WO2023024969A1 - 一种适用于无人驾驶列车的紧急牵引方法 - Google Patents

一种适用于无人驾驶列车的紧急牵引方法 Download PDF

Info

Publication number
WO2023024969A1
WO2023024969A1 PCT/CN2022/112740 CN2022112740W WO2023024969A1 WO 2023024969 A1 WO2023024969 A1 WO 2023024969A1 CN 2022112740 W CN2022112740 W CN 2022112740W WO 2023024969 A1 WO2023024969 A1 WO 2023024969A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
traction
emergency
point
control terminal
Prior art date
Application number
PCT/CN2022/112740
Other languages
English (en)
French (fr)
Inventor
黄涛
时瑞
黄海霞
张军贤
齐玉玲
黄盼
陈美霞
吕红强
戴国琛
吉凡
Original Assignee
中车南京浦镇车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车南京浦镇车辆有限公司 filed Critical 中车南京浦镇车辆有限公司
Publication of WO2023024969A1 publication Critical patent/WO2023024969A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control

Definitions

  • the invention relates to the technical field related to driverless trains, in particular to an emergency traction method suitable for driverless trains.
  • the traction braking system of the train will not be able to receive the traction braking force value sent by the signal system and the driver's handle, and the train will not be able to move.
  • the driver can use an emergency traction mode knob to turn the
  • the train mode is set to the hard-line manual driving mode, and the control commands are directly sent to the traction and braking system through the train hard-line to control the vehicle to move forward.
  • the train will enter the emergency traction mode without personnel operating the first time the fault occurs, and the train can only be set to the emergency traction mode by boarding the train at the nearby station rescuers.
  • the hard-wire control of the train affects the timeliness of rescue; on the other hand, in the hard-wire control mode, the speed of the train has only a few speed gears, and stepless speed regulation cannot be performed, which leads to the inability to accurately stop at the station and the inability to open the platform door, etc.
  • the purpose of the present invention is to provide an emergency traction method suitable for unmanned trains to solve the problem that the current train emergency stop system proposed in the above background technology is only completed when the train has an operator, and is not suitable for unmanned trains.
  • the speed of the train only has individual speed gears, and stepless speed regulation cannot be performed, resulting in the problem that it cannot stop precisely at the station.
  • an emergency traction method suitable for unmanned trains comprising the steps of:
  • Step 1 Establish a train communication network: the unmanned train includes an on-board terminal and a traction braking system connected through the on-board network;
  • the vehicle-mounted terminal monitors the train's load signal in real time, and the vehicle-mounted signal includes the current position information of the train, the current speed value of the train and the real-time operation status of the vehicle network;
  • the vehicle terminal is connected with the ground control terminal through a wireless connection, and sends the monitored vehicle signal to the ground control terminal in real time;
  • the traction braking system communicates with the 5G hotspot on the ground through the 5G communication transceiver device, and the ground 5G hotspot is wired with the ground control terminal;
  • Step 2 Automatically activate the train emergency traction mode: when the vehicle terminal detects a vehicle network failure, it will send the detected vehicle network failure signal to the ground control terminal, and the ground control terminal will automatically activate the train emergency traction mode remotely;
  • Step 3 Precise stop: In the emergency traction mode of the train, the ground control terminal directly sends the traction braking command and the changed traction braking force value to the traction braking system, so that the train can realize precise parking in the way of stepless speed regulation.
  • step 3 the method for the train to realize precise parking includes the following steps:
  • Step 31 determine the parking curve: Assume that the train position point when the vehicle-mounted network fails in step 2 is point A, the parking site at the nearest station ahead is point C, and the deceleration point between point A and point C is point B; point A, The line connecting point B and point C constitutes a parking curve, the distance between point A and point B is S1, the section between AB and AB is a constant-speed driving section, the time of constant-speed driving is t1, and the corresponding speed is V1; between point B and point C The distance between BC and BC is the deceleration section, the deceleration time is t2, and the corresponding deceleration is a, and a ⁇ 1;
  • Step 32 Set the driving handle: set the driving handle on the ground control terminal.
  • the driving handle includes the traction control window and the operating handle.
  • the gear scale value between full gears; the operating handle can move back and forth in the traction control window;
  • Step 33 calculating t1: the value of S2 in step 31 is a set value, and the value of S1 can be calculated according to the current position information of the train in the on-board signal; the value of V1 is determined according to the maximum traction force applied by the driving handle, then:
  • Step 33 Calculate t2: Since the speed of the train at point C is 0, it is obtained:
  • Step 35 The train runs at a constant speed: After the ground control terminal remotely and automatically turns on the emergency traction mode of the train, move the operating handle to the gear scale value between 50% and 100%, and the traction brake system will apply traction to the train, so that the train Moving forward at a constant speed v1, and V1 ⁇ Va; among them, Va is the maximum running speed allowed under the emergency traction mode of the train;
  • Step 36 the train decelerates: when the time t1 elapses, the train reaches the deceleration point B; at this time, the operating handle of the ground control terminal moves to the gear scale value equal to the a value according to the acceleration a value calculated in step 34, The train decelerates and brakes, and after time t2, it arrives at the stop C and decelerates to 0.
  • Va 20Km/h.
  • an "emergency traction mode knob” is provided in the cockpit of the unmanned train, and the ground control terminal remotely controls the opening and closing of the "emergency traction mode knob", thereby realizing the automatic opening and closing of the emergency traction mode of the train. closure.
  • the remote command from the ground control terminal in step 2 the traction braking command and the traction braking force value in step 3 are sent in two independent data packets through the wireless redundant channel.
  • the message headers of the two independent data packets are each provided with a security counter.
  • the method for using the two safety counters includes the following steps:
  • each safety counter adopts a four-byte storage capacity, thereby ensuring that the continuously accumulated data does not overflow for 24 hours; after the unmanned train is powered off, the accumulated count values in the two safety counters are cleared.
  • the unmanned train also includes a PIS passenger information system with a built-in 5G communication transceiver, and the PIS passenger information system includes a head camera arranged at the head of the unmanned train and a compartment camera installed in each compartment;
  • the ground control terminal can establish a connection with the PIS passenger information system through the 5G communication transceiver device, and then view the video image in front of the train through the front camera, and view the video in each car through the car camera image.
  • the beneficial effect of the present invention is: the emergency traction method suitable for unmanned trains is suitable for unmanned trains in the future, through the cooperation of 5G technology and ground devices to complete the network failure of the train Automatically perform remote manual emergency driving control, avoiding the disadvantages of people not being able to land on the vehicle in time, and being unable to control the vehicle with stepless speed regulation, and realizing efficient rescue and operation of the train.
  • Fig. 1 is the schematic diagram of train speed and time relation of the present invention
  • Fig. 2 is a schematic diagram of the gear positions of the driving handle of the present invention.
  • an emergency traction method suitable for unmanned trains includes the following steps:
  • Step 1 Establish a train communication network: the unmanned train includes an on-board terminal and a traction braking system connected through the on-board network;
  • the vehicle-mounted terminal monitors the train's load signal in real time, and the vehicle-mounted signal includes the current position information of the train, the current speed value of the train and the real-time operation status of the vehicle network;
  • the vehicle terminal is connected with the ground control terminal through a wireless connection, and sends the monitored vehicle signal to the ground control terminal in real time;
  • the traction braking system communicates with the 5G hotspot on the ground through the 5G communication transceiver device, and the ground 5G hotspot is wired with the ground control terminal;
  • Step 2 Automatically activate the train emergency traction mode: when the vehicle terminal detects a vehicle network failure, it will send the detected vehicle network failure signal to the ground control terminal, and the ground control terminal will automatically activate the train emergency traction mode remotely;
  • Step 3 Precise stop: In the emergency traction mode of the train, the ground control terminal directly sends the traction braking command and the changed traction braking force value to the traction braking system, so that the train can realize precise parking in the way of stepless speed regulation.
  • step 3 the train realizes the method for precise parking, and the specific steps are as follows:
  • Step 31 determine the parking curve: Assume that the train position point when the vehicle-mounted network fails in step 2 is point A, the parking site at the nearest station ahead is point C, and the deceleration point between point A and point C is point B; point A, The line connecting point B and point C constitutes a parking curve, the distance between point A and point B is S1, the section between AB and AB is a constant-speed driving section, the time of constant-speed driving is t1, and the corresponding speed is V1; between point B and point C The distance between BC and BC is the deceleration section, the deceleration time is t2, and the corresponding deceleration is a, and a ⁇ 1;
  • Step 32 Set the driving handle: set the driving handle on the ground control terminal.
  • the driving handle includes the traction control window and the operating handle.
  • the gear scale value between full gears; the operating handle can move back and forth in the traction control window;
  • Step 33 calculating t1: the value of S2 in step 31 is a set value, and the value of S1 can be calculated according to the current position information of the train in the on-board signal; the value of V1 is determined according to the maximum traction force applied by the driving handle, then:
  • Step 33 Calculate t2: Since the speed of the train at point C is 0, it is obtained:
  • Step 35 The train runs at a constant speed: After the ground control terminal remotely and automatically turns on the emergency traction mode of the train, move the operating handle to the gear scale value between 50% and 100%, and the traction brake system will apply traction to the train, so that the train Moving forward at a constant speed v1, and V1 ⁇ Va; among them, Va is the maximum running speed allowed under the emergency traction mode of the train;
  • Step 36 the train decelerates: when the time t1 elapses, the train reaches the deceleration point B; at this time, the operating handle of the ground control terminal moves to the gear scale value equal to the a value according to the acceleration a value calculated in step 34, The train decelerates and brakes, and after time t2, it arrives at the stop C and decelerates to 0.
  • Va 20Km/h
  • the default maximum speed limit of Va is 20Km/h, which can be adjusted in the actual operating environment.
  • an "emergency traction mode knob” is provided in the cockpit of the unmanned train, and the ground control terminal remotely controls the opening and closing of the "emergency traction mode knob", thereby realizing the emergency operation of the train. Automatic on and off of traction mode.
  • the remote command from the ground control terminal in step 2 the traction braking command and the traction braking force value in step 3 are sent in two independent data packets through the wireless redundant channel.
  • the message headers of the two independent data packets are each provided with a security counter.
  • the method for using the two safety counters includes the following steps:
  • each safety counter adopts a four-byte storage capacity, so as to ensure that the continuously accumulated data does not overflow for 24 hours; after the unmanned train is powered off, the accumulated count values in the two safety counters are cleared.
  • the unmanned train also includes a PIS passenger information system with a built-in 5G communication transceiver, and the PIS passenger information system includes a head camera arranged at the head of the unmanned train and a compartment camera installed in each compartment;
  • the ground control terminal can establish a connection with the PIS passenger information system through the 5G communication transceiver device, and then view the video image in front of the train through the front camera, and view the video in each car through the car camera image.
  • the present invention cooperates with the 5G technology and the ground device to complete the automatic remote manual emergency driving control of the train in the case of a network failure, so as to avoid the disadvantages that personnel cannot land on the vehicle in time and cannot control the vehicle with stepless speed regulation. Realize efficient rescue and operation of trains, and be used for unmanned trains in the future.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

本发明公开了一种适用于无人驾驶列车的紧急牵引方法,步骤1,建立列车通信控制网络;步骤2、自动激活列车紧急牵引模式:当车载终端监测到车载网络故障时,将监测到的车载网络故障信号发送给地面控制终端,地面控制终端将远程自动开启列车紧急牵引模式;步骤3、精确停车:在列车紧急牵引模式下,地面控制终端直接发送牵引制动指令和变化的牵引制动力值给牵引制动系统,使列车以无极调速的方式实现精确停车。该适用于无人驾驶列车的紧急牵引方法,通过在5G技术及地面装置一起配合完成列车在网络故障情况下自动进行远程人工紧急驾驶控制,避免人员不能及时登陆车辆,以及不能无极调速控车的弊端,实现列车的高效救援及运行。

Description

一种适用于无人驾驶列车的紧急牵引方法 技术领域
本发明涉及列车无人驾驶相关技术领域,具体为一种适用于无人驾驶列车的紧急牵引方法。
背景技术
当前地铁列车在列车网络故障的情况下,列车的牵引制动系统将不能接收到信号系统和司机手柄发出的牵引制动力值,列车将无法动车,此时司机可以通过一个紧急牵引模式旋钮,将列车模式设置为硬线人工驾驶模式,通过列车硬线将控制指令直接发送给牵引和制动系统控制车辆前行。今后无人驾驶列车中,列车无司机,网络故障时,列车在故障发生第一时间无人员进行操作进入到紧急牵引模式,只能通过附件的车站救援人员登车将列车设置到紧急牵引模式,硬线控车,从而影响救援时效;另一方面,在硬线控车模式,列车的车速只有个别速度挡位,不能进行无极调速,从而导致在车站不能精确停车,导致站台门无法打开等一系列问题,影响乘客疏散
发明内容
本发明的目的在于提供一种适用于无人驾驶列车的紧急牵引方法,以解决上述背景技术中提出当前的列车紧急停车系统只针对列车有操作员的情况下完成,不适用于无人驾驶列车,同时当前的硬线控车模式,列车的车速只有个别速度挡位,不能进行无极调速,导致在车站不能精确停车的问题。
为实现上述目的,本发明提供如下技术方案:一种适用于无人驾驶列车的紧急牵引方法,包括如下步骤:
步骤1、建立列车通信网络:无人驾驶列车包括通过车载网络连接的车载终端和牵引制动系统;
车载终端实时监测列车的载信号,车载信号包括列车当前位置信息、列车当前速度值和车载网络的实时运行状态;
车载终端通过无线连接的方式与地面控制终端相连接,并将监测到的车载信号实时发送给地面控制终端;
牵引制动系统通过5G通信收发装置与地面的5G热点进行通信,地面5G热点与地面控制终端有线连接;
步骤2、自动激活列车紧急牵引模式:当车载终端监测到车载网络故障时,将监测到的车载网络故障信号发送给地面控制终端,地面控制终端将远程自动开启列车紧急牵引模式;
步骤3、精确停车:在列车紧急牵引模式下,地面控制终端直接发送牵引制动指令和变化的牵引制动力值给牵引制动系统,使列车以无极调速的方式实现精确停车。
优选的,步骤3中,列车实现精确停车的方法,包括如下步骤:
步骤31、确定停车曲线:假设步骤2中车载网络故障时的列车位置点为点A,前方最 近车站的停车站点为点C,点A和点C之间的减速点为点B;点A、点B和点C连线构成停车曲线,点A和点B之间的距离为S1,AB之间为匀速行驶段,匀速行驶时间为t1,且对应速度为V1;点B和点C之间的距离为S2,BC之间为减速行驶段,减速行驶时间为t2,对应减速度为a,且a<1;
步骤32、设置驾驶手柄:在地面控制终端设置驾驶手柄,驾驶手柄包括牵引力控制窗和操作手柄,牵引力控制窗呈直线型,具有空档位0、满档位100%以及设置在空档位和满档位之间的档位刻度值;操作手柄能在牵引力控制窗中往复移动;
步骤33、计算t1:步骤31中的S2值为设定值,S1值能够根据车载信号中的列车当前位置信息,进行计算得到;V1值则根据驾驶手柄施加的最大牵引力值所确定,则:
t1=S1/V1
步骤33、计算t2:由于列车在点C的速度为0,故而得到:
t2=2S2/V1
步骤34、计算减速度a,具体计算公式为:a=V1/t2;
步骤35、列车匀速行驶:地面控制终端远程自动开启列车紧急牵引模式后,操作手柄移动至50%~100%之间的档位刻度值处,牵引制动系统将向列车施加牵引力,使列车以匀速v1向前行驶,且V1≤Va;其中,Va为列车紧急牵引模式下允许的最大运行速度;
步骤36、列车减速行驶:当经过时间t1后,列车到达减速点B;此时,地面控制终端的操作手柄根据步骤34计算的加速度a值,移动至与a值相等的档位刻度值处,列车减速制动,经时间t2后,到达停车站点C且降速为0。
进一步优选的,步骤35中,地面控制终端的操作手柄在牵引力控制窗中的档位刻度值,根据S1值进行确定,当S1不小于设定距离值,则操作手柄移动至满档位100%,牵引制动系统将提供列车紧急牵引模式下允许的最大牵引力,使V1=Va。
进一步优选的,Va=20Km/h。
优选的,步骤2中,无人驾驶列车的驾驶舱内设置有“紧急牵引模式旋钮”,地面控制终端通过远程操控“紧急牵引模式旋钮”的启闭,进而实现列车紧急牵引模式的自动开启与关闭。
进一步优选的,步骤2中地面控制终端的远程指令、步骤3中的牵引制动指令以及牵引制动力值的发送方式,均采用两个独立的数据包通过无线冗余通道进行发送。
进一步优选的,两个独立数据包的报文头均设置有一个安全计数器。
进一步优选的,两个安全计数器的使用方法,包括如下步骤:
A、累加计数:每个独立数据包,每次生成指令包时,对应安全计数器将累加计数1次;当某个独立数据包因5G网络信号差,未能生成指令包时,对应安全计数器将不累加;
B、累加计数值比较:“紧急牵引模式旋钮”或牵引制动系统接收到地面控制终端发送的两个独立数据包后,首先对两个独立数据包中安全计数器的累加计数值进行比较;
C、确定控制指令数据,具体确定方法为:
(1)当两个独立数据包中安全计数器的累加计数值相同,则以先接收到的独立数据包的报文数据作为控制指令数据;
(2)当两个独立数据包中安全计数器的累加计数值不同,则以安全计数器累加计数值较大的独立数据包的报文数据作为控制指令数据。
进一步优选的,每个安全计数器采用四字节的存储容量,从而能够保证连续累加 24小时数据不溢出;在无人驾驶列车断电后,将两个安全计数器中的累加计数值进行清零。
进一步优选的,无人驾驶列车还包括内置有5G通信收发装置的PIS乘客信息系统,PIS乘客信息系统包括设置在无人驾驶列车车头部的车头摄像头以及安装在每节车厢内的车厢摄像头;当步骤2的列车紧急牵引模式自动开启后,地面控制终端能与PIS乘客信息系统通过5G通信收发装置建立连接,进而通过车头摄像头查看列车前方视频图像、以及通过车厢摄像头查看每节车厢内的视频图像。
与现有技术相比,本发明的有益效果是:该适用于无人驾驶列车的紧急牵引方法,适用于今后无人驾驶的列车,通过在5G技术及地面装置一起配合完成列车在网络故障情况下自动进行远程人工紧急驾驶控制,避免人员不能及时登陆车辆,以及不能无极调速控车的弊端,实现列车的高效救援及运行。
附图说明
图1为本发明列车速度和时间关系示意图;
图2为本发明驾驶手柄档位示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种适用于无人驾驶列车的紧急牵引方法,包括如下步骤:
步骤1、建立列车通信网络:无人驾驶列车包括通过车载网络连接的车载终端和牵引制动系统;
车载终端实时监测列车的载信号,车载信号包括列车当前位置信息、列车当前速度值和车载网络的实时运行状态;
车载终端通过无线连接的方式与地面控制终端相连接,并将监测到的车载信号实时发送给地面控制终端;
牵引制动系统通过5G通信收发装置与地面的5G热点进行通信,地面5G热点与地面控制终端有线连接;
步骤2、自动激活列车紧急牵引模式:当车载终端监测到车载网络故障时,将监测到的车载网络故障信号发送给地面控制终端,地面控制终端将远程自动开启列车紧急牵引模式;
步骤3、精确停车:在列车紧急牵引模式下,地面控制终端直接发送牵引制动指令和变化的牵引制动力值给牵引制动系统,使列车以无极调速的方式实现精确停车。
进一步的,在步骤3中,列车实现精确停车的方法,具体步骤如下:
步骤31、确定停车曲线:假设步骤2中车载网络故障时的列车位置点为点A,前方最近车站的停车站点为点C,点A和点C之间的减速点为点B;点A、点B和点C连线构成停车曲线,点A和点B之间的距离为S1,AB之间为匀速行驶段,匀速行驶时间为t1,且对应速度为V1;点B和点C之间的距离为S2,BC之间为减速行驶段,减速行驶时间为t2,对应减速度为a,且a<1;
步骤32、设置驾驶手柄:在地面控制终端设置驾驶手柄,驾驶手柄包括牵引力控制窗和操作手柄,牵引力控制窗呈直线型,具有空档位0、满档位100%以及设置在空档位和满档位之间的档位刻度值;操作手柄能在牵引力控制窗中往复移动;
步骤33、计算t1:步骤31中的S2值为设定值,S1值能够根据车载信号中的列车当前位置信息,进行计算得到;V1值则根据驾驶手柄施加的最大牵引力值所确定,则:
t1=S1/V1
步骤33、计算t2:由于列车在点C的速度为0,故而得到:
t2=2S2/V1
步骤34、计算减速度a,具体计算公式为:a=V1/t2;
步骤35、列车匀速行驶:地面控制终端远程自动开启列车紧急牵引模式后,操作手柄移动至50%~100%之间的档位刻度值处,牵引制动系统将向列车施加牵引力,使列车以匀速v1向前行驶,且V1≤Va;其中,Va为列车紧急牵引模式下允许的最大运行速度;
步骤36、列车减速行驶:当经过时间t1后,列车到达减速点B;此时,地面控制终端的操作手柄根据步骤34计算的加速度a值,移动至与a值相等的档位刻度值处,列车减速制动,经时间t2后,到达停车站点C且降速为0。
更进一步的,步骤35中,地面控制终端的操作手柄在牵引力控制窗中的档位刻度值,根据S1值进行确定,当S1不小于设定距离值,则操作手柄移动至满档位100%,牵引制动系统将提供列车紧急牵引模式下允许的最大牵引力,使V1=Va。
Va=20Km/h,Va默认设定的最大限速为20Km/h,在实际操作环境下可调整。
优选的,如图2所示,步骤2中,无人驾驶列车的驾驶舱内设置有“紧急牵引模式旋钮”,地面控制终端通过远程操控“紧急牵引模式旋钮”的启闭,进而实现列车紧急牵引模式的自动开启与关闭。
进一步优选的,步骤2中地面控制终端的远程指令、步骤3中的牵引制动指令以及牵引制动力值的发送方式,均采用两个独立的数据包通过无线冗余通道进行发送。
进一步优选的,两个独立数据包的报文头均设置有一个安全计数器。
进一步优选的,两个安全计数器的使用方法,包括如下步骤:
A、累加计数:每个独立数据包,每次生成指令包时,对应安全计数器将累加计数1次;当某个独立数据包因5G网络信号差,未能生成指令包时,对应安全计数器将不累加;
B、累加计数值比较:“紧急牵引模式旋钮”或牵引制动系统接收到地面控制终端发送的两个独立数据包后,首先对两个独立数据包中安全计数器的累加计数值进行比较;
C、确定控制指令数据,具体确定方法为:
(1)当两个独立数据包中安全计数器的累加计数值相同,则以先接收到的独立数据包的报文数据作为控制指令数据;
(2)当两个独立数据包中安全计数器的累加计数值不同,则以安全计数器累加计数值较大的独立数据包的报文数据作为控制指令数据。
进一步优选的,每个安全计数器采用四字节的存储容量,从而能够保证连续累加24小时数据不溢出;在无人驾驶列车断电后,将两个安全计数器中的累加计数值进行清零。
进一步优选的,无人驾驶列车还包括内置有5G通信收发装置的PIS乘客信息系统,PIS乘客信息系统包括设置在无人驾驶列车车头部的车头摄像头以及安装在每节车厢内的 车厢摄像头;当步骤2的列车紧急牵引模式自动开启后,地面控制终端能与PIS乘客信息系统通过5G通信收发装置建立连接,进而通过车头摄像头查看列车前方视频图像、以及通过车厢摄像头查看每节车厢内的视频图像。
与现有技术相比,本发明通过在5G技术及地面装置一起配合完成列车在网络故障情况下自动进行远程人工紧急驾驶控制,避免人员不能及时登陆车辆,以及不能无极调速控车的弊端,实现列车的高效救援及运行,用于今后无人驾驶的列车。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种适用于无人驾驶列车的紧急牵引方法,其特征在于:包括如下步骤:
    步骤1、建立列车通信网络:无人驾驶列车包括通过车载网络连接的车载终端和牵引制动系统;
    车载终端实时监测列车的载信号,车载信号包括列车当前位置信息、列车当前速度值和车载网络的实时运行状态;
    车载终端通过无线连接的方式与地面控制终端相连接,并将监测到的车载信号实时发送给地面控制终端;
    牵引制动系统通过5G通信收发装置与地面的5G热点进行通信,地面5G热点与地面控制终端有线连接;
    步骤2、自动激活列车紧急牵引模式:当车载终端监测到车载网络故障时,将监测到的车载网络故障信号发送给地面控制终端,地面控制终端将远程自动开启列车紧急牵引模式;
    步骤3、精确停车:在列车紧急牵引模式下,地面控制终端直接发送牵引制动指令和变化的牵引制动力值给牵引制动系统,使列车以无极调速的方式实现精确停车。
  2. 根据权利要求1所述的适用于无人驾驶列车的紧急牵引方法,其特征在于:步骤3中,列车实现精确停车的方法,包括如下步骤:
    步骤31、确定停车曲线:假设步骤2中车载网络故障时的列车位置点为点A,前方最近车站的停车站点为点C,点A和点C之间的减速点为点B;点A、点B和点C连线构成停车曲线,点A和点B之间的距离为S1,AB之间为匀速行驶段,匀速行驶时间为t1,且对应速度为V1;点B和点C之间的距离为S2,BC之间为减速行驶段,减速行驶时间为t2,对应减速度为a,且a<1;
    步骤32、设置驾驶手柄:在地面控制终端设置驾驶手柄,驾驶手柄包括牵引力控制窗和操作手柄,牵引力控制窗呈直线型,具有空档位0、满档位100%以及设置在空档位和满档位之间的档位刻度值;操作手柄能在牵引力控制窗中往复移动;
    步骤33、计算t1:步骤31中的S2值为设定值,S1值能够根据车载信号中的列车当前位置信息,进行计算得到;V1值则根据驾驶手柄施加的最大牵引力值所确定,则:
    t1=S1/V1
    步骤33、计算t2:由于列车在点C的速度为0,故而得到:
    t2=2S2/V1
    步骤34、计算减速度a,具体计算公式为:a=V1/t2;
    步骤35、列车匀速行驶:地面控制终端远程自动开启列车紧急牵引模式后,操作手柄移动至50%~100%之间的档位刻度值处,牵引制动系统将向列车施加牵引力,使列车以匀速v1向前行驶,且V1≤Va;其中,Va为列车紧急牵引模式下允许的最大运行速度;
    步骤36、列车减速行驶:当经过时间t1后,列车到达减速点B;此时,地面控制终端的操作手柄根据步骤34计算的加速度a值,移动至与a值相等的档位刻度值处,列车减速制动,经时间t2后,到达停车站点C且降速为0。
  3. 根据权利要求2所述的适用于无人驾驶列车的紧急牵引方法,其特征在于:步骤35中,地面控制终端的操作手柄在牵引力控制窗中的档位刻度值,根据S1值进行确定,当S1不小于设定距离值,则操作手柄移动至满档位100%,牵引制动系统将提供列车紧急牵引模式下允许的最大牵引力,使V1=Va。
  4. 根据权利要求2所述的适用于无人驾驶列车的紧急牵引方法,其特征在于:Va=20Km/h。
  5. 根据权利要求1所述的适用于无人驾驶列车的紧急牵引方法,其特征在于:步骤2中,无人驾驶列车的驾驶舱内设置有“紧急牵引模式旋钮”,地面控制终端通过远程操控“紧急牵引模式旋钮”的启闭,进而实现列车紧急牵引模式的自动开启与关闭。
  6. 根据权利要求5所述的适用于无人驾驶列车的紧急牵引方法,其特征在于:步骤2中地面控制终端的远程指令、步骤3中的牵引制动指令以及牵引制动力值的发送方式,均采用两个独立的数据包通过无线冗余通道进行发送。
  7. 根据权利要求6所述的适用于无人驾驶列车的紧急牵引方法,其特征在于:两个独立数据包的报文头均设置有一个安全计数器。
  8. 根据权利要求7所述的适用于无人驾驶列车的紧急牵引方法,其特征在于:两个安全计数器的使用方法,包括如下步骤:
    A、累加计数:每个独立数据包,每次生成指令包时,对应安全计数器将累加计数1次;当某个独立数据包因5G网络信号差,未能生成指令包时,对应安全计数器将不累加;
    B、累加计数值比较:“紧急牵引模式旋钮”或牵引制动系统接收到地面控制终端发送的两个独立数据包后,首先对两个独立数据包中安全计数器的累加计数值进行比较;
    C、确定控制指令数据,具体确定方法为:
    (1)当两个独立数据包中安全计数器的累加计数值相同,则以先接收到的独立数据包的报文数据作为控制指令数据;
    (2)当两个独立数据包中安全计数器的累加计数值不同,则以安全计数器累加计数值较大的独立数据包的报文数据作为控制指令数据。
  9. 根据权利要求8所述的适用于无人驾驶列车的紧急牵引方法,其特征在于:每个安全计数器采用四字节的存储容量,从而能够保证连续累加24小时数据不溢出;在无人驾驶列车断电后,将两个安全计数器中的累加计数值进行清零。
  10. 根据权利要求1所述的适用于无人驾驶列车的紧急牵引方法,其特征在于:无人驾驶列车还包括内置有5G通信收发装置的PIS乘客信息系统,PIS乘客信息系统包括设置在无人驾驶列车车头部的车头摄像头以及安装在每节车厢内的车厢摄像头;当步骤2的列车紧急牵引模式自动开启后,地面控制终端能与PIS乘客信息系统通过5G通信收发装置建立连接,进而通过车头摄像头查看列车前方视频图像、以及通过车厢摄像头查看每节车厢内的视频图像。
PCT/CN2022/112740 2021-08-23 2022-08-16 一种适用于无人驾驶列车的紧急牵引方法 WO2023024969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110967338.4A CN113665632B (zh) 2021-08-23 2021-08-23 一种适用于无人驾驶列车的紧急牵引方法
CN202110967338.4 2021-08-23

Publications (1)

Publication Number Publication Date
WO2023024969A1 true WO2023024969A1 (zh) 2023-03-02

Family

ID=78545050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112740 WO2023024969A1 (zh) 2021-08-23 2022-08-16 一种适用于无人驾驶列车的紧急牵引方法

Country Status (2)

Country Link
CN (1) CN113665632B (zh)
WO (1) WO2023024969A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665632B (zh) * 2021-08-23 2024-04-02 中车南京浦镇车辆有限公司 一种适用于无人驾驶列车的紧急牵引方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211402A (ja) * 2001-01-16 2002-07-31 Central Japan Railway Co 自動列車制御装置
CN110901693A (zh) * 2019-10-15 2020-03-24 北京交通大学 基于5g和云计算技术的列车运行控制系统
CN111619615A (zh) * 2020-07-30 2020-09-04 北京全路通信信号研究设计院集团有限公司 一种远程控制系统和列控系统的切换方法和切换系统
CN112249096A (zh) * 2020-09-14 2021-01-22 南京铁道职业技术学院 一种城市轨道交通车站的精确停车方法
CN112298279A (zh) * 2020-09-28 2021-02-02 卡斯柯信号有限公司 一种轨道交通全自动运行蠕动模式的分级控制方法及装置
CN112373522A (zh) * 2020-10-10 2021-02-19 中车青岛四方机车车辆股份有限公司 紧急牵引分级控制方法、存储介质、设备、网络系统及轨道车辆
CN113022653A (zh) * 2021-02-25 2021-06-25 浙江众合科技股份有限公司 一种基于低时延传输技术的远程列车驾驶系统及方法
CN113665632A (zh) * 2021-08-23 2021-11-19 中车南京浦镇车辆有限公司 一种适用于无人驾驶列车的紧急牵引方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4197096B2 (ja) * 2001-02-15 2008-12-17 日本信号株式会社 自動列車制御装置
EP1886433A1 (de) * 2005-06-02 2008-02-13 Siemens Aktiengesellschaft, A German Corporation Redundante übertragung von datentelegrammen für die leittechnik von hgü-systemen
JP2011077667A (ja) * 2009-09-29 2011-04-14 Hitachi Ltd リング型ネットワークシステム
CN203761409U (zh) * 2014-01-26 2014-08-06 中国电子科技集团公司第五十八研究所 低成本高可靠性的高速网络通讯芯片测试电路
CN104363147A (zh) * 2014-12-05 2015-02-18 成都思邦力克科技有限公司 滤波网络测试装置
CN205787791U (zh) * 2016-07-08 2016-12-07 北京旷视科技有限公司 网络继电器和网络系统
CN106789509B (zh) * 2016-12-21 2019-08-23 中国船舶重工集团公司第七一一研究所 一种冗余can总线通信系统的数据通信方法
DE102017208826A1 (de) * 2017-05-24 2018-11-29 Wago Verwaltungsgesellschaft Mbh Eingebettete zyklische Redundanzprüfungswerte
CN107757656B (zh) * 2017-09-30 2020-02-25 上海富欣智能交通控制有限公司 列车自动驾驶制动方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211402A (ja) * 2001-01-16 2002-07-31 Central Japan Railway Co 自動列車制御装置
CN110901693A (zh) * 2019-10-15 2020-03-24 北京交通大学 基于5g和云计算技术的列车运行控制系统
CN111619615A (zh) * 2020-07-30 2020-09-04 北京全路通信信号研究设计院集团有限公司 一种远程控制系统和列控系统的切换方法和切换系统
CN112249096A (zh) * 2020-09-14 2021-01-22 南京铁道职业技术学院 一种城市轨道交通车站的精确停车方法
CN112298279A (zh) * 2020-09-28 2021-02-02 卡斯柯信号有限公司 一种轨道交通全自动运行蠕动模式的分级控制方法及装置
CN112373522A (zh) * 2020-10-10 2021-02-19 中车青岛四方机车车辆股份有限公司 紧急牵引分级控制方法、存储介质、设备、网络系统及轨道车辆
CN113022653A (zh) * 2021-02-25 2021-06-25 浙江众合科技股份有限公司 一种基于低时延传输技术的远程列车驾驶系统及方法
CN113665632A (zh) * 2021-08-23 2021-11-19 中车南京浦镇车辆有限公司 一种适用于无人驾驶列车的紧急牵引方法

Also Published As

Publication number Publication date
CN113665632B (zh) 2024-04-02
CN113665632A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN107878513B (zh) 一种无人驾驶列车失位救援方法
US10618536B2 (en) Method and system for managing specific events related to the movements of a guided vehicle
CN107977000B (zh) 一种铁路机车自动驾驶系统
EP2746132B1 (en) Ctcs level-3 onboard automatic train operation device and rail transit car
CN110329319B (zh) 一种面向智慧城轨的全自动运行系统
CN106915367A (zh) 一种列车控制系统
AU2005310055B2 (en) Pantograph control via GPS
EP3744605A1 (en) Railway train operation control method and system
WO2023024969A1 (zh) 一种适用于无人驾驶列车的紧急牵引方法
CN114475714B (zh) 山地轨道交通列车的运行控制系统、控制方法和装备
CN110588726A (zh) 一种基于lte-v2x的有轨电车信号优先控制系统与方法
CN109501818A (zh) 一种轨道车自动驾驶控制方法及系统
CN105128857A (zh) 一种汽车自主驾驶控制方法和一种汽车自主驾驶系统
CN110466535B (zh) 一种智轨列车车门与站台安全门联动的系统和方法
CN113002565A (zh) 一种智能网联捷运系统及运行控制方法
WO2023097838A1 (zh) 一种灵活编组的解编方法、设备和存储介质
CN110333718A (zh) 远程控制车辆的安全驾驶方法
CN114148384A (zh) 一种有轨电车运行控制系统
CN116691777A (zh) 一种轨道车辆的虚拟联挂追踪控制系统及方法
CN114394128B (zh) 列车控制方法及系统、车载子系统和轨旁资源管理子系统
JP7131942B2 (ja) 列車制御システム
CN116409348A (zh) 一种轨道交通灵活编组站台门安全防护和联动的控制方法
WO2023097840A1 (zh) 一种灵活编组的建立方法、系统、设备和存储介质
WO2023097839A1 (zh) 一种灵活编组运行控制方法、设备和存储介质
CN115257879A (zh) 一种基于5g技术的城市轨道交通云化全自动运行信号系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE