WO2023024702A1 - 鼓风式通风冷却塔及冷却塔排布系统 - Google Patents

鼓风式通风冷却塔及冷却塔排布系统 Download PDF

Info

Publication number
WO2023024702A1
WO2023024702A1 PCT/CN2022/103130 CN2022103130W WO2023024702A1 WO 2023024702 A1 WO2023024702 A1 WO 2023024702A1 CN 2022103130 W CN2022103130 W CN 2022103130W WO 2023024702 A1 WO2023024702 A1 WO 2023024702A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
water
cooling tower
heat exchange
blower
Prior art date
Application number
PCT/CN2022/103130
Other languages
English (en)
French (fr)
Inventor
辛文军
曹永旺
陈静
南卫
罗丽娟
张阳阳
祝奇超
岳信一
Original Assignee
中广核工程有限公司
岭澳核电有限公司
深圳中广核工程设计有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 岭澳核电有限公司, 深圳中广核工程设计有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Publication of WO2023024702A1 publication Critical patent/WO2023024702A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/01Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using means for separating solid materials from heat-exchange fluids, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/04Distributing or accumulator troughs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/06Spray nozzles or spray pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/10Component parts of trickle coolers for feeding gas or vapour
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/02Arrangements of auxiliary equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C2001/006Systems comprising cooling towers, e.g. for recooling a cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the invention relates to the technical field of nuclear power equipment, in particular to a blower type ventilation cooling tower and a cooling tower arrangement system.
  • the atmosphere is generally used as the "final heat sink", and the blower ventilation cooling tower is an important carrier that guides the waste heat of nuclear power plants to the atmosphere of the "final heat sink".
  • Functions include waste heat of the main circuit, cooling of the fuel pool, discharge of waste heat from the purification system, and indirect assurance of radioactivity containment, etc.
  • the tower body layout of the blower type mechanical ventilation cooling tower in the prior art lacks the protection function against external disasters (including design basis aircraft impact, external explosion, earthquake, external flooding, extreme temperature, extreme wind, etc.), the tower body
  • the layout plan cannot meet the nuclear-level functional requirements of the important plant water system configuration equipment.
  • the technical problem to be solved by the present invention is to provide an improved blower type ventilation cooling tower and cooling tower arrangement system.
  • the technical solution adopted by the present invention to solve the technical problem is to provide a blower type ventilation cooling tower, including a fan room, an air inlet passage arranged at the upper end of the side wall of the fan room and opening downward, and arranged at the upper end of the side wall of the fan room.
  • the air exhaust passage is away from the air outlet of the heat exchange chamber and the heat exchange chamber is staggered; driven by the blower, the air passes through the air inlet passage, the fan chamber and the rain chamber in sequence and then enters the heat exchange chamber.
  • the heat chamber after exchanging heat with the cooling water sprayed by the water spray device in the heat exchange chamber, is discharged through the exhaust channel; the heat-exchanged cooling water enters the sump through the rain chamber .
  • an air inlet is provided at the upper end of the side wall of the fan chamber, and the air inlet connects the air inlet channel and the fan chamber.
  • the plane where the opening of the air inlet channel is located is lower than the plane where the lower edge of the air inlet is located.
  • the air inlet is provided with a filter.
  • an air outlet is provided on the other side wall of the fan chamber, and the air outlet communicates with the fan chamber and the rain chamber;
  • the air blower faces and fits in the air outlet with its air outlet.
  • the air outlet is in the shape of a bell mouth, and one end with a larger diameter faces and communicates with the rain compartment.
  • a water guide eaves is provided on an inner wall of the rain compartment, and the water guide eaves are located above the air outlet to prevent cooling water from flowing into the air outlet against the wall.
  • the indoor floor of the fan room is provided with a positioning platform that protrudes and extends to the other side wall of the fan room, and the air outlet is located above the positioning platform;
  • the bottom of the blower is connected to the positioning platform by anchor bolts; the outer periphery of the air outlet end of the blower is connected to the inner peripheral surface of the air outlet by bolts.
  • the indoor ground level of the fan room is higher than the outdoor ground level.
  • the heat exchange chamber is provided with water-sprinkling fillers and compression beams; the water-drinking fillers are filled in the lower end of the heat exchange chamber, and the compression beams are arranged on the water-drinking fillers.
  • the ends of the compression beams are connected to the inner wall of the heat exchange chamber.
  • a bracket is provided on the inner bottom surface of the heat exchange chamber, and the water spray filler rests on the bracket.
  • the water spraying device includes a water distribution pipe and a plurality of spray heads distributed on the water distribution pipe at intervals.
  • the installation height of the water collection pool is lower than that of the rain chamber, and the two are connected through water guide holes; the cooling water in the rain chamber enters through the water guide holes under gravity in the sump.
  • the inner bottom surface of the rain cell is an inclined plane, and the downward side of the inclined plane is connected to the water guide hole.
  • the air exhaust channel includes a first barrel section connected to the heat exchange chamber, a second barrel section staggered from the first barrel section, and an obliquely extending connection between the first barrel section and the second barrel section.
  • the transition section between the two cylinder sections; the free end opening of the second cylinder section forms the air exhaust port.
  • louvers are provided at the air outlet; the louvers of the louvers are arranged obliquely, so that the passage holes in the louvers are inclined towards the inner wall surface of the second cylinder section away from the transition section.
  • a water eliminator is provided in the first cylinder section.
  • the blasting ventilation cooling tower also includes a water storage tank arranged under the rain compartment and/or sump;
  • the water storage tank is connected to the sump through a pump and a pipeline to replenish water for the sump.
  • the present invention also provides a cooling tower arrangement system, including at least two blasting ventilation cooling towers described in any one of the above items; every two blasting ventilation cooling towers are arranged opposite to each other with air inlet passages and mirror images .
  • a distribution room is provided between the two blasting ventilation cooling towers, and water distribution pipelines are respectively connected to the water spraying devices of each blasting ventilation cooling tower in the distribution room.
  • the blower type ventilation cooling tower of the present invention is suitable for the important plant water system of the nuclear power plant, and realizes the heat exchange and cooling of the cooling water; through the improvement of the air inlet channel and the air exhaust channel, it can effectively prevent flying objects from entering the tower and causing damage to the tower internal components cause damage.
  • a cooling tower arrangement system is formed by arranging multiple blower ventilation cooling towers, which is suitable for the meteorological conditions of different plant sites; for cold plant sites, the blowers of some blower ventilation cooling towers can be stopped in winter to deal with the prevention and control. Risk of icing; meet the functional requirements under the environmental conditions of nuclear power plant operating conditions and accident conditions.
  • Fig. 1 is a schematic diagram of the arrangement structure of a cooling tower arrangement system according to an embodiment of the present invention (the state after removing the top);
  • Fig. 2 is a schematic sectional structure diagram of the cooling tower arrangement system shown in Fig. 1 along the A-A line;
  • Fig. 3 is a schematic structural diagram of the shutter in Fig. 2 .
  • the cooling tower arrangement system of the present invention includes at least two blasting draft cooling towers 100 , and every two blasting draft cooling towers 100 are mirrored.
  • the cooling tower arrangement includes twelve forced draft cooling towers 100 divided into two mirrored rows, each row comprising six drums. Wind ventilation cooling tower 100.
  • the blower ventilation cooling tower 100 can be increased or decreased according to the needs, and the setting is flexible.
  • each blast type ventilation cooling tower 100 can comprise the air inlet channel 10, the fan room 20, the rain compartment room 30, the heat exchange room 40 and the exhaust channel 50 which are connected successively, and also includes the The blower 60 , the sump 70 communicating with the rain chamber 30 , and the water spray device 80 arranged at the top of the heat exchange chamber 40 .
  • the external air enters the fan chamber 20 from the air inlet passage 10, then enters the rain chamber 30 and the heat exchange chamber 40, and is discharged from the exhaust passage 50 after exchanging heat with cooling water in the heat exchange chamber 40 Outside;
  • the cooling water introduced into the heat exchange chamber 40 enters the rain chamber 30 after heat exchange with the air to heat up, and then enters the sump 70;
  • the air circulation direction is shown by the dotted arrow in Figure 2
  • the cooling water circulation direction is shown in Figure 2 Indicated by the solid arrow.
  • the cooling water passes through the rain chamber 30 and then enters the sump 70. Therefore, in the rain chamber 30, the air entering the rain chamber 30 is first cooled with the cooling water entering the rain chamber 30. The water enters the heat exchange chamber 40 after heat exchange, so that the cooling water entering the rain chamber 30 is subjected to secondary heat exchange, and the cooling water can be cooled again before entering the sump 70 .
  • the fan room 20 is set on the ground (0m), and the indoor ground level of the fan room 20 is set higher than the outdoor ground level, such as higher than 1.0m.
  • the air inlet passage 10 is arranged on the upper end of the side wall of the fan chamber 20 , and the upper end of the side wall is provided with an air inlet 21 , and the air inlet 21 communicates with the air inlet passage 10 and the fan chamber 20 .
  • the air inlet channel 10 is located on the side of the blasting draft cooling tower 100 facing away from the other blasting draft cooling tower 100 .
  • the opening of the air inlet passage 10 away from the fan chamber 20 faces downwards, preventing external missiles from flying into the air inlet passage 10 .
  • the plane where the opening of the air inlet channel 10 is located is lower than the plane where the lower edge of the air inlet 21 is located, so that the flying angle ⁇ from the opening to the air inlet 21 is an upward inclined angle relative to the horizontal plane (not conducive to flying), effectively preventing The projectile is injected into the air inlet 21.
  • a filter 22 is provided at the air inlet 21 .
  • the filter screen 22 can be a metal wire weaving net with a mesh size of 25 mm ⁇ 25 mm, which can prevent the invasion of small flying objects or particles with a diameter of 2.54 cm or more.
  • the blower 60 is arranged in the fan room 20 and faces the air inlet 21 with its air inlet end; corresponding to the application of the blower ventilation cooling tower 100 in a nuclear power plant, the blower 60 is a nuclear-grade blower.
  • An air outlet 23 is provided on the other side wall of the fan chamber 20 , and the air outlet 23 communicates with the fan chamber 20 and the rain chamber 30 .
  • the blower 60 faces and fits in the air outlet 23 with its air outlet;
  • the air outlet 23 is preferably a trumpet-mouth shape, and the larger end of the caliber is used as the downstream end towards and communicates with the rain chamber 30, and the smaller end of the caliber is used as the upstream end towards the fan chamber 20. In the smaller end of the tuyere 23 caliber.
  • the indoor floor of the fan chamber 20 is provided with a positioning platform 24 that protrudes and extends to the other side wall of the fan chamber 20 (the side wall where the air outlet 23 is located), and the air outlet 23 is located at the location of the positioning platform. above the platform 24 .
  • the bottom of the blower 60 is connected to the positioning platform 24 by anchor bolts; the outer periphery of the air outlet of the blower 60 is connected to the inner peripheral surface of the air outlet 23 by bolts, so as to improve the installation stability of the blower 60 and can cope with the safety shutdown earthquake. Under certain circumstances, ensure that the fan does not lose its operating function.
  • the rain chamber 30 and the fan chamber 20 are arranged adjacent to each other, and share a side wall between them, and the air outlet 23 is located on the side wall.
  • the heat exchange chamber 40 is arranged above the rain chamber 30, and the two are separated and communicated by cross beams.
  • the crossbeam serves as the top beam of the rain chamber 30 and also serves as the support beam for the heat exchange material in the heat exchange chamber 40 ; the cooling water after heat exchange with the air enters the rain chamber 30 through the gap between the crossbeams.
  • an inner wall of the rain chamber 30 is provided with a water guide eaves 31, and the water guide eaves 31 are located at the air outlet 23 to prevent the cooling water from sticking to the wall and flowing into the air outlet 23.
  • the water guide eaves 31 can be any shape of block or rod; direction flow.
  • the heat exchange chamber 40 is provided with a water-sprinkling filler 41 and a compression beam 42 .
  • the water shower filler 41 is used as a heat exchange material, and it is filled in the lower end of the heat exchange chamber 40 . After air enters the heat exchange chamber 40 , it exchanges heat with the cooling water passing through the water shower filler 41 in the water shower filler 41 .
  • the water-sprinkling filler 41 is processed and manufactured according to the specific environmental conditions required by the important plant water system of the nuclear power plant. It can be exposed to the air or soaked in seawater all the year round without affecting its operating function, and can withstand high water temperature (80°C) and low temperature ( -45°C) water and air environment.
  • the water spray filler 41 is made of PVC material. In another embodiment, the water pouring filler 41 is made of metal. Compared with metal materials, the water spray filler 41 made of PVC material is lighter and has lower cost.
  • the external explosion shock wave will cause the water spraying packing 41 to receive an upward thrust (about 350kg upward thrust per square meter), and the gravity of the water spraying packing 41 alone is not enough to counteract the upward thrust.
  • a compression beam 42 is provided for reinforcement.
  • the end of the compression beam 42 can be connected on the inner wall of the heat exchange chamber 40, and a fixed space is defined between the compression beam 42 and the inner bottom surface of the heat exchange chamber 40, and the water spray filler 41 is filled and confined in the space. inside the space.
  • Bracket 43 is provided on the inner bottom surface of the heat exchange chamber 40 , on which the water shower filler 41 rests. Bracket 43 can be made of FRP.
  • the water spraying device 80 is arranged on the inner top of the heat exchange chamber 40 and is connected with the important plant water system pipeline of the nuclear power plant to introduce cooling water into the heat exchange chamber 40 .
  • the water spraying device 80 generally includes a water distribution pipe and a plurality of spray heads distributed on the water distribution pipe at intervals; the cooling water is sprayed out by spraying, and fully contacts with the air for heat exchange.
  • the exhaust channel 50 is connected above the heat exchange chamber 40 and communicated with the heat exchange chamber 40 , and the two are separated by a beam.
  • the air exhaust channel 50 is away from the air exhaust port 51 of the heat exchange chamber 40 and the heat exchange chamber 40 is staggered, so that external flying objects or particles will not directly fall into the heat exchange chamber 40 from the air exhaust port 51, preventing small flying objects
  • the jets cause damage to the water spray device 80 and the water spray filler 41 in the heat exchange chamber 40 .
  • the exhaust channel 50 includes a first cylinder section 51 connected to the heat exchange chamber 40 , a second cylinder section 52 staggered from the first cylinder section 51 , and connected to the first cylinder section by an oblique extension.
  • the transition section 53 between the section 51 and the second barrel section 52; the free end opening of the second barrel section 52 forms an air outlet.
  • the phases of the first barrel section 51 and the second barrel section 52 are staggered so that the height directions of the two are not on the same straight line, and the length direction of the transition section 53 is relative to the height direction of the first barrel section 51 and the second barrel section 52 tilt.
  • a louver 54 is provided at the air outlet of the air exhaust channel 50 to further block flying objects.
  • the louver 54 has a plurality of louver blades 541 arranged in parallel at intervals, and the intervals between adjacent louver blades 541 form passing holes 542 of the louver 54 .
  • the louvers 541 are arranged obliquely, so that the passage holes 542 in the louvers 54 are inclined towards the inner wall surface of the second tube section 52 away from the transition section 53 .
  • a water eliminator 55 is arranged in the first cylinder section 51 of the exhaust air channel 50, and the water eliminator 55 can be laid on the top of the heat exchange chamber 40 (also in the air exhaust area). channel 50 bottom) on the crossbeam.
  • the air entering the exhaust channel 50 is discharged into the external atmosphere along the transition section 53 and the second barrel section 52 after being treated by the water eliminator 55 .
  • the sump 70 can be closely connected with the rain chamber 30, and a side wall is shared between the two; a water guide hole 32 is opened on the side wall, and the cooling water entering the rain compartment 30 enters the sump through the water guide hole 32 Within 70.
  • the setting height of the sump 70 is lower than that of the rain compartment 30, and the cooling water in the rain compartment 30 enters the sump 70 through the water guide hole 32 under gravity without any power equipment.
  • the indoor ground elevation of the sump 70 is set lower than the outdoor ground elevation, such as a height of -2.0m.
  • the inner bottom surface of the rain chamber 30 is a slope 33, and the slope 33 is connected to the water guide hole 32 on the downward side, so that the cooling water in the rain chamber 30 can be guided to the collector.
  • the water pool 70 does not accumulate in the rain compartment 30 .
  • the sump 70 supplies the heat-exchanged cooling water to the heat exchanger of the important plant water system of the nuclear power plant through equipment such as pumps and pipelines, so as to realize the recycling of the cooling water.
  • the draft ventilation cooling tower 100 may further include a water storage tank 90 disposed under the rain compartment 30 and/or the water collection tank 70 .
  • the water storage tank 90 is located below the ground (0m), and the depth of the water storage tank 90 can be set as required, for example, the elevation of the inner bottom surface of the water storage tank 90 can be -9.0m.
  • the highest liquid level in the water storage tank 90 is maintained at a suitable height, such as -3.5m and so on.
  • the water storage tank 90 can be one or more settings, and is located at the bottom of the entire blower ventilation cooling tower 100.
  • the stored water can cope with the nuclear power plant accident operating conditions for 30 days to supplement the water volume, greatly reducing the footprint of the blast ventilation cooling tower 100. area.
  • the water storage tank 90 can be connected to the sump 70 through a pump and a pipeline to provide supplementary water for the sump 70 to solve the problem of insufficient cooling water and reduce the salt concentration of the cooling water.
  • a distribution room 200 is provided between two or two rows of mirrored blower type ventilation cooling towers 100, and a water distribution pipeline 210 is arranged in the distribution room 200.
  • the water distribution pipeline 210 is connected to the important plant water system of the nuclear power plant and is connected to the water spraying device 80 of each blower ventilation cooling tower 100, so that the cooling water of the important plant water system of the nuclear power plant flows into the distribution room 200 first, and then is distributed to each drum.
  • the water spray device 80 of the wind draft cooling tower 100 is provided in the cooling tower arrangement system of the present invention.
  • the air inlet channel 10, the fan room 20, the rain chamber 30, the heat exchange room 40, the exhaust channel 50 and the sump 70 of each blast type ventilation cooling tower 100 are all surrounded by reinforced concrete structures, so that the fan
  • the floor of each chamber such as chamber 20, side wall and top plate etc. and the whole circumference side wall of air inlet channel 10, exhaust air channel 50 are all made of reinforced concrete.
  • the two blasting ventilation cooling towers 100 are close to each other with their respective exhaust passages 50, and the second tube sections 52 of the two exhaust passages 50 share one side wall.
  • the distribution room 200 is located below the two exhaust channels 50 , so the bottom plate of the second tube section 52 of the two exhaust channels 50 can form the top plate of the distribution room 200 .
  • the distribution room 200 is set between two rows of blower ventilation cooling towers 100, and the water distribution pipeline 210 can be connected to the important plant water system of the nuclear power plant through a main water pipe to access the cooling water , the incoming cooling water is then distributed through the water distribution pipeline 210 to the blower ventilation cooling tower 100 that needs to be started.
  • the water inlet end of the water spray device 80 of each blower ventilation cooling tower 100 can be provided with a control valve, through which the water spray device 80 and the water distribution pipeline 210 can be controlled on and off.
  • the control valves of the required corresponding number of blower ventilation cooling towers 100 are opened, and the corresponding water spray devices 80 and water distribution pipelines 210 are connected.
  • a corresponding number of blower-type ventilation cooling towers 100 are started to cool the cooling water by exchanging heat with the air.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种鼓风式通风冷却塔及冷却塔排布系统。鼓风式通风冷却塔(100)包括风机室(20)、设置在所述风机室(20)的一侧壁上端并且开口朝下的进风通道(10)、设置在所述风机室(20)内的鼓风机(60)、与所述风机室(20)相邻设置并相连通的雨区室(30)、设置在所述雨区室(30)上方并与所述雨区室(30)相连通的换热室(40)、设置在所述换热室(40)上方并与所述换热室(40)相连通的排风通道(50)、设置在所述换热室(40)内顶部并用于引入冷却水的喷水装置(80)、与所述雨区室(30)相邻设置且相连通的集水池(70);所述排风通道(50)远离所述换热室(40)的排风口(51)与所述换热室(40)相错开。该鼓风式通风冷却塔(100)适用于核电厂重要厂用水系统,实现对冷却水热交换降温;通过进风通道和排风通道的改进,有效防止飞射物进入塔内对塔内构件造成损伤。

Description

鼓风式通风冷却塔及冷却塔排布系统 技术领域
本发明涉及核电设备技术领域,尤其涉及一种鼓风式通风冷却塔及冷却塔排布系统。
背景技术
对于临海或内陆核电厂,受限于厂址条件,一般将大气作为“最终热阱”,鼓风式通风冷却塔作为将核电站余热导至“最终热阱”大气的重要载体,其承担的安全功能包括主回路余热以及燃料水池冷却、净化系统余热的排出,并间接保证放射性包容等。
核电厂重要厂用水系统配置的鼓风式通风冷却塔尚无应用业绩,而现有技术中的鼓风式机械通风冷却塔的塔体布置方案一般采用常规工业设计标准,不能直接应用于核电厂重要厂用水系统中,主要存在如下技术问题:
现有技术中的鼓风式机械通风冷却塔的塔体布置,缺少针对外部灾害(包括设计基准飞机撞击、外部爆炸、地震、外部水淹、极端气温、极端风等)的防护功能,塔体布置方案不能满足作为重要厂用水系统配置设备的核级功能要求。
发明内容
本发明要解决的技术问题在于,提供一种改进的鼓风式通风冷却塔及冷 却塔排布系统。
本发明解决其技术问题所采用的技术方案是:提供一种鼓风式通风冷却塔,包括风机室、设置在所述风机室的一侧壁上端并且开口朝下的进风通道、设置在所述风机室内的鼓风机、与所述风机室相邻设置并相连通的雨区室、设置在所述雨区室上方并与所述雨区室相连通的换热室、设置在所述换热室上方并与所述换热室相连通的排风通道、设置在所述换热室内顶部并用于引入冷却水的喷水装置、与所述雨区室相邻设置且相连通的集水池;
所述排风通道远离所述换热室的排风口与所述换热室相错开;在所述鼓风机的驱动下,空气依次通过所述进风通道、风机室和雨区室后进入换热室,在所述换热室内与所述喷水装置喷出的冷却水进行热交换后,通过所述排风通道排出;热交换后的冷却水通过所述雨区室进入所述集水池。
优选地,所述风机室的所述一侧壁上端设有进风口,所述进风口连通所述进风通道和风机室。
优选地,所述进风通道的开口所在平面低于所述进风口下缘所在平面。
优选地,所述进风口设有过滤网。
优选地,所述风机室的另一侧壁上设有出风口,所述出风口连通所述风机室和雨区室;
所述鼓风机以其出风端朝向并配合在所述出风口内。
优选地,所述出风口为喇叭口型,其口径较大的一端朝向并连通所述雨区室。
优选地,所述雨区室的一内壁面上设有导水檐,所述导水檐位于所述出风口的上方,防止冷却水贴壁流至所述出风口内。
优选地,所述风机室的室内地面设有凸起且延伸至所述风机室的所述另 一侧壁的定位平台,所述出风口位于所述定位平台上方;
所述鼓风机的底部通过地脚螺栓连接在所述定位平台上;所述鼓风机的出风端外周通过螺栓与所述出风口的内周面连接。
优选地,所述风机室的室内地面标高高于室外地面标高。
优选地,所述换热室内设有淋水填料和压固梁;所述淋水填料填充在所述换热室的下端,所述压固梁设置在所述淋水填料上。
优选地,所述压固梁的端部连接在所述换热室的内壁上。
优选地,所述换热室的内底面设有托架,所述淋水填料搁置在所述托架上。
优选地,所述喷水装置包括配水管道、多个间隔分布在所述配水管道上的喷头。
优选地,所述集水池的设置高度低于所述雨区室的设置高度,两者之间通过导水孔相连通;所述雨区室内的冷却水在重力下通过所述导水孔进入所述集水池内。
优选地,所述雨区室的内底面为斜面,所述斜面以朝下的一侧连接所述导水孔。
优选地,所述排风通道包括与所述换热室相接的第一筒段、与所述第一筒段相错开的第二筒段、倾斜延伸连接在所述第一筒段和第二筒段之间的过渡段;所述第二筒段的自由端开口形成所述排风口。
优选地,所述排风口处设有百叶窗;所述百叶窗的百叶片倾斜设置,使得百叶窗内的通过孔倾斜朝向所述第二筒段远离所述过渡段的内壁面。
优选地,所述第一筒段内设有除水器。
优选地,所述鼓风式通风冷却塔还包括设置在所述雨区室和/或集水池下 方的储水池;
所述储水池通过泵及管道连接所述集水池,为所述集水池补水。
本发明还提供一种冷却塔排布系统,包括至少两个以上任一项所述的鼓风式通风冷却塔;每两个所述鼓风式通风冷却塔以进风通道相背并镜像设置。
优选地,两个所述鼓风式通风冷却塔之间设有分配间,所述分配间内设有分别与每一所述鼓风式通风冷却塔的喷水装置连接的配水管路。
本发明的鼓风式通风冷却塔,适用于核电厂重要厂用水系统,实现对冷却水热交换降温;通过进风通道和排风通道的改进,有效防止飞射物进入塔内对塔内构件造成损伤。
通过多个鼓风式通风冷却塔布置形成冷却塔排布系统,适用于不同厂址的气象条件;针对寒冷厂址,冬季运行工况可通过停运部分鼓风式通风冷却塔的鼓风机的方式应对防结冰风险;满足核电厂运行工况和事故工况环境条件下的功能要求。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一实施例的冷却塔排布系统的布置结构示意图(去除顶部后的状态);
图2是图1所示冷却塔排布系统沿A-A线的剖面结构示意图;
图3是图2中百叶窗的结构示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图 详细说明本发明的具体实施方式。
参考图1,本发明的冷却塔排布系统,包括至少两个鼓风式通风冷却塔100,每两个鼓风式通风冷却塔100镜像设置。
在图1所示实施例中,冷却塔排布系统包括十二个鼓风式通风冷却塔100,该十二个鼓风式通风冷却塔100分成镜像的两排,每一排包括六个鼓风式通风冷却塔100。
在核电厂实际应用中,鼓风式通风冷却塔100可供根据需要增减,设置灵活。
如图2所示,其示出了图1中两个镜像设置的鼓风式通风冷却塔100的纵向剖面图。其中,每一鼓风式通风冷却塔100可包括依次相连通的进风通道10、风机室20、雨区室30、换热室40和排风通道50,还包括设置在风机室20内的鼓风机60、与雨区室30相连通的集水池70、设置在换热室40内顶部的喷水装置80。在鼓风机60的驱动下,外部空气从进风通道10进入风机室20,再进入雨区室30和换热室40,在换热室40内与冷却水进行热交换后从排风通道50排出外部;引入换热室40内的冷却水则与空气热交换升温后进入雨区室30,再进入集水池70;空气流通方向如图2中虚线箭头所示,冷却水流通方向如图2中实线箭头所示。
由于空气从雨区室30进入换热室40,冷却水经过雨区室30再进入集水池70,因此在雨区室30内,进入雨区室30的空气先与进入雨区室30的冷却水进行热交换后再进入换热室40,这样对进入雨区室30的冷却水进行二次热交换,冷却水可再降温后再进入集水池70。
其中,风机室20设置在地面(0m)上,并且将风机室20的室内地面标高高于室外地面标高设置,如高于1.0m等高度。
进风通道10设置在风机室20的一侧壁上端,该侧壁上端设有进风口21,进风口21连通进风通道10和风机室20。在镜像设置的两个鼓风式通风冷却塔100中,进风通道10位于所在的鼓风式通风冷却塔100背向另一鼓风式通风冷却塔100的一侧。
进风通道10远离风机室20的开口朝下,防止外部飞射物飞射到进风通道10内。优选地,进风通道10的开口所在平面低于进风口21下缘所在平面,这样使得从开口到进风口21的飞射角度α为相对水平面向上的倾斜角度(不利于飞射),有效防止飞射物射入进风口21。
此外,为了防止一定尺寸的飞射物或颗粒物进入风机室30,进风口21处还设有过滤网22。作为选择,过滤网22可以采用金属丝编织网,网孔尺寸25mm×25mm,可防止直径2.54cm以上小型飞射物或颗粒物的入侵。
鼓风机60设置在风机室20内并以其进风端朝向进风口21;对应鼓风式通风冷却塔100在核电厂中的应用,鼓风机60采用核级鼓风机。风机室20的另一侧壁上设有出风口23,出风口23连通风机室20和雨区室30。鼓风机60以其出风端朝向并配合在出风口23内;鼓风机60工作时,空气从其进风端被抽入后从出风端输出,通过出风口23进入雨区室30。
出风口23优选为喇叭口型,其口径较大的一端作为下游端朝向并连通雨区室30,口径较小的一端作为上游端朝向风机室20内,鼓风机60以其出风端配合在出风口23口径较小的一端内。
为将鼓风机60固定在风机室20内,风机室20的室内地面设有凸起且延伸至风机室20的另一侧壁(出风口23所在侧壁)的定位平台24,出风口23位于定位平台24上方。鼓风机60的底部通过地脚螺栓连接在定位平台24上;鼓风机60的出风端外周通过螺栓与出风口23的内周面连接,提高实现鼓风 机60的安装稳定性,能够应对安全停堆地震工况下,保证风机不丧失运行功能。
雨区室30与风机室20紧邻设置,两者之间共用一个侧壁,出风口23位于该侧壁上。换热室40设置在雨区室30的上方,两者之间通过横梁分隔并相连通。横梁作为雨区室30的顶梁,同时作为换热室40内换热材料的支撑梁;与空气经过热交换后的冷却水通过横梁之间的间隔进入雨区室30。
为避免冷却水沿着出风口23所在侧壁流入出风口23内,造成鼓风机60内部水淹问题,雨区室30的一内壁面上设有导水檐31,导水檐31位于出风口23的上方,防止冷却水贴壁流至出风口23内。导水檐31可以是任何形状的块体或杆体;导水檐31还可以是挡板,以向下倾斜的形式设置在出风口23的上方,将下落其上的冷却水向远离出风口23的方向导流。
换热室40内设有淋水填料41和压固梁42。
淋水填料41作为换热材料,其填充在换热室40的下端,空气进入换热室40后在淋水填料41中与通过淋水填料41的冷却水进行热交换。淋水填料41依据核电厂重要厂用水系统要求的特定环境条件加工制造,可常年暴露在空气中或浸泡在海水中而不影响其运行功能,并能承受高水温(80℃)和低气温(-45℃)的水、气环境。
在一实施方式中,淋水填料41选用PVC材料制成。在另一实施方式中,淋水填料41选用金属制成。相比于金属材料,PVC材料制成的淋水填料41更轻且成本低。
考虑到外部爆炸灾害防护因素,外部爆炸冲击波会造成淋水填料41受到向上推力(每平米受到约350kg向上的推力),仅仅依靠淋水填料41重力不足以抵消向上推力,在淋水填料41上设置压固梁42进行加固。
压固梁42的端部可以连接在换热室40的内壁上,在压固梁42和换热室40的内底面之间界定出一个固定的空间,淋水填料41填充并受限在该空间内。
进一步地,换热室40的内底面设有托架43,淋水填料41搁置在托架43上。托架43可选用玻璃钢制成。
喷水装置80设置在换热室40的内顶部,并且与核电厂重要厂用水系统管路连接,以将冷却水引入换热室40。喷水装置80通常可包括配水管道、多个间隔分布在配水管道上的喷头;冷却水通过喷淋方式喷出,与空气充分接触进行热交换。
排风通道50连接在换热室40的上方并且与换热室40相连通,两者之间通过横梁分隔。排风通道50远离换热室40的排风口51与换热室40相错开,这样使得外部飞射物或颗粒物等不会从排风口51直接下落至换热室40内,防止小型飞射物对换热室40内的喷水装置80、淋水填料41等造成损伤。
在图2所示实施例中,排风通道50包括与换热室40相接的第一筒段51、与第一筒段51相错开的第二筒段52、倾斜延伸连接在第一筒段51和第二筒段52之间的过渡段53;第二筒段52的自由端开口形成排风口。
其中,第一筒段51和第二筒段52的相错开设置,使得两者的高度方向不在同一直线上,过渡段53的长度方向相对第一筒段51和第二筒段52的高度方向倾斜。
进一步地,在排风通道50的排风口处设置百叶窗54,起到进一步阻挡飞射物的作用。结合图2、3,百叶窗54具有多个相间隔平行设置的百叶片541,相邻的百叶片541之间的间隔形成百叶窗54的通过孔542。优选将百叶片541倾斜设置,使得百叶窗54内的通过孔542倾斜朝向第二筒段52远离过渡段53的内壁面。当有飞射物通过百叶窗54进入排风通道50时,飞射物 沿着通过孔542的延伸方向向第二筒段52远离过渡段53的内壁面落入,不会直接射入第一筒段51。
为去除空气中夹带的飘滴,降低空气的含水率,排风通道50的第一筒段51内设有除水器55,除水器55可以铺设在换热室40顶部(也处于排风通道50底部)的横梁上。进入排风通道50的空气经过除水器55的除水处理后再沿着过渡段53和第二筒段52排至外部大气中。
集水池70可与雨区室30紧邻连接,两者之间共用一个侧壁;该侧壁上开设有导水孔32,进入雨区室30内的冷却水通过该导水孔32进入集水池70内。集水池70的设置高度低于雨区室30的设置高度,雨区室30内的冷却水在重力下通过导水孔32进入集水池70内,无需任何动力设备。
当雨区室30的室内地面标高等同室外地面标高时,集水池70的室内地面标高低于室外地面标高设置,如为-2.0m等高度。
优选地,如图2中所示,雨区室30的内底面为斜面33,斜面33以朝下的一侧连接导水孔32,这样使得雨区室30的冷却水都能够导流至集水池70,不会在雨区室30内积聚。
另外,集水池70通过泵及管道等设备将热交换后的冷却水供给核电厂重要厂用水系统的换热器,实现冷却水的循环使用。
进一步地,本发明中,鼓风式通风冷却塔100还可包括设置在雨区室30和/或集水池70下方的储水池90。
储水池90位于地面(0m)以下,储水池90的深度可根据需要设置,例如储水池90的内底面标高可为-9.0m。储水池90内的最高液位维持在一个合适的高度,如-3.5m等等。
储水池90可以是一个或多个设置,位于整个鼓风式通风冷却塔100的下 部,储存水量可应对核电厂事故运行工况30天补充水量,大大降低鼓风式通风冷却塔100的占地面积。
储水池90可以通过泵及管道连接集水池70,为集水池70提供补充水,解决冷却水不足的问题及降低冷却水的盐浓度。
另外,在本发明的冷却塔排布系统中,两个或两排镜像设置的鼓风式通风冷却塔100之间设有分配间200,分配间200内设有配水管路210,配水管路210连接核电厂重要厂用水系统且分别与每一鼓风式通风冷却塔100的喷水装置80连接,从而核电厂重要厂用水系统的冷却水先流至分配间200内,再分配至每一鼓风式通风冷却塔100的喷水装置80。
每一鼓风式通风冷却塔100的进风通道10、风机室20、雨区室30、换热室40、排风通道50及集水池70等均由钢筋混凝土结构围合形成,这样使得风机室20等各室的地板、侧壁及顶板等以及进风通道10、排风通道50的整周侧壁均由钢筋混凝土制成。
在两个镜像设置的鼓风式通风冷却塔100之间,两个鼓风式通风冷却塔100以其各自的排风通道50相靠近,两个排风通道50的第二筒段52共用一个侧壁。分配间200位于两个排风通道50的下方,因此两个排风通道50的第二筒段52的底板可形成分配间200的顶板。
在图1所示冷却塔排布系统中,分配间200设置在两排鼓风式通风冷却塔100之间,配水管路210可通过一总水管连接至核电厂重要厂用水系统接入冷却水,接入的冷却水再通过配水管路210分配至需要启动的鼓风式通风冷却塔100内。每一鼓风式通风冷却塔100的喷水装置80的进水端均可设有控制阀门,通过控制阀门控制喷水装置80和配水管路210的通断。
本发明的冷却塔排布系统工作时,根据冷却水量及其换热需求,打开所 需对应数量的鼓风式通风冷却塔100的控制阀门,连通对应的喷水装置80和配水管路210,启动对应数量的鼓风式通风冷却塔100,以与空气热交换的方式对冷却水进行降温。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (21)

  1. 一种鼓风式通风冷却塔,其特征在于,包括风机室、设置在所述风机室的一侧壁上端并且开口朝下的进风通道、设置在所述风机室内的鼓风机、与所述风机室相邻设置并相连通的雨区室、设置在所述雨区室上方并与所述雨区室相连通的换热室、设置在所述换热室上方并与所述换热室相连通的排风通道、设置在所述换热室内顶部并用于引入冷却水的喷水装置、与所述雨区室相邻设置且相连通的集水池;
    所述排风通道远离所述换热室的排风口与所述换热室相错开;在所述鼓风机的驱动下,空气依次通过所述进风通道、风机室和雨区室后进入换热室,在所述换热室内与所述喷水装置喷出的冷却水进行热交换后,通过所述排风通道排出;热交换后的冷却水通过所述雨区室进入所述集水池。
  2. 根据权利要求1所述的鼓风式通风冷却塔,其特征在于,所述风机室的所述一侧壁上端设有进风口,所述进风口连通所述进风通道和风机室。
  3. 根据权利要求2所述的鼓风式通风冷却塔,其特征在于,所述进风通道的开口所在平面低于所述进风口下缘所在平面。
  4. 根据权利要求2所述的鼓风式通风冷却塔,其特征在于,所述进风口设有过滤网。
  5. 根据权利要求1所述的鼓风式通风冷却塔,其特征在于,所述风机室的另一侧壁上设有出风口,所述出风口连通所述风机室和雨区室;
    所述鼓风机以其出风端朝向并配合在所述出风口内。
  6. 根据权利要求5所述的鼓风式通风冷却塔,其特征在于,所述出风口为喇叭口型,其口径较大的一端朝向并连通所述雨区室。
  7. 根据权利要求5所述的鼓风式通风冷却塔,其特征在于,所述雨区室的一内壁面上设有导水檐,所述导水檐位于所述出风口的上方,防止冷却水贴壁流至所述出风口内。
  8. 根据权利要求5所述的鼓风式通风冷却塔,其特征在于,所述风机室的室内地面设有凸起且延伸至所述风机室的所述另一侧壁的定位平台,所述出风口位于所述定位平台上方;
    所述鼓风机的底部通过地脚螺栓连接在所述定位平台上;所述鼓风机的出风端外周通过螺栓与所述出风口的内周面连接。
  9. 根据权利要求1所述的鼓风式通风冷却塔,其特征在于,所述风机室的室内地面标高高于室外地面标高。
  10. 根据权利要求1所述的鼓风式通风冷却塔,其特征在于,所述换热室内设有淋水填料和压固梁;所述淋水填料填充在所述换热室的下端,所述压固梁设置在所述淋水填料上。
  11. 根据权利要求10所述的鼓风式通风冷却塔,其特征在于,所述压固梁的端部连接在所述换热室的内壁上。
  12. 根据权利要求10所述的鼓风式通风冷却塔,其特征在于,所述换热室的内底面设有托架,所述淋水填料搁置在所述托架上。
  13. 根据权利要求1所述的鼓风式通风冷却塔,其特征在于,所述喷水装置包括配水管道、多个间隔分布在所述配水管道上的喷头。
  14. 根据权利要求1所述的鼓风式通风冷却塔,其特征在于,所述集水池的设置高度低于所述雨区室的设置高度,两者之间通过导水孔相连通;所述雨区室内的冷却水在重力下通过所述导水孔进入所述集水池内。
  15. 根据权利要求14所述的鼓风式通风冷却塔,其特征在于,所述雨区 室的内底面为斜面,所述斜面以朝下的一侧连接所述导水孔。
  16. 根据权利要求1所述的鼓风式通风冷却塔,其特征在于,所述排风通道包括与所述换热室相接的第一筒段、与所述第一筒段相错开的第二筒段、倾斜延伸连接在所述第一筒段和第二筒段之间的过渡段;所述第二筒段的自由端开口形成所述排风口。
  17. 根据权利要求16所述的鼓风式通风冷却塔,其特征在于,所述排风口处设有百叶窗;所述百叶窗的百叶片倾斜设置,使得百叶窗内的通过孔倾斜朝向所述第二筒段远离所述过渡段的内壁面。
  18. 根据权利要求16所述的鼓风式通风冷却塔,其特征在于,所述第一筒段内设有除水器。
  19. 根据权利要求1-18任一项所述的鼓风式通风冷却塔,其特征在于,所述鼓风式通风冷却塔还包括设置在所述雨区室和/或集水池下方的储水池;
    所述储水池通过泵及管道连接所述集水池,为所述集水池补水。
  20. 一种冷却塔排布系统,其特征在于,包括至少两个权利要求1-19任一项所述的鼓风式通风冷却塔;每两个所述鼓风式通风冷却塔以进风通道相背并镜像设置。
  21. 根据权利要求20所述的冷却塔排布系统,其特征在于,两个所述鼓风式通风冷却塔之间设有分配间,所述分配间内设有分别与每一所述鼓风式通风冷却塔的喷水装置连接的配水管路。
PCT/CN2022/103130 2021-08-23 2022-06-30 鼓风式通风冷却塔及冷却塔排布系统 WO2023024702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110969500.6 2021-08-23
CN202110969500.6A CN113776351B (zh) 2021-08-23 2021-08-23 鼓风式通风冷却塔及冷却塔排布系统

Publications (1)

Publication Number Publication Date
WO2023024702A1 true WO2023024702A1 (zh) 2023-03-02

Family

ID=78838903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103130 WO2023024702A1 (zh) 2021-08-23 2022-06-30 鼓风式通风冷却塔及冷却塔排布系统

Country Status (2)

Country Link
CN (1) CN113776351B (zh)
WO (1) WO2023024702A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113776351B (zh) * 2021-08-23 2023-12-29 中广核工程有限公司 鼓风式通风冷却塔及冷却塔排布系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2260765A1 (zh) * 1974-02-08 1975-09-05 Hamon
CH673333A5 (en) * 1985-06-05 1990-02-28 Siegfried Kuebler Cooling device for air conditioning installation
CN101846460A (zh) * 2010-06-21 2010-09-29 中广核工程有限公司 一种核级冷却塔
CN102297610A (zh) * 2011-08-11 2011-12-28 中国核电工程有限公司 一种防飞射物砸落的长收口型鼓风式机械通风冷却塔
CN102607294A (zh) * 2011-09-16 2012-07-25 厦门嘉达环保建造工程有限公司 冷却塔消声结构
CN206876009U (zh) * 2017-05-17 2018-01-12 中化工程沧州冷却技术有限公司 一种扩容增效型逆流式冷却塔
CN208805066U (zh) * 2018-08-15 2019-04-30 浙江国祥冷却科技有限公司 一种分流保温式冷却塔
CN110132028A (zh) * 2018-02-08 2019-08-16 厦门嘉达环保科技有限公司 双曲线冷却塔防风防冰降噪系统
CN111164368A (zh) * 2017-08-31 2020-05-15 巴尔的摩空气盘管公司 水收集装置
CN213873888U (zh) * 2020-09-26 2021-08-03 浙江国祥冷却科技有限公司 一种便捷替换填料的冷却塔
CN113776351A (zh) * 2021-08-23 2021-12-10 中广核工程有限公司 鼓风式通风冷却塔及冷却塔排布系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655814B2 (ja) * 1994-08-24 1997-09-24 神鋼パンテツク株式会社 冷却塔のルーバーパネル
JP2008292055A (ja) * 2007-05-24 2008-12-04 Nippon Spindle Mfg Co Ltd 冷却塔
CN202973948U (zh) * 2012-10-30 2013-06-05 中国核电工程有限公司 一种新型长收口型鼓风式机械通风冷却塔
CN103822502B (zh) * 2014-02-26 2015-07-29 北京源深节能技术有限责任公司 一种防白烟冷却塔
CN204649005U (zh) * 2015-05-14 2015-09-16 浙江奥帅制冷有限公司 高效冷却塔
CN106766992A (zh) * 2016-12-31 2017-05-31 广州地铁设计研究院有限公司 一种用于地铁坑道的混凝土鼓风开式冷却系统
KR102128205B1 (ko) * 2019-10-31 2020-06-29 (주)와이엠테크 냉각탑 백연 저감 방법 및 백연저감용 댐퍼형 나노필터와 응축기 복합장치를 장착한 냉각탑
CN111366008A (zh) * 2020-03-13 2020-07-03 中国能源建设集团广东省电力设计研究院有限公司 一种组合式单面进风冷却塔

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2260765A1 (zh) * 1974-02-08 1975-09-05 Hamon
CH673333A5 (en) * 1985-06-05 1990-02-28 Siegfried Kuebler Cooling device for air conditioning installation
CN101846460A (zh) * 2010-06-21 2010-09-29 中广核工程有限公司 一种核级冷却塔
CN102297610A (zh) * 2011-08-11 2011-12-28 中国核电工程有限公司 一种防飞射物砸落的长收口型鼓风式机械通风冷却塔
CN102607294A (zh) * 2011-09-16 2012-07-25 厦门嘉达环保建造工程有限公司 冷却塔消声结构
CN206876009U (zh) * 2017-05-17 2018-01-12 中化工程沧州冷却技术有限公司 一种扩容增效型逆流式冷却塔
CN111164368A (zh) * 2017-08-31 2020-05-15 巴尔的摩空气盘管公司 水收集装置
CN110132028A (zh) * 2018-02-08 2019-08-16 厦门嘉达环保科技有限公司 双曲线冷却塔防风防冰降噪系统
CN208805066U (zh) * 2018-08-15 2019-04-30 浙江国祥冷却科技有限公司 一种分流保温式冷却塔
CN213873888U (zh) * 2020-09-26 2021-08-03 浙江国祥冷却科技有限公司 一种便捷替换填料的冷却塔
CN113776351A (zh) * 2021-08-23 2021-12-10 中广核工程有限公司 鼓风式通风冷却塔及冷却塔排布系统

Also Published As

Publication number Publication date
CN113776351A (zh) 2021-12-10
CN113776351B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
KR100931272B1 (ko) 모듈형 냉각탑
CN204596431U (zh) 非能动安全壳热量导出系统和具有它的压水反应堆
CN102216721B (zh) 组合冷却系统
CN114001422B (zh) 无源屋顶排气系统及其方法
RU2515324C2 (ru) Конденсатор пара с воздушным охлаждением и естественной циркуляцией, а также способ
WO2023024702A1 (zh) 鼓风式通风冷却塔及冷却塔排布系统
RU2271585C1 (ru) Устройство для воздушного охлаждения системы пассивного отвода тепла от ядерного реактора
KR100834902B1 (ko) 백연감쇄 압입통풍식냉각탑
CN100412490C (zh) 空冷凉水复合式冷却塔
CN109937717B (zh) 大直径立筒仓渗流通风控温系统
US4129627A (en) Tornado protected cooling tower
CN108458602B (zh) 一种超低温自然通风冷却塔出塔水温降低方法
CN1136839A (zh) 具有防冻装置的湿气空气冷却塔
CN114992754A (zh) 一种用于楼房建筑的通风装置及其使用方法
CN102297610B (zh) 一种防飞射物砸落的长收口型鼓风式机械通风冷却塔
CN106017129A (zh) 适用于地下单向气流空间内的冷却塔
RU173350U1 (ru) Градирня сухая для жаркого климата
KR100769317B1 (ko) 벽체를 케이싱부로 이용하는 냉각탑
CN209877271U (zh) 核岛安全壳厂房施工期间不间断临时通风除尘系统
CN211601626U (zh) 一种自然通风冷却塔的防冻装置
CN110186292A (zh) 一种组合式阵列冷却塔及冷却系统
CN211601627U (zh) 一种自然通风冷却塔的防冻系统
CN214792644U (zh) 两台汽轮机发电机共用双曲线型冷却塔的新型防冻结构
CN205919700U (zh) 适用于地下单向气流空间内的冷却塔
RU61020U1 (ru) Секционная градирня

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE