WO2023024846A1 - 开关切换时长确定方法、时序控制方法、装置及供电系统 - Google Patents
开关切换时长确定方法、时序控制方法、装置及供电系统 Download PDFInfo
- Publication number
- WO2023024846A1 WO2023024846A1 PCT/CN2022/109731 CN2022109731W WO2023024846A1 WO 2023024846 A1 WO2023024846 A1 WO 2023024846A1 CN 2022109731 W CN2022109731 W CN 2022109731W WO 2023024846 A1 WO2023024846 A1 WO 2023024846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- input power
- time
- switching
- relay
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 230000002159 abnormal effect Effects 0.000 claims abstract description 72
- 238000001514 detection method Methods 0.000 claims abstract description 42
- 238000012546 transfer Methods 0.000 claims abstract description 30
- 238000011897 real-time detection Methods 0.000 claims abstract description 9
- 230000002457 bidirectional effect Effects 0.000 claims description 14
- 238000004590 computer program Methods 0.000 claims description 8
- 238000004904 shortening Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 101100112673 Rattus norvegicus Ccnd2 gene Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/068—Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
Definitions
- the present application relates to the field of electrical technology, in particular to the field of power supply technology with multiple input power sources, and more specifically, to a method for determining switching duration, a timing control method, a device, and a power supply system.
- the network server power supply is generally configured according to N+N multi-input mode, such as 1+1 power configuration mode, 2+2 power configuration mode, 4+4 power configuration mode and so on.
- 1+1 power supply configuration means that the server can work normally with only one power supply module, but there are two power supply modules in the configuration, and one of the power supply modules is used as a redundant power backup.
- 2+2 power supply configuration means that the server can work normally with two power supply modules, but the configuration is four power supply modules, two of which are used as redundant power supply backup.
- two different power supply systems will be set up in many power consumption places, for example, mains power supply and motor power supply, or mains power supply and battery power supply, etc. It is understandable Yes, using dual mains distribution can reduce the effect of single mains errors.
- Dual power automatic transfer switch (Automatic Transfer Switch, referred to as ATS) is a device controlled by a microprocessor and used for starting and switching between grid power and grid power or grid power and generator power in the power grid system, which can realize two-way power supply Fast on-load switching.
- the switching timing of the dual-power automatic transfer switch and the total time for switching completion determine the time (T_hold time) required for the post-stage load to maintain stable operation.
- T_hold time the time required for the post-stage load to maintain stable operation.
- the technical problem to be solved in the present application is to provide a method for determining the switching duration of a switch, a sequence control method, a device, and a power supply system for the above-mentioned defects of the prior art.
- the present invention provides a method for determining the duration of switch switching, specifically, this includes:
- the switch switching time of the circuit corresponding to the input power source to be switched is determined.
- the minimum time-consuming time for completely closing the switch of the circuit corresponding to the input power source to be switched is greater than the maximum time-consuming time for completely turning off the switch of the circuit corresponding to the input power source that generates the abnormal signal.
- the determining the switching time of the switch according to the time-consuming detection and the maximum time-consuming complete closing includes:
- the switching duration of the switch is determined according to the sum of the detection time-consuming and the maximum fully-closing time-consuming.
- the method for determining the switching duration of the switch further includes:
- a close switch signal is sent to the switching switch of the circuit corresponding to the input power source to be switched, and the time of sending the close switch signal is the same time as the time of sending the close switch signal.
- the present invention provides a device for determining the switching duration of a switch, specifically, the device includes:
- the detection time-consuming determination module is used for real-time detection of any one of the multiple input power sources within the preset detection time-consuming period;
- the maximum time-consuming closing module is used to determine the maximum time-consuming time for complete closing according to the switch type on the circuit corresponding to the input power supply to be switched when any one of the input power sources is abnormal;
- the switch switching duration determination module is configured to determine the switch switching duration of the circuit corresponding to the to-be-switched input power supply according to the detection time-consuming and the maximum complete closing time-consuming.
- the minimum time-consuming time for completely closing the switch of the circuit corresponding to the input power source to be switched is greater than the maximum time-consuming time for completely turning off the switch of the circuit corresponding to the input power source that generates the abnormal signal.
- the switch switching duration determination module is specifically configured to determine the switch switching duration according to the sum of the detection time consumption and the maximum complete closing time consumption.
- the device for determining the switching duration of the switch further includes:
- Close the signal sending module used to send a close switch signal to the switching switch of the input power corresponding circuit that generates the abnormal signal after detecting that any one of the input power sources is abnormal
- the close signal sending module is configured to send a close switch signal to the switching switch of the circuit corresponding to the input power source to be switched, and the time of sending the close switch signal is the same time as the time of sending the close switch signal.
- the present invention provides a timing control method for an automatic transfer switch, which is applied to a power supply system, and the power supply system includes: a primary circuit and a secondary circuit; the primary circuit includes: a plurality of input power sources, the The secondary circuit includes: a plurality of switching circuits arranged corresponding to the plurality of input power sources; the switching circuit is provided with at least one switching switch; the method includes:
- each switch includes: a relay or a bidirectional active switch.
- the primary circuit includes: a first input power supply and a second input power supply;
- the secondary circuit includes: a first relay and a second relay;
- the first input power supply is connected to the subsequent circuit through the first relay;
- the second input power supply is connected to the subsequent circuit through the second relay;
- the minimum time-consuming time for the first relay to be fully closed is greater than the maximum time-consuming time for the second relay to be completely disconnected.
- the timing control method of the automatic transfer switch further includes:
- the present invention provides a timing control device for an automatic switching switch, comprising: a primary circuit, a secondary circuit, and a control unit connected to the primary circuit and the secondary circuit respectively;
- the primary circuit includes: a plurality of input power sources, and the secondary circuit includes: a plurality of switching circuits corresponding to the multiple input power sources; the switching circuit is provided with at least one switch; the control unit Used for:
- each switch includes: a relay or a bidirectional active switch.
- the primary circuit includes: a first input power supply and a second input power supply;
- the secondary circuit includes: a first relay and a second relay;
- the first input power supply is connected to the subsequent circuit through the first relay;
- the second input power supply is connected to the subsequent circuit through the second relay;
- the minimum time-consuming time for the first relay to be fully closed is greater than the maximum time-consuming time for the second relay to be completely disconnected.
- the timing control device for automatically switching switches the control unit is also used for:
- the present invention provides a power supply system, including a switch switching duration determination device, a timing control device for automatically switching switches, a plurality of input power sources, and a plurality of corresponding circuits, wherein the switch switching duration determination device and the switch switching duration determination device Set on multiple circuits.
- the present invention provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
- the processor executes the program, the steps of the method for determining the duration of switch switching are realized.
- the present invention provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for determining the switching duration of a switch are implemented.
- the embodiment of the present invention provides a method for determining the duration of switch switching, a timing control method, a device, and a power supply system.
- the method for determining the duration of switch switching includes: firstly, real-time detection of multiple input power sources within the preset detection time any one of the input power sources; then, when any abnormality occurs in any one of the input power sources, the maximum time-consuming time for complete closure is determined according to the switch type on the corresponding circuit of the input power source to be switched; finally, according to the time-consuming detection and the maximum power consumption to determine the switching duration of the switch.
- the present application can greatly reduce the total time of switching on the premise that the circuit where the multi-channel input power supply is located is not short-circuited or the phenomenon of current backflow, thereby shortening the holding time required by the load of the subsequent stage and reducing the cost.
- Fig. 1 is a schematic structural diagram of an ATS circuit provided by an embodiment of the present application
- FIG. 2 is a schematic diagram illustrating an ATS switching sequence provided by an embodiment of the present application
- FIG. 3 is a schematic flowchart of a method for determining a switching duration provided by an embodiment of the present application
- FIG. 4 is a schematic structural diagram of a one-way input and multiple-way output circuit provided by an embodiment of the present application
- FIG. 5 is a schematic structural diagram of an upper and lower bridge arm switching circuit provided by an embodiment of the present application.
- Fig. 6 is a schematic structural diagram of a multi-channel input to one output switch circuit provided by an embodiment of the present application.
- FIG. 7 is a schematic flowchart of step 300 provided by an embodiment of the present application.
- Fig. 8 is a schematic flow chart of a method for determining a switching duration provided by another embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a power supply system provided by an embodiment of the present application.
- FIG. 10 is a schematic flowchart of a timing control method for an automatic transfer switch provided by an embodiment of the present application.
- FIG. 11 is a schematic flow chart of a method for determining a switching duration provided in a specific embodiment of the present invention.
- Fig. 12 is a schematic structural diagram of a power supply system provided in a specific embodiment of the present invention.
- Fig. 13 is a schematic diagram illustrating the sequence of ATS switching provided in the specific embodiment of the present invention.
- FIG. 14 is a block diagram of a device for determining a switch switching duration provided in an embodiment of the present invention.
- Fig. 15 is a block diagram of a device for determining switch switching duration provided in another embodiment of the present invention.
- FIG. 16 is a schematic block diagram of a system configuration of an electronic device 600 according to an embodiment of the present invention.
- the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- FIG. 1 The schematic diagram of the ATS circuit in the prior art is shown in Figure 1.
- the timing design When switching from Vin_A input to Vin_B input, the timing design must first turn off the SW_A switch, wait for the SW_A switch to be completely turned off, and then delay for a certain period of time before going to Turn on the SW_B switch.
- an embodiment of the present invention provides a specific implementation of a method for determining the switching duration of a switch.
- the method specifically includes the following contents:
- Step 100 Real-time detection of any one of the multiple input power sources within the preset detection time
- the method for determining the switching duration of the switch proposed in the embodiment of the present invention is not only applicable to the situation where two inputs are merged into one input (as shown in Figure 1), but also applicable to the case where one input is divided into multiple outputs (as shown in Figure 4) ; Switching of the upper and lower bridge arms (as shown in Figure 5); and switching of multiple inputs and one output (as shown in Figure 6).
- the time-consuming detection in step 100 can be determined according to the parameters of the multiple input power sources, the parameters of the switch and the actual working conditions.
- step 100 when step 100 is implemented, at time T 0 , the Vin_A input power supply is abnormal at this time, and the time period from T 0 to T 1 is the inherent time (t sense ) required to detect the abnormal input Vin_A, that is, the detection time.
- Step 200 When an abnormality occurs in any one of the input power sources, determine the maximum time-consuming for complete closure according to the switch type on the circuit corresponding to the input power source to be switched;
- the closing time of the switch is not a fixed value, but a time range, that is, [t on_min ,t on_max ].
- t on_min is the minimum required time for the switch to be fully closed
- t on_max is the maximum required time for the switch to be completely disconnected, and the actual closed time of the switch will fall within this range.
- the type of switch in step 200 includes a relay, a bidirectional active switch and a bidirectional thyristor. The same is true for source switches and triacs).
- step 200 the maximum time-consuming for the switch on the circuit corresponding to the input power to be switched to be completely closed is only related to the type of the switch, and is a time parameter solidified inside the switch before leaving the factory, and has nothing to do with other factors.
- Step 300 Determine the switch switching duration of the circuit corresponding to the input power source to be switched according to the detection time consumption and the maximum complete closing time consumption.
- the time point of turning on the SW_B switch in the prior art can be advanced and issued at the same time as the time of turning off the SW_A switch, thereby greatly reducing the total time of switch switching, thereby shortening the holding time required by the load of the subsequent stage and reducing costs.
- the method for determining the switchover time provided by the embodiment of the present invention can reduce the original power supply system to reduce the system configuration of the input power supply, and the output power remains unchanged, so that the required power supply quantity is halved.
- the disconnection feature optimizes the switching sequence of the automatic transfer switch, greatly reduces the total time of automatic transfer switch switching, and greatly shortens the holding time required by the load of the subsequent stage, thereby reducing costs.
- the minimum time-consuming time for completely closing the switch of the circuit corresponding to the input power source to be switched is greater than the maximum time-consuming time for completely turning off the switch of the circuit corresponding to the input power source that generates the abnormal signal.
- the circuits where the multiple input power sources are located may be the same switching circuit, wherein the minimum time-consuming time for each switching circuit to be completely closed is greater than the maximum time-consuming time to be fully turned off. That is, when any switching circuit is turned off and another switching circuit is turned on at the same time, when the turned off switching circuit is completely turned off, the other switching circuit that is turned on at the same time is still in the off state, that is, it is not turned on, so that it can be reliably ensured. When switching, there will be no short circuit or current backflow phenomenon, ensuring the reliability and safety of switching.
- step 300 specifically includes:
- Step 301 Determine the switching duration of the switch according to the sum of the detection time consumption and the maximum complete closing time consumption.
- the method for determining the switching duration of the switch further includes:
- Step 400 After detecting that any input power source is abnormal, send a closing switch signal to the switching switch of the circuit corresponding to the input power source that generated the abnormal signal, and
- Step 500 Send a closing switch signal to the switching switch of the circuit corresponding to the input power source to be switched, and the timing of sending the closing switch signal is the same as the timing of sending the closing switch signal.
- step 400 and step 500 after detecting the abnormal signal of the input power supply (it needs to be completely time-consuming to detect), immediately send a closing switch signal to the switching switch of the input power corresponding circuit of the abnormal signal, and at the same time, send a signal to the input power supply to be switched
- the switching switch of the corresponding circuit of the power supply sends a closing switch signal.
- each switching switch includes: a relay or a bidirectional active switch.
- the minimum time-consuming time for the relay to be fully closed is greater than the maximum time-consuming time for the relay to be completely disconnected; similarly, the minimum time-consuming time for the fully-closed active switch of the bidirectional conduction is greater than the maximum time-consuming for the fully-opened active switch of the bidirectional conduction.
- Embodiments of the present invention also provide a specific implementation manner of a timing control method for an automatic transfer switch in conjunction with a specific power supply system.
- the power supply system is shown in Figure 9.
- the power supply system includes: a primary circuit 10 and a secondary circuit 20.
- the primary circuit 10 includes: a plurality of input power sources
- the secondary circuit 20 includes: a plurality of input power supplies corresponding to the switch circuit.
- a plurality of input power sources are respectively connected to the subsequent circuit 40 through a plurality of switching circuits. It should be noted that there is a one-to-one correspondence between the input power sources and the switching circuits.
- the above-mentioned switch switching time is determined The method specifically includes the following steps:
- Step A Detect voltage signals output by multiple input power sources
- Step B judging whether any one of the multiple input power sources is abnormal according to the voltage signal
- Step C If yes, turn off the switching circuit corresponding to the abnormal input power supply;
- Step D While closing the switching circuit corresponding to the abnormal input power supply, close any one of the other switching circuits; the minimum time consumption of each switching circuit is greater than the maximum time consumption of complete disconnection.
- the plurality of switching circuits may be the same switching circuit, and in step A to step D, the minimum time for each switching circuit to be completely turned on is greater than the maximum time for it to be completely turned off. That is, when any switching circuit is turned off and another switching circuit is turned on at the same time, when the turned off switching circuit is completely turned off, the other switching circuit that is turned on at the same time is still in the off state, that is, it is not turned on, so that it can be reliably ensured. When switching, there will be no short circuit or current backflow phenomenon, ensuring the reliability and safety of switching.
- the present invention can reduce the N+N system (power supply system) in the prior art to the N system configuration of dual input power supply, and the output power remains unchanged, so that the required power supply quantity is halved, and at the same time, it combines the characteristics of the switch on and off , optimize the switching sequence of the automatic transfer switch, greatly reduce the total time of automatic transfer switch switching, greatly shorten the holding time required by the rear stage, thereby reducing costs.
- N+N system power supply system
- each switching circuit includes a relay or a bidirectional active switch.
- the minimum time for the relay to be fully turned on is greater than the maximum time for the relay to be fully turned off.
- the minimum time during which the bidirectional active switch is fully on is greater than the maximum time during which the bidirectional active switch is fully off.
- the switching circuit is turned on or off by controlling the relay or the bidirectional active switch to be turned on or off.
- the present invention also takes a power supply system as an example to provide a specific implementation manner of a method for determining the switching duration of a switch, referring to FIG. 11 , which specifically includes the following content.
- the power supply system includes: a primary circuit 10, a secondary circuit 20, and a control unit 30; the primary circuit 10 includes: N input power sources, and the secondary circuit 20 includes: and N input power sources correspond to N switching circuits; wherein, N is an integer greater than 1.
- the N switching circuits may be the same switching circuit, wherein, the minimum time consumption of each switching circuit to fully close is greater than the maximum time consumption of complete opening of each switching circuit. That is, when any switching circuit is turned off and another switching circuit is turned on at the same time, when the turned off switching circuit is completely turned off, the other switching circuit that is turned on at the same time is still in the off state, that is, it is not turned on, so that it can be reliably ensured. When switching, there will be no short circuit or current backflow phenomenon, ensuring the reliability and safety of switching.
- control unit 30 is used to detect the voltage signals output by the N input power sources in real time; judge whether any one of the N input power sources is abnormal according to the voltage signals output by the N input power sources; The switching circuit is turned off; while the switching circuit corresponding to the abnormal input power is controlled to be turned off, any one of the other switching circuits is controlled to be turned on.
- the primary circuit 10 includes: a first input power source Vin_A and a second input power source Vin_B; the secondary circuit 20 includes: a first relay SW_A and a second relay SW_B.
- the output terminal of the first input power supply Vin_A is connected to the first terminal of the first relay SW_A
- the output terminal of the second input power supply Vin_B is connected to the first terminal of the second relay SW_B
- the second terminal of the first relay SW_A and the second terminal of the second relay SW_B The second terminal is connected to the subsequent circuit 40
- the third terminal of the first relay SW_A and the third terminal of the second relay SW_B are respectively connected to the control unit 30 .
- the minimum time-consuming time for the first relay SW_A to be fully closed is greater than the maximum time-consuming time for the second relay SW_B to be fully opened.
- the first relay SW_A and the second relay SW_B are the same relay.
- a method for determining the switching duration of a switch includes the following steps:
- Step S1 The control unit 30 detects the voltage signals output by the N input power sources in real time.
- Step S2 The control unit 30 determines whether any one of the N input power sources is abnormal according to the voltage signals output by the N input power sources.
- Step S3 If yes, the control unit 30 controls the switching circuit corresponding to the abnormal input power to be turned off.
- Step S4 while controlling the switch circuit corresponding to the abnormal input power to be turned off, the control unit 30 controls any one of the other switch circuits to be turned on.
- the control unit 30 controls the first relay SW_A to be turned off, and at the same time controls the second relay SW_B to be turned on. Wherein, before the second relay SW_B is completely closed and turned on, the first relay SW_A is completely disconnected.
- the control unit 30 controls the second relay SW_B to be turned off, and at the same time controls the first relay SW_A to be turned on. Wherein, before the first relay SW_A is completely closed and turned on, the second relay SW_B is completely disconnected. The minimum duration of each switching circuit being fully turned on is greater than the maximum duration of being fully turned off.
- Vin_A is the voltage signal output by the first input power supply
- Vin_B is the voltage signal output by the second input power supply.
- t sense is the detection time of the control unit 30
- t off_max is the maximum time-consuming time for the first relay SW_A to be completely turned off
- t on_min is the minimum time-consuming time for the second relay SW_B to be completely closed
- Vin_1, Vin_2, Vin_3, ..., Vin_N can be set, a total of N input power supplies, correspondingly, SW_1, SW_2 can be set , SW_3, ..., SW_N a total of N relays, when the control unit 30 detects any one of Vin_1, Vin_2, Vin_3, ..., Vin_N, assuming that the voltage output by Vin_3 is abnormal, it will send a shutdown signal to SW_3 and Turn on the signal to any one of SW_1, SW_2, SW_4, ..., SW_N (assumed to be SW_1), that is, SW_3 and SW_1 respectively receive the off signal and the on signal at the same time, when respectively receiving the off signal and the on signal , SW_3 performs the closing action, and SW_1 performs the conducting action synchronously, and when SW_3 is completely closed, SW_1 is still not turned on, and SW_1 is not fully turned on
- timing control method for automatic switching in some embodiments of the present application can also be applied to other multiplex switching situations, not limited to power supply systems, for example, it can be applied to full-bridge switching circuits and the like.
- the timing control method for automatic switching in the embodiment of the present application may also be applied to the case of one input + multiple outputs.
- Vin is a voltage signal output by a single power supply
- SW_A and SW_B are two outputs.
- PSU_A and PSU_A in FIG. 4 represent the post-stage circuit 40, which may be a power supply or other power supply circuits.
- the embodiment of the present invention provides a method for determining the switching duration of a switch, which includes: first detecting any input power supply in real time within the preset detection time; then, when any one of the input power supplies When an abnormality occurs in the input power supply, the maximum time-consuming to fully close is determined according to the switch type on the corresponding circuit of the input power to be switched; finally, the switching time of the switch is determined according to the detection time-consuming and the maximum time-consuming to completely close.
- the present application can greatly reduce the total time of switch switching without short circuit or current backflow phenomenon, thereby shortening the holding time required by the load of the subsequent stage and reducing the cost.
- the application has the following beneficial effects: the application can greatly shorten the switching time of the automatic transfer switch, reduce the holding time of the load of the subsequent stage, reduce the cost, and there is no short circuit or current backflow phenomenon, and the reliability and safety are good.
- an embodiment of the present application also provides a device for determining a switch switching duration, which can be used to implement the methods described in the above embodiments, such as the following embodiments. Since the problem-solving principle of the device for determining the duration of switch switching is similar to the method for determining the duration of switch switching, the implementation of the device for determining the duration of switch switching can refer to the implementation of the method for determining the duration of switch switching, and the repetition will not be repeated.
- the term "unit” or "module” may be a combination of software and/or hardware that realizes a predetermined function.
- An embodiment of the present invention provides a specific implementation of a device for determining a switch switching time that can implement a method for determining a switch switching time.
- the device for determining a switch switching time specifically includes the following contents:
- the detection time-consuming determination module 10 is used for real-time detection of any one of the multiple input power sources within the preset detection time-consuming period;
- Closing maximum time-consuming determination module 20 used to determine the maximum time-consuming of complete closing according to the switch type on the circuit corresponding to the input power to be switched when any one of the input power sources is abnormal;
- the switch switching time determination module 30 is configured to determine the switch switching time of the circuit corresponding to the input power source to be switched according to the detection time and the maximum complete closing time.
- the minimum time-consuming time for completely closing the switch of the circuit corresponding to the input power source to be switched is greater than the maximum time-consuming time for completely turning off the switch of the circuit corresponding to the input power source that generates the abnormal signal.
- the switch switching duration determination module 30 is specifically configured to determine the switch switching duration according to the sum of the detection time consumption and the maximum complete closing time consumption.
- the device for determining the switching duration of the switch further includes:
- the shutdown signal sending module 40 is configured to send a shutdown switch signal to the switching switch of the input power corresponding circuit that generates the abnormal signal after detecting that any one of the input power sources is abnormal, and
- the close signal sending module 50 is configured to send a close switch signal to the switching switch of the circuit corresponding to the input power source to be switched, and the time of sending the close switch signal is the same time as the time of sending the close switch signal.
- the embodiment of the present invention provides a device for determining the switching duration, which includes: firstly detecting any input power supply in real time within the preset detection time; then, when any one of the input power supplies When an abnormality occurs in the input power supply, the maximum time-consuming to fully close is determined according to the switch type on the corresponding circuit of the input power to be switched; finally, the switching time of the switch is determined according to the detection time-consuming and the maximum time-consuming to completely close.
- the present application can greatly reduce the total time of switch switching without short circuit or current backflow phenomenon, thereby shortening the holding time required by the load of the subsequent stage and reducing the cost.
- an embodiment of the present invention provides a specific implementation of a timing control device for an automatic switching switch capable of implementing a timing control method for an automatic switching switch.
- the device includes: a primary circuit 10 and a secondary circuit 20 , and a control unit 30 respectively connected to the primary circuit 10 and the secondary circuit 20;
- the primary circuit 10 includes: multiple input power sources (input power source 1, input power source 2...input power source N), and the secondary circuit 20 includes: multiple switching circuits corresponding to the multiple input power sources (switching circuit 1, switching circuit 2...switching circuit N, and the input power supply and the switching circuit are in a one-to-one relationship); the switching circuit is provided with at least one switching switch; the control unit 30 is used for:
- each switch includes: a relay or a bidirectional active switch.
- the primary circuit 10 includes: a first input power supply and a second input power supply;
- the secondary circuit 20 includes: a first relay and a second relay;
- the first input power supply is connected to the subsequent circuit through the first relay;
- the second input power supply is connected to the subsequent circuit through the second relay;
- the minimum time-consuming time for the first relay to be fully closed is greater than the maximum time-consuming time for the second relay to be completely disconnected.
- the timing control device for automatically switching switches the control unit 30 is also used for:
- the implementation of the timing control device of the automatic transfer switch can refer to the implementation of the timing control method of the automatic transfer switch, and repeat I won't repeat them here.
- An embodiment of the present invention provides an electronic device, and the electronic device may be a desktop computer, a tablet computer, a mobile terminal, etc., and this embodiment is not limited thereto.
- FIG. 16 is a schematic block diagram of a system configuration of an electronic device 600 according to an embodiment of the present invention.
- the electronic device 600 may include a central processing unit 100 and a memory 140 ; the memory 140 is coupled to the central processing unit 100 .
- this figure is exemplary; other types of structures may also be used in addition to or instead of this structure to implement telecommunications functions or other functions.
- the function of determining the switching duration of the switch may be integrated into the central processing unit 100 .
- the central processing unit 100 can be configured to perform the following control: real-time detection of any one of the multiple input power sources within the preset detection time; when any one of the input power sources is abnormal, according to the The type of switch on the circuit corresponding to the input power determines the maximum time-consuming of its complete closure; the switching time of the switch is determined according to the detection time-consuming and the maximum time-consuming of complete closure.
- the device for determining the switching duration can be configured separately from the central processing unit 100.
- the switching duration determining device can be configured as a chip connected to the central processing unit 100, and the switching is realized through the control of the central processing unit. The function of determining the duration.
- the electronic device 600 may further include: a communication module 110 , a detection unit 120 , and a power supply 170 . It should be noted that the electronic device 600 does not necessarily include all the components shown in FIG. 16 ; in addition, the electronic device 600 may also include components not shown in FIG. 16 , and reference may be made to the prior art.
- the central processing unit 100 is sometimes also referred to as a controller or an operating control, and may include a microprocessor or other processor devices and/or logic devices.
- the central processing unit 100 receives input and controls various components of the electronic device 600 The operation of the component.
- the memory 140 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices.
- the preset detection time consumption, the minimum time consumption for completely closing the switching switch of the circuit corresponding to the input power to be switched, and the maximum time consumption for completely opening the switching switch of the circuit corresponding to the input power supply can be stored.
- a program for carrying out related information may also be stored.
- the central processing unit 100 can execute the program stored in the memory 140 to implement information storage or processing.
- the detection unit 120 provides an input to the CPU 100 .
- the detection unit 120 is used to detect whether any one of the input power sources is abnormal.
- the power supply 170 is used to provide power to the electronic device 600 .
- the memory 140 may be a solid-state memory, for example, a read only memory (ROM), a random access memory (RAM), a SIM card, and the like. There can also be memory that retains information even when power is off, can be selectively erased and is provided with more data, an example of which is sometimes called EPROM or the like. Memory 140 may also be some other type of device. Memory 140 includes buffer memory 141 (sometimes referred to as a buffer). The memory 140 may include an application/function storage part 142 for storing application programs and function programs or procedures for executing operations of the electronic device 600 through the CPU 100 .
- the memory 140 may further include a data storage unit 143, which is used to store data, such as the above-mentioned minimum fully closed time-consuming, detection time-consuming, and fully-opening maximum time-consuming and the like.
- the driver storage section 144 of the memory 140 may include various drivers of the electronic device for communication functions and/or for performing other functions of the electronic device (such as messaging applications, address book applications, etc.).
- the communication module 110 is a transmitter/receiver 110 that transmits and receives signals via an antenna 111 .
- a communication module (transmitter/receiver) 110 is coupled to the central processing unit 100 to provide input signals and receive output signals, which may be the same as in conventional mobile communication terminals.
- multiple communication modules 110 such as a cellular network module, a Bluetooth module and/or a wireless local area network module, may be provided in the same electronic device.
- each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
- the description is relatively simple, and for the related information, please refer to the description of the method part.
- RAM random access memory
- ROM read-only memory
- EEPROM electrically programmable ROM
- EEPROM electrically erasable programmable ROM
- registers hard disk, removable disk, CD-ROM, or any other Any other known storage medium.
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
本申请涉及一种开关切换时长确定方法、时序控制方法、装置及供电系统,开关切换时长确定方法包括:在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;当所述任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;根据所述检测耗时以及所述完全闭合最大耗时确定所述待切换输入电源对应电路的开关切换时长。本申请可以在多路输入电源所在电路不短路或者电流回流现象的前提下,大大缩减了开关切换的总时间,进而缩短后级的负载需要的保持时间,降低成本。
Description
本申请涉及电气技术领域,特别是具有多路输入电源的电源供电技术领域,更具体地说,涉及一种开关切换时长确定方法、时序控制方法、装置及供电系统。
在现有技术中,网络服务器电源一般是按照N+N的多输入模式进行配置,例如1+1电源配置模式,2+2电源配置模式,4+4电源配置模式等等。1+1电源配置,表示该服务器有一个电源模块即可正常工作,但在配置上是两个电源模块,其中一个电源模块是作为冗余电源备份的。2+2电源配置,表示该服务器有两个电源模块即可正常工作,但在配置上是四个电源模块,其中两个电源模块是作为冗余电源备份的。为了防止输入电源异常事故的发生所带来的影响,在许多用电场所都会设置有两套不同的供电系统,例如,市电供电和电机供电、或者市电供电和电池供电等,可以理解的是,采用双输入配电可以减少单一输入的出错影响。
双电源自动切换开关(Automatic Transfer Switch,简称ATS)是一种由微处理器控制,用于电网系统中网电与网电或网电与发电机电源启动切换的装置,可实现两路电源的快速带载切换。双电源自动切换开关的切换的时序及切换完成总时间,决定了后级负载的保持稳定工作需要的时间(T_hold time),双电源自动切换开关的切换完成时间越长,负载保持需要时间越长,电源成本设计难度越大,成本也越高。
发明内容
现有技术中,为了防止双电源被同时导通,导致双电源短路或者回路,现有的双电源自动切换开关的切换时间为:t
old_all=t
sense+t
off_max+t
delay+t
on_max,其中t
old_all表示切换总时间,t
sense表示采样输入电源异常需要时间,t
off_max表示异常输入端的开关完全断开需要的最大时间,t
delay表示延时一段时间后开启另外一路的延时时间,t
on_max表示切入的一路正常输入端的开关完全导通的最大时间,由此可以看出,现有的双电源自动切换开关切换的时序的方法中ATS切换时间过长,对后级的负载保持时间要求高,成本高。
本申请要解决的技术问题在于,针对现有技术的上述缺陷,提供一种开关切换时长确定方法、时序控制方法、装置及供电系统。
本申请解决其技术问题所采用的技术方案是:第一方面,本发明提供一种开关切换时长确定方法,具体地,该包括:
在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;
当所述任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;
根据所述检测耗时以及所述完全闭合最大耗时确定所述待切换输入电源对应电路的开关切换时长。
一实施例中,所述待切换输入电源对应电路的切换开关的完全闭合最小耗时大于产生异常信号的输入电源对应电路的切换开关的完全断开最大耗时。
一实施例中,所述根据所述检测耗时以及所述完全闭合最大耗时确定开关切换时间,包括:
根据所述检测耗时与所述完全闭合最大耗时之和确定所述开关切换时长。
一实施例中,开关切换时长确定方法还包括:
在检测到所述任意一路输入电源发生异常之后,向产生所述异常信号的输入电源对应电路的切换开关发送关闭开关信号,以及
向所述待切换输入电源对应电路的切换开关发送闭合开关信号,并且发送所述关闭开关信号的时刻与发送所述闭合开关信号的时刻为同一时刻。
第二方面,本发明提供一种开关切换时长确定装置,具体地,该装置包括:
检测耗时确定模块,用于在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;
闭合最大耗时确定模块,用于当所述任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;
开关切换时长确定模块,用于根据所述检测耗时以及所述完全闭合最大耗时确定所述待切换输入电源对应电路的开关切换时长。
一实施例中,所述待切换输入电源对应电路的切换开关的完全闭合最小耗时大于产生异常信号的输入电源对应电路的切换开关的完全断开最大耗时。
一实施例中,所述开关切换时长确定模块具体用于根据所述检测耗时与所述完全闭合最大耗时之和确定所述开关切换时长。
一实施例中,开关切换时长确定装置还包括:
关闭信号发送模块,用于在检测到所述任意一路输入电源发生异常之后,向产生所 述异常信号的输入电源对应电路的切换开关发送关闭开关信号,以及
闭合信号发送模块,用于向所述待切换输入电源对应电路的切换开关发送闭合开关信号,并且发送所述关闭开关信号的时刻与发送所述闭合开关信号的时刻为同一时刻。
第三方面,本发明提供一种自动切换开关的时序控制方法,应用于供电系统中,所述供电系统包括:一级电路以及二级电路;所述一级电路包括:多个输入电源,所述二级电路包括:与所述多个输入电源对应设置的多个切换电路;所述切换电路上设置有至少一个切换开关;所述方法包括:
检测所述多个输入电源输出的电压信号;
根据所述电压信号判断所述多个输入电源中的任意一个是否异常;
若是,关闭异常的输入电源对应设置的切换电路;
在关闭异常的输入电源对应设置的切换电路的同时,闭合其他切换电路中的任意一个切换电路;每一个所述切换电路完全闭合最小耗时大于完全断开最大耗时。
一实施例中,每一个所述切换开关包括:继电器或者双向导通的有源开关。
一实施例中,所述一级电路包括:第一输入电源和第二输入电源;所述二级电路包括:第一继电器和第二继电器;
所述第一输入电源通过所述第一继电器与后级电路连接;
所述第二输入电源通过所述第二继电器与所述后级电路连接;
所述第一继电器完全闭合最小耗时大于所述第二继电器完全断开最大耗时。
一实施例中,自动切换开关的时序控制方法还包括:
若所述第一输入电源输出的电压信号异常,则断开所述第一继电器,同时闭合所述第二继电器;且所述第二继电器在完全闭合之前,所述第一继电器已完全断开;
或者,若所述第二输入电源输出的电压信号异常,则断开所述第二继电器关闭,同时闭合所述第一继电器;所述第一继电器在完全闭合之前,所述第二继电器已完全断开。
第四方面,本发明提供一种自动切换开关的时序控制装置,包括:一级电路、二级电路、以及分别与所述一级电路和所述二级电路连接的控制单元;
所述一级电路包括:多个输入电源,所述二级电路包括:与所述多个输入电源对应设置的多个切换电路;所述切换电路上设置有至少一个切换开关;所述控制单元用于:
检测所述多个输入电源输出的电压信号;
根据所述电压信号判断所述多个输入电源中的任意一个是否异常;
若是,关闭异常的输入电源对应设置的切换电路;
在关闭异常的输入电源对应设置的切换电路的同时,闭合其他切换电路中的任意一个切换电路;每一个所述切换电路完全闭合最小耗时大于完全断开最大耗时。
一实施例中,每一个所述切换开关包括:继电器或者双向导通的有源开关。
一实施例中,所述一级电路包括:第一输入电源和第二输入电源;所述二级电路包括:第一继电器和第二继电器;
所述第一输入电源通过所述第一继电器与后级电路连接;
所述第二输入电源通过所述第二继电器与所述后级电路连接;
所述第一继电器完全闭合最小耗时大于所述第二继电器完全断开最大耗时。
一实施例中,自动切换开关的时序控制装置,所述控制单元还用于:
若所述第一输入电源输出的电压信号异常,则断开所述第一继电器,同时闭合所述第二继电器;且所述第二继电器在完全闭合之前,所述第一继电器已完全断开;
或者,若所述第二输入电源输出的电压信号异常,则断开所述第二继电器关闭,同时闭合所述第一继电器;所述第一继电器在完全闭合之前,所述第二继电器已完全断开。
第五方面,本发明提供一种供电系统,包括开关切换时长确定装置、自动切换开关的时序控制装置、多个输入电源以及对应的多个电路,其中开关切换时长确定装置以及开关切换时长确定装置设置于多个电路上。
第六方面,本发明提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现开关切换时长确定方法的步骤。
第七方面,本发明提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现开关切换时长确定方法的步骤。
从上述描述可知,本发明实施例提供一种开关切换时长确定方法、时序控制方法、装置及供电系统,开关切换时长确定方法包括:首先在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;接着,当所述任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;最后根据检测耗时以及完全闭合最大耗时确定开关切换时长。本申请可以在多路输入电源所在电路不短路或者电流回流现象的前提下,大大缩减了开关切换的总时间,进而缩短后级的负载需要的保持时间,降低成本。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,附图中:
图1是本申请一实施例提供的ATS电路的结构示意图;
图2是本申请一实施例提供的ATS切换时序说明示意图;
图3是本申请一实施例提供的开关切换时长确定方法的流程示意图;
图4是本申请一实施例提供的一路输入分多路输出电路的结构示意图;
图5是本申请一实施例提供的一上下桥臂切换开关电路的结构示意图;
图6是本申请一实施例提供的多路输入并到一个输出切换开关电路的结构示意图;
图7是本申请一实施例提供的步骤300的流程示意图;
图8是本申请另一实施例提供的开关切换时长确定方法的流程示意图;
图9是本申请一实施例提供的供电系统的结构示意图;
图10是本申请一实施例提供的自动切换开关的时序控制方法的流程示意图;
图11为本发明的具体实施方式中所提供的开关切换时长确定方法的流程示意图;
图12为本发明的具体实施方式中所提供的供电系统结构示意图;
图13为本发明的具体实施方式中所提供的ATS切换时序说明示意图;
图14为本发明一实施例中所提供的开关切换时长确定装置的方块图;
图15为本发明另一实施例中所提供的开关切换时长确定装置的方块图;
图16为本发明实施例的电子设备600的系统构成的示意框图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面 的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
现有技术中的ATS电路示意图如图1所示,从Vin_A输入切换到Vin_B路输入时,时序设计上先要关闭比SW_A开关,等待SW_A开关完全关闭后,延时一段可靠时间,然后才去开通SW_B开关。
进一步地,结合图2,T
0时刻,Vin_A输入电源异常,T
0至T
1时间段为检测Vin_A异常需要的固有时间(t
sense),T
1时刻发出关闭SW_A开关信号,T
2时刻为SW_A完全断开时间,T
1至T
2时间段为SW_A最大完全断开需要的时间(t
off_max),SW_A完全关闭后,经过一段可靠的延时时间,T
1至T
2时间段为t
delay,T
3时刻发出SW_B闭合信号,T
4时刻为SW_B完全闭合的最大时间(t
on_max,为了防止A路和B路同时导通(导致A路与B路的短路或回流),现有的ATS切换时长为told_all=tsense+toff_max+tdelay+ton_max。但可以看出现有的ATS切换时长的确定方法过于保守,没有考虑到由此而带来的后极负载的设计复杂的技术痛点。
基于此,本发明的实施例提供一种开关切换时长确定方法的具体实施方式,参见图3,该方法具体包括如下内容:
步骤100:在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;
需要指出的是,本发明实施例所提出的开关切换时长确定方法不仅适用于二输入合并进入一个输入的情况(如图1),还可运用到一个路输入分多路输出(如图4);上下桥臂开关切换(如图5);以及多路输入和并到一个输出切换(如图6)。
步骤100中的检测耗时可以根据多路输入电源的参数、切换开关参数以及实际工况确定。
参见图2,步骤100在实施时,T
0时刻,此时Vin_A输入电源异常,T
0至T
1时间段为检测输入Vin_A异常需要的固有时间(t
sense),即检测耗时。
步骤200:当任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;
可以理解的是,开关的闭合时长并不是一个固定值,其是一个时间范围,即[t
on_min,t
on_max]。其中,t
on_min为开关完全闭合最小的需要时长,t
on_max为开关完全断开最大的需要时长,开关实际的闭合时长会落在这个区间内。
优选地,步骤200中的切换开关类型包括继电器、双向导通的有源开关以及双向晶闸管,需要说明的是,不同型号的继电器其所对应的完全闭合最大耗时也是不同的(双向导通有源开关以及双向晶闸管也是如此)。
步骤200中待切换输入电源对应电路上的切换开关的完全闭合最大耗时只与该切换开关的类型有关,是其在出厂前在其内部固化的一个时间参数,与其他因素无关。
步骤300:根据检测耗时以及完全闭合最大耗时确定待切换输入电源对应电路的开关切换时长。
在设计开关之前,设计人员出于多电源电路防止短路或者回路的愿意,开关有着t
on_min>t
off_max的特点,即完全闭合最小的需要时长大于完全断开最大的需要时长,即有Td=t
on_min-t
off_max>0,那么B路的SW_B开关(待切换输入电源对应电路的切换开关)在完全闭合之前,SW_A开关(异常信号的输入电源对应电路的切换开关)已经完全关闭,使得A路和B路不会有同时开通的存在。故可以将现有技术中的开通SW_B开关的时间点提前到和关闭SW_A开关时间同时发出,从而可以大大缩减了开关切换的总时间,进而缩短后级的负载需要的保持时间,降低成本。
从上述描述可知,本发明实施例提供的开关切换时长确定方法,可以将原来的供电系统降低输入电源的系统配置,且输出功率不变,使所需要的电源数量减半,同时结合开关闭合、断开的特性,优化自动切换开关的切换时序,大大缩减了自动切换开关切换的总时间,大大缩短后级的负载需要的保持时间,从而降低成本。
一实施例中,所述待切换输入电源对应电路的切换开关的完全闭合最小耗时大于产生所述异常信号的输入电源对应电路的切换开关的完全断开最大耗时。
在本申请一些实施例中,多个输入电源所在的电路可以为相同的切换电路,其中,每一个切换电路完全闭合最小耗时大于完全断开最大耗时。即当关闭任意一个切换电路,且同时导通另一个切换电路时,所关闭的切换电路完全关闭时,同时导通的另一个切换电路仍处于关闭状态,即未开启,从而可以可靠地保证在进行切换时,不会出现短路或者电流回流的现象,确保切换的可靠性和安全性。
一实施例中,参见图7,步骤300具体包括:
步骤301:根据检测耗时与完全闭合最大耗时之和确定开关切换时长。
如步骤300中所述,并参见图2,ATS切换时间为t
new_all=t
sense+t
on_max,,不难理解的是,由步骤301所确定的ATS切换时间远小于现有技术中的开关切换时间:t
old_all=t
sense+t
off_max+t
delay+t
on_max。
一实施例中,参见图8,开关切换时长确定方法还包括:
步骤400:在检测到任意一路输入电源发生异常之后,向产生异常信号的输入电源对应电路的切换开关发送关闭开关信号,以及
步骤500:向待切换输入电源对应电路的切换开关发送闭合开关信号,并且发送关闭开关信号的时刻与发送闭合开关信号的时刻为同一时刻。
在步骤400以及步骤500中,在检测输入电源的异常信号之后(需要完整经过检测耗时),立即向异常信号的输入电源对应电路的切换开关发送关闭开关信号,与此同时,向待切换输入电源对应电路的切换开关发送闭合开关信号。
一些实施例中,每一个切换开关包括:继电器或者双向导通的有源开关。
可以理解的是,继电器完全闭合最小耗时大于继电器完全断开最大耗时;同样地,双向导通的有源开关完全闭合最小耗时大于双向导通的有源开关完全断开最大耗时。
本发明的实施例结合具体的供电系统还提供一种自动切换开关的时序控制方法的具体实施方式。
该供电系统如图9所示,该供电系统包括:一级电路10和二级电路20一级电路10包括:多个输入电源,二级电路20包括:与多个输入电源对应设置的多个切换电路。多个输入电源分别通过多个切换电路与后级电路40连接,需要说明的是,输入电源与切换电路是一一对应的关系,基于上述的供电系统,参见图10,上述的开关切换时长确定方法具体包括如下步骤:
步骤A:检测多个输入电源输出的电压信号;
步骤B:根据电压信号判断多个输入电源中的任意一个是否异常;
步骤C:若是,关闭异常的输入电源对应设置的切换电路;
步骤D:在关闭异常的输入电源对应设置的切换电路的同时,闭合其他切换电路中的任意一个切换电路;每一个切换电路完全闭合最小耗时大于完全断开最大耗时。
可选的,多个切换电路可以为相同的切换电路,在步骤A至步骤D中,每一个切换电路完全导通的最小时间大于完全关闭的最大时间。即当关闭任意一个切换电路,且同 时导通另一个切换电路时,所关闭的切换电路完全关闭时,同时导通的另一个切换电路仍处于关闭状态,即未开启,从而可以可靠地保证在进行切换时,不会出现短路或者电流回流的现象,确保切换的可靠性和安全性。
本发明可以将现有技术中的N+N系统(供电系统)降低双输入电源的N系统配置,且输出功率不变,使所需要的电源数量减半,同时结合开关闭合、断开的特性,优化自动切换开关的切换时序,大大缩减了自动切换开关切换的总时间,大大缩短后级需要的保持时间,从而降低成本。
一些实施例中,每一个切换电路中包含有继电器或者双向导通的有源开关。
可选的,继电器完全导通的最小时间大于继电器完全关闭的最大时间。双向导通的有源开关完全导通的最小时间大于双向导通的有源开关完全关闭的最大时间。
其中,通过控制继电器或者双向导通的有源开关的导通或者关闭,实现切换电路的导通或者关闭。
在一种具体实施方式中,本发明还以一供电系统为例,提供一种开关切换时长确定方法的具体实施方式,参见图11,具体包括以下内容。
如图12所示,在本发明具体实施方式中,供电系统包括:一级电路10、二级电路20和控制单元30;一级电路10包括:N个输入电源,二级电路20包括:与N个输入电源对应设置的N个切换电路;其中,N为大于1的整数。
N个切换电路可以为相同的切换电路,其中,每一个切换电路完完全闭合最小耗时大于完全断开最大耗时。即当关闭任意一个切换电路,且同时导通另一个切换电路时,所关闭的切换电路完全关闭时,同时导通的另一个切换电路仍处于关闭状态,即未开启,从而可以可靠地保证在进行切换时,不会出现短路或者电流回流的现象,确保切换的可靠性和安全性。
其中,控制单元30用于实时检测N个输入电源输出的电压信号;根据N个输入电源输出的电压信号判断N个输入电源中的任意一个是否异常;若是,控制与异常的输入电源对应设置的切换电路关闭;在控制与异常的输入电源对应设置的切换电路关闭的同时,控制其他切换电路中的任意一个切换电路导通。
一级电路10包括:第一输入电源Vin_A和第二输入电源Vin_B;二级电路20包括:第一继电器SW_A和第二继电器SW_B。
第一输入电源Vin_A的输出端连接第一继电器SW_A的第一端,第二输入电源Vin_B的输出端连接第二继电器SW_B的第一端,第一继电器SW_A的第二端和第二继 电器SW_B的第二端连接并连接至后级电路40,第一继电器SW_A的第三端和第二继电器SW_B的第三端分别连接至控制单元30。
第一继电器SW_A完全闭合最小耗时大于第二继电器SW_B完全断开最大耗时。
可选的,第一继电器SW_A和第二继电器SW_B为相同继电器。
参见图11,基于上述的供电系统的结构,本发明具体实施方式提供的一种开关切换时长确定方法包括以下步骤:
步骤S1:控制单元30实时检测N个输入电源输出的电压信号。
步骤S2:控制单元30根据N个输入电源输出的电压信号判断N个输入电源中的任意一个是否异常。
步骤S3:若是,控制单元30控制与异常的输入电源对应设置的切换电路关闭。
步骤S4:在控制与异常的输入电源对应设置的切换电路关闭的同时,控制单元30控制其他切换电路中的任意一个切换电路导通。
若第一输入电源Vin_A输出的电压信号异常,则控制单元30控制第一继电器SW_A关闭,且同时控制第二继电器SW_B导通。其中,第二继电器SW_B在完全闭合导通之前,第一继电器SW_A已完全断开。
或者,若第二输入电源Vin_B输出的电压信号异常,则控制单元30控制第二继电器SW_B关闭,且同时控制第一继电器SW_A导通。其中,第一继电器SW_A在完全闭合导通之前,第二继电器SW_B已完全断开。每一个切换电路完全导通的最小时长大于完全关闭的最大时长。
参见图13,另一方面,本发明具体实施方式还提供针对切换开关时序的说明,如图13所示,Vin_A为第一输入电源输出的电压信号,Vin_B为第二输入电源输出的电压信号,t
sense为控制单元30的检测时间,t
off_max为第一继电器SW_A完全断开最大耗时,t
on_min为第二继电器SW_B完全闭合最小耗时,t
on_max为第二继电器SW_B完全导通的最大时间。由图6中可以看出,当第一继电器SW_A完全关闭后,第二继电器SW_B仍未达到其完全闭合最小耗时,即存在一个死区时间,该死区时间为Td=t
on_min-t
off_max。
由图13可知,T
0时刻,第一输入电源Vin_A输出的电压信号异常时,可被控制单元30检测到,其中,该检测时间为t
sense,此时,在T
0时刻控制单元30即同时发出第一继电器SW_A的关闭信号(Vg_A)和第二继电器SW_B的导通信号(Vg_B),如图6所示,当第一继电器SW_A完全关闭时,其所需要的最大关闭时间为t
off_max,当第二继电器SW_B完全导通时,其所需要的最小导通时间为t
on_min,而t
on_min>t
off_max,因此,不 存在第一继电器SW_A和第二继电器SW_B同时导通的情况,从而可避免第一输入电源Vin+和第二输入电源Vin-短路或者回流,且本申请一些实施例整个切换时间为:t
new_all=t
sense+t
on_max,相较于现有的切换时间,本申请的切换时间大大缩短,降低后级的负载需要的保持时间,从而降低成本。
接着,参见图6,多路输入和并到一个输出切换的情况,在该实施例中,可设置Vin_1、Vin_2、Vin_3、……、Vin_N,共N个输入电源,对应的,设置SW_1、SW_2、SW_3、……、SW_N共N个继电器,当控制单元30检测到Vin_1、Vin_2、Vin_3、……、Vin_N中的任意一个,假设为Vin_3输出的电压异常时,即同时发送关闭信号至SW_3和导通信号至SW_1、SW_2、SW_4、……、SW_N中的任意一个(假设为SW_1),即SW_3和SW_1分别同时接收到关闭信号和导通信号,当分别接收到关闭信号和导通信号后,SW_3即执行关闭动作,SW_1同步执行导通动作,且当SW_3完全关闭后,SW_1仍未导通,直到达到其最小导通时间时,SW_1才完全导通。其中,图4以及图5中的PSU表示后级电路40,可以是电源也可以是其他供电电路等。
进一步地,本申请一些实施例自动开关切换的时序控制方法还可以应用到其他多路切换的场合,并不限于供电系统,例如可应用于全桥切换电路等。
在其他一些实施例中,本申请实施例自动开关切换的时序控制方法还可以应用于一路输入+多路输出的情况。例如,如图4所示,Vin为单路电源输出的电压信号,SW_A和SW_B为两路输出。其中,图4中的PSU_A以及PSU_A表示后级电路40,可以是电源也可以是其他供电电路等。
从上述描述可知,本发明实施例提供一种开关切换时长确定方法,包括:首先在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;接着,当所述任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;最后根据检测耗时以及完全闭合最大耗时确定开关切换时长。本申请可以在不短路或者电流回流现象的前提下,大大缩减了开关切换的总时间,进而缩短后级的负载需要的保持时间,降低成本。本申请具有以下有益效果:本申请可大大缩短自动切换开关的切换时间,降低后级的负载的保持时间,降低成本,且不会存在短路或者电流回流现象,可靠性和安全性好。
基于同一发明构思,本申请实施例还提供了一种开关切换时长确定装置,可以用于实现上述实施例所描述的方法,如下面的实施例。由于开关切换时长确定装置解决问题的原理与开关切换时长确定方法相似,因此开关切换时长确定装置的实施可以参见开关 切换时长确定方法实施,重复之处不再赘述。以下所使用的,术语“单元”或者“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的系统较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
本发明的实施例提供一种能够实现开关切换时长确定方法的开关切换时长确定装置的具体实施方式,参见图14,开关切换时长确定装置具体包括如下内容:
检测耗时确定模块10,用于在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;
闭合最大耗时确定模块20,用于当所述任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;
开关切换时长确定模块30,用于根据所述检测耗时以及所述完全闭合最大耗时确定所述待切换输入电源对应电路的开关切换时长。
一实施例中,所述待切换输入电源对应电路的切换开关的完全闭合最小耗时大于产生所述异常信号的输入电源对应电路的切换开关的完全断开最大耗时。
一实施例中,所述开关切换时长确定模块30具体用于根据所述检测耗时与所述完全闭合最大耗时之和确定所述开关切换时长。
一实施例中,参见图15,开关切换时长确定装置还包括:
关闭信号发送模块40,用于在检测到所述任意一路输入电源发生异常之后,向产生所述异常信号的输入电源对应电路的切换开关发送关闭开关信号,以及
闭合信号发送模块50,用于向所述待切换输入电源对应电路的切换开关发送闭合开关信号,并且发送所述关闭开关信号的时刻与发送所述闭合开关信号的时刻为同一时刻。
从上述描述可知,本发明实施例提供一种开关切换时长确定装置,包括:首先在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;接着,当所述任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;最后根据检测耗时以及完全闭合最大耗时确定开关切换时长。本申请可以在不短路或者电流回流现象的前提下,大大缩减了开关切换的总时间,进而缩短后级的负载需要的保持时间,降低成本。
同样地,本发明的实施例提供一种能够实现自动切换开关的时序控制方法的自动切换开关的时序控制装置的具体实施方式,参见图12,该装置包括:一级电路10、二级电路20、以及分别与所述一级电路10和所述二级电路20连接的控制单元30;
所述一级电路10包括:多个输入电源(输入电源1、输入电源2.….输入电源N),所述二级电路20包括:与所述多个输入电源对应设置的多个切换电路(切换电路1、切换电路2……切换电路N,且输入电源与切换电路是一一对应的关系);所述切换电路上设置有至少一个切换开关;所述控制单元30用于:
检测所述多个输入电源输出的电压信号;
根据所述电压信号判断所述多个输入电源中的任意一个是否异常;
若是,关闭异常的输入电源对应设置的切换电路;
在关闭异常的输入电源对应设置的切换电路的同时,闭合其他切换电路中的任意一个切换电路;每一个所述切换电路完全闭合最小耗时大于完全断开最大耗时。
一实施例中,每一个所述切换开关包括:继电器或者双向导通的有源开关。
一实施例中,所述一级电路10包括:第一输入电源和第二输入电源;所述二级电路20包括:第一继电器和第二继电器;
所述第一输入电源通过所述第一继电器与后级电路连接;
所述第二输入电源通过所述第二继电器与所述后级电路连接;
所述第一继电器完全闭合最小耗时大于所述第二继电器完全断开最大耗时。
一实施例中,自动切换开关的时序控制装置,所述控制单元30还用于:
若所述第一输入电源输出的电压信号异常,则断开所述第一继电器,同时闭合所述第二继电器;且所述第二继电器在完全闭合之前,所述第一继电器已完全断开;
或者,若所述第二输入电源输出的电压信号异常,则断开所述第二继电器关闭,同时闭合所述第一继电器;所述第一继电器在完全闭合之前,所述第二继电器已完全断开。
需要说明的是,由于自动切换开关的时序控制装置解决问题的原理与自动切换开关的时序控制方法相似,因此自动切换开关的时序控制装置的实施可以参见自动切换开关的时序控制方法实施,重复之处不再赘述。
本发明实施例提供一种电子设备,该电子设备可以是台式计算机、平板电脑及移动终端等,本实施例不限于此。
图16为本发明实施例的电子设备600的系统构成的示意框图。如图16所示,该电子设备600可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
一实施例中,开关切换时长确定功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为进行如下控制:在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;当所述任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;根据检测耗时以及完全闭合最大耗时确定开关切换时长。
在另一个实施方式中,开关切换时长确定装置可以与中央处理器100分开配置,例如可以将开关切换时长确定装置配置为与中央处理器100连接的芯片,通过中央处理器的控制来实现开关切换时长确定的功能。
如图16所示,该电子设备600还可以包括:通信模块110、检测单元120、电源170。值得注意的是,电子设备600也并不是必须要包括图16中所示的所有部件;此外,电子设备600还可以包括图16中没有示出的部件,可以参考现有技术。
如图16所示,中央处理器100有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该中央处理器100接收输入并控制电子设备600的各个部件的操作。
其中,存储器140,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存预先设定的检测耗时、待切换输入电源对应电路的切换开关的完全闭合最小耗时以及输入电源对应电路的切换开关的完全断开最大耗时。此外还可存储执行有关信息的程序。并且中央处理器100可执行该存储器140存储的该程序,以实现信息存储或处理等。
检测单元120向中央处理器100提供输入。该检测单元120用于检测任意一路输入电源是否发生异常。电源170用于向电子设备600提供电力。
该存储器140可以是固态存储器,例如,只读存储器(ROM)、随机存取存储器(RAM)、SIM卡等。还可以是这样的存储器,其即使在断电时也保存信息,可被选择性地擦除且设有更多数据,该存储器的示例有时被称为EPROM等。存储器140还可以是某种其它类型的装置。存储器140包括缓冲存储器141(有时被称为缓冲器)。存储器140可以包括应用/功能存储部142,该应用/功能存储部142用于存储应用程序和功能程序或用于通过中央处理器100执行电子设备600的操作的流程。
存储器140还可以包括数据存储部143,该数据存储部143用于存储数据,例如上述的完全闭合最小耗时、检测耗时以及完全断开最大耗时等。存储器140的驱动程序存 储部144可以包括电子设备的用于通信功能和/或用于执行电子设备的其他功能(如消息传送应用、通讯录应用等)的各种驱动程序。
通信模块110即为经由天线111发送和接收信号的发送机/接收机110。通信模块(发送机/接收机)110耦合到中央处理器100,以提供输入信号和接收输出信号,这可以和常规移动通信终端的情况相同。
基于不同的通信技术,在同一电子设备中,可以设置有多个通信模块110,如蜂窝网络模块、蓝牙模块和/或无线局域网模块等。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上实施例只为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据此实施,并不能限制本申请的保护范围。凡跟本申请权利要求范围所做的均等变化与修饰,均应属于本申请权利要求的涵盖范围。
Claims (20)
- 一种开关切换时长确定方法,其特征在于,包括:在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;当所述任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;根据所述检测耗时以及所述完全闭合最大耗时确定所述待切换输入电源对应电路的开关切换时长。
- 根据权利要求1所述的开关切换时长确定方法,其特征在于,所述待切换输入电源对应电路的切换开关的完全闭合最小耗时大于产生异常信号的输入电源对应电路的切换开关的完全断开最大耗时。
- 根据权利要求1所述的开关切换时长确定方法,其特征在于,所述根据所述检测耗时以及所述完全闭合最大耗时确定所述待切换输入电源对应电路的开关切换时间,包括:根据所述检测耗时与所述完全闭合最大耗时之和确定所述开关切换时长。
- 根据权利要求1所述的开关切换时长确定方法,其特征在于,还包括:在检测到所述任意一路输入电源发生异常之后,向产生异常信号的输入电源对应电路的切换开关发送关闭开关信号,以及向所述待切换输入电源对应电路的切换开关发送闭合开关信号,并且发送所述关闭开关信号的时刻与发送所述闭合开关信号的时刻为同一时刻。
- 一种开关切换时长确定装置,其特征在于,包括:检测耗时确定模块,用于在预设定的检测耗时内实时检测多路输入电源中的任意一路输入电源;闭合最大耗时确定模块,用于当所述任意一路输入电源发生异常时,根据待切换输入电源对应电路上的切换开关类型确定其完全闭合最大耗时;开关切换时长确定模块,用于根据所述检测耗时以及所述完全闭合最大耗时确定所述待切换输入电源对应电路的开关切换时长。
- 根据权利要求5所述的开关切换时长确定装置,其特征在于,所述待切换输入电源对应电路的切换开关的完全闭合最小耗时大于产生异常信号的输入电源对应电路的切换开关的完全断开最大耗时。
- 根据权利要求5所述的开关切换时长确定装置,其特征在于,所述开关切换时长 确定模块具体用于根据所述检测耗时与所述完全闭合最大耗时之和确定所述开关切换时长。
- 根据权利要求5所述的开关切换时长确定装置,其特征在于,还包括:关闭信号发送模块,用于在检测到所述任意一路输入电源发生异常之后,向产生异常信号的输入电源对应电路的切换开关发送关闭开关信号,以及闭合信号发送模块,用于向所述待切换输入电源对应电路的切换开关发送闭合开关信号,并且发送所述关闭开关信号的时刻与发送所述闭合开关信号的时刻为同一时刻。
- 一种供电系统,其特征在于,包括权利要求5至8任一项所述的开关切换时长确定装置。
- 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1至4任一项所述开关切换时长确定方法的步骤。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1至4任一项所述开关切换时长确定方法的步骤。
- 一种自动切换开关的时序控制方法,应用于供电系统中,其特征在于,所述供电系统包括:一级电路以及二级电路;所述一级电路包括:多个输入电源,所述二级电路包括:与所述多个输入电源对应设置的多个切换电路;所述切换电路上设置有至少一个切换开关;所述方法包括:检测所述多个输入电源输出的电压信号;根据所述电压信号判断所述多个输入电源中的任意一个是否异常;若是,关闭异常的输入电源对应设置的切换电路;在关闭异常的输入电源对应设置的切换电路的同时,闭合其他切换电路中的任意一个切换电路;每一个所述切换电路完全闭合最小耗时大于完全断开最大耗时。
- 根据权利要求12所述的自动切换开关的时序控制方法,其特征在于,每一个所述切换开关包括:继电器或者双向导通的有源开关。
- 根据权利要求12所述的自动切换开关的时序控制方法,其特征在于,所述一级电路包括:第一输入电源和第二输入电源;所述二级电路包括:第一继电器和第二继电器;所述第一输入电源通过所述第一继电器与后级电路连接;所述第二输入电源通过所述第二继电器与所述后级电路连接;所述第一继电器完全闭合最小耗时大于所述第二继电器完全断开最大耗时。
- 根据权利要求14所述的自动切换开关的时序控制方法,其特征在于,所述方法还包括:若所述第一输入电源输出的电压信号异常,则断开所述第一继电器,同时闭合所述第二继电器;且所述第二继电器在完全闭合之前,所述第一继电器已完全断开;或者,若所述第二输入电源输出的电压信号异常,则断开所述第二继电器关闭,同时闭合所述第一继电器;所述第一继电器在完全闭合之前,所述第二继电器已完全断开。
- 一种自动切换开关的时序控制装置,其特征在于,包括:一级电路、二级电路、以及分别与所述一级电路和所述二级电路连接的控制单元;所述一级电路包括:多个输入电源,所述二级电路包括:与所述多个输入电源对应设置的多个切换电路;所述切换电路上设置有至少一个切换开关;所述控制单元用于:检测所述多个输入电源输出的电压信号;根据所述电压信号判断所述多个输入电源中的任意一个是否异常;若是,关闭异常的输入电源对应设置的切换电路;在关闭异常的输入电源对应设置的切换电路的同时,闭合其他切换电路中的任意一个切换电路;每一个所述切换电路完全闭合最小耗时大于完全断开最大耗时。
- 根据权利要求16所述的自动切换开关的时序控制装置,其特征在于,每一个所述切换开关包括:继电器或者双向导通的有源开关;所述继电器完以及所述有源开关各自的完全闭合最小耗时大于对应的完全断开最大耗时。
- 根据权利要求16所述的自动切换开关的时序控制装置,其特征在于,所述一级电路包括:第一输入电源和第二输入电源;所述二级电路包括:第一继电器和第二继电器;所述第一输入电源通过所述第一继电器与后级电路连接;所述第二输入电源通过所述第二继电器与所述后级电路连接;所述第一继电器完全闭合最小耗时大于所述第二继电器完全断开最大耗时。
- 根据权利要求18所述的自动切换开关的时序控制装置,其特征在于,所述控制单元还用于:若所述第一输入电源输出的电压信号异常,则断开所述第一继电器,同时闭合所述第二继电器;且所述第二继电器在完全闭合之前,所述第一继电器已完全断开;或者,若所述第二输入电源输出的电压信号异常,则断开所述第二继电器关闭,同时闭合所述第一继电器;所述第一继电器在完全闭合之前,所述第二继电器已完全断开。
- 一种供电系统,其特征在于,包括权利要求16-19任一项所述的自动切换开关的时序控制装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110997051.6 | 2021-08-27 | ||
CN202110997051.6A CN113872312A (zh) | 2021-08-27 | 2021-08-27 | 自动切换开关的时序控制方法、装置和供电系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023024846A1 true WO2023024846A1 (zh) | 2023-03-02 |
Family
ID=78988694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/109731 WO2023024846A1 (zh) | 2021-08-27 | 2022-08-02 | 开关切换时长确定方法、时序控制方法、装置及供电系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113872312A (zh) |
WO (1) | WO2023024846A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113872312A (zh) * | 2021-08-27 | 2021-12-31 | 杭州云电科技能源有限公司 | 自动切换开关的时序控制方法、装置和供电系统 |
CN116317091B (zh) * | 2023-05-16 | 2023-10-13 | 南瑞轨道交通技术有限公司 | 切换电源的方法、系统、计算机设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5786681A (en) * | 1996-11-15 | 1998-07-28 | Dana Corporation | Active phase coil inductance sensing |
CN106356982A (zh) * | 2015-07-20 | 2017-01-25 | 中国长城计算机深圳股份有限公司 | 一种双路输入供电的切换电路、装置及服务器电源 |
CN113872312A (zh) * | 2021-08-27 | 2021-12-31 | 杭州云电科技能源有限公司 | 自动切换开关的时序控制方法、装置和供电系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4530919B2 (ja) * | 2005-06-02 | 2010-08-25 | 東芝三菱電機産業システム株式会社 | 無停電電源装置 |
CN201910659U (zh) * | 2010-12-07 | 2011-07-27 | 河北先控电源设备有限公司 | 双路供电切换装置 |
CN106487370A (zh) * | 2015-08-31 | 2017-03-08 | 华为技术有限公司 | 开关电路、电源系统和供电系统 |
CN109661766B (zh) * | 2016-09-05 | 2020-03-31 | 株式会社村田制作所 | 电源系统 |
CN107769367B (zh) * | 2017-10-17 | 2023-12-22 | 国网江苏省电力公司盐城供电公司 | 一种基于固态开关的配网中压负荷无缝切换装置 |
CN116526655A (zh) * | 2018-08-30 | 2023-08-01 | 台达电子工业股份有限公司 | 备援切换装置 |
-
2021
- 2021-08-27 CN CN202110997051.6A patent/CN113872312A/zh active Pending
-
2022
- 2022-08-02 WO PCT/CN2022/109731 patent/WO2023024846A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5786681A (en) * | 1996-11-15 | 1998-07-28 | Dana Corporation | Active phase coil inductance sensing |
CN106356982A (zh) * | 2015-07-20 | 2017-01-25 | 中国长城计算机深圳股份有限公司 | 一种双路输入供电的切换电路、装置及服务器电源 |
CN113872312A (zh) * | 2021-08-27 | 2021-12-31 | 杭州云电科技能源有限公司 | 自动切换开关的时序控制方法、装置和供电系统 |
Non-Patent Citations (1)
Title |
---|
GU, YUE: "Design of EPS Applied to the Project (part one)", BUILDING ELECTRICITY, no. 5, 31 May 2005 (2005-05-31), pages 10 - 13, XP009543862, ISSN: 1003-8493 * |
Also Published As
Publication number | Publication date |
---|---|
CN113872312A (zh) | 2021-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023024846A1 (zh) | 开关切换时长确定方法、时序控制方法、装置及供电系统 | |
US11385985B2 (en) | Server power consumption management method and device | |
CN110300461A (zh) | 一种网络连接方法、装置及终端 | |
CN102447302A (zh) | 一种主备电源切换控制方法和装置 | |
US20160309416A1 (en) | Power Supply Control Method and Wireless Terminal | |
CN105912089A (zh) | 一种电池冗余的方法、装置及系统 | |
JP2002196846A (ja) | Lsiのリーク電流低減方法 | |
US11764602B2 (en) | Redundant power transfer apparatus | |
US20240275169A1 (en) | Control Method for Energy Storage System and Apparatus, Energy Storage System, and Energy Storage Device | |
US8977406B2 (en) | Power supply system, power supply control method, power supply control device and program | |
CN111221400A (zh) | 一种电源管理系统 | |
CN204465030U (zh) | 移动电源及其充放电系统 | |
WO2016127605A1 (zh) | 供电方法、装置及终端 | |
CN110112805B (zh) | 电池充放电控制方法、系统、移动终端及存储介质 | |
US20230030030A1 (en) | Charging and discharging switching apparatus and method, and bidirectional charging system | |
CN106959877B (zh) | 指纹识别芯片驱动电路、指纹识别芯片的驱动方法和装置 | |
CN115098305A (zh) | 一种主板备电切换方法、装置、电子设备和存储介质 | |
CN205647542U (zh) | 一种双网口供电电路 | |
CN112152736B (zh) | 客户前置设备、客户前置设备的故障检测方法以及存储介质 | |
CN114825594A (zh) | 不间断电源的控制方法及控制装置 | |
CN110780619B (zh) | 电路的控制方法及装置、设备 | |
US20140361749A1 (en) | Control system and control method for charge level of battery | |
CN108736691B (zh) | 一种开关电源的长时复位电路和长时复位方法 | |
CN112858894A (zh) | 接触器工作状态的检测方法、检测装置、存储介质及车辆 | |
JP2003150283A (ja) | 電力制御装置及び電力制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22860192 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22860192 Country of ref document: EP Kind code of ref document: A1 |