymerization is generally initiated using the water-soluble or monomer-soluble initiators or redox initiator combinations customary for emulsion polymerization or suspension polymerization.
  • water-soluble initiators are the sodium, potassium and ammonium salts of peroxodisulfuric acid, hydrogen peroxide, t-butyl peroxide, t-butyl hydroperoxide, potassium peroxodiphosphate, t-butyl peroxopivalate, cumene hydroperoxide, isopropylbenzene monohydroperoxide, azobisisobutyronitrile.
  • Examples of monomer-soluble initiators are dicetyl peroxydicarbonate, dicyclohexyl peroxydicarbonate, dibenzoyl peroxide.
  • the initiators mentioned are generally used in an amount of from 0.01 to 0.5% by weight, based on the total weight of the monomers.
  • Combinations of the initiators mentioned in combination with reducing agents are generally used as redox initiators.
  • Suitable reducing agents are, for example, the sulfites or bisulfites of alkali metals and of ammonium, for example sodium sulfite, the derivatives of sulfoxylic acid such as zinc or alkali metal formaldehyde sulfoxylates, for example sodium hydroxymethanesulfite, and ascorbic acid.
  • the amount of reducing agent is preferably from 0.01 to 0.5% by weight, based on the total weight of the monomers.
  • Substances that regulate the molecular weight can be used during the polymerization to control the molecular weight. If regulators are used, they are usually used in amounts of between 0.01 and 5.0% by weight, based on the monomers to be polymerized. Regulators can generally be metered in separately or else premixed with reaction components. Examples of such substances are n-dodecyl mercaptan, tert. -Dodecyl mercaptan, mercaptopropionic acid, mercaptopropionic acid methyl ester, isopropanol and acetaldehyde. Preferably no controlling substances are used.
  • Suitable protective colloids are partially hydrolyzed polyvinyl alcohols; polyvinylpyrrolidones; polyvinyl acetals; Polysaccharides in water-soluble form such as starches (amylose and amylopectin), celluloses and their carboxymethyl, methyl, hydroxyethyl, hydroxypropyl derivatives; Proteins such as casein or caseinate, soya protein, gelatin; lignosulfonates; synthetic polymers such as poly(meth)acrylic acid, copolymers of (meth)acrylates with carboxyl-functional comonomer units, poly(meth)acrylamide, polyvinylsulfonic acids and their water-soluble copolymers; Melamine formaldehyde sulfonates, naphthalene formaldehyde sulfonates, styrene maleic acid and vinyl ether maleic acid copolymers. Partially hydrolyzed or fully hydrolyzed polyvinyl alcohols
  • the protective colloids are generally used in a total amount of 1 to 20% by weight. -%, based on the total weight of the monomers, added during the polymerization.
  • the protective colloid fraction can, for example, be completely initially introduced or partially initially introduced and partially metered in.
  • Anionic, cationic or also nonionic emulsifiers are suitable for the polymerization of emulsifiers.
  • anionic surfactants are alkyl sulfates with a chain length of 8 to 18 carbon atoms, alkyl or alkylaryl ether sulfates with 8 to 18 carbon atoms in the hydrophobic radical and up to 40 ethylene or propylene oxide units, alkyl or alkylaryl sulfonates with 8 to 18 carbon atoms, esters and semi-esters of sulfosuccinic acid with monohydric alcohols or alkylphenols.
  • nonionic surfactants are alkyl polyglycol ethers or alkylaryl polyglycol ethers with 8 to 40 ethylene oxide units.
  • the emulsifiers are used in an amount of 0.1 to 5% by weight. -% based on the amount of monomer used.
  • polymer dispersions with low residual monomer contents can be obtained in an advantageous manner. This is also of particular importance if the polymer dispersions are subsequently dried to a powder in a spray dryer, since this is from the dryer exhaust air Residual monomers must be laboriously removed in order to comply with emission limits.
  • residual vinyl ester and ethylene monomers can be separated off in a technically simple, efficient, energy-saving and therefore economical manner and reused in the polymerization.
  • Recompression steps with compressors, in particular with multi-stage compressors, or temperature control of vinyl esters and ethylene can be dispensed with here. Further steps for cleaning the residual gas can be omitted.
  • the residual vinyl ester and ethylene monomers can be almost completely recycled for the polymerization, so that the disposal of residual gas is significantly simplified.
  • the polymer dispersions are generally concentrated, for example by 1 to 20% by weight. -%, in particular 2 to 8 wt. -% .
  • the polymerization can be carried out at lower solids content. This reduces fouling during the polymerization and accelerates the removal of heat from the polymerization reactor, which allows an increase in the space-time yield and reduces reactor downtimes for removing fouling.
  • the mass flow of the polymer dispersion was reduced to a pressure of 1.0 bar absolute with the aid of a control valve.
  • the polymer dispersion was then post-polymerized for 1 hour with the addition of initiator.
  • the polymer dispersion thus obtained contained 100 ppm vinyl acetate and 35 ppm ethylene.
  • the mass flow of the polymer dispersion was reduced to a pressure of 0.2 bar absolute with the aid of a control valve.
  • the polymer dispersion was then post-polymerized for 1 hour with the addition of the same amount of initiator as in Comparative Example 1a.
  • the polymer dispersion thus obtained contained 30 ppm of vinyl acetate and 1 ppm of ethylene.
  • Example 1c Two-stage decompression of the polymer dispersion at 3 bar and 0.2 bar:
  • the mass flow of the polymer dispersion was initially reduced to a pressure of 3 bar absolute with the aid of a control valve.
  • 0.22 wt. -% ethylene in the gas phase and 700 ppm ethylene remained in the dispersion.
  • the ethylene stripped off in this way was dissolved in the vinyl acetate feed without further compression, which was then introduced into the polymerization reactor.
  • the polymer dispersion was then post-polymerized for 1 hour with the addition of the same amount of initiator as in Comparative Example 1a.
  • the polymer dispersion obtained in this way contained 30 ppm of vinyl acetate and 1 ppm of ethylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Gegenstand der Erfindung sind Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisäten mittels radikalisch initiierter Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren in wässrigem Medium bei einem Druck von 5 bis 120 bar abs., dadurch gekennzeichnet, dass a) Polymerisationsgemisch auf einen Druck von 1 bis 15 bar abs. entspannt wird, wobei eine Ethylen enthaltende Gasphase und eine Vinylester und Vinylester-Ethylen-Mischpolymerisate enthaltende wässrige Phase erhalten wird, b) die Ethylen enthaltende Gasphase aus Stufe a) abgetrennt, anschließend in Vinylester aufgenommen und das so erhaltene Gemisch in der radikalisch initiierten Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren eingesetzt wird und c) die wässrige Phase aus Stufe a) auf einen Druck von 0,1 bis 0,5 bar abs. entspannt wird, wobei sich eine Vinylester und Wasser enthaltende Gasphase bildet, die abgetrennt, anschließend kondensiert und dann in der radikalisch initiierten Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren eingesetzt wird.

Description

Verfahren zur Rückgewinnung von Restmonomeren bei der Herstellung von Vinylester-Ethylen-Mischpolyinerisaten
Die Erfindung betri f ft Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten mittels radikalisch initiierter Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren in wässrigem Medium bei einem Druck von 5 bis 120 bar abs . unter Rückgewinnung von nicht umgesetzten Monomeren .
Polymerisate auf Basis von Vinylester, Ethylen und gegebenenfalls weiteren Monomeren, wie Vinylchlorid oder (Meth) acrylsäu- reester, werden insbesondere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Polymerpulver in vielerlei Anwendungen eingesetzt , beispielsweise in Beschichtungsmitteln oder Klebemitteln für unterschiedlichste Substrate . Solche Polymerisate sind allgemein durch Schutzkolloide , wie Polyvinylalkohole , oder niedermolekulare , oberflächenaktive Verbindungen stabilisiert .
Bei der großtechnischen Polymerisation sind hohe Umsatzgrade Stand der Technik . So werden unter Polymerisationsbedingungen flüssige Monomere , wie Vinylacetat oder Vinylchlorid, üblicherweise bis zu einem Restmonomergehalt von < 0 , 1 Gew . -% , bevorzugt < 0 , 05 Gew . -% , und im Falle von Vinylchlorid < 0 , 01 Gew . -% auspolymerisiert . Ethylen liegt während der Polymerisation bei 5 bis 120 bar abs . teilweise in Form eines Gases vor, so dass unter den großtechnisch üblichen Polymerisationsbedingungen generell keine so hohen Ethylen-Umsatzgrade erreicht werden . Denn zum einen polymerisiert Ethylen langsamer als beispielsweise Vinylacetat , und zum anderen liegt Ethylen zu einem großen Bruchteil in der Gasphase vor und kann dort unter den üblichen Bedingungen der Emulsions- oder Suspensionspolymerisation nicht an der Polymerisation teilnehmen, da bei solchen Polymerisationsverfahren die Polymerisationsreaktion nur in der flüssigen Phase stattfindet unter Teilnahme des Ethylenanteils , der in Wasser, Monomer und Partikel gelöst ist . Die großtechnische Polymerisation soll aus wirtschaftlichen Gründen in möglichst kurzen Zeiträumen beendet sein, was aber zwangsläufig dazu führt , dass das eingesetzte Ethylen nicht vollständig auspolymerisiert werden kann . Üblicherweise wird die Polymerisation bei einem Ethylen-Restgasgehalt von < 10 Gew . -% , bevorzugt < 5 Gew . -% , abgebrochen und der Reaktionsansatz entspannt . Der Entspannungsvorgang beinhaltet üblicherweise die Überführung des Reaktionsgemisches ( Polymerdispersion + Restgas ) von einem Druckreaktor in einem drucklosen Reaktor unter Abtrennung des restlichen Ethylens . Der erhaltene Latex kann dann in bekannter Weise weiter entmonomerisiert werden . Das überschüssige Ethylen wird entsorgt , im Allgemeinen verbrannt .
Diese dem Stand der Technik entsprechende Vorgehensweise ist nicht nachhaltig wegen schlechter Monomerverwertung und hohen Entsorgungskosten für die Restmonomere . Einer Wiederverwendung des anfallenden Ethylens steht die Tatsache entgegen, dass das Restgas zuvor wieder auf hohen Druck ( > 80 bar ) rekomprimiert werden müsste . Dieser energieintensive Prozess steht der Wiederverwertung aus wirtschaftlichen Gründen entgegen, da vor der Rekomprimierung das Restgas noch aufwändig gereinigt werden müsste , um beispielsweise Druckstöße bei der Komprimierung zu vermeiden .
Aus dem Stand der Technik sind verschiedene Verfahren zur Restethylenrückgewinnung bekannt . So wird in der DE10253043 das Reaktionsgemisch nach Abschluss der Emulsionspolymerisation von Vinylestern und Ethylen in einem Schritt auf einen Druck von 0 , 1 bis 5 bar abs . entspannt , die Gasphase mit dem Ethylen enthaltenden Restgas auf einen Druck von 2 bis 20 bar abs . verdichtet und schließlich wieder in den Reaktor zur Emulsionspolymerisation zurückgeführt . Die WG2007 / 074075 lehrt zur Ethylenrückgewinnung eine aufwändige , mehrstufige fraktionierte Tief kaltkondensation von Ethylen aus dem Restgas . Die EP3321292 beschreibt ein Hochdruckpolymerisationsverfahren bei mindestens 1500 bar zur Herstellung von Ethylen-Vinylcopolymeren . Zur Rückgewinnung von Ethylen und Vinyl-Comonomeren wird in meh- reren Stufen zunächst auf 200 bis 300 bar, dann auf 40 bis 60 bar und schließlich auf 0 , 1 bis 5 bar entspannt , j eweils unter Abtrennung der in der Gasphase enthaltenen Monomerengemische .
Aufgabe der vorliegenden Erfindung war es , Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten bereitzustellen, die es ermöglichen, möglichst große Anteile des anfallenden Restgases in wirtschaftlicher Weise für die radikalisch initiierte Polymerisation von Vinylestern und Ethylen wiederzuverwenden und vorzugsweise die Raum-Zeit-Ausbeute zu steigern .
Gegenstand der Erfindung sind Verfahren zur Herstellung von Vi- nylester-Ethylen-Mischpolymerisaten mittels radikalisch initiierter Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren in wässrigem Medium bei einem Druck von 5 bis 120 bar abs . , dadurch gekennzeichnet , dass a ) Polymerisationsgemisch auf einen Druck von 1 bis 15 bar abs . entspannt wird, wobei eine Ethylen enthaltende Gasphase und eine Vinylester und Vinylester-Ethylen-Mischpolymerisate enthaltende wässrige Phase erhalten wird, b ) die Ethylen enthaltende Gasphase aus Stufe a ) abgetrennt , anschließend in Vinylester aufgenommen und das so erhaltene Gemisch in der radikalisch initiierten Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren eingesetzt wird und c ) die wässrige Phase aus Stufe a ) auf einen Druck von 0 , 1 bis 0 , 5 bar abs . entspannt wird, wobei sich eine Vinylester und Wasser enthaltende Gasphase bildet , die abgetrennt , anschließend kondensiert und dann in der radikalisch initiierten Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren eingesetzt wird .
Das Polymerisationsgemisch von Stufe a ) ist allgemein eine wässrige Dispersion, die durch radikalisch initiierte Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren in wässrigem Medium bei einem Druck von 5 bis 120 bar abs . erhalten wird . Im Polymerisationsgemisch der Stufe a) sind die Monomere, insbesondere die unter Polymerisationsbedingungen flüssigen Monomere, zu vorzugsweise 85 bis 99 Gew.-%, mehr bevorzugt 87 bis 98 Gew.-% und besonders bevorzugt 90 bis 96 Gew.-% umgesetzt. Der Umsatz der Monomere ist allgemein der Quotient aus dem Gewicht der im Polymerisationsgemisch der Stufe a) enthaltenen Vinylester-Ethylen-Mischpolymerisate und dem Gesamtgewicht der im Polymerisationsgemisch der Stufe a) enthaltenen Vinylester- Ethylen-Mischpolymerisate und Monomere.
In Stufe a) wird das Polymerisationsgemisch auf einen Druck von 1 bis 15 bar abs . , vorzugsweise 2 bis 10 bar abs . und besonders bevorzugt 2 bis 5 bar abs. entspannt. Im Allgemeinen wird dazu das Polymerisationsgemisch in einen unter dem entsprechenden Druck stehenden Phasentrennapparat oder Niederdruckbehälter überführt. Es bildet sich allgemein eine Ethylen enthaltende Gasphase und eine Vinylester und Vinylester-Ethylen-Mischpolymerisate enthaltende wässrige Phase.
Die Ethylen enthaltende Gasphase der Stufe a) enthält zu vorzugsweise > 75 Gew.-%, besonders bevorzugt > 85 Gew.-% und am meisten bevorzugt > 95 Gew.-% Ethylen, bezogen auf das Gesamtgewicht des im Polymerisationsgemisch der Stufe a) enthaltenen Ethylens, oder bezogen auf das Gesamtgewicht des in der Gasphase und der wässrigen Phase der Stufe a) enthaltenen Ethylens .
Die Ethylen enthaltende Gasphase der Stufe a) enthält zu vorzugsweise 50 bis 95 Gew.-%, besonders bevorzugt 70 bis 90 Gew.-% und am meisten bevorzugt 75 bis 90 Gew.-% Ethylen, bezogen auf das Gesamtgewicht der Ethylen enthaltenden Gasphase der Stufe a) .
Des Weiteren kann die Ethylen enthaltende Gasphase auch weitere Bestandteile enthalten, wie Vinylester, weitere Monomere, Wasser oder Inerten, beispielsweise Stickstoff, Argon oder gesättigte Kohlenwasserstoffe, wie Ethan. Der Anteil der weiteren Bestandteile beträgt vorzugsweise 5 bis 50 Gew.-%, besonders bevorzugt 10 bis 30 Gew.-% und am meisten 10 bis 25 Gew.-%, bezogen auf das Gesamtgewicht der Ethylen enthaltenden Gasphase der Stufe a) .
Die Gasphase der Stufe a) enthält vorzugsweise < 20 Gew.-%, besonders bevorzugt < 10 Gew.-% an Vinylester, bezogen auf das Gesamtgewicht an Vinylester in der Gasphase und der wässrigen Phase der Stufe a) . Die Gasphase der Stufe a) enthält vorzugsweise d 2 Gew.-%, besonders bevorzugt d 1 Gew.-% an Wasser, bezogen auf das Gesamtgewicht an Wasser in der Gasphase und der wässrigen Phase der Stufe a) .
Die wässrige Phase der Stufe a) enthält vorzugsweise 35 bis 65 Gew.-%, besonders bevorzugt 40 bis 60 Gew.-% an Vinylester- Ethylen-Mischpolymerisaten. Die wässrige Phase der Stufe a) enthält vorzugsweise 0,5 bis 5 Gew.-%, besonders bevorzugt 1 bis 3 Gew.-% an Monomeren, insbesondere Vinylester, wie Vinylacetat. Die wässrige Phase der Stufe a) enthält vorzugsweise 34,5 bis 64,5 Gew.-%, besonders bevorzugt 39 bis 59 Gew.-% an Wasser. Die Angaben in Gew.-% beziehen sich auf das Gesamtgewicht der wässrigen Phase der Stufe a) .
Das Entspannen in Stufe a) wird vorzugsweise adiabatisch durchgeführt. Das Polymerisationsgemisch hat vor Durchführung der Entspannung in Stufe a) eine Temperatur von vorzugsweise 75°C bis 120°, besonders bevorzugt 80°C bis 110°C. Nach Durchführung der Entspannung in Stufe a) hat das Polymerisationsgemisch eine Temperatur von vorzugsweise 75°C bis 120°C, besonders bevorzugt 80°C bis 110°C.
In Stufe b) kann das Trennen der Ethylen enthaltenden Gasphase und der Vinylester sowie Vinylester-Ethylen-Mischpolymerisate enthaltenden wässrigen Phase der Stufe a) auf an sich herkömmliche Weise erfolgen, beispielsweise mit einem Phasentrenner.
Die Ethylen enthaltende Gasphase b) wird allgemein in Vinylester, also allgemein einem Ausgangsmaterial der Polymerisation, aufgenommen . Dies kann beispielsweise in Mischvorrichtungen, beispielsweise Statikmischern, Rührwerken, Mischrohren oder insbesondere Absorptionsanlagen erfolgen . Bevorzugte Absorptionsanlagen sind in Form von Kolonnen, insbesondere Füllkörperoder Packungskolonnen, ausgestaltet . Vorzugsweise werden aus der Mischvorrichtung, insbesondere am Kopf der Mischvorrichtung, beispielsweise über eine Druckhaltung, Inerte , wie Stickstof f , Argon oder gesättigte Kohlenwasserstof fe , abgetrennt und aus dem Verfahren ausgeschleust . Die Vinylester werden vorzugsweise vor dem Eintritt in die Mischvorrichtung auf eine Temperatur von 5 ° C bis 20 ° C temperiert . In einer bevorzugten Aus führungs form werden die Vinylester in der Mischvorrichtung im Gegenstrom zur Ethylen enthaltenden Gasphase b ) geführt ; dabei erfolgt das Aufnehmen der Ethylen enthaltenden Gasphase b ) in Vinylester . Etwaige in der Ethylen enthaltenden Gasphase b ) enthaltene weitere Stof fe , insbesondere in Stufe a ) in die Ethylen enthaltende Gasphase übergangene Vinylester, werden vorzugsweise in der Mischvorrichtung kondensiert und treten vorzugsweise zusammen mit dem in Vinylester absorbierten Ethylen aus der Mischvorrichtung aus .
Das so erhaltene Gemisch wird allgemein in den Reaktor für die radikalisch initiierte Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren zugeführt . Das Gemisch kann auf den Reaktordruck verdichtet werden, beispielsweise mittels einer Pumpe , vorzugsweise nach Verlassen der Mischvorrichtung und/oder vor Einbringen in den Reaktor .
Das in Stufe b ) erhaltene Gemisch enthält vorzugsweise 0 , 5 bis 5 Gew . -% Ethylen, bezogen auf die Vinylestermenge .
Im Falle von Vinylester-Ethylen-Mischpolymerisaten mit besonders hohen Ethylengehalten oder im Falle von besonders stark mit Inerten verunreinigten Einsatzstof fen, insbesondere Ethylen, kann es von Vorteil sein, die Ethylen enthaltende Gasphase aus Stufe a ) vor Stufe b ) zu verdichten . Dies kann zur Steigerung der Ethylen-Rückgewinnungsraten vorteilhaft sein . Dabei wird ein Verdichtungsverhältnis von vorzugsweise 1,5 bis 3 gewählt. Das Verdichtungsverhältnis ist das Verhältnis aus Verdichteraustrittsdruck zu Verdichtereintrittsdruck. Besonders bevorzugt wird auf eine Verdichtung der Ethylen enthaltenden Gasphase von Stufe a) verzichtet.
In Stufe c) wird die wässrige Phase aus Stufe a) auf einen Druck von 0,1 bis 0,5 bar abs . , vorzugsweise 0,15 bis 0,4 bar abs . , besonders bevorzugt 0,2 bis 0,3 bar abs., entspannt, wobei sich eine Vinylester sowie Wasser enthaltende Gasphase und eine Vinylester-Ethylen-Mischpolymerisate enthaltende wässrige Phase bilden. Die Vinylester und Wasser enthaltende Gasphase der Stufe c) wird allgemein abgetrennt, anschließend kondensiert und dann in der radikalisch initiierten Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethyle- nisch ungesättigten Monomeren eingesetzt. Etwaiges in Stufe a) in der wässrigen Phase verbliebenes Ethylen wird in Stufe c) , vorzugsweise nahezu vollständig, in die Gasphase der Stufe c) überführt und vorzugsweise vollständig oder Großteils im Kondensat der Stufe c) gelöst und vorzugsweise in der radikalisch initiierten Polymerisation eingesetzt. Etwaiges in Stufe c) nicht kondensiertes oder nicht im Kondensat der Stufe c) gelöstes Ethylen wird vorzugsweise über eine Vakuumpumpe, insbesondere gemeinsam mit nicht kondensiertem Wasser und Vinylester und gegebenenfalls Inerten, abgeführt.
Das Entspannen in Stufe c) wird vorzugsweise adiabatisch durchgeführt. Die wässrige Phase hat vor Durchführung der Entspannung in Stufe c) eine Temperatur von vorzugsweise 75°C bis 120°C, besonders bevorzugt 80°C bis 110°C. Im Zuge des Entspannens in Stufe c) erfolgt eine Abkühlung um vorzugsweise 20°C bis 50°C, insbesondere 20°C bis 40°C. Die sich in Stufe c) bildende Vinylester und Wasser enthaltende Gasphase hat eine Temperatur von vorzugsweise 50°C bis kleiner 80°C, insbesondere bis kleiner 75°C. Das Entspannen in Stufe c) kann beispielsweise in einem herkömmlichem Phasentrenner erfolgen. Alternativ kann in Stufe c) auch Wärme zugeführt werden, beispielsweise durch Heizen oder vorzugsweise mittels Dampf. Besonders bevorzugt werden Dampf und die wässrige Phase im Gegenstrom über einen Trennapparat, beispielsweise eine Füllkörperoder Packungskolonne, geleitet.
Die Kondensation in Stufe c) wird vorzugsweise bei einer Temperatur von 0°C bis 15°C, besonders bevorzugt 5°C bis 10°C durchgeführt .
In einer alternativen Aus führungs form wird die Kondensation in Stufe c) zweistufig durchgeführt. Die erste Stufe erfolgt vorzugsweise bei einer Temperatur von 15°C bis 40°C, besonders bevorzugt 20°C bis 35°C. Die zweite Stufe erfolgt vorzugsweise bei einer Temperatur von 0°C bis 15°C, besonders bevorzugt 5°C bis 10°C. Auf diese Weise können Wasser und Vinylester nacheinander auskondensiert werden. Diese Vorgehensweise zeichnet sich durch besondere Energieeffizienz aus. Zudem hat die zweistufige Kondensation den Vorteil, dass in der ersten Stufe hauptsächlich Wasser und in der zweiten Stufe hauptsächlich Vinylester als Kondensat anfällt. Dadurch wird eine getrennte Aufarbeitung ermöglicht. So kann die Rückführung beispielsweise nur partiell ausgeführt werden, um wasser- oder vinylesterlösliche Verunreinigungen auszuschleusen. Vorzugsweise wird das Kondensat vollständig in die radikalisch initiierte Polymerisation rückgeführt.
Es können gängige Kondensatoren Einsatz finden. Die Kondensatoren sind vorzugsweise gasseitig mit dem Phasentrenner der Stufe c) verbunden.
Das Kondensat der Stufe c) enthält vorzugsweise 25 bis 75 Gew.-%, besonders bevorzugt 40 bis 60 Gew.-% Vinylester. Das Kondensat der Stufe c) enthält vorzugsweise 25 bis 75 Gew.-%, besonders bevorzugt 40 bis 60 Gew.-% Wasser. Diese Angaben in Gew.-% beziehen sich jeweils auf das Gesamtgewicht des Kondensats der Stufe c) . Das Kondensat der Stufe c) enthält vorzugsweise 25 bis 75 Gew.-%, besonders bevorzugt 35 bis 65 Gew.-% Vinylester, bezogen auf das Gesamtgewicht der Vinylester, die in der Vinylester und Vinylester-Ethylen-Mischpolymerisate enthaltenden wässrigen Phase der Stufe a) enthalten waren. Wird der Stufe c) zusätzlich Energie, beispielsweise in Form von Heizleistung oder Dampf, zugeführt, so enthält das Kondensat vorzugsweise 50 bis 100 Gew.-%, besonders bevorzugt 90 bis 100 Gew.-% Vinylester, bezogen auf das Gesamtgewicht der Vinylester, die in der Vinylester und Vinylester-Ethylen-Mischpolymerisate enthaltenden wässrigen Phase der Stufe a) enthalten waren.
Kondensat der Stufe c) wird in der radikalisch initiierten Polymerisation von Vinylestern und Ethylen wiederverwendet. Das Kondensat wird vorzugsweise direkt oder unmittelbar, gegebenenfalls nach Temperierung, in den Reaktor für die radikalisch initiierte Polymerisation von Vinylestern und Ethylen eingebracht, beispielsweise unter Einsatz einer Pumpe.
In Stufe c) verbleibt nach Abtrennen der Vinylester und Wasser enthaltenden Gasphase allgemein eine Vinylester-Ethylen-Misch- polymerisate enthaltende wässrige Phase (wässrige Phase aus Stufe c) ) . Diese wässrige Phase enthält vorzugsweise < 2 Gew.-%, besonders bevorzugt 0 bis 1 Gew.-% Vinylester, bezogen auf das Gesamtgewicht dieser Vinylester-Ethylen-Mischpolymeri- sate enthaltenden wässrige Phase. Diese, in Stufe c) gebildete wässrige Phase enthält vorzugsweise < 10 ppm, besonders bevorzugt 0 bis 5 ppm Ethylen.
Der Restmonomergehalt der nach Stufe c) verbleibenden Polymerdispersion beträgt vorzugsweise 1 bis 10000 ppm, besonders bevorzugt 500 bis 5000 ppm. Wird der Stufe c) zusätzlich Energie, beispielsweise in Form von Heizleistung oder Dampf, zugeführt, so beträgt der Restmonomergehalt vorzugsweise 1 bis 1000 ppm, besonders bevorzugt 10 bis 100 ppm.
Der Vinylestergehalt der Polymerdispersion nach Stufe c) ist beispielsweise um 50 bis 80 Gew.-% niedriger als am Reaktor- austritt. Wird der Stufe c) zusätzlich Energie, beispielsweise in Form von Heizleistung oder Dampf, zugeführt, so ist der Vinylestergehalt um > 99 Gew.-% niedriger als am Reaktoraustritt.
Die in Stufe c) gebildete wässrige Phase hat eine Temperatur von vorzugsweise 50°C bis kleiner 80°C.
Nach Stufe c) kann die wässrige Phase aus Stufe c) zur weiteren Restmonomerentfernung in Anwendung bekannter Methoden nachpolymerisiert werden, im Allgemeinen durch mit Redoxkatalysator initiierter Nachpolymerisation. Flüchtige Restmonomere können auch mittels Destillation, vorzugsweise unter reduziertem Druck, und gegebenenfalls unter Durchleiten oder Überleiten von inerten Schleppgasen wie Luft, Stickstoff oder Wasserdampf entfernt werden (Strippen) .
Alternativ oder zusätzlich kann die wässrige Phase aus Stufe a) einer Nachpolymerisation oder einem Strippen unterzogen werden.
Bevorzugt ist, die wässrige Phase aus Stufe a) und zudem die wässrige Phase aus Stufe c) dem Nachpolymerisieren oder Strippen zu unterziehen. Besonders vorteilhaft kann die zweistufige Entspannung in den Schritten a) und c) mit einer zweistufigen Nachpolymerisation verbunden werden, indem sowohl die wässrige Phase aus Stufe a) (erste Nachpolymerisation) als auch die wässrige Phase aus Stufe c) (zweite Nachpolymerisation) nachpolymerisiert werden. Durch die erste Nachpolymerisation werden vorzugsweise 25 bis 90 Gew.-%, besonders bevorzugt 50 bis 75 Gew.-% der in der wässrigen Phase der Stufe a) enthaltenen Vinylester auspolymerisiert. Von den nach der ersten Nachpolymerisation verbliebenen Vinylestern werden in der Stufe c) vorzugsweise 25 bis 75 Gew.-%, besonders bevorzugt 50 bis 75 Gew.- %, in die Gasphase überführt. Die dann in der wässrigen Phase aus Stufe c) noch verbleibenden Vinylester können in einer zweiten Nachpolymerisation auspolymerisiert werden. Durch diese Verfahrensvariante lassen sich besonders vorteilhaft niedrige Restmonomergehalte erreichen, von vorzugsweise < 100 ppm, besonders bevorzugt < 50 ppm. Im erfindungsgemäßen Verfahren kann auf Nachpolymerisieren und Strippen verzichtet werden, oder Nachpolymerisieren beziehungsweise Strippen können in einem kürzeren Zeitraum durchgeführt werden als in herkömmlichen Verfahren, da der Restmonomergehalt durch die Stufen a ) bis c ) des erfindungsgemäßen Verfahrens bereits reduziert ist .
Das erfindungsgemäße Verfahren eignet sich allgemein für Batchoder Semi-Batchverfahren und ist besonders vorteilhaft für kontinuierliche Verfahren .
Die damit erhältlichen wässrigen Polymerdispersionen haben einen Feststof f gehalt von 30 bis 75 Gew . -% , vorzugsweise von 50 bis 60 Gew . -% .
Geeignete Vinylester sind solche von Carbonsäuren mit 1 bis 18 C-Atomen . Bevorzugt werden Vinylacetat , Vinylpropionat , Vinyl- butyrat , Vinyl-2-ethylhexanoat , Vinyllaurat , 1-Methylvinylace- tat , Vinylpivalat und Vinylester von a-verzweigten Monocarbonsäuren mit 9 bis 13 C-Atomen, beispielsweise VeoVa ^ oder Veo- Val fl (Handelsnamen der Firma Shell ) . Besonders bevorzugt ist Vinylacetat .
Geeignete , mit Vinylester und Ethylen copolymerisierbare , Monomere sind beispielsweise Acrylsäureester oder Methacrylsäurees- ter von unverzweigten oder verzweigten Alkoholen mit 1 bis 18 C-Atomen . Bevorzugte Methacrylsäureester oder Acrylsäureester sind Methylacrylat , Methylmethacrylat , Ethylacrylat , Ethylmeth- acrylat , Propylacrylat , Propylmethacrylat , n-Butylacrylat , n- Butylmethacrylat , t-Butylacrylat , t-Butylmethacrylat , 2-Ethyl- hexylacrylat . Besonders bevorzugt sind Methylacrylat , Methylmethacrylat , n-Butylacrylat , t-Butylacrylat und 2-Ethylhexylac- rylat . Geeignet sind auch Vinylhalogenide wie Vinylchlorid .
Gegebenenfalls können noch 0 bis 50 Gew . -% , bezogen auf das Gesamtgewicht des Monomergemisches , Hil fsmonomere copolymerisiert werden . Bevorzugt werden 0 , 1 bis 15 Gew . -% Hil fsmonomere eingesetzt. Beispiele für Hilfsmonomere sind ethylenisch ungesättigte Mono- und Dicarbonsäuren; ethylenisch ungesättigte Carbonsäureamide und -nitrile; ethylenisch ungesättigte Sulfonsäuren bzw. deren Salze. Weitere Beispiele sind vorvernetzende Comonomere, wie mehrfach ethylenisch ungesättigte Comonomere, oder nachvernetzende Comonomere, beispielsweise N-Methylolac- rylamid (NMA) . Geeignet sind auch epoxidfunktionelle Comonomere wie Glycidylmethacrylat und siliciumfunktionelle Comonomere.
Bevorzugt werden Gemische eingesetzt aus Vinylacetat und Ethylen; sowie Gemische aus Vinylacetat und weiteren Vinylestern wie Vinyllaurat oder Vinylestern von a-verzweigten Monocarbonsäuren mit 9 bis 13 C-Atomen und Ethylen; sowie Gemische aus Vinylchlorid, Ethylen und Vinylester, beispielweise Vinyllaurat .
Die Monomerauswahl bzw. die Auswahl der Gewichtsanteile der Comonomere erfolgt dabei so, dass im Allgemeinen eine Glasübergangstemperatur Tg von -50°C bis +50°C, vorzugsweise -20°C bis +20°C resultiert. Die Glasübergangstemperatur Tg der Polymerisate kann in bekannter Weise mittels Differential Scanning Calorimetry (DSC) ermittelt werden. Die Tg kann auch mittels der Fox-Gleichung näherungsweise vorausberechnet werden. Nach Fox T. G., Bull. Am. Physics Soc. jL, 3, page 123 (1956) gilt: 1/Tg = X]_/Tgj_ + xg/Tgg + . . . + xn/Tgn, wobei xn für den Massebruch (Gew.-%/100) des Monomeren n steht, und Tgn die Glasübergangstemperatur in Kelvin des Homopolymeren des Monomeren n ist. Tg-Werte für Homopolymerisate sind in Polymer Handbook 2nd Edition, J. Wiley & Sons, New York (1975) aufgeführt.
Die Herstellung der Polymerisate mittels radikalisch initiierter Polymerisation in wässrigem Medium erfolgt vorzugsweise nach dem Suspensionspolymerisationsverfahren und insbesondere nach dem Emulsionspolymerisationsverfahren, vorzugsweise in Gegenwart von Schutzkolloiden und/oder Emulgatoren. Solche Verfahren sind an sich bekannt. Die Polymerisationstemperatur beträgt im allgemeinen 40°C bis 100°C, vorzugsweise 60°C bis 90°C. Bei der Polymerisation wird im Allgemeinen bei einem Druck von 5 bis 120 bar abs . gearbeitet.
Die Initiierung der Polymerisation erfolgt allgemein mit den für die Emulsionspolymerisation oder Suspensionspolymerisation gebräuchlichen wasserlöslichen oder monomerlöslichen Initiatoren oder Redox-Initiator-Kombinationen. Beispiele für wasserlösliche Initiatoren sind die Natrium-, Kalium- und Ammoniumsalze der Peroxodischwef elsäure, Wasserstoffperoxid, t-Butyl- peroxid, t-Butylhydroperoxid, Kaliumperoxodiphosphat , t-Butyl- peroxopivalat , Cumolhydroperoxid, Isopropylbenzolmonohydroperoxid, Azobisisobutyronitril . Beispiele für monomerlösliche Initiatoren sind Dicetylperoxydicarbonat , Dicyclohexylperoxydicar- bonat, Dibenzoylperoxid. Die genannten Initiatoren werden im Allgemeinen in einer Menge von 0,01 bis 0,5 Gew.-%, bezogen auf das Gesamtgewicht der Monomere, eingesetzt. Als Redox-Initiatoren verwendet man allgemein Kombinationen aus den genannten Initiatoren in Kombination mit Reduktionsmitteln. Geeignete Reduktionsmittel sind beispielsweise die Sulfite oder Bisulfite der Alkalimetalle und von Ammonium, beispielsweise Natriumsulfit, die Derivate der Sulfoxylsäure wie Zink- oder Alkalifor- maldehydsulfoxylate, beispielsweise Natriumhydroxymethansulf i- nat, und Ascorbinsäure. Die Reduktionsmittelmenge beträgt vorzugsweise 0,01 bis 0,5 Gew.-%, bezogen auf das Gesamtgewicht der Monomere.
Zur Steuerung des Molekulargewichts können während der Polymerisation regelnde Substanzen eingesetzt werden. Falls Regler eingesetzt werden, werden diese üblicherweise in Mengen zwischen 0,01 bis 5,0 Gew.-%, bezogen auf die zu polymerisierenden Monomeren, eingesetzt. Regler können allgemein separat oder auch vorgemischt mit Reaktionskomponenten dosiert werden. Beispiele solcher Substanzen sind n-Dodecylmercaptan, tert. -Dodecylmercaptan, Mercaptopropionsäure, Mercaptopropionsäuremethylester, Isopropanol und Acetaldehyd. Vorzugsweise werden keine regelnden Substanzen verwendet. Geeignete Schutzkolloide sind beispielsweise teilversei fte Polyvinylalkohole ; Polyvinylpyrrolidone ; Polyvinylacetale ; Polysaccharide in wasserlöslicher Form wie Stärken (Amylose und Amylopectin) , Cellulosen und deren Carboxymethyl- , Methyl- , Hy- droxyethyl- , Hydroxypropyl-Derivate ; Proteine wie Casein oder Caseinat , Soj aprotein, Gelatine ; Ligninsul fonate ; synthetische Polymere wie Poly (meth) acrylsäure , Copolymerisate von (Meth) ac- rylaten mit carboxyl funktionellen Comonomereinheiten, Poly- (meth) acrylamid, Polyvinylsul fonsäuren und deren wasserlöslichen Copolymere ; Melaminformaldehydsul fonate , Naphthalinf ormal- dehydsul fonate , Styrolmaleinsäure- und Vinylethermaleinsäure- Copolymere . Bevorzugt werden teilversei fte oder vollversei fte Polyvinylalkohole .
Die Schutzkolloide werden im Allgemeinen in einer Menge von insgesamt 1 bis 20 Gew . -% , bezogen auf das Gesamtgewicht der Monomere , bei der Polymerisation zugesetzt . Der Schutzkolloid- Anteil kann beispielsweise vollständig vorgelegt oder teilweise vorgelegt und teilweise zudosiert werden .
Für die Polymerisation Emulgatoren sind anionische , kationische oder auch nichtionische Emulgatoren geeignet . Beispiele für anionische Tenside sind Alkylsul fate mit einer Kettenlänge von 8 bis 18 C-Atomen, Alkyl- oder Alkylarylethersul fate mit 8 bis 18 C-Atomen im hydrophoben Rest und bis zu 40 Ethylen- oder Propy- lenoxideinheiten, Alkyl- oder Alkylarylsul fonate mit 8 bis 18 C-Atomen, Ester und Halbester der Sul fobernsteinsäure mit einwertigen Alkoholen oder Alkylphenolen . Beispiele für nichtionische Tenside sind Alkylpolyglykolether oder Alkylarylpolyglykolether mit 8 bis 40 Ethylenoxid-Einheiten . Im Allgemeinen werden die Emulgatoren in einer Menge von 0 , 1 bis 5 Gew . -% bezogen auf die Monomermenge , verwendet .
Mit dem erfindungsgemäßen Verfahren werden Polymerdispersionen mit geringen Restmonomergehalten in vorteilhafter Weise zugänglich . Dies ist insbesondere auch von Bedeutung, wenn die Polymerdispersionen anschließend in einem Sprühtrockner zu einem Pulver getrocknet werden, da hierbei aus der Trocknerabluft Restmonomere aufwändig entfernt werden müssen, um Emissionsgrenzwerte einzuhalten .
Mit dem erfindungsgemäßen Verfahren können Vinylester- und Ethylen-Restmonomere auf technisch einfache , ef fi ziente , energiesparende und damit wirtschaftliche Weise abgetrennt und in der Polymerisation wiederverwendet werden . Auf Rekomprimie- rungsschritte mit Verdichtern, insbesondere mit mehrstufigen Verdichtern, oder Temperierung von Vinylestern und Ethylen kann hierbei verzichtet werden . Weitere Schritte zur Reinigung des Restgases können entfallen . Auf diese Weise können die Vinylester- und Ethylen-Restmonomere nahezu vollständig für die Polymerisation recycelt werden, so dass das Entsorgen von Restgas deutlich vereinfacht wird .
In Schritt c ) des erfindungsgemäßen Verfahrens erfolgt allgemein ein Auf konzentrieren der Polymerdispersionen, beispielsweise um 1 bis 20 Gew . -% , insbesondere 2 bis 8 Gew . -% . Dadurch werden Dispersionen mit höherem Feststof f gehalt auf einfache und ef fi ziente Weise zugänglich . Andererseits kann zur Herstellung von Polymerdispersionen mit den üblichen Feststof f gehalten die Polymerisation bei geringeren Feststof f gehalten ausgeführt werden . Dadurch wird das Fouling während der Polymerisation reduziert und die Wärmeabfuhr aus dem Polymerisationsreaktor beschleunigt , was eine Steigerung der Raum-Zeit-Ausbeute erlaubt und Reaktorstandzeiten zur Entfernung von Fouling reduziert .
Die folgenden Beispiele dienen der detaillierten Erläuterung der Erfindung und sind in keiner Weise als Einschränkung zu verstehen .
Beispiel 1 :
Folgende Polymerdispersion wurde dem Reaktor der Emulsionspolymerisation von Vinylacetat und Ethylen entnommen :
200 kg/h wässrige Polymerdispersion mit einem Restmonomergehalt von 3 Gew . -% Vinylacetatmonomer und 0 , 3 Gew . -% Ethylen ( j e bezogen auf das Gesamtgewicht der Polymerdispersion) bei einem Druck von 50 bar und einer Temperatur von 95°C.
Vergleichsbeispiel la:
Einstufige Entspannung der Polymerdispersion auf 1,0 bar:
Mit Hilfe eines Regelventils wurde der Massenstrom der Polymerdispersion auf einen Druck von 1,0 bar absolut entspannt.
Dadurch gingen 0,293 Gew.-% Ethylen in die Gasphase über, und 70 ppm Ethylen verblieben in der Dispersion. Insgesamt wurde ein Abgasstrom von 2,5 kg/h freigesetzt. Dieser wurde zur Rückgewinnung von > 90% des Ethylens entsprechend dem in DE10253043 beschriebenen Verfahren auf 3 bar verdichtet, unter Einsatz eines gekühlten Flüssigringverdichters mit einer elektrischen Leistung von 2 kW.
Anschließend wurde die Polymerdispersion für 1 Stunde unter Zugabe von Initiator nachpolymerisiert.
Die so erhaltene Polymerdispersion enthielt 100 ppm Vinylacetat und 35 ppm Ethylen.
Vergleichsbeispiel 1b:
Einstufige Entspannung der Polymerdispersion auf 0,2 bar:
Mit Hilfe eines Regelventils wurde der Massenstrom der Polymerdispersion auf einen Druck von 0,2 bar absolut entspannt.
Dadurch gingen 0,2998 Gew.-% Ethylen in die Gasphase über und 2 ppm Ethylen verblieben in der Dispersion. Insgesamt wurde ein Abgasstrom von 13 kg/h freigesetzt. Dieser wurde zur Rückgewinnung von > 90% des Ethylens entsprechend dem in DE10253043 beschriebenen Verfahren auf 3 bar verdichtet, unter Einsatz eines gekühlten Flüssigringverdichter mit einer elektrischen Leistung von 50 kW.
Anschließend wurde die Polymerdispersion für 1 Stunde unter Zugabe der gleichen Menge Initiator wie in Vergleichsbeispiel la nachpolymerisiert .
Die so erhaltene Polymerdispersion enthielt 30 ppm Vinylacetat und 1 ppm Ethylen. Beispiel 1c : Zweistufige Entspannung der Polymerdispersion bei 3 bar und 0 , 2 bar :
Mit Hil fe eines Regelventils wurde der Massenstrom der Polymerdispersion zunächst auf einen Druck von 3 bar absolut entspannt . Dadurch gingen 0 , 22 Gew . -% Ethylen in die Gasphase über und 700 ppm Ethylen verblieben in der Dispersion . Das so ausgetriebene Ethylen wurde ohne weitere Verdichtung in dem Vinylacetat-Feed eingelöst , der dann in den Polymerisationsreaktor eingebracht wurde .
In einem zweiten Schritt wurde die verbliebene Dispersion nun auf 0 , 2 bar entspannt . Dabei gingen weitere 698 ppm Ethylen in die Gasphase über und nur 2 ppm Ethylen verblieben in der Dispersion . Von den 700 ppm werden bei der Kondensation des VAM 650 ppm wieder eingelöst , so dass nur 50 ppm ins Abgas abgegeben werden .
Anschließend wurde die Polymerdispersion für 1 Stunde unter Zugabe der gleichen Menge Initiator wie in Vergleichsbeispiel la nachpolymerisiert .
Die so erhaltene Polymerdispersion enthielt 30 ppm Vinylacetat und 1 ppm Ethylen .
Tabelle : Übersicht über die (Vergleichs ) Beispiele la-c :
Figure imgf000018_0001

Claims

Patentansprüche :
1 . Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten mittels radikalisch initiierter Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethy- lenisch ungesättigten Monomeren in wässrigem Medium bei einem Druck von 5 bis 120 bar abs . , dadurch gekennzeichnet , dass a ) Polymerisationsgemisch auf einen Druck von 1 bis 15 bar abs . entspannt wird, wobei eine Ethylen enthaltende Gasphase und eine Vinylester und Vinylester-Ethylen-Mischpolymerisate enthaltende wässrige Phase erhalten wird, b ) die Ethylen enthaltende Gasphase aus Stufe a ) abgetrennt , anschließend in Vinylester aufgenommen und das so erhaltene Gemisch in der radikalisch initiierten Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren eingesetzt wird und c ) die wässrige Phase aus Stufe a ) auf einen Druck von 0 , 1 bis 0 , 5 bar abs . entspannt wird, wobei sich eine Vinylester und Wasser enthaltende Gasphase bildet , die abgetrennt , anschließend kondensiert und dann in der radikalisch initiierten Polymerisation von Vinylestern, Ethylen und gegebenenfalls weiteren ethylenisch ungesättigten Monomeren eingesetzt wird .
2 . Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten nach Anspruch 1 , dadurch gekennzeichnet , dass die Ethylen enthaltende Gasphase der Stufe a ) > 75 Gew . -% Ethylen enthält , bezogen auf das Gesamtgewicht des im Polymerisationsgemisch der Stufe a ) enthaltenen Ethylens .
3 . Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten nach Anspruch 1 oder 2 , dadurch gekennzeichnet , dass die Gasphase der Stufe a ) < 20 Gew . -% an Vinylester enthält , bezogen auf das Gesamtgewicht der im Polymerisationsgemisch der Stufe a ) enthaltenen Vinylester . Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass das Entspannen in Stufe a) und/oder Stufe c) adiabatisch durchgeführt wird. Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die sich in Stufe c) bildende Vinylester und Wasser enthaltende Gasphase eine Temperatur von 50°C bis kleiner 80°C hat. Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Kondensation in Stufe c) bei einer Temperatur von 0°C bis 15°C durchgeführt wird. Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Kondensation in Stufe c) zweistufig durchgeführt wird und die erste Stufe bei einer Temperatur von 15°C bis 40°C und die zweite Stufe bei einer Temperatur von 0°C bis kleiner 15°C erfolgt. Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass das Kondensat der Stufe c) 25 bis 75 Gew.-% Vinylester enthält, bezogen auf das Gesamtgewicht des Kondensats der Stufe c) . Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass das Kondensat der Stufe c) 25 bis 75 Gew.-% Vinylester enthält, bezogen auf das Gesamtgewicht der Vinylester, die in der Vinylester und Vinylester-Ethylen-Mischpolymerisate enthaltenden wässrigen Phase der Stufe a) enthalten waren. 10. Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass der wässrigen Phase aus Stufe a) in Stufe c) Energie zugeführt wird und das Kondensat der Stufe c) 50 bis 100 Gew.-% Vinylester enthält, bezogen auf das Gesamtgewicht der Vinylester, die in der Vinylester und Vinylester-Ethy- len-Mischpolymerisate enthaltenden wässrigen Phase der Stufe a) enthalten waren. 11. Verfahren zur Herstellung von Vinylester-Ethylen-Mischpolymerisaten nach Anspruch 1 bis 10, dadurch gekennzeichnet, dass die wässrige Phase aus Stufe a) und/oder die wässrige Phase aus Stufe c) einem Nachpolymerisieren oder Strippen unterzogen werden.
PCT/EP2021/073747 2021-08-27 2021-08-27 Verfahren zur rückgewinnung von restmonomeren bei der herstellung von vinylester-ethylen-mischpolymerisaten WO2023025396A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21772699.1A EP4225815A1 (de) 2021-08-27 2021-08-27 Verfahren zur rückgewinnung von restmonomeren bei der herstellung von vinylester-ethylen-mischpolymerisaten
US18/267,792 US20240084059A1 (en) 2021-08-27 2021-08-27 Method for recovering residual monomers in the preparation of vinyl ester-ethylene copolymers
PCT/EP2021/073747 WO2023025396A1 (de) 2021-08-27 2021-08-27 Verfahren zur rückgewinnung von restmonomeren bei der herstellung von vinylester-ethylen-mischpolymerisaten
CN202180079598.6A CN116568712A (zh) 2021-08-27 2021-08-27 回收乙烯基酯-乙烯共聚物的制备中的残余单体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2021/073747 WO2023025396A1 (de) 2021-08-27 2021-08-27 Verfahren zur rückgewinnung von restmonomeren bei der herstellung von vinylester-ethylen-mischpolymerisaten

Publications (1)

Publication Number Publication Date
WO2023025396A1 true WO2023025396A1 (de) 2023-03-02

Family

ID=77801665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/073747 WO2023025396A1 (de) 2021-08-27 2021-08-27 Verfahren zur rückgewinnung von restmonomeren bei der herstellung von vinylester-ethylen-mischpolymerisaten

Country Status (4)

Country Link
US (1) US20240084059A1 (de)
EP (1) EP4225815A1 (de)
CN (1) CN116568712A (de)
WO (1) WO2023025396A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10253043A1 (de) 2002-11-14 2004-06-03 Wacker Polymer Systems Gmbh & Co. Kg Verfahren zur Rückgewinnung von Restethylen bei der Herstellung von Vinylester-Ethylen-Mischpolymerisaten
WO2007074075A1 (de) 2005-12-22 2007-07-05 Wacker Chemie Ag Rückgewinnung von ethylen und vinylacetat aus dem restgasstrom der vinylester-ethylen-mischpolymerisatherstellung
CN204607899U (zh) * 2015-04-17 2015-09-02 中国石油化工集团公司 一种evoh生产过程中的乙烯回收系统
EP3321292A1 (de) 2016-09-19 2018-05-16 LG Chem, Ltd. Verfahren zur rückgewinnung von ethylen und vinylbasiertem comonomer
WO2021013354A1 (de) * 2019-07-25 2021-01-28 Wacker Chemie Ag Verfahren zur herstellung einer wässrigen polymerisatdispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10253043A1 (de) 2002-11-14 2004-06-03 Wacker Polymer Systems Gmbh & Co. Kg Verfahren zur Rückgewinnung von Restethylen bei der Herstellung von Vinylester-Ethylen-Mischpolymerisaten
WO2007074075A1 (de) 2005-12-22 2007-07-05 Wacker Chemie Ag Rückgewinnung von ethylen und vinylacetat aus dem restgasstrom der vinylester-ethylen-mischpolymerisatherstellung
CN204607899U (zh) * 2015-04-17 2015-09-02 中国石油化工集团公司 一种evoh生产过程中的乙烯回收系统
EP3321292A1 (de) 2016-09-19 2018-05-16 LG Chem, Ltd. Verfahren zur rückgewinnung von ethylen und vinylbasiertem comonomer
WO2021013354A1 (de) * 2019-07-25 2021-01-28 Wacker Chemie Ag Verfahren zur herstellung einer wässrigen polymerisatdispersion

Also Published As

Publication number Publication date
EP4225815A1 (de) 2023-08-16
US20240084059A1 (en) 2024-03-14
CN116568712A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
EP2694176B1 (de) Verfahren zur aufbereitung von abwässern und abgaskondensaten aus der polymerisation von vinylacetat und ethylen in wässrigem medium
DE2454851C2 (de)
EP1963375B1 (de) Rückgewinnung von ethylen und vinylacetat aus dem restgasstrom der vinylester-ethylen-mischpolymerisatherstellung
WO1996010588A1 (de) Verfahren zur herstellung einer wässrigen polymerisatdispersion
EP0076511B1 (de) Verfahren zur Herstellung von wässrigen Copolymerdispersionen und deren Verwendung
EP1352915B1 (de) Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymerisaten mittels kontinuierlicher Emulsionspolymerisation
EP1215218B1 (de) Verfahren zur Herstellung von Polymerisaten mit reduziertem Gehalt an flüchtigen Komponenten
EP2178928B1 (de) Kontinuierliches polymerisationsverfahren
DE102007040850A1 (de) Verfahren zur Herstellung von Schutzkolloid-stabilisierten Polymerisaten und Vorrichtung zur Durchführung des Verfahrens
EP2683747B1 (de) Verfahren zur herstellung von polymerisaten mittels emulsions- oder suspensionspolymerisation in einem strahlschlaufenreaktor
DE1770113C2 (de) Verfahren zur Polymerisation von Vinylchlorid in wäßriger Suspension
EP1420034B1 (de) Verfahren zur Rückgewinnung von Restethylen bei der Herstellung von Vinylester-Ethylen-Mischpolymerisaten
EP4225815A1 (de) Verfahren zur rückgewinnung von restmonomeren bei der herstellung von vinylester-ethylen-mischpolymerisaten
DE10309857A1 (de) Epoxy-modifizierte Vinylchlorid-Vinylester-Copolymer-Festharze
EP1395614A1 (de) Verfahren zur herstellung einer wässrigen polymerdispersion durch radikalische wässrige emulsionspolymerisation mit einer kontinuierlich hergestellten wässrigen monomerenemulsion
JP2001019663A (ja) ポリフルオロアルキルエステル類の製造方法およびこのエステルを用いる含フッ素アクリル共重合体の製造方法
EP3837289B1 (de) Verfahren zur herstellung einer wässrigen polymerisatdispersion
DE19912191C2 (de) Verfahren zur Herstellung von wäßrigen Polymerdispersionen mit hohem Festgehalt
EP1583783B1 (de) Verfahren zur herstellung stabiler wässriger polymerisatdispersionen auf basis von konjugierten aliphatischen dienen und vinylaromatischen verbindungen
EP3784702B1 (de) Verfahren zur reinigung eines polymerisationsreaktors
JP3628470B2 (ja) トリアリルイソシアヌレート系重合体の製造方法
JPH10176011A (ja) 塩化ビニル系ポリマーの製造方法
JPH0912628A (ja) 塩化ビニル系ポリマーの製造方法
DE102011087138A1 (de) Verfahren zur Herstellung von wässrigen Polymerdispersionen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021772699

Country of ref document: EP

Effective date: 20230510

WWE Wipo information: entry into national phase

Ref document number: 202180079598.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18267792

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE