WO2023024863A1 - 系统芯片和电子设备 - Google Patents

系统芯片和电子设备 Download PDF

Info

Publication number
WO2023024863A1
WO2023024863A1 PCT/CN2022/110174 CN2022110174W WO2023024863A1 WO 2023024863 A1 WO2023024863 A1 WO 2023024863A1 CN 2022110174 W CN2022110174 W CN 2022110174W WO 2023024863 A1 WO2023024863 A1 WO 2023024863A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
processing module
power
system chip
volatile storage
Prior art date
Application number
PCT/CN2022/110174
Other languages
English (en)
French (fr)
Inventor
廖佳伟
张逸凡
Original Assignee
厦门紫光展锐科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门紫光展锐科技有限公司 filed Critical 厦门紫光展锐科技有限公司
Publication of WO2023024863A1 publication Critical patent/WO2023024863A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1415Saving, restoring, recovering or retrying at system level
    • G06F11/1435Saving, restoring, recovering or retrying at system level using file system or storage system metadata
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • G06F11/1048Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices using arrangements adapted for a specific error detection or correction feature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1415Saving, restoring, recovering or retrying at system level
    • G06F11/1438Restarting or rejuvenating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1415Saving, restoring, recovering or retrying at system level
    • G06F11/1441Resetting or repowering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the field of computer technology, in particular to a system chip and electronic equipment.
  • the user data in the system chip will be saved from the dynamic random access memory (DDR) to the non-volatile memory (flash), and then the relevant user data can be restored when the electronic device is turned on next time.
  • DDR dynamic random access memory
  • flash non-volatile memory
  • various abnormal power failures may occur in the electronic equipment during use, for example, a sudden power failure, abnormal battery of the electronic equipment, or abnormal shutdown of an electric switch.
  • the DRAM and the non-volatile memory will stop working, so that the DRAM cannot store user data in the non-volatile memory, and then the electronic device will not work normally when it is turned on next time.
  • the present application provides a system chip and electronic equipment, which are used to solve the problem of loss of verification data when the system chip is abnormally powered off.
  • the present application provides a system chip, including: at least one business processing module and a non-volatile storage module; the non-volatile storage module is electrically connected to the business processing module;
  • the business processing module is used to process the corresponding business; and, after receiving the abnormal power-down signal, the verification data of the corresponding business is stored in the non-volatile storage module, and the verification data is used to perform the business data generated by the corresponding business check.
  • the system chip also includes: a power management module and an application processor, the application processor is connected to the power management module, and the business processing module is connected to the application processor and the power management module; After the electrical signal, detect whether the business processing module and the non-volatile storage module are powered off; if the business processing module and/or the non-volatile storage module is powered off, transmit the abnormal power-off signal to the application processor; the application processor uses In response to receiving the abnormal power-off signal, the power management module is controlled to power on the service processing module and/or the non-volatile storage module that is powered off.
  • the business processing module includes: a random storage unit and a running unit, the target stack of the random storage unit stores verification data; the running unit is a unit in the running state before abnormal power failure; the application processor is specifically used for Control the power management module to power on the target stack and the running unit.
  • the business processing module is specifically configured to: save the verification data in the target stack in the non-volatile storage module through the running unit.
  • the system chip further includes: a control module; the power management module is connected to the control module, and the power management module is also used to power off multiple control modules after receiving an abnormal power-off signal.
  • the business processing module is further configured to: generate a storage completion identifier after storing the verification data in the non-volatile storage module, and transmit the storage completion identifier to the application processor; the application processor is also configured to receive The storage completion flag transmitted by the business processing module, and according to the storage completion flag, controls the power management module to power off the system chip.
  • the business processing module is also used to: obtain verification data from the non-volatile storage module after detecting that the electronic device is restarted; and run the business processing module according to the verification data.
  • the service processing module is specifically configured to: obtain the verification data from the non-volatile storage module if the acquisition of the verification data from the random storage unit fails after detecting that the electronic device is restarted.
  • the non-volatile storage module is integrated in the service processing module.
  • the non-volatile storage module includes: a one-time programmable memory.
  • the second aspect of the present application provides an electronic device, including any one of the above-mentioned system chips, and the electronic device also includes: a battery, a power management chip, a non-volatile memory, and a dynamic random access memory; wherein, the battery is connected to the power management chip, The power management chip is connected to the system chip, the non-volatile memory is connected to the application processor, and the dynamic random access memory is used to connect to the business processing module.
  • the application provides a system chip and electronic equipment, the system chip includes: at least one business processing module and a non-volatile storage module; the non-volatile storage module is electrically connected to the business processing module; the business processing module is used to process corresponding services; and, After receiving the abnormal power-down signal, the verification data of the corresponding service is stored in the non-volatile storage module, and the verification data is used to verify the service data generated by the corresponding service.
  • the application can store the verification data on the business processing module in the non-volatile storage module after the system chip is abnormally powered off, so as to avoid the loss of the verification data, and thus make the After the business processing module is powered off abnormally, it can still work normally after the next power-on.
  • FIG. 1 is a schematic diagram of an application scenario of a system chip provided by the present application
  • Fig. 2 is a structural block diagram of a system chip provided by the present application.
  • FIG. 3 is a structural block diagram of another electronic device provided by the present application.
  • FIG. 4 is a structural block diagram of another electronic device provided by the present application.
  • FIG. 5 is a schematic flow diagram of steps performed by a system chip provided by the present application when it is normally powered off;
  • FIG. 6 is a schematic flow chart of the steps performed by a system chip provided by the present application when it is abnormally powered off;
  • FIG. 7 is a schematic flowchart of steps performed by a system chip provided by the present application after restarting.
  • PMIC Power Management Integrated Circuit power management chip is a chip that is responsible for the transformation, distribution, detection and other power management responsibilities of electric energy in electronic equipment systems.
  • SoC System On Chip, system chip, is an integrated circuit that integrates a computer or electronic system into a single chip.
  • PMU Power Management Unit, the power management unit in the SOC, is responsible for the power on and off of each module in the SOC and low power (low power consumption) management.
  • Wdg Watchdog, watchdog, a module that monitors the working status of electronic equipment, and will be triggered when the electronic equipment is abnormal. Integrated on the system chip, when the electronic device is working normally, it will run Wdg every preset time. If Wdg does not run after the preset time, it is determined that the electronic device is abnormal.
  • OTP Over-temperature Protection
  • over-temperature protection refers to the behavior of using special means to protect electronic equipment when the temperature of the operating electronic equipment exceeds the set temperature.
  • OVP Over-voltage Protection
  • over-voltage protection refers to a protection method that disconnects the power supply or reduces the voltage of the electronic equipment when the line voltage of the electronic equipment exceeds the set voltage.
  • Efuse One-time programmable memory is an electronic fuse, which can realize thousands of data updates and permanent storage after special hardware design and optimization.
  • AON always on, means that the corresponding module is always online/powered.
  • Application Protocol Data Unit is the legal data/communication channel for business modules
  • Application processor application processor, is a very large scale integrated circuit that expands audio functions and dedicated interfaces on the basis of low-power CPU (central processing unit).
  • FIG. 1 is a schematic diagram of an application scenario of a system chip provided by the present application.
  • the system chip is set in an electronic device, such as a mobile phone, a tablet computer, a smart watch, or a smart home.
  • the SoC is powered by a battery, as shown in Figure 1.
  • an electronic device 100 includes: a system chip 10 , a battery 20 , a power management chip 30 , a nonvolatile memory 40 and a DRAM 50 .
  • the system chip 10 includes a power management module 11 , an application processor 12 and a service processing module 13 .
  • the service processing module 13 includes a random storage unit 131 .
  • the service processing module 13 is a processing module set for specific services, such as banking services, insurance services, and communication services.
  • the business processing module 13 will generate business data and verification data.
  • the service data is output to the DRAM 50 after being encrypted and verified.
  • the application processor 12 transmits the service data in the DRAM 50 to the non-volatile memory 40, so as to realize access according to service needs.
  • the verification data generated by the business processing module 13 is stored in the random storage unit 131 .
  • the verification data can be directly read in the random storage unit 131 to meet the real-time requirements of the business processing module. operation to improve the efficiency of business processing.
  • the service processing module 13 When adopting the normal program to power off, the service processing module 13 will store the verification data in the random storage unit 131 in the dynamic random access memory 50, and then transfer it to the non-volatile memory 40 by the application processor 12, so that the next time on When the power is turned on, the verification data can be obtained from the non-volatile memory 40 to run the service processing module 13 .
  • the function of the verification data is to verify the business data to ensure the normal operation of the business processing module.
  • business data such as fingerprint data, bank card amount, and change log records, etc.
  • the verification data is the comparison data corresponding to the business data, and is used to compare the integrity and correctness of the business data.
  • the present application provides a system chip, in which a non-volatile storage module is arranged, and after the electronic device is abnormally powered off, the verification data in the random storage unit can be stored in the non-volatile storage module, So that after the system chip is powered on next time, the verification data can be directly obtained from the non-volatile storage module to realize the normal operation of the service processing module.
  • Fig. 2 is the structural block diagram of the system chip that the present application provides, as shown in Fig. 2, system chip 10 comprises: at least one service processing module 13 and nonvolatile storage module 14; Nonvolatile storage module 14 and service processing module 13 electric circuits Connection; business processing module 13, for processing corresponding business; And, after receiving abnormal power-down signal, the verification data of corresponding business is stored in non-volatile memory module 14, and verification data is used for corresponding business generation Verify the business data.
  • the non-volatile storage module includes: one-time programmable memory (Efuse).
  • Efuse is simple to initialize, and can permanently save the corresponding verification data in the case of abnormal power failure.
  • Efuse has a certain service life and can be permanently stored and updated thousands of times.
  • Efuse will only be used in the case of abnormal power failure.
  • the frequency of abnormal power failure of electronic equipment is very low, so during the service life of electronic equipment, Efuse is sufficient to support the storage of verification data of electronic equipment when abnormal power failure occurs.
  • the non-volatile storage module 14 before saving the verification data corresponding to the service in the non-volatile storage module, it also includes: clearing the stored data in the non-volatile storage module 14 . Then the verification data corresponding to the service is stored in the non-volatile storage module.
  • the stored data in the non-volatile storage module 14 is cleared in advance. Then the verification data stored in the non-volatile storage module 14 can be directly obtained as verification data that will be used after restarting the electronic device next time.
  • the system chip includes multiple modules, such as a power management module 11 , an application processor 12 , a service processing module 13 and other control modules 15 as shown in FIG. 3 .
  • the power management module 11 is always on (AON), and other modules (application processor 12, business processing module 13 and other control modules 15) only belong to the power-on state during operation. In the non-running state, it belongs to the power-off state.
  • each hardware of the electronic device will monitor various abnormal power failures, and then send abnormal power failure signals to the service processing module.
  • the system chip 10 is connected to the circuit board of the battery 20 through the power management chip 30. After the battery 20 of the electronic device is unplugged, the circuit board of the battery 20 can detect that the battery 20 is unplugged, Then an abnormal power-down signal is generated and sent to the service processing module 13 .
  • the system chip 10 can monitor the corresponding operation and send the abnormal power-down signal to the service processing module 13. Wdg does not run within the preset time, and Wdg sends an abnormal power-off signal to a business processing module 13 .
  • the system chip 10 also includes: a temperature sensor and a voltage sensor, whether the temperature sensor monitors the need for over-temperature protection (OTP) or whether the voltage sensor monitors the need for over-voltage protection (OVP), if the temperature sensor or the voltage sensor needs to send an abnormal power-down signal to Business processing module 13.
  • OTP over-temperature protection
  • OVP over-voltage protection
  • any hardware in the electronic device can also monitor whether there is an abnormal power failure in other ways, and if so, send a corresponding abnormal power failure signal to the service processing module, which is not limited here.
  • the system chip 10 further includes: a power management module 11 and an application processor 12, the application processor 12 is connected to the power management module 11, and the business processing module 13 is connected to the application processor 12 and the power management module 11 is connected; the power management module 11 is used to detect whether the business processing module 13 and the non-volatile storage module 14 are powered off after receiving the abnormal power-down signal; if the business processing module 13 and/or the non-volatile When the storage module 14 is powered off, the abnormal power-down signal is transmitted to the application processor 12; the application processor 12 is configured to control the power management module 11 to the power-down service processing module 13 and/or in response to receiving the abnormal power-down signal. Or the non-volatile storage module 14 is powered on.
  • the abnormal power failure in this application means that the battery stops supplying power to the electronic device or the power of the battery is too small to support power supply to the entire electronic device.
  • the capacitor can store a part of the power and continue to supply power to the system chip 10 .
  • the service processing module 13 may be in a power-on state or power-off after an abnormal power-off.
  • the hardware will send the corresponding abnormal power-down signal to the business processing module 13, and the business processing module 13 will save the verification data of the corresponding business in the non-volatile In the storage module 14, the check data is used to check the service data generated by the corresponding service.
  • the hardware sends the corresponding abnormal power-off signal to the power management module 11 and the business processing module 13, and the power management module 11 controls the business processing module 13 and/or Or after the non-volatile storage module 14 is powered on, the business processing module 13 saves the verification data in the non-volatile storage module 14 .
  • the service processing module 13 includes: a random storage unit 131 and an operating unit 132, the target stack of the random storage unit 131 stores verification data; the operating unit 132 is a unit in a running state before abnormal power failure ; The application processor 12 is specifically used to control the power management module 11 to power on the target stack and the execution unit 132 .
  • the business processing module 13 is specifically configured to: save the verification data in the target stack in the non-volatile storage module 14 through the running unit 132 .
  • the business processing module 13 only runs part of the running units 132 therein.
  • the verification data is also stored in a part of the stack space of the random storage unit 131, and this part of the stack space is the target stack. Then controlling the power management module 11 to power on the service processing module 13 means only powering on the target stack and the running unit 132 .
  • the battery 20 since the battery 20 only relies on the capacitance in the power management chip 30 to supply power to the system chip 10 after abnormally interrupting the power supply to the system chip 10, since the power of the capacitance of the power management chip 30 is limited, here It is only necessary to supply power to the target stack and the running unit 132 , avoiding power supply to unnecessary stacks and other running units, resulting in waste of power.
  • the system chip 10 also includes: a control module 15; the power management module 11 is connected with the control module 15, and the power management module 11 is also used for powering off a plurality of control modules 15 after receiving an abnormal power-down signal .
  • control module A is a module for controlling the operation of the non-volatile memory 40
  • control module B is a module for controlling the operation of the DRAM 50
  • control module 15 may also be any module on the system chip 10 except the power management module 11 , the application processor 12 , the service processing module 13 and the non-volatile storage module 14 .
  • wireless module for example, wireless module, audio module, video module, etc.
  • each control module 15 is powered off, which can avoid wasting the power of the power management chip 30 in the case of abnormal power failure.
  • the business processing module is also used for: after storing the verification data in the non-volatile storage module, generating a storage completion identifier, and transmitting the storage completion identifier to the application processor; the application processor is also used for receiving the service processing The storage completion flag transmitted by the module, and according to the storage completion flag, controls the power management module to power off the system chip.
  • the saving of the verification data is completed, and the entire system chip can be powered off.
  • the business processing module is also used for: after detecting that the electronic device is restarted, acquiring verification data from the non-volatile storage module; and running the business processing module according to the verification data.
  • the restart of the electronic device is detected with reference to the method of detecting abnormal power failure.
  • the circuit board of the battery 20 may detect that the battery 20 is plugged in, and then generate a restart signal and send it to the service processing module 13 .
  • Wdg runs again in preset time, and Wdg will restart and send a business processing module 13 etc.
  • the business processing module is specifically used to: obtain the verification data from the non-volatile storage module if it fails to obtain the verification data from the random storage unit after the restart of the electronic device is detected.
  • the non-volatile storage module 14 is integrated in the service processing module 13 .
  • the non-volatile storage module 14 is integrated in the business processing module 13 , and the verification data can be stored in the non-volatile storage module 14 more efficiently.
  • FIG. 5 shows a flow chart of specific working steps of the system chip provided by the present application when it is powered off normally. Specifically include the following steps:
  • the power management module receives a normal power-off signal, and sends the normal power-off signal to an application processor.
  • the normal power-off signal is a signal triggered by the user after the electronic device is normally turned off.
  • the power management module receives the normal power-off signal, and sends the normal power-off signal to the application processor.
  • the application processor determines whether the power management module is working normally, and controls the power management module to power on or wake up the service processing module.
  • the application processor can obtain the working status of the power management module in real time, here is to obtain whether the power management module powers on the business processing module, or whether the business processing module is in a low power consumption state, and if so, controls the power management module to power the business The processing module is powered on or the service processing module is woken up.
  • the power management module powers on the service processing module, or wakes up the service processing module.
  • the initialization refers to APDU (Application Protocol Data Unit) channel initialization
  • the self-inspection operation refers to the self-inspection of the status such as the security of the service processing module. It will consume a lot of time and power for the business processing module to perform complete power-on or business processing module initialization, self-inspection operations, and low-power state recovery.
  • the application processor sends a "normally and completely power off" instruction to the service processing module.
  • the application processor initiates a "normal and complete power-off" command to the service processing module through the APDU (Application Protocol Data Unit), requesting the service processing module to perform a complete power-off operation.
  • APDU Application Protocol Data Unit
  • the service processing module responds to the "normally and completely power off" instruction, and saves the verification data in the random dynamic memory.
  • the business processing module parses the APDU channel command and responds to the "normal and complete power off" command, goes through the complete power off process, and outputs the verification data protection process (encryption, message verification code, etc.) to the random dynamic Memory (DDR).
  • DDR random dynamic Memory
  • the service processing module sends a power-off instruction of waiting for a normal power-off to the application processor.
  • the service processing module feeds back the power-off indication information of waiting for normal power-off to the application processor through the APDU channel again.
  • the application processor determines whether the power-off instruction is "normal power-off", and if so, executes S109.
  • the application processor stores the verification data from the random dynamic memory into the non-volatile memory.
  • the application processor stores the protected verification data in the random dynamic memory into the non-volatile memory according to the response of the transaction system.
  • the application processor sends a complete power-off instruction to the power management module.
  • completely powering off refers to the entire service processing module, including: a random storage unit, an operation unit, and a non-volatile storage module.
  • the power management module disconnects the power supply to the service processing module.
  • the power management module also cuts off the power supply to other modules in the SoC to completely power down the electronic device.
  • the system chip provided by the present application can execute the above-mentioned normal power-off process, and can still save the verification data during normal power-off, so as to use it when the electronic device is started next time.
  • FIG. 6 shows a flow chart of specific working steps of the system chip provided by the present application when it is abnormally powered off. Specifically include the following steps:
  • the power management module receives an abnormal power-off signal sent by hardware.
  • the service processing module receives an abnormal power-off signal sent by the hardware.
  • the hardware After the hardware detects the abnormal power-off, it will generate an abnormal power-off signal to the service processing module and the power management module, and send the abnormal power-off signal to the power management module and the service processing module.
  • the hardware mentioned here includes: battery circuit board, Wdg, voltage sensor and temperature sensor, etc.
  • the power management module sends an abnormal power-off signal to the application processor.
  • the application processor controls the power management module to power on the service processing module and controls to power off other control modules.
  • the power management module powers off the control module (on the system chip) through different power domains.
  • the control module is a non-essential module or non-essential system that is not running on the system chip. Powering off the control module can save data for the business processing module Reserve battery.
  • the power management module powers on the service processing module.
  • the power management module preferentially powers on the target stack and the running unit in the service processing module. If the service processing module is in a low power consumption state, the power management module wakes up the service processing module.
  • the target stack and the running unit running before abnormal power-off are prioritized for initialization. If the service processing module was in the power-on state before, after receiving the abnormal power-off signal, other units in the service processing module can be initialized and perform self-test operations. If the service processing module is in a low power consumption state before, it also preferentially initializes the target stack and the running unit after waking up.
  • the business processing module initializes the non-volatile storage module, and saves the verification data to the non-volatile storage module.
  • steps S201 to S208 will not be triggered again, that is, the process ends. Avoid powering on the business processing module again and repeating the steps of saving the verification data.
  • the code that interrupts the normal operation is the interrupt code.
  • S201 to S208 are designed at the end of the interrupt code. Then it can avoid that after exiting the interrupt code, continuing to execute S201 to S208, and generating related data reading and writing behaviors.
  • the service processing module generates an abnormal power-off flag and sends it to the application processor.
  • the application processor judges whether an abnormal power-off flag is received, and if so, executes S211.
  • the application processor executes other power-off processes.
  • the DDR and flash work abnormally, and the state is unstable and unreliable.
  • the SoC cannot save the parity data to DDR and flash. If there is no abnormality in the business processing module and Efuse, you can urgently save the verification data (a small amount but very important) to Efuse.
  • the capacitor in the PMIC still stores some power. The voltage reduction of the capacitor is a continuous process. When the voltage gradually decreases to the lowest voltage that cannot maintain the operation of the application processor, business processing module and its Efuse, the application can complete the corresponding hardware and software operations to save the verification data.
  • FIG. 7 shows a flow chart of specific working steps when the system chip provided by the present application restarts the electronic device after it is powered off normally or abnormally. Specifically include the following steps:
  • the application processor transfers the verification data to the random dynamic memory.
  • the application processor monitors the power management module, and controls the power management module to power on the service processing module.
  • the power management module powers on the service processing module.
  • the business processing module obtains the verification data from the random storage unit, if obtained, executes S308, and if not obtained, executes S306.
  • the business processing module obtains the verification data from the random storage unit, and if obtained, verifies the verification data, and if the verification passes, it indicates that it is the required verification data, and then executes S308. If the verification fails or the verification data is not obtained, execute S306.
  • the business processing module obtains the verification data from the random dynamic memory, if obtained, executes S308, and if not obtained, executes S307.
  • the business processing module obtains the verification data from the random dynamic memory, and if obtained, verifies the verification data, and if the verification passes, it indicates that the verification data is required, and then executes S308. If the verification fails or the verification data is not obtained, execute S307.
  • the business processing module obtains the verification data from the non-volatile storage module, if obtained, executes S308, and if not obtained, ends the process.
  • the business processing module acquires the verification data from the non-volatile storage module, and if obtained, verifies the verification data, and if the verification passes, it indicates that it is the required verification data, and then executes S308. If the verification fails or the verification data is not obtained, the business processing module crashes and the process ends.
  • the application processor transmits the processed verification data and service data from the flash to the DDR.
  • the service processing module detects that its random storage unit has no verification data, and obtains the verification data from the DDR instead. If the verification process finds that the verification data in the DDR is not the latest version data, the verification will fail. And then get the corresponding verification data from Efuse, verify it is correct and perform initialization operation.
  • Efuse can save and update data about several thousand times.
  • the service life of Efuse several thousand times is sufficient for the life cycle of electronic equipment, which improves the effectiveness of saving verification data.
  • FIG. 3 and FIG. 4 it shows an electronic device 100 provided by the present application, including a system chip 10 as described above, and the electronic device also includes: a battery 20, a power management chip 30, a non-volatile memory 40 and a dynamic Random access memory 50; wherein, the battery 20 is connected to the power management chip 30, the power management chip 30 is connected to the system chip 10, the non-volatile memory 40 is connected to the application processor 12, and the dynamic random access memory 50 is used to connect to the business processing module 13.
  • the application provides a system chip and electronic equipment, the system chip includes: at least one business processing module and a non-volatile storage module; the non-volatile storage module is electrically connected to the business processing module; the business processing module is used to process corresponding services; and, After receiving the abnormal power-down signal, the verification data of the corresponding service is stored in the non-volatile storage module, and the verification data is used to verify the service data generated by the corresponding service.
  • the application can store the verification data on the business processing module in the non-volatile storage module after the system chip is abnormally powered off, so as to avoid the loss of the verification data, and thus make the After the business processing module is powered off abnormally, it can still work normally after the next power-on.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formula, the character “/” indicates that the contextual objects are a “division” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, wherein, a, b, c can be single or multiple indivual.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Library & Information Science (AREA)
  • Power Sources (AREA)
  • Debugging And Monitoring (AREA)

Abstract

本申请提供系统芯片和电子设备,该系统芯片包括:至少一个业务处理模块和非易失存储模块;非易失存储模块和业务处理模块电连接;业务处理模块,用于处理对应业务;以及,在接收到异常掉电信号后,将对应业务的校验数据保存在非易失存储模块中,校验数据用于对对应业务产生的业务数据进行校验。本申请通过在系统芯片上集成非易失存储模块,可以在系统芯片异常掉电后,将业务处理模块上校验数据存储在该非易失存储模块中,避免校验数据的丢失,进而使业务处理模块在异常掉电后,下一次上电后依旧可以正常工作。

Description

系统芯片和电子设备
本申请要求于2021年08月24日提交中国专利局、申请号为202110977669.6、申请名称为“系统芯片和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,尤其涉及一种系统芯片和电子设备。
背景技术
通常情况下,电子设备在正常关机流程时,会将系统芯片中的用户数据由动态随机存储器(DDR)保存到非易失存储器(flash),则在下一次开机便可恢复相关的用户数据。
但是,电子设备在使用过程中会存在各种异常掉电的情况,例如,突然停电、电子设备的电池异常或者电开关异常关闭等。这些情况下,动态随机存储器和非易失存储器会停止工作,使动态随机存储器无法将用户数据存储至非易失存储器中,进而导致电子设备在下次开机时,无法正常工作。
发明内容
本申请提供一种系统芯片和电子设备,用以解决系统芯片在异常掉电时,校验数据丢失的问题。
第一方面,本申请提供一种系统芯片,包括:至少一个业务处理模块和非易失存储模块;非易失存储模块和业务处理模块电连接;
业务处理模块,用于处理对应业务;以及,在接收到异常掉电信号后,将对应业务的校验数据保存在非易失存储模块中,校验数据用于对对应业务产生的业务数据进行校验。
可选地,系统芯片还包括:电源管理模块和应用处理器,应用处理器和 电源管理模块连接,业务处理模块与应用处理器以及电源管理模块连接;电源管理模块,用于在接收到异常掉电信号后,检测业务处理模块和非易失存储模块是否掉电;若业务处理模块和/或非易失存储模块掉电,则将异常掉电信号传输给应用处理器;应用处理器,用于响应于接收到异常掉电信号,控制电源管理模块给掉电的业务处理模块和/或非易失存储模块上电。
可选地,业务处理模块包括:随机存储单元和运行单元,随机存储单元的目标堆栈内存储有校验数据;运行单元是在异常断电前处于运行状态的单元;应用处理器,具体用于控制电源管理模块给目标堆栈和运行单元上电。
可选地,业务处理模块具体用于:通过运行单元将目标堆栈中的校验数据保存在非易失存储模块中。
可选地,系统芯片还包括:控制模块;电源管理模块和控制模块连接,电源管理模块还用于在接收到异常掉电信号后,对多个控制模块断电。
可选地,业务处理模块还用于:在将校验数据保存在非易失存储模块中之后,生成存储完成标识,并将存储完成标识传输给应用处理器;应用处理器还用于,接收业务处理模块传输的存储完成标识,并根据存储完成标识,控制电源管理模块对系统芯片进行断电。
可选地,业务处理模块还用于:在检测到电子设备重启后,从非易失存储模块中获取校验数据;根据校验数据,运行业务处理模块。
可选地,业务处理模块具体用于:在检测到电子设备重启后,若从随机存储单元获取校验数据失败,则从非易失存储模块中获取校验数据。
可选地,非易失存储模块集成在业务处理模块中。
可选地,非易失存储模块包括:一次性可编程存储器。
本申请第二方面提供一种电子设备,包括如上述任一项的系统芯片,电子设备还包括:电池、电源管理芯片、非易失存储器和动态随机存储器;其中,电池和电源管理芯片连接,电源管理芯片和系统芯片连接,非易失存储器和应用处理器连接,动态随机存储器用于和业务处理模块连接。
本申请提供系统芯片和电子设备,该系统芯片包括:至少一个业务处理模块和非易失存储模块;非易失存储模块和业务处理模块电连接;业务处理模块,用于处理对应业务;以及,在接收到异常掉电信号后,将对应业务的校验数据保存在非易失存储模块中,校验数据用于对对应业务产生的业务数据进行校验。本申请通过在系统芯片上集成非易失存储模块,可以在系统 芯片异常掉电后,将业务处理模块上校验数据存储在该非易失存储模块中,避免校验数据的丢失,进而使业务处理模块在异常掉电后,下一次上电后依旧可以正常工作。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面藐视中的附图是本发明的一些实施例,对于本领域普通技术人员来将讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种系统芯片的应用场景示意图;
图2为本申请提供的一种系统芯片的结构框图;
图3为本申请提供另一种电子设备的结构框图;
图4为本申请提供另一种电子设备的结构框图;
图5为本申请提供的一种系统芯片在正常下电时执行步骤的流程示意图;
图6为本申请提供的一种系统芯片在异常掉电时执行步骤的流程示意图;
图7为本申请提供的一种系统芯片在重启后执行步骤的流程示意图。
具体实施方式
为了本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先,为便于理解,对本申请部分术语进行解释说明:
PMIC:Power Management Integrated Circuit电源管理芯片,是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。
SoC:System On Chip,系统芯片,是一个将计算机或电子系统集成到单一芯片的集成电路。
PMU:Power Management Unit,SOC内的电源管理单元,负责SOC内各个模块的上下电以及low power(低功耗)管理等。
Wdg:Watchdog,看门狗,一种监视电子设备工作状态的模块,电子设备异常时会触发。集成在系统芯片上,电子设备正常工作时会每隔预设时间运行Wdg,如果超过预设时间后Wdg未运行,则认定电子设备异常。
7s Reset:是指按电子设备7秒时,强制PMIC对系统芯片断电,然后重新供电。
OTP:Over-temperature Protection,过温保护,是指当运行的电子设备的温度超过设定温度时,采用特殊手段对电子设备进行保护的行为。
OVP:Over-voltage Protection,过压保护,是指被电子设备的线路电压超过设定电压时,使电源断开或者降低电子设备电压的一种保护方式。
Efuse:一次性可编程存储器,是一种电子熔丝,在经过硬件特殊设计优化能够实现几千次的数据更新及永久保存。
AON:always on,是指对应模块始终在线/有电。
APDU:Application Protocol Data Unit,应用协议数据单元,是业务模块对外的合法数据/通信信道
AP:Application processor,应用处理器,是在低功耗CPU(中央处理器)的基础上扩展音频功能和专用接口的超大规模集成电路。
示例性的,图1是本申请提供的一种系统芯片的应用场景示意图,具体的,系统芯片是设置在电子设备中的,例如,手机、平板电脑、智能手表或智能家居等。此外,系统芯片是由电池进行供电的,如图1所示。在图1中,电子设备100包括:系统芯片10、电池20、电源管理芯片30、非易失存储器40和动态随机存储器50。其中,系统芯片10包括电源管理模块11、应用处理器12和业务处理模块13。业务处理模块13包括随机存储单元131。
在图1中,业务处理模块13是针对特定业务设置的处理模块,例如,银行业务、保险业务和通信业务等。业务处理模块13在运行过程中,会产生业务数据和校验数据。业务数据经过加密和校验后输出给动态随机存储器50。进一步由应用处理器12将动态随机存储器50中的业务数据传输给非易失存 储器40,进而实现根据业务需要进行存取。而业务处理模块13产生的校验数据是保存在随机存储单元131中。在业务处理模块13下电,但是随机存储单元131始终上电的情况下,在业务处理模块13再次上电后,可以直接在随机存储单元131中读取校验数据,以满足业务处理模块实时运行,提高业务处理的效率。
在采用正常程序下电时,业务处理模块13会将随机存储单元131中的校验数据存储在动态随机存储器50,然后由应用处理器12转存至非易失存储器40中,以便下一次上电时,便可以从非易失存储器40中获取到校验数据,运行业务处理模块13。
其中,校验数据的作用是对业务数据进行校验,保证业务处理模块正常工作。示例性的,在银行业务中,业务数据如指纹数据、银行卡金额以及更改日志记录等。校验数据是业务数据对应的比对数据,用于对业务数据的完整性和正确性进行比对。
但是在异常掉电情况下,通常非易失存储器40和动态随机存储器50停止工作,导致随机存储单元131中的校验数据无法存储在非易失存储器40中,进而导致在下一次上电时,业务处理模块13无法获得校验数据,存在业务处理模块无法正常工作的问题。
为解决上述问题,本申请提供一种系统芯片,在系统芯片中设置非易失存储模块,能够在电子设备异常掉电后,将随机存储单元中的校验数据存储在非易失存储模块,以便下一次系统芯片上电后,可以直接在非易失存储模块中获取校验数据,来实现业务处理模块的正常工作。
下面以具体地实施例对本发明的技术方案进行详细说明。下面结果具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中,不再赘述。
图2为本申请提供的系统芯片的结构框图,如图2所示,系统芯片10包括:至少一个业务处理模块13和非易失存储模块14;非易失存储模块14和业务处理模块13电连接;业务处理模块13,用于处理对应业务;以及,在接收到异常掉电信号后,将对应业务的校验数据保存在非易失存储模块14中,校验数据用于对对应业务产生的业务数据进行校验。
其中,非易失存储模块包括:一次性可编程存储器(Efuse)。其中,Efuse初始化简单,在异常掉电情况下能够永久保存对应的校验数据。Efuse具有一 定的使用寿命,能够永久保存及更新几千次,但是在本申请中只有在异常掉电情况下才会使用Efuse。通常情况下电子设备的异常掉电频率很低,因此在电子设备可使用寿命期间,Efuse足以支持电子设备在异常掉电时的校验数据的存储。
此外,将对应业务的校验数据保存在非易失存储模块中之前,还包括:清空非易失存储模块14中的存储数据。然后将对应业务的校验数据保存在非易失存储模块中。在本申请实施例中,在非易失存储模块14中的存储校验数据时,都预先将非易失存储模块14中的存储数据清空。则能够使非易失存储模块14中存储的校验数据都是下一次重启电子设备后需要用到的校验数据,可直接获取。
具体的,系统芯片包括多个模块,如图3中的电源管理模块11、应用处理器12、业务处理模块13和其他控制模块15。其中,在电子设备正常运行中,电源管理模块11是始终有电状态(AON),而其他模块(应用处理器12、业务处理模块13和其他控制模块15)只有在运行过程中才属于上电状态,在不运行状态下属于下电状态。
进一步的,电子设备的各个硬件会监测到各种异常掉电,然后将异常掉电信号发送给业务处理模块。示例性的,参照图2,系统芯片10会通过电源管理芯片30连接在电池20的电路板上,电子设备的电池20被拔掉后,电池20的电路板可以检测到电池20被拔掉,则生成异常掉电信号发送给业务处理模块13。此外,当用户长按电子设备7秒时(7s Reset),系统芯片10能够监测到对应操作,将异常掉电信号发送给业务处理模块13。Wdg在预设时间内并未运行,Wdg将异常掉电信号发送个业务处理模块13。系统芯片10还包括:温度传感器和电压传感器,温度传感器监测是否需要过温保护(OTP)或者电压传感器监测是否需要过压保护(OVP),若需要温度传感器或电压传感器将异常掉电信号发送给业务处理模块13。在本申请实施例,电子设备中任意硬件还可以通过其他方式监测是否存在异常掉电,如果存在则将对应的异常掉电信号发送给业务处理模块,在此不加以限定。
在本申请实施例中,参照图2至图4,系统芯片10还包括:电源管理模块11和应用处理器12,应用处理器12和电源管理模块11连接,业务处理模块13与应用处理器12以及电源管理模块11连接;电源管理模块11,用于在接收到异常掉电信号后,检测业务处理模块13和非易失存储模块14是否掉 电;若业务处理模块13和/或非易失存储模块14掉电,则将异常掉电信号传输给应用处理器12;应用处理器12,用于响应于接收到异常掉电信号,控制电源管理模块11给掉电的业务处理模块13和/或非易失存储模块14上电。
具体的,在本申请中的异常掉电是指电池停止给电子设备供电或者电池电量很小,不足以支撑对整个电子设备供电。其中,当电池停止对电子设备供电后,由于电源管理芯片包括:电容,电容能够存储一部分电量,继续对系统芯片10进行供电。此外,但是由于电容中的电量有限,在异常掉电后,业务处理模块13有可能处于上电状态,也可能掉电。
其中,若业务处理模块13和非易失存储模块14处于上电状态,则硬件将对应的异常掉电信号发送给业务处理模块13,业务处理模块13将对应业务的校验数据保存在非易失存储模块14中,校验数据用于对对应业务产生的业务数据进行校验。若业务处理模块13和/或非易失存储模块14处于下电状态,硬件将对应的异常掉电信号发送给电源管理模块11和业务处理模块13,电源管理模块11对业务处理模块13和/或非易失存储模块14上电后,业务处理模块13将校验数据保存在非易失存储模块14。
进一步的,参照图3,业务处理模块13包括:随机存储单元131和运行单元132,随机存储单元131的目标堆栈内存储有校验数据;运行单元132是在异常断电前处于运行状态的单元;应用处理器12,具体用于控制电源管理模块11给目标堆栈和运行单元132上电。
其中,业务处理模块13具体用于:通过运行单元132将目标堆栈中的校验数据保存在非易失存储模块14中。
具体的,在业务处理模块13运行过程中,业务处理模块13只是运行其中的部分运行单元132。其中,校验数据也是存在随机存储单元131的部分堆栈空间中,该部分堆栈空间即为目标堆栈。则控制电源管理模块11给业务处理模块13上电是指只对目标堆栈和运行单元132上电。
在本申请实施例中,由于电池20在异常中断对系统芯片10的供电后,只依靠电源管理芯片30内的电容给系统芯片10供电,由于电源管理芯片30的电容的电量有限,因此在这里只需要对目标堆栈和运行单元132进行供电,避免对非必要部分的堆栈和其他运行单元供电,造成电量的浪费。
其中,参照图4,系统芯片10还包括:控制模块15;电源管理模块11和控制模块15连接,电源管理模块11还用于在接收到异常掉电信号后,对 多个控制模块15断电。
具体的,参照图4,控制模块A为控制非易失存储器40工作的模块,控制模块B为控制动态随机存储器50工作的模块。在本申请实施例中控制模块15还可以是系统芯片10上除电源管理模块11、应用处理器12、业务处理模块13和非易失存储模块14外的任意模块。例如,无线模块、音频模块、视频模块等。
在本申请实施例中,对各控制模块15进行断电,能够避免在异常掉电的情况下,对电源管理芯片30的电量的浪费。
其中,业务处理模块还用于:在将校验数据保存在非易失存储模块中之后,生成存储完成标识,并将存储完成标识传输给应用处理器;应用处理器还用于,接收业务处理模块传输的存储完成标识,并根据存储完成标识,控制电源管理模块对系统芯片进行断电。
具体的,在校验数据存储在非易失存储模块14中后,即完成了对校验数据的保存,可以对整个系统芯片进行下电。
其中,业务处理模块还用于:在检测到电子设备重启后,从非易失存储模块中获取校验数据;根据校验数据,运行业务处理模块。
可以理解,参照检测异常掉电的方式检测到电子设备重启。示例性的,电子设备的电池20被插上后,电池20的电路板可以检测到电池20被插上,则生成重启信号发送给业务处理模块13。Wdg在预设时间内再次运行,Wdg将重启发送个业务处理模块13等。
其中,业务处理模块具体用于:在检测到电子设备重启后,若从随机存储单元获取校验数据失败,则从非易失存储模块中获取校验数据。
参照图4,非易失存储模块14集成在业务处理模块13中。在本申请实施例中,非易失存储模块14集成在业务处理模块13中,能够更高效的将校验数据保存至非易失存储模块14中。
图5示出本申请提供的系统芯片在正常下电情况时的具体工作步骤流程图。具体包括如下步骤:
S101,电源管理模块接收正常下电信号,并将正常下电信号发送给应用处理器。
其中,正常下电信号是用户在正常关闭电子设备后,触发的信号。电源管理模块接收到该正常下电信号,将该正常下电信号发送给应用处理器。
S102,应用处理器确定电源管理模块是否正常工作,并控制电源管理模块给业务处理模块上电或者唤醒业务处理模块。
其中,应用处理器能够实时获取到电源管理模块的工作状态,在此是获取电源管理模块是否给业务处理模块上电,或者业务处理模块是否处于低功耗状态,若是则控制电源管理模块给业务处理模块上电或者唤醒业务处理模块。
S103,电源管理模块给业务处理模块上电,或者唤醒业务处理模块。
S104,业务处理模块初始化、自检操作以及低功耗状态恢复。
其中,初始化是指APDU(应用协议数据单元)信道初始化,自检操作是指业务处理模块安全性等状态自检。业务处理模块执行完整上电或业务处理模块初始化、自检操作以及低功耗状态恢复会消耗较多时间和电量。
S105,应用处理器向业务处理模块发送“正常完全下电”指令。
应用处理器通过APDU(应用协议数据单元)向业务处理模块发起“正常完全下电”指令,请求业务处理模块执行完全下电操作。
S106,业务处理模块响应“正常完全下电”指令,将校验数据保存至随机动态存储器中。
其中,业务处理模块初始化完成后,解析APDU信道指令并响应“正常完全下电”指令,走完全下电流程,将校验数据保护处理(加密、生成消息校验码等)后输出到随机动态存储器(DDR)。
S107,业务处理模块向应用处理器发送等待正常下电的下电指示。
其中,业务处理模块再次通过APDU信道反馈等待正常下电的下电指示的信息给应用处理器。
S108,应用处理器判断下电指示是否为“正常下电”,若是,执行S109。
S109,应用处理器将校验数据从随机动态存储器存储至非易失存储器中。
其中,应用处理器根据交易系统的响应,将保护处理后的校验数据随机动态存储器存储至非易失存储器中。
S110,应用处理器向电源管理模块发送完全下电指令。
其中,完全下电是指对整个业务处理模块,包括:随机存储单元、运行单元以及非易失存储模块等。
然后,应用处理器继续执行其他下电流程。
S111,电源管理模块断开对业务处理模块的供电。
此外,电源管理模块还断开对系统芯片中其他模块的供电,以使电子设备完全下电。
本申请提供的系统芯片能够执行上述正常下电流程,在正常下电时,依旧可以对校验数据进行保存,以便下次电子设备启动时使用。
但是在供电异常时,仅PMIC中的电容无法满足包括AP、DDR、flash、业务处理模块等全部硬件、模块或系统执行完整下电流程所需的电量。实际测试中发现DDR及flash正常工作需要消耗大量电量。其他硬件触发下电,此时电子设备基本已处于异常(不稳定、不可信)状态。DDR、flash及其他必要模块已经挂死,无法完成校验数据的保存操作。因此异常掉电场景下诸多客观因素可能导致无法及时保存校验数据到flash,如果业务处理模块执行一些交易业务,则会导致业务处理模块异常及崩溃,进而导致用户数据丢失及资金损失。
图6示出本申请提供的系统芯片在异常下电情况时的具体工作步骤流程图。具体包括如下步骤:
S201,电源管理模块接收到硬件发送的异常掉电信号。
S202,业务处理模块接收到硬件发送的异常掉电信号。
其中,硬件检测到异常掉电后会产生异常掉电信号给业务处理模块和电源管理模块,并将异常掉电信号发送给电源管理模块和业务处理模块。
这里所提到的硬件包括:电池电路板、Wdg、电压传感器和温度传感器等。
S203,电源管理模块将异常掉电信号发送给应用处理器。
S204,应用处理器控制电源管理模块给业务处理模块上电以及控制对其他控制模块断电。
其中,电源管理模块通过不同电源域对系统芯片上的控制模块(断电。控制模块是系统芯片上没有运行的非必要模块或非必要系统。对控制模块断电,能够为业务处理模块保存数据保留电量。
S205,若业务处理模块处于下电状态,执行S206,若业务处理模块处于上电状态,执行S207。
S206,电源管理模块给业务处理模块上电。
其中,电源管理模块优先给业务处理模块中的目标堆栈和运行单元上电。如果业务处理模块是处于低功耗状态,在此电源管理模块唤醒业务处理模块。
S207,业务处理模块上电后,初始化业务处理模块或者低功耗状态恢复并使能异常掉电中断的程序。
其中,如果业务处理模块先前处于下电状态,在上电后,优先初始化目标堆栈以及异常掉电前运行的运行单元。如果业务处理模块先前处于上电状态,则在接收到异常掉电信号后,可以初始化业务处理模块中的其他单元,并且进行自检操作。如果业务处理模块先前处于低功耗状态,则在唤醒后也优先初始化目标堆栈和运行单元。
S208,业务处理模块初始化非易失存储模块,并将校验数据保存至非易失存储模块。
其中,如果在S208后,业务处理模块若再次发现掉电,这里不会再触发步骤S201至S208,即结束流程。避免再次使业务处理模块上电,重复保存校验数据的步骤。
具体的,业务处理模块在正常运行时,由于异常掉电中断了业务处理模块的正常运行。其中,系统芯片中,中断该正常运行的代码为中断代码。本申请S201至S208设计在中断代码的尾部。则可以避免在退出中断代码后,继续执行S201至S208,又产生相关数据读写行为。
S209,业务处理模块生成异常下电标识,并发送给应用处理器。
S210,应用处理器判断是否接受到异常下电标识,若是,执行S211。
S211,应用处理器执行其他下电流程。
在本申请实施例中,异常掉电场景下,通常情况下DDR、flash工作异常,状态不稳定、不可信。系统芯片无法将校验数据保存到DDR和flash。如果业务处理模块及Efuse未发生异常,可以紧急保存校验数据(少量但非常重要)到Efuse。通常情况下,电池供电异常或PMIC掉电后,PMIC中的电容仍然储存有部分电量。其中电容的电压降低是连续过程,当电压逐渐降低到无法维持应用处理器、业务处理模块及其Efuse工作的最低电压为止前,本申请能够完成对应的硬件及软件操作以保存校验数据。
图7示出本申请提供的系统芯片在正常或异常下电后,再次启动电子设备的情况时的具体工作步骤流程图。具体包括如下步骤:
S301,若非易失存储器中具有校验数据,应用处理器将校验数据转存至随机动态存储器中。
S302,应用处理器监测电源管理模块,并控制电源管理模块给业务处理 模块上电。
S303,电源管理模块给业务处理模块上电。
S304,业务处理模块初始化、自检操作以及低功耗状态恢复。
S305,业务处理模块从随机存储单元中获取校验数据,若获得,执行S308,若没有获得,执行S306。
具体的,业务处理模块从随机存储单元中获取校验数据,若获得,对校验数据进行校验,若校验通过,则说明是需要的校验数据,然后执行S308。若校验没有通过或者没有获得校验数据,执行S306。
S306,业务处理模块从随机动态存储器中获取校验数据,若获得,执行S308,若没有获得,执行S307。
具体的,业务处理模块从随机动态存储器中获取校验数据,若获得,对校验数据进行校验,若校验通过,则说明是需要的校验数据,然后执行S308。若校验没有通过或者没有获得校验数据,执行S307。
S307,业务处理模块从非易失存储模块中获取校验数据,若获得,执行S308,若没有获得,结束流程。
具体的,业务处理模块从非易失存储模块中获取校验数据,若获得,对校验数据进行校验,若校验通过,则说明是需要的校验数据,然后执行S308。若校验没有通过或者没有获得校验数据,则业务处理模块奔溃,结束流程。
S308,业务处理模块正常工作。
在本申请实施例中,下一次电子设备的完整上电中,应用处理器将处理后的校验数据、业务数据从flash传输到DDR。业务处理模块上电后检测到其随机存储单元没有校验数据,转而从DDR获取校验数据。校验过程若发现DDR中校验数据非最新版本数据,校验失败。进而从Efuse获取相应的校验数据,校验正确并作初始化操作。
在本申请实施例中,Efuse能够保存及更新数据约几千次。其中,除了研发人员的测试环境外,用户不会刻意制造异常掉电场景。因此Efuse几千次的寿命在电子设备的生命周期内足够使用,提高了保存校验数据的有效性。
参照图3和图4,示出本申请提供一种的电子设备100,包括如上述任一项的系统芯片10,电子设备还包括:电池20、电源管理芯片30、非易失存储器40和动态随机存储器50;其中,电池20和电源管理芯片30连接,电源管理芯片30和系统芯片10连接,非易失存储器40和应用处理器12连接,动 态随机存储器50用于和业务处理模块13连接。
本申请提供系统芯片和电子设备,该系统芯片包括:至少一个业务处理模块和非易失存储模块;非易失存储模块和业务处理模块电连接;业务处理模块,用于处理对应业务;以及,在接收到异常掉电信号后,将对应业务的校验数据保存在非易失存储模块中,校验数据用于对对应业务产生的业务数据进行校验。本申请通过在系统芯片上集成非易失存储模块,可以在系统芯片异常掉电后,将业务处理模块上校验数据存储在该非易失存储模块中,避免校验数据的丢失,进而使业务处理模块在异常掉电后,下一次上电后依旧可以正常工作。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中,a,b,c可以是单个,也可以是多个。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (11)

  1. 一种系统芯片,其特征在于,包括:至少一个业务处理模块和非易失存储模块;所述非易失存储模块和所述业务处理模块电连接;
    所述业务处理模块,用于处理对应业务;以及,在接收到异常掉电信号后,将对应业务的校验数据保存在所述非易失存储模块中,所述校验数据用于对对应业务产生的业务数据进行校验。
  2. 根据权利要求1所述的系统芯片,其特征在于,还包括:电源管理模块和应用处理器,所述应用处理器和所述电源管理模块连接,所述业务处理模块与所述应用处理器以及所述电源管理模块连接;
    所述电源管理模块,用于在接收到所述异常掉电信号后,检测所述业务处理模块和所述非易失存储模块是否掉电;若所述业务处理模块和/或所述非易失存储模块掉电,则将所述异常掉电信号传输给所述应用处理器;
    所述应用处理器,用于响应于接收到所述异常掉电信号,控制所述电源管理模块给掉电的业务处理模块和/或非易失存储模块上电。
  3. 根据权利要求2所述的系统芯片,其特征在于,所述业务处理模块包括:随机存储单元和运行单元,所述随机存储单元的目标堆栈内存储有所述校验数据;所述运行单元是在异常断电前处于运行状态的单元;
    所述应用处理器,具体用于控制所述电源管理模块给所述目标堆栈和所述运行单元上电。
  4. 根据权利要求3所述的系统芯片,其特征在于,所述业务处理模块具体用于:通过所述运行单元将所述目标堆栈中的所述校验数据保存在所述非易失存储模块中。
  5. 根据权利要求2至4任一项所述的系统芯片,其特征在于,所述系统芯片还包括:控制模块;
    所述电源管理模块和所述控制模块连接,所述电源管理模块还用于在接收到所述异常掉电信号后,对所述控制模块断电。
  6. 根据权利要求3或4所述的系统芯片,其特征在于,所述业务处理模块还用于:
    在将所述校验数据保存在所述非易失存储模块中之后,生成存储完成标识,并将所述存储完成标识传输给所述应用处理器;
    所述应用处理器还用于,接收所述业务处理模块传输的存储完成标识,并根据所述存储完成标识,控制所述电源管理模块对所述系统芯片进行断电。
  7. 根据权利要求6所述的系统芯片,其特征在于,所述业务处理模块还用于:
    在检测到电子设备重启后,从所述非易失存储模块中获取所述校验数据;
    根据所述校验数据,运行所述业务处理模块。
  8. 根据权利要求7所述的系统芯片,其特征在于,所述业务处理模块具体用于:
    在检测到电子设备重启后,若从所述随机存储单元获取所述校验数据失败,则从所述非易失存储模块中获取所述校验数据。
  9. 根据权利要求1至4任一项所述的系统芯片,其特征在于,所述非易失存储模块集成在所述业务处理模块中。
  10. 根据权利要求1至4任一项所述的系统芯片,其特征在于,所述非易失存储模块包括:一次性可编程存储器。
  11. 一种电子设备,其特征在于,包括如权利要求1至10任一项所述的系统芯片,所述电子设备还包括:电池、电源管理芯片、非易失存储器和动态随机存储器;
    其中,所述电池和电源管理芯片连接,所述电源管理芯片和所述系统芯片连接,所述非易失存储器和所述应用处理器连接,所述动态随机存储器用于和所述业务处理模块连接。
PCT/CN2022/110174 2021-08-24 2022-08-04 系统芯片和电子设备 WO2023024863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110977669.6A CN113608930B (zh) 2021-08-24 2021-08-24 系统芯片和电子设备
CN202110977669.6 2021-08-24

Publications (1)

Publication Number Publication Date
WO2023024863A1 true WO2023024863A1 (zh) 2023-03-02

Family

ID=78341899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110174 WO2023024863A1 (zh) 2021-08-24 2022-08-04 系统芯片和电子设备

Country Status (2)

Country Link
CN (1) CN113608930B (zh)
WO (1) WO2023024863A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608930B (zh) * 2021-08-24 2023-06-13 厦门紫光展锐科技有限公司 系统芯片和电子设备
CN117093535A (zh) * 2022-05-13 2023-11-21 华为技术有限公司 一种片上系统及相关系统上电恢复方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133740A (zh) * 2014-07-28 2014-11-05 浪潮软件集团有限公司 异常掉电数据恢复的方法
CN105677588A (zh) * 2016-01-06 2016-06-15 浪潮(北京)电子信息产业有限公司 一种数据保护方法及装置
CN106569964A (zh) * 2015-10-13 2017-04-19 中兴通讯股份有限公司 掉电保护方法、装置、系统以及内存条
CN106648982A (zh) * 2016-12-15 2017-05-10 宁波迦南智能电气股份有限公司 一种电能表掉电保护数据存贮方法
CN107193694A (zh) * 2017-05-27 2017-09-22 郑州云海信息技术有限公司 一种新型存储系统、存储方法及装置
CN113608930A (zh) * 2021-08-24 2021-11-05 厦门紫光展锐科技有限公司 系统芯片和电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345189B (zh) * 2013-07-29 2015-11-18 浙江中控技术股份有限公司 一种控制器和一种掉电保护方法
CN104035893A (zh) * 2014-06-30 2014-09-10 浪潮(北京)电子信息产业有限公司 一种在计算机异常掉电时的数据保存方法
US10331203B2 (en) * 2015-12-29 2019-06-25 Texas Instruments Incorporated Compute through power loss hardware approach for processing device having nonvolatile logic memory
CN110096460A (zh) * 2018-01-30 2019-08-06 北京京东尚科信息技术有限公司 内存数据保护的方法、装置及电路
CN111459726A (zh) * 2019-01-18 2020-07-28 中山远实微科技有限公司 一种芯片以及芯片自修复方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133740A (zh) * 2014-07-28 2014-11-05 浪潮软件集团有限公司 异常掉电数据恢复的方法
CN106569964A (zh) * 2015-10-13 2017-04-19 中兴通讯股份有限公司 掉电保护方法、装置、系统以及内存条
CN105677588A (zh) * 2016-01-06 2016-06-15 浪潮(北京)电子信息产业有限公司 一种数据保护方法及装置
CN106648982A (zh) * 2016-12-15 2017-05-10 宁波迦南智能电气股份有限公司 一种电能表掉电保护数据存贮方法
CN107193694A (zh) * 2017-05-27 2017-09-22 郑州云海信息技术有限公司 一种新型存储系统、存储方法及装置
CN113608930A (zh) * 2021-08-24 2021-11-05 厦门紫光展锐科技有限公司 系统芯片和电子设备

Also Published As

Publication number Publication date
CN113608930B (zh) 2023-06-13
CN113608930A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2023024863A1 (zh) 系统芯片和电子设备
US9489213B2 (en) Shutdown method, startup method, and communication terminal
US11463955B2 (en) Method for implementing low power consumption on standby for bluetooth security device and bluetooth security device
US8055889B2 (en) BIOS management device and method for managing BIOS setting value
CN101542444A (zh) 互连中心架构中的安全性特征
US8909952B2 (en) Power supply apparatus of computer system and method for controlling power sequence thereof
CN106919861B (zh) 一种防拆检测的实现装置及方法
CN103823769A (zh) 计算机系统及数据回复方法
US11099961B2 (en) Systems and methods for prevention of data loss in a power-compromised persistent memory equipped host information handling system during a power loss event
US7523326B2 (en) Method and apparatus for maintaining a suspension state after powering down and fully powering down upon expiration of a timer or low battery level
US20200064895A1 (en) Power supply apparatus, backup power module and method for providing backup power in computing systems
WO2020010864A1 (zh) 异常关机时的数据存储方法、系统、装置及可读存储介质
CN102437917B (zh) 一种网络唤醒方法、网络唤醒装置及计算机
US6993670B2 (en) Method of configuring a computer system capable of being woken up on LAN
US20050086460A1 (en) Apparatus and method for wakeup on LAN
US11157060B2 (en) Systems and methods for chassis-level persistent memory sequencing and safety
TWI749728B (zh) 可攜式電子裝置
KR20230013732A (ko) 복수의 전력 관리 집적 회로들을 포함하는 전자 장치 및 그것의 동작 방법
CN108429623A (zh) 一种数据访问方法及第一电子设备
CN107391776B (zh) 一种数据销毁装置及方法、刀片服务器
CN113075992B (zh) 一种内存上电方法、装置、设备及计算机可读存储介质
TWI753606B (zh) 主從互換式電源供應裝置及其主機、主從互換式電源供應方法及其電腦可讀取記錄媒體
US7103692B2 (en) Method and apparatus for an I/O controller to alert an external system management controller
US20050188260A1 (en) Computer system maintenance and diagnostics techniques
WO2020134035A1 (zh) 一种功能卡的识别方法以及移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE