WO2016127605A1 - 供电方法、装置及终端 - Google Patents

供电方法、装置及终端 Download PDF

Info

Publication number
WO2016127605A1
WO2016127605A1 PCT/CN2015/086277 CN2015086277W WO2016127605A1 WO 2016127605 A1 WO2016127605 A1 WO 2016127605A1 CN 2015086277 W CN2015086277 W CN 2015086277W WO 2016127605 A1 WO2016127605 A1 WO 2016127605A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
line
voltage
battery
controlling
Prior art date
Application number
PCT/CN2015/086277
Other languages
English (en)
French (fr)
Inventor
张云安
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016127605A1 publication Critical patent/WO2016127605A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the field of communications, and in particular to a power supply method, apparatus, and terminal.
  • the existing terminal charging scheme basically adopts a charging scheme with Dynamic Path Management (DPM).
  • DPM Dynamic Path Management
  • the so-called DPM function charging scheme means that the charging chip (or circuit) can separately manage the two outputs of the charging output and the system power output, and has the following two remarkable characteristics:
  • the load When inserting the external adapter, if the load is connected to the system power output of the charging chip (or circuit), the load preferentially takes current from the external adapter to the system power output, if the current required by the load is greater than the charging chip (or Circuit) current limit value, the battery will automatically discharge, supplement the current to the load. If the load current is less than the current limit of the charging chip (or circuit), the excess current will charge the battery and the battery will not discharge. Compared with the charging scheme without DPM function, the charging scheme does not cause repeated charging and discharging of the battery (repetitive charging and discharging may cause serious damage to the battery life).
  • the system output power terminal voltage will always be higher than the battery voltage full voltage (generally 100 ⁇ 200mV higher). ), and this voltage usually exceeds the voltage specification range allowed by some load chips. If the load is applied to the system power supply output of the charging chip, in order to prevent the damage caused by the high voltage on the load chip, it is necessary to add some additional The buck circuit is processed, which obviously increases the complexity of the circuit, the material cost, and also brings additional heat loss.
  • the mobile terminal load is divided into two types according to the range of its power supply specifications. One is that it can withstand a negative voltage higher than the battery full voltage. Load, referred to herein as load 1; one is a load that can only operate normally within the full voltage range of the battery, referred to herein as load 2.
  • the first conventional power supply scheme is shown in FIG. 1.
  • FIG. 1 is a structural block diagram of the first conventional power supply of the related art, and the load 1 that can withstand a higher voltage range is connected to the system power output terminal of the charging circuit, and only The load operating within the full voltage range of the battery is connected to the charging output of the charging circuit, ie the battery terminal. This scheme is simple in circuit and the power supply path power consumption is also low.
  • FIG. 2 is a structural block diagram of a second conventional power supply of the related art. All loads are connected to the system power output terminal of the charging circuit, and the solution solves the traditional first scheme battery. There are repeated charge and discharge defects.
  • the adapter when the adapter is inserted and the battery is about to be full or fully charged, its output voltage will exceed the load 2 electrical specification range, so an external switch must be added between the load 2 power supply and the charging circuit system power supply output.
  • step-down circuit Powered (Switched-Mode Power Supply, SMPS for short) or Linear Dropout Regulator (LDO) step-down circuit.
  • SMPS Switchched-Mode Power Supply
  • LDO Linear Dropout Regulator
  • the invention provides a power supply method, device and terminal to solve at least the problems of complicated circuit and high heat loss existing in the related art.
  • a power supply method comprising: determining a voltage of a power supply battery in a terminal and a voltage of an external power supply connected to the terminal, wherein the terminal is provided with a dynamic path management function DPM charging circuit Controlling the on and off of the first line between the load in the terminal and the output of the system power supply and the load and the battery charging output according to the determined voltage of the power supply battery and the voltage of the external power supply
  • the switching of the second line wherein the working voltage of the load is less than the highest voltage of the power supply battery, and the system power output is a port for supplying power to the load by using the external power supply
  • the battery charging output is a port for supplying power to the load by using the power supply battery; and the power is supplied by the power supply battery, the external power supply, the controlled first line, and the controlled second line.
  • controlling the on and off of the first line and the on and off of the second line include at least one of: when the external When the voltage of the power supply is greater than the full voltage of the power supply battery, the first line is controlled to be disconnected, and the second line is controlled to be turned on; when the voltage of the external power supply is less than or equal to the full voltage of the power supply battery Controlling, the first line is turned on, controlling the second line to be disconnected; and when the external power supply is not powered, controlling the first line Turning on, controlling the second line to be turned on.
  • controlling the on and off of the first line and the on and off of the second line include: controlling on and off of the first line and on and off of the second line by using switch control logic.
  • controlling the on and off of the first line and the on and off of the second line include: controlling on and off of the first line by controlling opening and closing of the first switch on the first line Controlling opening and closing of the second switch on the second line controls on and off of the second line, wherein the first switch and the second switch are both low impedance devices.
  • the low impedance device comprises a metal-oxide semiconductor field effect transistor MOSFET.
  • a power supply apparatus comprising: a determining module configured to determine a voltage of a power supply battery in a terminal and a voltage of an external power supply connected to the terminal, wherein a dynamic is set in the terminal a path management function DPM charging circuit; a control module configured to control a pass of the first line between the load in the terminal and the output end of the system power supply according to the determined voltage of the power supply battery and the voltage of the external power supply Breaking and switching the second line between the load and the battery charging output, wherein the operating voltage of the load is less than the highest voltage of the power supply battery, and the system power output is utilizing the external power supply a port for supplying power to the load, the battery charging output end is a port for supplying power to the load by using the power supply battery; and the power supply module is configured to use the power supply battery, the external power supply, and the controlled The first line and the second line after control supply power to the load.
  • control module includes at least one of: when the voltage of the external power supply is greater than a full voltage of the power supply battery, controlling the first line to be disconnected, and controlling the second line to be turned on; When the voltage of the external power supply is less than or equal to the full voltage of the power supply battery, controlling the first line to be turned on, controlling the second line to be disconnected; when the external power supply is not powered, controlling The first line is turned on, and the second line is controlled to be turned on.
  • control module includes: controlling, by the switch control logic, the on and off of the first line and the channel of the second line.
  • control module includes: controlling opening and closing of the first line by controlling opening and closing of the first switch on the first line and controlling opening and closing of the second switch on the second line by controlling opening and closing of the first switch on the first line Controlling the on and off of the second line, wherein the first switch and the second switch are both low impedance devices.
  • the low impedance device comprises a metal-oxide semiconductor field effect transistor MOSFET.
  • a terminal comprising the apparatus of any of the above.
  • the voltage of the power supply battery in the terminal and the voltage of the external power supply connected to the terminal are determined, wherein the terminal is provided with a dynamic path management function DPM charging circuit; a voltage of the power supply battery and a voltage of the external power supply, controlling switching of the first line between the load in the terminal and the output of the system power supply, and the second line between the load and the battery charging output Turning on, wherein the working voltage of the load is less than a highest voltage of the power supply battery, and the system power output end is a port for supplying power to the load by using the external power supply, and the battery charging output is utilized
  • the power supply battery is a port for supplying power to the load; and the power supply battery, the external power supply, the controlled first line, and the controlled second line are used to supply power to the load, which solves the problem in the related art.
  • the circuit is complicated and the heat loss is high, thereby achieving the effect of reducing circuit complexity and reducing heat loss.
  • FIG. 1 is a structural block diagram of a first conventional power supply of the related art
  • FIG. 2 is a structural block diagram of a second conventional power supply of the related art
  • FIG. 3 is a flow chart of a power supply method according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a power supply device according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a power supply device of a mobile terminal according to an embodiment of the present invention.
  • FIG. 8 is a detailed structural block diagram of a power supply device according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a power supply method according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 determining a voltage of the power supply battery in the terminal and a voltage of the external power supply connected to the terminal, wherein the terminal is provided with a dynamic path management function DPM charging circuit;
  • Step S304 controlling the negative in the terminal according to the determined voltage of the power supply battery and the voltage of the external power supply.
  • Step S306 the power is supplied by the power supply battery, the external power supply, the controlled first line, and the controlled second line.
  • the power supply battery and the external power supply are realized by controlling the on and off of the first line between the load in the terminal and the output end of the system power supply, and the on and off of the second line between the load and the battery charging output end.
  • Load power supply can be flexibly set to the power supply body of the load supply, greatly reducing the circuit complexity and heat loss, solving the problem of complicated circuit and high heat loss in the related art, thereby reducing the circuit complexity. Reduce the effect of heat loss.
  • At least one of the following manners may be adopted: when the external When the voltage of the power supply is greater than the full voltage of the power supply battery, the first line is controlled to be disconnected, and the second line is controlled to be turned on; when the voltage of the external power supply is less than or equal to the full voltage of the power supply battery, the first line guide is controlled. Turning on, controlling the second line to be disconnected; when the external power supply is not supplying power, controlling the first line to be turned on, and controlling the second line to be turned on.
  • the problem of repeated charging and discharging occurs only when the battery is near full or already full, and the repeated charging and discharging occurs.
  • the probability, at the same time, the heat loss also has a great drop; when the first line is turned on, the second line port can avoid repeated charge and discharge, and greatly reduce the heat loss; when the first line and the second line are both turned on When the original impedance is reduced by half, the heat loss is reduced.
  • the switch control logic can be utilized to control the on and off of the first line and the on and off of the second line.
  • the switch control logic may be a hardware circuit, or may be software, such as a programming program, thereby achieving accurate control of the on and off of the first line and the on and off of the second line.
  • switches When controlling the on and off of the first line and the on and off of the second line, switches may be respectively disposed on the first line and the second line, and the disconnection and conduction of the line are realized by controlling the opening and closing of the switch.
  • the on and off of the first line when controlling the on and off of the first line and the on and off of the second line, can be controlled and controlled by controlling the opening and closing of the first switch on the first line.
  • the opening and closing of the second switch on the second line controls the opening and closing of the second line, wherein the first switch and the second switch are both low impedance devices.
  • the low impedance device comprises a metal-oxide semiconductor field effect transistor MOSFET.
  • a power supply device is also provided, which is used to implement the above embodiments and preferred embodiments.
  • the formula has been described and will not be described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes a determination module 42, a control module 44, and a power supply module 46, which will be described below.
  • the determining module 42 is configured to determine a voltage of the power supply battery in the terminal and a voltage of the external power supply connected to the terminal, wherein the terminal is provided with a dynamic path management function DPM charging circuit; the control module 44 is connected to the determining module 42 Provided to control the on and off of the first line between the load in the terminal and the output of the system power supply and the second line between the load and the battery charging output according to the determined voltage of the power supply battery and the voltage of the external power supply.
  • the module 46 is connected to the control module 44 and is configured to supply power to the load by using a power supply battery, an external power supply, a controlled first line, and a controlled second line.
  • control module 44 includes at least one of the following: when the voltage of the external power supply is greater than the full voltage of the power supply battery, the first line is controlled to be disconnected, and the second line is controlled to be turned on; When the voltage of the power supply is less than or equal to the full voltage of the power supply battery, the first line is controlled to be turned on, and the second line is controlled to be disconnected; when the external power supply is not powered, the first line is controlled to be turned on, and the second line is controlled to be turned on.
  • control module 44 includes a channel that utilizes switch control logic to control the on and off of the first line and the second line.
  • control module 44 includes: controlling the on and off of the first line by controlling the opening and closing of the first switch on the first line and controlling the opening and closing of the second switch on the second line. The switching of the two lines, wherein the first switch and the second switch are both low impedance devices.
  • the low impedance device comprises a metal-oxide semiconductor field effect transistor MOSFET.
  • FIG. 5 is a structural block diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 5, the terminal 52 includes the power supply device 54 of any of the above.
  • the mobile terminal is taken as an example to describe the power supply for the load in the mobile terminal.
  • FIG. 6 is a structural block diagram of a power supply apparatus of a mobile terminal according to an embodiment of the present invention.
  • the apparatus includes: a power switch composed of a DPM function charging circuit 62, a battery 64, a power switch K1, and a power switch K2. Circuit 66, switch control logic 68, load 1 and load 2 that control the closing and closing of the power switch.
  • the input with the DPM function charging circuit 62 accepts an external power source (hereinafter referred to as EXT_POWER), after power conversion, has two outputs: the system power output (hereinafter referred to as SYS_PWR) and the battery charging output (hereinafter referred to as BATTERY).
  • EXT_POWER an external power source
  • SYS_PWR system power output
  • BATTERY battery charging output
  • the maximum voltage of the SYS_PWR terminal will exceed the battery 64 full voltage of 100 ⁇ 200mV.
  • the battery charging output with the DPM function charging circuit 62 is directly connected to the battery 64.
  • the DPM function in the charging circuit 62 with the DPM function has the following two significant features:
  • the load When inserting the external adapter, if the load is connected to the system power output of the charging chip (or circuit), the load preferentially takes current from the external adapter to the system power output, if the current required by the load is greater than the charging chip (or Circuit) current limit value, battery 64 will automatically discharge, supplement current to the load. If the load current is less than the current limit value of the charging chip (or circuit), the excess current will charge the battery 64, and the battery 64 will not have a discharge condition.
  • the above-mentioned load 1 electrical operating voltage may be higher than the highest voltage of the battery 64; the above-mentioned load 2 electrical operating voltage must be within the maximum voltage range of the battery 64.
  • the power switch circuit 66 is composed of a power switch K1 and a power switch K2.
  • the input of the power switch K1 is connected to the SYS_PWR terminal with the DPM function charging circuit 62; the input of the power switch K2 and the BATTERY with the DPM function charging circuit 62.
  • the end, that is, the battery 64 is connected.
  • the output of the power switch K1 and the output of the power switch K2 are directly shorted together and then directly connected to the power supply terminal of the load 2.
  • FIG. 7 is a flow chart of control logic according to an embodiment of the present invention. As shown in FIG. 7, the flow includes the following steps:
  • Step S704 it is determined whether there is a legitimate external power supply access, when the determination result is yes, go to step S708, otherwise, go to step S706;
  • Step S706 when the DPM function charging circuit 62 is not connected to the external legal power source, the power switches K1 and K2 are controlled to be closed, the power switch parallel relationship minimizes the path impedance, and the two power switches are interconnected to supply the load 2 together;
  • Step S708 when the DPM function charging circuit 62 is connected to the external legal power source, the mobile terminal system detects and determines the SYS_PWR voltage with the DPM function charging circuit 62, and determines whether the SYS_PWR voltage is If the determination result is yes, the process goes to step S712, otherwise, the process goes to step S710;
  • Step S710 determining that the SYS_PWR voltage is not greater than the full voltage of the battery 64, the control power switch K1 is closed, K2 is disconnected, and the load 2 is powered by the SYS_PWR;
  • step S712 when it is determined that the SYS_PWR voltage is greater than the full voltage of the battery 64, the control power switch K1 is turned off, K2 is closed, and the load 2 is supplied by the battery 64.
  • the power switches K1, K2 and the connection mode may be integrated in the charging circuit or may be independent of the charging circuit.
  • the above two power switches K1, K2 and the connection method can be constructed by using a separate MOSFET device or an integrated module.
  • the power switches K1, K2 described above may be composed of low impedance power MOSFETs or other new low impedance device modules.
  • the above embodiment can achieve the following effects: (1) only two independent power switches are connected in series between the charging circuit and the load 2. Compared with the conventional second-stage SMPS or LDO step-down, the circuit is simpler and the material cost is more. Low; (2) due to the very low impedance of the series power switch, the heat loss is negligible, almost comparable to the traditional first solution; (3) controlled by the switching control logic, can circumvent the tradition to some extent The battery of the first solution has repeated charge and discharge defects.
  • the device includes a DPM function charging circuit module 82, a battery module 84, a system power management chip module 86, and a P_MOSFET power switch K1 module. 88, P_MOSFET power switch K2 module 810, switch control logic module 812, RF power amplifier module 814.
  • the electrical working voltage range of the system power management chip module 86 may be greater than the full voltage of the battery module 84; the electrical working voltage range of the radio frequency power amplifier module 814 must be within the full voltage range of the battery module 814.
  • the charging circuit module 82 with DPM function is used to connect the external power source EXT_POWER, and the battery module 84 is charged and the independent power source SYS_PWR is output through the internal power conversion.
  • the SYS_PWR power supply output with the DPM function charging circuit module 82 is connected to the source terminals of the system power management chip module 86 and the P_MOSFET power switch K1 module 88, respectively (S terminal shown in Fig. 8).
  • the BATTERY output with the DPM function charging circuit module 82 is connected to the source terminal of the P_MOSFET power switch K2 module 810 (S terminal shown in Figure 8).
  • P_MOSFET power switch K1 or P_MOSFET power switch K2 their gate (G pole shown in Figure 8) and source (S pole shown in Figure 8) are connected by a respective resistance 10K resistor R, in order to ensure the default In the state, the gate level and the source level of the P_MOSFET power switch are equal, so that the P_MOSFET is turned off by default.
  • the drain terminal of the P_MOSFET power switch K1 module 88 (the D terminal shown in FIG. 8) and the drain terminal of the P_MOSFET power switch K2 module 810 (the D terminal shown in FIG. 8) are interconnected, and the node output PA_PWR is used as the power supply for the RF power amplifier module.
  • the power source is connected to the power supply terminal of the RF power amplifier module 814.
  • the switch control logic module 812 uses the CPU as the main control unit, and selects four multipurpose pins (MPPs) as the switch input and output control signals, which can be positioned as MPP1 to MPP4.
  • the multipurpose pins MPP1 and MPP2 are software configured as digital output pins that control the switches of transistors M1 and M2, respectively.
  • the MPP output is high, the transistor M is turned on, the gate of the P_MOSFET power switch (G pole shown in FIG. 8) is grounded, and the P_MOSFET power switch is turned on.
  • the MPP output is low, the transistor M is turned off, and the potential of the gate of the P_MOSFET power switch (G pole shown in FIG.
  • the multi-purpose pin MPP3 is software configured as an analog input pin that can sample the charging circuit module system power output signal SYS_PWR in real time and compare it with the software preset battery full voltage threshold (4.2V or 4.35V).
  • the multi-purpose pin MPP4 is configured as a digital input pin, and receives a charging circuit module input power detection output signal PG_GD (generally active low). Refer to Figure 7 for the software control logic flow chart.
  • the MPP4 pin of the CPU detects that PG_GD is low, the control MPP1/MPP2 is high level, the transistors M1/M2 are both on, and the P_MOSFET power switch K1/K2 are closed, thus giving The path impedance of the RF power amplifier module is minimized due to the parallel relationship of the two power switches. Assuming that a single power switch path impedance is 10 ohms, then the path impedance is 5 ohms. Assume that the load current of the RF power amplifier module is 1A.
  • the MPP4 pin of the CPU detects that PG_GD is low, and the CPU further samples the MPP3 voltage.
  • the MPP3 pin voltage is detected to be greater than the preset battery module 84 full voltage (4.2) When V or 4.35V)
  • control MPP1 pin output low level MPP2 pin output
  • the battery module 84 operates in the repeated charge and discharge mode, but since this occurs only when the battery module 84 is near full or full, the probability of occurrence is much greater than in the conventional first power supply scheme. Then calculate the heat loss, the assumed load current is 1A, and the PA_PWR is 4V.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from The steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • the power supply method, device, and terminal provided by the embodiments of the present invention have the following beneficial effects: solving the problem of complicated circuit and high heat loss in the related art, thereby reducing circuit complexity and reducing heat loss. Effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种供电方法、装置及终端,该方法包括:确定终端中供电电池的电压和该终端连接的外部供电电源的电压,其中,该终端中设置有动态路径管理功能DPM充电电路(S302);根据确定的供电电池的电压和外部供电电源的电压,控制终端中的负载和系统电源输出端之间的第一线路的通断以及负载和电池充电输出端之间的第二线路的通断,其中,该负载的工作电压小于供电电池的最高电压,系统电源输出端为利用外部供电电源为负载进行供电的端口,电池充电输出端为利用供电电池为负载进行供电的端口(S304);利用供电电池、外部供电电源、控制后的第一线路和控制后的第二线路为负载供电(S306)。该方法解决了相关技术中存在的电路复杂,热损耗高的问题。

Description

供电方法、装置及终端 技术领域
本发明涉及通信领域,具体而言,涉及一种供电方法、装置及终端。
背景技术
随着技术的发展,人们对带有电池供电的终端体验要求越来越高,其中就包括希望所持有的终端更加小型化,成本更低,续航能力更长,发热更低,使用寿命更长,以及其它各种体验性能越来越好。为了改善原有终端充电方案,在电池亏电情况下插适配器无法立刻开机的严重缺陷,现有终端充电方案基本全部采用带有动态路径管理功能(Dynamic Path Management,简称为DPM))的充电方案。所谓DPM功能充电方案,是指该充电芯片(或者电路)可以对充电输出和系统电源输出这两路输出进行单独管理,它有如下两个显著特性:
(1)当插入外部适配器时,即使电池亏电(一般低于3V)时,其系统电源输出端电压可以维持在系统正常启动所需要的电压(一般是3.4V或者3.6V),这样可以解决传统不带DPM功能充电方案终端在电池亏电情况下插适配器无法启动的缺陷。
(2)当插入外部适配器时,如果负载接在充电芯片(或者电路)的系统电源输出端,负载优先从外部适配器到系统电源输出端这个路径取电流,如果负载所需电流大于充电芯片(或者电路)限流值,电池会自动放电,补充电流给负载。如果负载电流小于充电芯片(或者电路)限流值,则多余的电流会给电池充电,电池就不会存在放电情况。这种充电方案相比不带DPM功能充电方案而言,电池不会出现反复充放电情况(反复充放电会对电池寿命造成严重伤害)。
但不管是否带有DPM功能的充电方案,在电池即将充满或者已经充满情况下,如果依然插着外部适配器,其系统输出电源端电压总会比电池电压充满电压要高(一般要高100~200mV),而这个电压通常超出了某些负载芯片所允许的电压规格范围,如果把该负载加在该充电芯片的系统电源输出端,为了防止高压对负载芯片造成的损坏,就要再额外增加一些降压电路进行处理,这显然会增加电路的复杂度,物料成本,而且还会带来额外的热损耗。
下面对采用带有DPM功能充电方案的移动终端为例,对传统两种供电方案优缺点进行分析:
移动终端负载从其供电规格范围上分两种,一种是可以承受比电池满电压高的负 载,在此称之为负载1;一种是只能在电池满电压范围以内正常工作的负载,在此称之为负载2。第一种传统供电方案如图1所示,图1是相关技术的第一种传统供电的结构框图,把可以承受更高电压范围的负载1接在充电电路的系统电源输出端,把只能在电池满电压范围以内工作的负载接在充电电路的充电输出端,即电池端。这种方案电路简单,供电电源路径功耗也很低。但存在的缺陷就是,当用户插着适配器边充电边使用时,负载2设计会造成电池处于反复充放电工作模式,对电池工作寿命造成很大伤害。第二种传统供电方案如图2所示,图2是相关技术的第二种传统供电的结构框图,所有负载都接在充电电路的系统电源输出端,该方案解决了传统第一种方案电池存在反复充放电缺陷。但如上DPM功能所述,当插着适配器且电池即将充满或者已经充满时,其输出电压会超出负载2电气规格范围,因此在负载2供电和充电电路系统电源输出端之间必须要外加开关式电源(Switched-Mode Power Supply,简称为SMPS)或者线性调整器(Low Dropout Regulator,简称为LDO)降压电路。显然增加的这级降压电路会引入如下缺陷,第一,增加了电路复杂性;第二,增加了物料成本。第三,增加了电路热损耗。
针对相关技术中存在的电路复杂,热损耗高的问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了一种供电方法、装置及终端,以至少解决相关技术中存在的电路复杂,热损耗高的问题。
根据本发明的一个方面,提供了一种供电方法,包括:确定终端中供电电池的电压和所述终端连接的外部供电电源的电压,其中,所述终端中设置有动态路径管理功能DPM充电电路;根据确定的所述供电电池的电压和所述外部供电电源的电压,控制所述终端中的负载和系统电源输出端之间的第一线路的通断以及所述负载和电池充电输出端之间的第二线路的通断,其中,所述负载的工作电压小于所述供电电池的最高电压,所述系统电源输出端为利用所述外部供电电源为所述负载进行供电的端口,所述电池充电输出端为利用所述供电电池为所述负载进行供电的端口;利用所述供电电池、所述外部供电电源、控制后的第一线路和控制后的第二线路为所述负载供电。
可选地,根据确定的所述供电电池的电压和所述外部供电电源的电压,控制所述第一线路的通断以及所述第二线路的通断包括以下至少之一:当所述外部供电电源的电压大于所述供电电池的满电压时,控制所述第一线路断开,控制所述第二线路导通;当所述外部供电电源的电压小于或等于所述供电电池的满电压时,控制所述第一线路导通开,控制所述第二线路断开;当所述外部供电电源不供电时,控制所述第一线路 导通,控制所述第二线路导通。
可选地,控制所述第一线路的通断以及所述第二线路的通断包括:利用开关控制逻辑控制所述第一线路的通断和所述第二线路的通断。
可选地,控制所述第一线路的通断以及所述第二线路的通断包括:通过控制所述第一线路上的第一开关的开合控制所述第一线路的通断以及通过控制所述第二线路上的第二开关的开合控制所述第二线路的通断,其中,所述第一开关和所述第二开关均为低阻抗器件。
可选地,所述低阻抗器件包括金属-氧化物半导体场效应晶体管MOSFET。
根据本发明的另一方面,提供了一种供电装置,包括:确定模块,设置为确定终端中供电电池的电压和所述终端连接的外部供电电源的电压,其中,所述终端中设置有动态路径管理功能DPM充电电路;控制模块,设置为根据确定的所述供电电池的电压和所述外部供电电源的电压,控制所述终端中的负载和系统电源输出端之间的第一线路的通断以及所述负载和电池充电输出端之间的第二线路的通断,其中,所述负载的工作电压小于所述供电电池的最高电压,所述系统电源输出端为利用所述外部供电电源为所述负载进行供电的端口,所述电池充电输出端为利用所述供电电池为所述负载进行供电的端口;供电模块,设置为利用所述供电电池、所述外部供电电源、控制后的第一线路和控制后的第二线路为所述负载供电。
可选地,所述控制模块包括以下至少之一:当所述外部供电电源的电压大于所述供电电池的满电压时,控制所述第一线路断开,控制所述第二线路导通;当所述外部供电电源的电压小于或等于所述供电电池的满电压时,控制所述第一线路导通开,控制所述第二线路断开;当所述外部供电电源不供电时,控制所述第一线路导通,控制所述第二线路导通。
可选地,所述控制模块包括:利用开关控制逻辑控制所述第一线路的通断和所述第二线路的通道。
可选地,所述控制模块包括:通过控制所述第一线路上的第一开关的开合控制所述第一线路的通断以及通过控制所述第二线路上的第二开关的开合控制所述第二线路的通断,其中,所述第一开关和所述第二开关均为低阻抗器件。
可选地,所述低阻抗器件包括金属-氧化物半导体场效应晶体管MOSFET。
根据本发明的另一方面,提供了一种终端,包括上述任一项所述的装置。
通过本发明,采用确定终端中供电电池的电压和所述终端连接的外部供电电源的电压,其中,所述终端中设置有动态路径管理功能DPM充电电路;根据确定的所述 供电电池的电压和所述外部供电电源的电压,控制所述终端中的负载和系统电源输出端之间的第一线路的通断以及所述负载和电池充电输出端之间的第二线路的通断,其中,所述负载的工作电压小于所述供电电池的最高电压,所述系统电源输出端为利用所述外部供电电源为所述负载进行供电的端口,所述电池充电输出端为利用所述供电电池为所述负载进行供电的端口;利用所述供电电池、所述外部供电电源、控制后的第一线路和控制后的第二线路为所述负载供电,解决了相关技术中存在的电路复杂,热损耗高的问题,进而达到了降低电路复杂度,减少热损耗的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术的第一种传统供电的结构框图;
图2是相关技术的第二种传统供电的结构框图;
图3是根据本发明实施例的供电方法的流程图;
图4是根据本发明实施例的供电装置的结构框图;
图5是根据本发明实施例的终端的结构框图;
图6是根据本发明实施例的移动终端的供电装置的结构框图;
图7是根据本发明实施例的控制逻辑的流程图;
图8是根据本发明实施例的供电装置的详细的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种供电方法、装置及终端,图3是根据本发明实施例的供电方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,确定终端中供电电池的电压和该终端连接的外部供电电源的电压,其中,该终端中设置有动态路径管理功能DPM充电电路;
步骤S304,根据确定的供电电池的电压和外部供电电源的电压,控制终端中的负 载和系统电源输出端之间的第一线路的通断以及负载和电池充电输出端之间的第二线路的通断,其中,该负载的工作电压小于供电电池的最高电压,系统电源输出端为利用外部供电电源为负载进行供电的端口,电池充电输出端为利用供电电池为负载进行供电的端口;
步骤S306,利用供电电池、外部供电电源、控制后的第一线路和控制后的第二线路为负载供电。
通过上述步骤,通过控制终端中的负载和系统电源输出端之间的第一线路的通断以及负载和电池充电输出端之间的第二线路的通断来实现由供电电池和外部供电电源为负载供电,可以灵活的设置为负载供电的供电体,极大的降低的电路复杂度和热损耗,解决了相关技术中存在的电路复杂,热损耗高的问题,进而达到了降低电路复杂度,减少热损耗的效果。
在一个可选的实施例中,在根据确定的供电电池的电压和外部供电电源的电压,控制第一线路的通断以及第二线路的通断时,可以采用如下方式至少之一:当外部供电电源的电压大于供电电池的满电压时,控制该第一线路断开,控制该第二线路导通;当外部供电电源的电压小于或等于供电电池的满电压时,控制该第一线路导通开,控制该第二线路断开;当外部供电电源不供电时,控制该第一线路导通,控制该第二线路导通。其中,当第一线路断开,第二线路导通时,相对于相关技术来说,只有在电池接近充满或已经充满的状态时,才会出现反复充放电的问题,降低了反复充放电出现的概率,同时,热损耗也有很大的下降;当第一线路导通,第二线路端口时,可以避免反复充放电,同时大大的降低热损耗;当第一线路和第二线路均导通时,会将原有的阻抗降低一半,从而降低了热损耗。
在控制第一线路的通断以及第二线路的通断时,可以利用开关控制逻辑来控制第一线路的通断和第二线路的通断。其中,该开关控制逻辑可以是硬件电路,也可以使软件的,例如编程程序,从而实现了对第一线路的通断和第二线路的通断的准确控制。
在控制第一线路的通断以及第二线路的通断时,可以在第一线路和第二线路上分别设置开关,通过控制开关的打开和闭合来实现线路的断开和导通。在一个可选的实施例中,在控制第一线路的通断和第二线路的通断时,可以通过控制第一线路上的第一开关的开合控制第一线路的通断以及通过控制第二线路上的第二开关的开合控制第二线路的通断,其中,该第一开关和第二开关均为低阻抗器件。
在一个可选的实施例中,上述低阻抗器件包括金属-氧化物半导体场效应晶体管MOSFET。
在本实施例中还提供了一种供电装置,该装置用于实现上述实施例及优选实施方 式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的供电装置的结构框图,如图4所示,该装置包括确定模块42、控制模块44和供电模块46,下面对该装置进行说明。
确定模块42,设置为确定终端中供电电池的电压和该终端连接的外部供电电源的电压,其中,该终端中设置有动态路径管理功能DPM充电电路;控制模块44,连接至上述确定模块42,设置为根据确定的供电电池的电压和外部供电电源的电压,控制终端中的负载和系统电源输出端之间的第一线路的通断以及负载和电池充电输出端之间的第二线路的通断,其中,该负载的工作电压小于供电电池的最高电压,该系统电源输出端为利用外部供电电源为负载进行供电的端口,该电池充电输出端为利用供电电池为负载进行供电的端口;供电模块46,连接至上述控制模块44,设置为利用供电电池、外部供电电源、控制后的第一线路和控制后的第二线路为负载供电。
在一个可选的实施例中,上述控制模块44包括以下至少之一:当外部供电电源的电压大于供电电池的满电压时,控制第一线路断开,控制第二线路导通;当外部供电电源的电压小于或等于供电电池的满电压时,控制第一线路导通开,控制第二线路断开;当外部供电电源不供电时,控制第一线路导通,控制第二线路导通。
在一个可选的实施例中,控制模块44包括:利用开关控制逻辑控制第一线路的通断和第二线路的通道。
在一个可选的实施例中,控制模块44包括:通过控制第一线路上的第一开关的开合控制第一线路的通断以及通过控制第二线路上的第二开关的开合控制第二线路的通断,其中,该第一开关和该第二开关均为低阻抗器件。
在一个可选的实施例中,上述低阻抗器件包括金属-氧化物半导体场效应晶体管MOSFET。
图5是根据本发明实施例的终端的结构框图,如图5所示,该终端52包括上述任一项的供电装置54。
下面以移动终端为例,对为移动终端中的负载供电进行说明。
图6是根据本发明实施例的移动终端的供电装置的结构框图,如图6所示,该装置包括:带有DPM功能充电电路62,电池64,功率开关K1和功率开关K2组成的功率开关电路66,控制功率开关闭合和关闭的开关控制逻辑68,负载1和负载2。
其中,带有DPM功能充电电路62的输入接受外部电源(以下称之为 EXT_POWER),经过电源变换,有两个输出端:分别为系统电源输出端(以下称之为SYS_PWR端)和电池充电输出端(以下称之为BATTERY端)。其中,SYS_PWR端最高电压会超过电池64满电压100~200mV。带有DPM功能充电电路62电池充电输出端和电池64直接相连。带有DPM功能充电电路62中的DPM功能,有如下两个显著特性:
(1)当插入外部适配器时,即使电池64亏电(一般低于3V)时,其系统电源输出端电压可以维持在系统正常启动所需要的电压(一般是3.4V或者3.6V),这样可以解决传统不带DPM功能充电方案移动终端在电池亏电情况下插适配器无法启动的缺陷。
(2)当插入外部适配器时,如果负载接在充电芯片(或者电路)的系统电源输出端,负载优先从外部适配器到系统电源输出端这个路径取电流,如果负载所需电流大于充电芯片(或者电路)限流值,电池64会自动放电,补充电流给负载。如果负载电流小于充电芯片(或者电路)限流值,则多余的电流会给电池64充电,电池64就不会存在放电情况。
上述的负载1电气工作电压可以高于电池64最高电压;上述的负载2电气工作电压必须在电池64最高电压范围以内。
上述功率开关电路66由功率开关K1和功率开关K2组成,功率开关K1的输入端和带有DPM功能充电电路62的SYS_PWR端相连;功率开关K2的输入端和带有DPM功能充电电路62的BATTERY端,即电池64相连。功率开关K1的输出端和功率开关K2的输出端直接短接在一起,然后和负载2的供电端直接相连。
上述两个功率开关K1和K2闭合与断开受开关控制逻辑68控制,该开关控制逻辑68可以由硬件电路实现,也可以由软件实现。控制逻辑流程图如附图7所示,图7是根据本发明实施例的控制逻辑的流程图,如图7所示,该流程包括如下步骤:
步骤S702,开始;
步骤S704,判断是否有合法外部电源接入,当判断结果为是时,转至步骤S708,否则,转至步骤S706;
步骤S706,当带有DPM功能充电电路62没有接外部合法电源时,功率开关K1和K2均被控制闭合,功率开关并联关系使通路阻抗最小,两个功率开关互联一起共同给负载2供电;
步骤S708,当带有DPM功能充电电路62接外部合法电源时,移动终端系统对带有DPM功能充电电路62的SYS_PWR电压进行检测判断,判断SYS_PWR电压是否 大于电池64的满电压,判断结果为是时,转至步骤S712,否则,转至步骤S710;
步骤S710,确定SYS_PWR电压不大于电池64满电压时,控制功率开关K1闭合,K2断开,由SYS_PWR给负载2供电;
步骤S712,当确定SYS_PWR电压大于电池64满电压时,控制功率开关K1断开,K2闭合,由电池64给负载2供电。
其中,功率开关K1、K2以及连接方式可以集成于充电电路里面,也可以独立于充电电路。
上述的两个功率开关K1、K2以及连接方式可以用分离MOSFET器件搭建,也可以是一个集成模块。
上述的功率开关K1、K2可以由低阻抗的功率MOSFET构成或者其它新型低阻抗器件模块组成。
上述实施例可以达到如下效果:(1)只采用两个独立功率开关串联在充电电路和负载2之间,相比传统第二种方案的SMPS或者LDO降压,电路更加简单,物料成本也更低;(2)由于串联功率开关阻抗非常低,其带来的热损耗可忽略不计,几乎可与传统第一种方案媲美;(3)受开关控制逻辑控制,可以在某种程度上规避传统第一种方案存在的电池反复充放电缺陷。
下面通过具体的实施案例,结合附图和流程图,对本发明内容做更进一步详细阐述。
图8是根据本发明实施例的供电装置的详细的结构框图,如图8所示,该装置包括有DPM功能充电电路模块82,电池模块84,系统电源管理芯片模块86,P_MOSFET功率开关K1模块88,P_MOSFET功率开关K2模块810,开关控制逻辑模块812,射频功率放大器模块814。其中系统电源管理芯片模块86的电气工作电压范围可以大于电池模块84满电压;射频功率放大器模块814电气工作电压范围必须在电池模块814满电压范围以内。
带有DPM功能充电电路模块82用于连接外部电源EXT_POWER,经过内部电源变换,对电池模块84进行充电以及输出一路独立电源SYS_PWR。
带有DPM功能充电电路模块82的SYS_PWR电源输出分别连接到系统电源管理芯片模块86和P_MOSFET功率开关K1模块88的源极端(图8所示S端)。
带有DPM功能充电电路模块82的BATTERY输出端连接到P_MOSFET功率开关K2模块810的源极端(图8所示S端)。
不管是P_MOSFET功率开关K1还是P_MOSFET功率开关K2,它们栅极(图8所示G极)和源极(图8所示S极)都通过各自一个阻值10K电阻R相连,目的是保证在默认状态下,P_MOSFET功率开关的栅极电平和源极电平相等,使P_MOSFET默认关断状态。
P_MOSFET功率开关K1模块88的漏极端(图8所示D端)和P_MOSFET功率开关K2模块810的漏极端(图8所示D端)互联在一起,其节点输出PA_PWR作为射频功率放大器模块的供电电源,连接至射频功率放大器模块814的供电端。
开关控制逻辑模块812以CPU作为主控单元,选择4个多用途管脚(Multipurpose Pin,简称为MPP)作为开关输入输出控制信号,可以定位为MPP1~MPP4。多用途管脚MPP1和MPP2在软件上配置为数字输出管脚,分别控制晶体管M1和M2的开关。当MPP输出高电平时,晶体管M导通,P_MOSFET功率开关的栅极(图8所示G极)接地,P_MOSFET功率开关处于导通状态。反之,当MPP输出低电平时,晶体管M截止,P_MOSFET功率开关的栅极(图8所示G极)电位通过电阻R和源极电位相等,P_MOSFET功率开关处于截止状态。晶体管M1和M2在本控制逻辑电路中起到电平转换功能,防止P_MOSFET功率开关源极过高电压加载在CPU的MPP管脚上,造成MPP管脚过压损坏。多用途管脚MPP3在软件上配置为模拟输入管脚,其可以实时采样充电电路模块系统电源输出信号SYS_PWR,并和软件预设电池满电压阈值(4.2V或者4.35V)进行比较。多用管脚MPP4配置为数字输入管脚,接收充电电路模块输入电源检测输出信号PG_GD(一般为低电平有效)。软件控制逻辑流程图可以参考图7。
当终端未插外部电源时,CPU的MPP4管脚检测到PG_GD为低电平,控制MPP1/MPP2均为高电平,晶体管M1/M2均导通,P_MOSFET功率开关K1/K2均闭合,这样给射频功率放大器模块供电的路径阻抗由于两个功率开关并联关系达到最小。假设其中单独一个功率开关通路阻抗为10耗欧,则此时路径阻抗为5耗欧。假设射频功率放大器模块负载电流为1A,对于传统第一种供电方案,其路径热损耗P=0*1A=0W;对于本发明,其路径阻抗为5mΩ,因此热损耗P=5mΩ*1A*1A=5mW;对于传统第二种供电方案,假设供电电压为4V,降压电路效率为90%,则热损耗P=4V*1A*(1-90%)=400mW。可见,本发明给的供电的通路损耗原小于传统第二种供电方案产生的热损耗,相比传统第一种供电方案,其热损耗也仅仅只有5mW,也几乎可忽略。
当本终端接入合法外部电源EXT_POWER时,CPU的MPP4管脚检测到PG_GD为低电平,此时CPU会进一步采样MPP3电压,当检测到MPP3管脚电压大于预设电池模块84满电压(4.2V或者4.35V)时,控制MPP1管脚输出低电平,MPP2管脚输出 高电平,使P_MOSFET功率开关K1模块88断开,P_MOSFET功率开关K2模块810闭合,射频功率放大器模块814供电电源PA_PWR=BATTERY,虽然此时控制逻辑,会使电池模块84如传统第一种方案一样,让电池模块84工作在反复充放电模式上,但由于这种情况只发生在电池模块84接近充满或者已经充满状态,所以这种发生几率远比传统第一种供电方案中大大减小。再比较计算热损耗,假设的负载电流为1A,PA_PWR为4V。对于第一种传统供电方案,其热损耗P=0*1A=0W;对于本实施例,由于此时给射频功率放大器模块814的供电通路阻抗为单个功率开关自身阻抗10mΩ,其热损耗P=10mΩ*1A*1A=10mW;对于传统第二种供电方案,假设降压电路效率为90%,其热损耗P=4V*1A*(1-90%)=400mW。可见,本实施例供电方案通路损耗远小于传统第二种供电方案产生的热损耗,相比传统第一种供电方案,其热损耗也仅仅只有10mW,也几乎可忽略。反之,当CPU检测MPP4为低电平,且MPP3管脚电压小于预设电池模块84满电压时,控制MPP1管脚输出高电平,MPP2管脚输出低电平,使P_MOSFET功率开关K1模块88导通,P_MOSFET功率开关K2模块810断开,射频功率放大器模块814供电电源PA_PWR=SYS_PWR,规避了传统第一种供电方案电池模块84反复充放电缺陷。如上述一样比较三种供电方案热损耗,本实施例给的供电的通路损耗远小于传统第二种供电方案产生的热损耗。
在电池保护功能,物料成本,电路复杂度,热损耗四个维度比较传统两种供电方案和本专利方案的优缺点,汇总如表1所示:
表1
比较项目 传统第一种方案 传统第二种方案 本发明方案
电池保护功能
物料成本
电路复杂度 复杂 简单
热损耗 非常低
需要说明的是,为了清晰地说明原理,上述P_MOSFET功率开关以及连接方式,在图8中都是独立的。但在实际的电路中,这些功能单元往往会集成在同一个芯片内部,这同样属于本发明保护的内容。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处 的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种供电方法、装置及终端具有以下有益效果:解决了相关技术中存在的电路复杂,热损耗高的问题,进而达到了降低电路复杂度,减少热损耗的效果。

Claims (11)

  1. 一种供电方法,包括:
    确定终端中供电电池的电压和所述终端连接的外部供电电源的电压,其中,所述终端中设置有动态路径管理功能DPM充电电路;
    根据确定的所述供电电池的电压和所述外部供电电源的电压,控制所述终端中的负载和系统电源输出端之间的第一线路的通断以及所述负载和电池充电输出端之间的第二线路的通断,其中,所述负载的工作电压小于所述供电电池的最高电压,所述系统电源输出端为利用所述外部供电电源为所述负载进行供电的端口,所述电池充电输出端为利用所述供电电池为所述负载进行供电的端口;
    利用所述供电电池、所述外部供电电源、控制后的第一线路和控制后的第二线路为所述负载供电。
  2. 根据权利要求1所述的方法,其中,根据确定的所述供电电池的电压和所述外部供电电源的电压,控制所述第一线路的通断以及所述第二线路的通断包括以下至少之一:
    当所述外部供电电源的电压大于所述供电电池的满电压时,控制所述第一线路断开,控制所述第二线路导通;
    当所述外部供电电源的电压小于或等于所述供电电池的满电压时,控制所述第一线路导通开,控制所述第二线路断开;
    当所述外部供电电源不供电时,控制所述第一线路导通,控制所述第二线路导通。
  3. 根据权利要求1所述的方法,其中,控制所述第一线路的通断以及所述第二线路的通断包括:
    利用开关控制逻辑控制所述第一线路的通断和所述第二线路的通断。
  4. 根据权利要求1所述的方法,其中,控制所述第一线路的通断以及所述第二线路的通断包括:
    通过控制所述第一线路上的第一开关的开合控制所述第一线路的通断以及通过控制所述第二线路上的第二开关的开合控制所述第二线路的通断,其中,所述第一开关和所述第二开关均为低阻抗器件。
  5. 根据权利要求4所述的方法,其中,所述低阻抗器件包括金属-氧化物半导体场效应晶体管MOSFET。
  6. 一种供电装置,包括:
    确定模块,设置为确定终端中供电电池的电压和所述终端连接的外部供电电源的电压,其中,所述终端中设置有动态路径管理功能DPM充电电路;
    控制模块,设置为根据确定的所述供电电池的电压和所述外部供电电源的电压,控制所述终端中的负载和系统电源输出端之间的第一线路的通断以及所述负载和电池充电输出端之间的第二线路的通断,其中,所述负载的工作电压小于所述供电电池的最高电压,所述系统电源输出端为利用所述外部供电电源为所述负载进行供电的端口,所述电池充电输出端为利用所述供电电池为所述负载进行供电的端口;
    供电模块,设置为利用所述供电电池、所述外部供电电源、控制后的第一线路和控制后的第二线路为所述负载供电。
  7. 根据权利要求6所述的装置,其中,所述控制模块包括以下至少之一:
    当所述外部供电电源的电压大于所述供电电池的满电压时,控制所述第一线路断开,控制所述第二线路导通;
    当所述外部供电电源的电压小于或等于所述供电电池的满电压时,控制所述第一线路导通开,控制所述第二线路断开;
    当所述外部供电电源不供电时,控制所述第一线路导通,控制所述第二线路导通。
  8. 根据权利要求6所述的装置,其中,所述控制模块包括:
    利用开关控制逻辑控制所述第一线路的通断和所述第二线路的通道。
  9. 根据权利要求6所述的装置,其中,所述控制模块包括:
    通过控制所述第一线路上的第一开关的开合控制所述第一线路的通断以及通过控制所述第二线路上的第二开关的开合控制所述第二线路的通断,其中,所述第一开关和所述第二开关均为低阻抗器件。
  10. 根据权利要求9所述的方法,其中,所述低阻抗器件包括金属-氧化物半导体场效应晶体管MOSFET。
  11. 一种终端,包括权利要求6至10中任一项所述的装置。
PCT/CN2015/086277 2015-02-13 2015-08-06 供电方法、装置及终端 WO2016127605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510079237.8A CN105990893B (zh) 2015-02-13 2015-02-13 供电方法、装置及终端
CN201510079237.8 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016127605A1 true WO2016127605A1 (zh) 2016-08-18

Family

ID=56614040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086277 WO2016127605A1 (zh) 2015-02-13 2015-08-06 供电方法、装置及终端

Country Status (2)

Country Link
CN (1) CN105990893B (zh)
WO (1) WO2016127605A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688383A (zh) * 2020-12-15 2021-04-20 维沃移动通信有限公司 供电控制电路、供电控制方法、装置及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107864435B (zh) * 2017-11-09 2024-03-15 广州艾美网络科技有限公司 音频功率的控制方法、控制电路和音频设备
CN110365082B (zh) * 2019-07-24 2021-08-06 昆山龙腾光电股份有限公司 电源管理电路、电子设备及电源管理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101884153A (zh) * 2007-12-03 2010-11-10 罗姆股份有限公司 电源管理电路
CN103378650A (zh) * 2012-04-18 2013-10-30 三星Sdi株式会社 电力提供装置及给外部设备提供电力的电池包
CN104143850A (zh) * 2014-08-20 2014-11-12 南京矽力杰半导体技术有限公司 电池充放电管理电路及其应用的电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102052B (zh) * 2007-06-13 2010-08-18 华为技术有限公司 供电单元、供电装置、供电系统及供电方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101884153A (zh) * 2007-12-03 2010-11-10 罗姆股份有限公司 电源管理电路
CN103378650A (zh) * 2012-04-18 2013-10-30 三星Sdi株式会社 电力提供装置及给外部设备提供电力的电池包
CN104143850A (zh) * 2014-08-20 2014-11-12 南京矽力杰半导体技术有限公司 电池充放电管理电路及其应用的电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688383A (zh) * 2020-12-15 2021-04-20 维沃移动通信有限公司 供电控制电路、供电控制方法、装置及电子设备
CN112688383B (zh) * 2020-12-15 2023-06-20 维沃移动通信有限公司 供电控制电路、供电控制方法、装置及电子设备

Also Published As

Publication number Publication date
CN105990893B (zh) 2019-07-26
CN105990893A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
Muniandi et al. A 97% maximum efficiency fully automated control turbo boost topology for battery chargers
US10714947B2 (en) Systems and methods for controlling battery current
US11641881B2 (en) Electronic cigarette and power supply structure thereof
CN101447691B (zh) 一种外置电源和电池的切换电路及其控制方法
WO2023000732A1 (zh) 一种充放电电路和电子设备
US9397506B2 (en) Voltage management device for a stacked battery
WO2020224467A1 (zh) 一种充电控制电路及电子设备
JP2017520225A (ja) 電源切換え装置およびデュアル電源の電子デバイスのための方法
WO2016127605A1 (zh) 供电方法、装置及终端
CN112542829A (zh) 应用于电子设备的多路供电管理方法及多路供电装置
CN108110835B (zh) 一种用于高压电池系统的低功耗控制电路
CN114696384A (zh) 终端的供电控制方法、供电控制器及终端
CN105048422A (zh) 开关晶体管压降保持电路及其在锂电池保护电路中应用
CN1302594C (zh) 用于配备多电池的电子装置的供电控制装置
CN101854066B (zh) 电源安全系统
JP2015100046A (ja) バッテリー管理装置のバッテリー管理回路
CN105207279A (zh) 充放电电路和移动终端
CN109256752B (zh) 电池保护电路和供电系统
CN208015444U (zh) 一种车载数据终端用电源切换电路
CN108599357A (zh) 一种车载数据终端用电源切换电路
CN211981525U (zh) 一种超级电容充放电模块和电力终端
CN211236841U (zh) 一种自动切换电源的硬件电路
CN207896706U (zh) 法拉电容充电电路及电子设备
CN106130175A (zh) 一种ups电源以及带有断电保护的计算机
WO2016192263A1 (zh) 一种接入终端的供电方法、接入终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881763

Country of ref document: EP

Kind code of ref document: A1