WO2023024678A1 - 一种高强度低断丝率的帘线钢、轧制方法及其用途 - Google Patents

一种高强度低断丝率的帘线钢、轧制方法及其用途 Download PDF

Info

Publication number
WO2023024678A1
WO2023024678A1 PCT/CN2022/100459 CN2022100459W WO2023024678A1 WO 2023024678 A1 WO2023024678 A1 WO 2023024678A1 CN 2022100459 W CN2022100459 W CN 2022100459W WO 2023024678 A1 WO2023024678 A1 WO 2023024678A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
rolling
cord steel
cord
temperature
Prior art date
Application number
PCT/CN2022/100459
Other languages
English (en)
French (fr)
Inventor
张帆
任安超
郭磊
叶途明
Original Assignee
武汉钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉钢铁有限公司 filed Critical 武汉钢铁有限公司
Publication of WO2023024678A1 publication Critical patent/WO2023024678A1/zh
Priority to US18/463,281 priority Critical patent/US20230416882A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the disclosure belongs to the field of metal materials, and in particular relates to a cord steel with high strength and low broken wire rate, a rolling method and its application.
  • Cord steel is the base material for making steel cords, known as "the jewel in the crown of wire products", and the slight defects in cord steel will be exposed during deep processing, resulting in broken wires or lowered cord steel. steel properties.
  • the current cord steel meets the demand for strength improvement by increasing the carbon content.
  • the cord steel can be divided into 70C (common strength), 80C (high strength), and 90C (ultra-high strength).
  • the composition system is based on carbon Steel-based, but simply increasing the carbon content in order to achieve strength improvement, on the one hand, will make iron and steel enterprises face problems such as difficulty in uniform control of high-carbon steel and high production costs. Measures such as prolonging heating time make it difficult to guarantee the stability of high carbon steel wire rod quality.
  • the high-carbon cord steel produced by the complex process will not only increase the purchase cost of the user, but also reduce the drawability of the wire rod and affect the thermal conductivity of the final product. It is a big problem to realize the improvement of the strength and toughness of cord steel.
  • the disclosure provides a cord steel with high strength and low broken wire rate, a rolling method and its application, and solves the technical problem that it is difficult to improve the strength and toughness of the cord steel without increasing the carbon content.
  • a cord steel with high strength and low broken wire rate is provided.
  • the chemical composition of the cord steel may include: C: 0.80%-0.85%, Mn: 0.46 % ⁇ 0.59%, Nb: 0.006% ⁇ 0.012%, V: 0.006% ⁇ 0.012%, Si: 0.15% ⁇ 0.25%, P ⁇ 0.01%, S ⁇ 0.01%, B: 0.0005% ⁇ 0.0009%, Als ⁇ 0.0008 %, Ti ⁇ 0.0005%, the rest is Fe and unavoidable impurities;
  • the chemical composition of the cord steel can also include N, wherein the mass fractions of Nb, V and N satisfy the following relationship: ([Nb]+[V ])/[N] can be 3-4.5, wherein, [Nb] represents the mass fraction of niobium element, [V] represents the mass fraction of vanadium element, and [N] represents the mass fraction of nitrogen element.
  • a rolling method of cord steel comprising: obtaining a steel billet of the cord steel; sequentially performing pre-rolling heating, hot rolling and post-rolling of the steel billet cooling to obtain a cord steel wire rod;
  • the pre-rolling heating may include a preheating section, a first heating section, a second heating section and a soaking section, and the hot rolling may adopt high-temperature austenite crystallization controlled rolling, so
  • the above hot rolling may sequentially include rough rolling, middle rolling, pre-finish rolling, finish rolling and sizing reduction.
  • a tire frame is provided, and the tire frame is prepared from the cord steel, or the cord steel obtained by the method.
  • Fig. 1 shows an exemplary flowchart of a rolling method of high-strength and low-broken wire cord steel according to one or more embodiments of the present disclosure.
  • the present disclosure provides a cord steel with high strength and low broken wire rate.
  • the chemical composition of the cord steel may include: C: 0.80%-0.85%, Mn: 0.46%-0.59%, Nb : 0.006% ⁇ 0.012%, V: 0.006% ⁇ 0.012%, Si: 0.15% ⁇ 0.25%, P ⁇ 0.01%, S ⁇ 0.01%, B: 0.0005% ⁇ 0.0009%, Als ⁇ 0.0008%, Ti ⁇ 0.0005% , and the rest are Fe and unavoidable impurities.
  • the chemical composition of the cord steel may also include N, wherein the mass fractions of Nb, V and N satisfy the following relationship:
  • [Nb]+[V])/[N] can be 3 to 4.5, where [Nb] represents the mass fraction of Nb element, [V] represents the mass fraction of V element, and [N] represents the mass fraction of N element .
  • C is the most important constituent element in steel, and has the most significant influence on the strength and plasticity of cord steel wire rod; the reason why the mass fraction of C can be limited to 0.80-0.85% is to limit the final product
  • the stability of thermal conductivity and drawability, and the strength and plasticity of the wire rod can meet the standards; when the range of the mass fraction is too large, it means that the carbon content is too much, which can lead to the continuous improvement of the strength of the wire rod, but The plasticity of the wire rod decreases sharply, which can also lead to greater difficulty in production control and poorer product quality stability; when the value range of the mass fraction is too small, it means that the carbon content is insufficient, which can lead to a continuous decrease in the strength of the wire rod.
  • the sharp increase in the plasticity of the wire rod can also lead to greater difficulty in production control and poorer stability of product quality.
  • Si is an important strengthening element in steel, which can significantly increase the elastic limit of cord steel after drawing, thereby reducing the broken wire rate; the positive effect of limiting the mass fraction of Si to 0.15% to 0.25% is that it can effectively reduce heat treatment.
  • the Si element can also slow down the breakage of cementite in the drawing process, which can improve the comprehensive mechanical properties of the cord steel; when the value range of the mass fraction is too large, it means that the Si content is too high, It can increase the brittleness of ferrite, which can affect the strength and broken wire rate of the final cord steel product; when the value range of the mass fraction is too small, it means that the Si content is too low, which can lead to insufficient elastic limit of the cord steel product. To a certain extent, it can cause cord steel products to be easily broken.
  • Mn can be combined with sulfur to form MnS, which can reduce the harm of sulfur, refine pearlite, and improve the strength of cord steel; the positive effect of limiting the mass fraction of Mn to 0.46% to 0.59% is to prevent Mn from
  • the segregation in the cord steel can make the tissue distribution uniform, and then the performance of the cord steel can be improved; when the value range of the mass fraction is too large, the Mn can be segregated, which can cause uneven tissue distribution, and then It can lead to the decline of the performance of the cord steel product, and an excessively high Mn content can also increase the production cost; when the value range of the mass fraction is too small, it means that the Mn content is small, and the pearlite cannot be fully refined, making the cord steel
  • the uniformity of the organization is insufficient, which to a certain extent makes the strength of the steel wire insufficient.
  • P and S are harmful elements. Among them, phosphorus is prone to cold embrittlement, and sulfur is prone to hot embrittlement, which can lead to a decrease in the strength of the cord steel, thereby affecting the mechanical properties of the cord steel.
  • the mass fractions of P and S can be controlled to be less than The positive effect of 0.01% is that it can prevent P and S from deteriorating the mechanical properties of the cord steel in the hot rolling stage.
  • B can inhibit the enrichment of P at the grain boundary, and can improve the shape of inclusions, so that the inclusions can be refined and distributed evenly, and then the aggregation of inclusions can be prevented, so that the cold working performance of the wire rod can be improved; the limit of B
  • the positive effect of the mass fraction being 0.0005% to 0.0009% is that it can prevent excessive boron from weakening the grain boundary binding force, avoiding the aggregation of inclusions and affecting the uniform distribution of the structure, thereby deteriorating the mechanical properties of the cord steel wire rod.
  • Nb can prevent the growth of austenite grains, and to a certain extent, it can also refine and reheat austenite grains, which can improve the uniformity of structure and properties, and the segregated niobium and carbon at the grain boundaries can form a relatively stable Organization, which can hinder the diffusion of carbon along the grain boundary, thereby reducing the decarburization sensitivity of cord steel with medium and high carbon content; the positive effect of limiting the mass fraction of Nb to 0.006% to 0.012% is to prevent excessive Nb It degrades the pearlite structure and accelerates the cementite spheroidization, which is not conducive to the improvement of the strength of the steel wire.
  • V can reduce the precipitation of pro-eutectoid grain boundary cementite, and can also inhibit the growth of austenite grains to form precipitation strengthening, which can improve the strong plasticity of wire rods and steel wires;
  • the mass fraction of V can be 0.006-0.012% positive
  • an appropriate amount of V can refine the interlamellar spacing of pearlite; when the value range of the mass fraction is too large, large V-N particles will be formed, which can coarsen the interlamellar spacing, which in turn can lead to steel wire drawing or Torsion fracture.
  • the positive effect of the mass fraction of Als ⁇ 0.0008% is that the content of acid-soluble aluminum can not be too large, and the content of acid-insoluble aluminum in the steel can be increased, thereby improving the toughness of the steel.
  • the positive effect of the mass fraction of Ti ⁇ 0.0005% is that Ti can enhance the structure of the cord steel, and the compound of Ti can also enhance the hardness of the cord steel, which is not conducive to the toughness of the cord steel, so the content of Ti is controlled at 0.0005 % or less, cord steel with better toughness can be obtained.
  • the sum of the mass fractions of Nb and V can be 3 to 4.5 times the mass fraction of N.
  • the positive effect is that the effect of Nb and V microalloying elements in steel is inseparable from the N element combined with it, while N in traditional cord steel Elements need to be strictly limited as harmful elements.
  • the composite microalloying effect of Nb and V can be fully exerted, and the deterioration of the performance of cord steel by N elements can be avoided; when the value of this range is too large, it means Excessive N content, excessive nitrogen content can affect the composite microalloying process of Nb and V, and can also lead to the deterioration of the performance of the cord steel;
  • the role of V microalloying elements is inseparable from the N element combined with it. When the N content is too small, Nb and V elements can not start the role of microalloying elements, which can affect the stability of the cord steel and can make the cord steel performance degradation.
  • the above-mentioned components can be coordinated with each other, and by controlling the ratio of the sum of the mass fractions of Nb and V to the mass fraction of N, high-strength cord steel monofilament products with a low rate of strand breakage can be obtained .
  • the metallographic structure of the cord steel includes flaky pearlite, and the flaky pearlite includes sorbite and pearlite.
  • the metallographic structure of the cord steel is controlled to include flaky pearlite, and then the components of the flaky pearlite are controlled to include sorbite and pearlite. Since both sorbite and pearlite have good Therefore, it can comprehensively improve the overall mechanical properties of the cord steel.
  • the interlamellar spacing of the flaky pearlite may be 160 nm ⁇ 170 nm.
  • the lamellar spacing of flaky pearlite can be 160nm to 170nm. Uniform distribution can improve the strength and toughness of the cord steel. When the value range of the spacing is too large, the interlamellar spacing of flaky pearlite is too large, which can affect the strength of the longitudinal cord steel, thereby affecting the cord steel to a certain extent. Toughness of the steel; when the value range of the interval is too small, the interlamellar interval of flaky pearlite is too small, which can affect the strength of the cord steel in the transverse direction, thereby affecting the hardness of the cord steel to a certain extent.
  • the sorbite rate of the flaky pearlite may be ⁇ 98%.
  • the positive effect that the sorbite rate can be ⁇ 98% is because the sorbite has good mechanical properties, which can be higher than pearlite in hardness, strength and impact toughness, so the high
  • the sorbite content can improve the overall mechanical properties of the cord steel; when the value range of the sorbite rate is too small, it means that the sorbite content is too small, which will make the mechanical properties of the cord steel too low to a certain extent.
  • the content of the sorbite may be 80%-95%, and the content of the pearlite may be 5%-20%.
  • the content of sorbite can be 80% to 95%.
  • the positive effect is that within the range of the volume fraction, the content of sorbite can be sufficient. Since sorbite has good mechanical properties, it is Hardness, strength and impact toughness can be higher than pearlite, so high sorbite content can improve the overall mechanical properties of cord steel.
  • the positive effect that the content of pearlite can be 5% to 20% is that within the range of this volume fraction, the content of pearlite can be stabilized, avoiding too little sorbite content caused by too much pearlite content, and then to a certain extent Improve the overall mechanical properties of the cord steel.
  • the present disclosure also provides a method for rolling cord steel with high strength and low wire breakage rate, the method comprising:
  • the steel billet can be heated before rolling, hot rolled and cooled after rolling in order to obtain a cord steel wire rod; the heating before rolling includes a preheating section, a first heating section, a second heating section and a soaking section ,
  • the hot rolling may sequentially include rough rolling, intermediate rolling, pre-finish rolling, finish rolling and sizing reduction.
  • the temperature of the preheating section may be ⁇ 400°C, and the preheating time of the preheating section may be ⁇ 5min;
  • the temperature of the first heating section may be 400°C-800°C, and the heating time of the first heating section may be ⁇ 10min;
  • the temperature of the second heating section may be 800°C-1000°C, and the heating time of the second heating section may be 60min-100min;
  • the temperature of the soaking section may be 1000° C. to 1040° C., and the soaking time of the soaking section may be 20 minutes to 60 minutes.
  • the positive effect of controlling the temperature of the preheating section to ⁇ 400°C is that within this temperature range, the steel before rolling can be fully heated, and the austenite inside the steel can be gradually transformed ;
  • the temperature range is too large, although the high temperature can increase the transformation speed of austenite, the high temperature can also cause the steel to be overheated, which will affect the metallographic structure to a certain extent during the rolling process. .
  • the positive effect of the warm-up time being ⁇ 5min is that it can provide sufficient warm-up time to transform austenite to the target state; when the value range of this time is too small, too short warm-up time can cause austenite Insufficient bulk transformation time can make the metallographic structure of the rolled steel uneven, which will affect the strength and toughness of the steel to a certain extent.
  • the temperature of the first heating section can be 400 °C ⁇ 800 °C.
  • the positive effect is that the steel heated by the preheating section can be further heated, so that the austenite of the steel in the first heating section can start to transform rapidly; when this temperature When the value range is too large, the high temperature can make the austenite transformation speed too fast, which will affect the uniformity of the metallographic structure in the first heating process to a certain extent; when the temperature range is too small, the low The temperature cannot transform austenite to the target state.
  • the positive effect that the heating time of the first heating section can be ⁇ 10min is to make the heating time of the first heating section plus the inner steel sufficient, so that the austenite can be fully transformed within the first heating time; when the time range Too small, too short first heating time can make the austenite transformation time insufficient, making the metallographic structure of the steel after rolling uneven, which will affect the strength and toughness of the steel to a certain extent.
  • the temperature of the second heating section can be 800°C to 1000°C.
  • the positive effect is to enable the steel after the first heating to undergo further austenite transformation in the second heating section; High temperature can lead to too fast transformation of austenite, which will affect the uniformity of metallographic structure in the second heating process to a certain extent; when the temperature range is too small, too low temperature can make austenite unable to transition to the target state.
  • the heating time of the second heating section can be 60min to 100min.
  • the positive effect is that the heating time of the second heating section plus the inner steel can be sufficient, so that the austenite can be fully transformed within the second heating time; when the value of this time is If the range is too small, too short second heating time can lead to insufficient austenite transformation time, making the metallographic structure of the steel after rolling uneven, which will definitely affect the strength and toughness of the steel to a certain extent.
  • the temperature of the soaking section can be 1000 °C ⁇ 1040 °C.
  • the positive effect is that it can maintain the temperature required for austenite transformation; when the temperature range is too large, although the high temperature can make the austenite transformation complete, However, too much energy consumption will affect the energy consumption of the process to a certain extent; when the temperature range is too small, it will cause the austenite to fail to start transformation, resulting in uneven metallographic structure of the steel, which will affect the strength of the steel to a certain extent and toughness;
  • the time of the soaking section can be 20min to 60min.
  • the positive effect is that the steel after the second heating can undergo a complete transformation of austenite in the soaking section; when the time range is too large, too long time can be The process time is too long; when the time range is too small, the austenite in the steel cannot be completely transformed in a short time, which will affect the uniformity of the metallographic structure of the steel to a certain extent.
  • the inlet temperature of the finishing rolling can be 950°C-990°C; the inlet temperature of the reducing and sizing can be 940°C-980°C, and the spinning temperature of the reducing and sizing can It is 935°C to 965°C.
  • the inlet temperature of finish rolling can be 950°C-990°C.
  • the positive effect is that controlling the temperature of finish rolling can make the metallographic structure of steel evenly distributed, and steel with target strength and toughness can be obtained;
  • the value range of this temperature is too large, too high temperature can increase the energy consumption of the process;
  • the value range of this temperature is too small, too low temperature can lead to uneven distribution of metallographic structure during steel rolling, It can affect the uniformity of the metallographic structure, and then affect the strength and toughness of the steel to a certain extent.
  • the positive effect of the inlet temperature of reducing and sizing can be 940°C ⁇ 980°C is that the temperature of reducing and sizing can be controlled, which can make the metallographic structure of steel after reducing and sizing evenly distributed, and steel with target strength and toughness can be obtained; If the value range of this temperature is too large, the high temperature can increase the energy consumption of the process. The degree will affect the uniformity of the metallographic structure, which in turn can affect the strength and toughness of the steel.
  • the spinning temperature of reducing and sizing can be 935°C-965°C.
  • the positive effect is that it can stabilize the metallographic structure in the formed cord steel, thereby stabilizing the strength and toughness of the cord steel; when the temperature ranges Too high, too high temperature can increase the energy consumption of the process. When the temperature range is too small, too low temperature can make the distribution of metallographic structure uneven during steel rolling, which will affect the metallographic structure to a certain extent. The uniformity of the structure affects the strength and toughness of the steel.
  • the post-rolling cooling can be performed using a Stelmore air-cooled line;
  • the Stelmore air-cooled line can include an entrance group of roller tables, n groups of roller tables and n+6 A typhoon, wherein, n is a positive integer.
  • the positive effect of using the Stelmore air-cooled line for cooling after rolling is that it can strengthen the control of the cooling rate in the cooling stage, and can prevent the metallographic structure of the steel from being affected by the cooling rate being too fast or too slow Uniformity.
  • the speed of the roller table of the entrance group can be 15m/min ⁇ 20m/min. If the value range is too large, too fast inlet speed can cause the steel to enter the air cooling speed too fast, which will affect the metallographic structure of the steel to a certain extent. When the value range is too small, the too low speed will The rolled steel cannot be put into the air-cooling program in time, resulting in the steel being cooled at the interface of the device, which affects the control of the cooling degree of the steel to a certain extent.
  • the speed of the first group of rollers can be 30m/min to 40m/min.
  • the positive effect is that it can control the moving speed of the steel when it starts to cool, so that the running speed of the steel when it starts to cool can match the cooling speed; when the value of the speed If the range is too large, too fast running speed may lead to insufficient cooling time for the steel, which will affect the cooling effect of the steel to a certain extent. Even, it can affect the running speed of the subsequent steel, and affect the cooling degree of the steel to a certain extent.
  • the speed of the nth group of roller tables can be increased by 5% to 7% compared with the speed of the n-1th group of roller tables. Time, so as to realize the gradient control of the cooling rate, to a certain extent, the steel can be cooled sufficiently.
  • the aperture ratios of the first fan and the second fan may be 75% to 95%, respectively, when the temperature at the lap joint of the wire rod at the inlet of the third fan is When the temperature is 660° C. to 710° C., the opening ratios of the third fan to the sixth fan can be 45% to 55% respectively, and the rest are closed.
  • the opening degree of the first and second fans can be 75% to 95%.
  • the positive effect is that the cooling degree of the steel can be controlled when the steel enters the device, and the steel can reach the target cooling degree; when the The value range of the opening degree is too large, and the excessively high opening degree can make the steel cooling speed too fast, which will affect the control of the steel cooling speed to a certain extent.
  • the value range of the opening degree is too small, the too small opening degree It can reduce the cooling degree of steel, which will affect the cooling effect of steel to a certain extent.
  • the opening degree of the third fan to the sixth fan can be 45% to 55%. If the range is too large, a too high opening can make the cooling speed of the steel too fast, which will affect the control of the cooling speed of the steel to a certain extent. When the value range of the opening is too small, a too small opening can reduce the cooling of the steel. To a certain extent, it will affect the cooling effect of steel.
  • the length and width of the cross-section of the billet may be 160mm-200mm and 160mm-200mm, respectively.
  • the length and width of the steel billet can be 160mm-200mm and 160mm-200mm respectively, the positive effect is that the obtained steel billet can be evenly distributed, which can facilitate the smooth progress of the subsequent rolling process; when the length and width If the value range is too large, it does not meet the maximum standard of machine rolling. When the value range of the length and width is too small, due to the large gap during the rolling process, the stability of the billet in the rolling stage will be affected to a certain extent.
  • the tensile strength of the hot-rolled wire rod and the tensile strength of the final cord steel monofilament can be adjusted by adjusting the process parameters in the pre-rolling heating, hot-rolling and post-rolling cooling processes
  • the size of the strength can realize fine-tuning of the strand breakage rate, so according to the use requirements of different products, the process of heating before rolling, hot rolling and cooling after rolling can be controlled, and cord steel products that meet the needs can be obtained.
  • the multiple means that the sum of the mass fractions of Nb and V is a multiple of the mass fraction of N.
  • Table 2 The process parameter table of the pre-rolling heating of embodiment and comparative example
  • the tensile strength of the hot-rolled wire rod refers to the tensile strength of the wire rod obtained after hot rolling. The higher the tensile strength, the higher the toughness of the hot-rolled cord steel wire rod.
  • the tensile strength of the final cord steel monofilament refers to the tensile strength of the finally obtained cord steel monofilament. The higher the tensile strength, the better the toughness of the cord steel product.
  • the strand breakage rate of the final cord steel monofilament refers to the strength and toughness of the final cord steel monofilament. The lower the strand breakage rate, the better the strength and toughness of the cord steel product.
  • the tensile strength of the final cord steel monofilament of the hot-rolled wire rod can be controlled under the condition that the chemical composition of the cord steel is similar It can also effectively control the strand breakage rate.
  • the C element in the cord steel can be controlled to maintain a certain content range, and then the austenite grain growth can be prevented by adding Nb, and the reheated austenite grain can be refined , which will reduce the decarburization sensitivity of medium and high carbon steel to a certain extent.
  • V the precipitation of pro-eutectoid grain boundary cementite can be reduced, and at the same time, the growth of austenite grains can be inhibited to form precipitation strengthening, which in turn can Improve the strong plasticity of cord steel wire rod and steel wire products, and by controlling the proportional relationship between the mass fractions of Nb, V and N, the content of harmful elements N can also be controlled.
  • the effect of alloying elements can stabilize the composition of the cord steel, so it can improve the strength and toughness of the cord steel without increasing the carbon content, and can also reduce the broken wire rate of the cord steel, which can reduce the steel industry
  • the production cost can also meet the requirements of downstream users for improving the strength and plasticity of steel wires. It can have a good market application prospect and can be expected to completely replace the existing traditional cord steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本公开内容公开了一种高强度低断丝率的帘线钢、轧制方法及其用途,属于金属材料领域,所述帘线钢的化学成分可以包括Nb、V和N,([Nb]+[V])/[N]为3~4.5,其中,[Nb]表示铌元素的质量分数,[V]表示钒元素的质量分数,[N]表示氮元素的质量分数;所述方法包括:获取帘线钢的钢坯;将钢坯依次进行轧前加热、热轧和轧后冷却,得到帘线钢盘条;所述应用为将帘线钢应用于轮胎骨架材料中;加入Nb、V和N,再控制Nb、V和N之间的关系,可以提高帘线钢的强韧性能。

Description

一种高强度低断丝率的帘线钢、轧制方法及其用途
相关申请的交叉引用
本申请要求于2021年8月26日提交、申请号为202110992564.8且名称为“一种高强度低断丝率的帘线钢、轧制方法及其用途”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开内容属于金属材料领域,具体涉及一种高强度低断丝率的帘线钢、轧制方法及其用途。
背景技术
帘线钢是制造钢帘线的母材,被誉为“线材制品中皇冠上的明珠”,而帘线钢细微的缺陷,在深加工过程中将会暴露,从而造成帘线钢断丝或降低钢性能。
现阶段的帘线钢通过增加碳含量来满足强度提升的需求,按照强度等级帘线钢可分为70C(普通强度)、80C(高强度)、90C(超高强度),成分体系以碳素钢为主,但是为了实现强度提升而单纯的增加碳含量,一方面会使得钢铁企业面临高碳钢均匀化控制困难、生产成本高等问题,同时需要采用“二火成材”、提高加热炉温度、延长加热时间等措施,使得高碳钢盘条质量的稳定性难以保障。另一方面,复杂工艺所生产出的高碳帘线钢不仅会增加用户采购成本,还会降低盘条的可拉拔性能并影响最终成品的导热性能,因此在不增加碳含量的条件下如何实现帘线钢的强韧性能提升是一大难题。
发明内容
本公开内容提供了一种高强度低断丝率的帘线钢、轧制方法及其用途,解决了在不增加碳含量的条件下难以提升帘线钢的强韧性能的技术问题。
在本公开内容的一个方面,提供了一种高强度低断丝率的帘线钢,所述帘线钢的化学成分以质量分数计,可以包括:C:0.80%~0.85%,Mn: 0.46%~0.59%,Nb:0.006%~0.012%,V:0.006%~0.012%,Si:0.15%~0.25%,P≤0.01%,S≤0.01%,B:0.0005%~0.0009%,Als≤0.0008%,Ti≤0.0005%,其余为Fe及不可避免的杂质;所述帘线钢的化学成分还可以包括N,其中,Nb、V和N的质量分数满足如下关系:([Nb]+[V])/[N]可以为3~4.5,其中,[Nb]表示铌元素的质量分数,[V]表示钒元素的质量分数,[N]表示氮元素的质量分数。
在本公开内容的另一方面,提供了一种帘线钢的轧制方法,所述方法包括:获取所述帘线钢的钢坯;将所述钢坯依次进行轧前加热、热轧和轧后冷却,得到帘线钢盘条;所述轧前加热可以包括预热段、第一加热段、第二加热段和均热段,所述热轧可以采用高温奥氏体结晶控制轧制,所述热轧可以依次包括粗轧、中轧、预精轧、精轧和减定径。
在本公开内容的再一方面,提供了一种轮胎骨架,所述轮胎骨架由所述帘线钢制备得到,或由所述方法得到的帘线钢制备得到。
附图说明
图1示出了依据本公开内容的一个或多个实施方式的一种高强度低断丝率的帘线钢的轧制方法的示例性流程图。
具体实施方式
为使本公开内容的实施例的目的、技术方案和优点更加清楚,下面将结合本公开内容的实施例中的附图,对本公开内容中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开内容的一部分实施例,而不是全部的实施例。基于本公开内容中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开内容保护的范围。
本公开内容提供一种高强度低断丝率的帘线钢,所述帘线钢的化学成分以质量分数计,可以包括:C:0.80%~0.85%,Mn:0.46%~0.59%,Nb:0.006%~0.012%,V:0.006%~0.012%,Si:0.15%~0.25%,P≤0.01%,S≤0.01%,B:0.0005%~0.0009%,Als≤0.0008%,Ti≤0.0005%,其余为Fe及不可避免的杂质。所述帘线钢的化学成分还可以还包括N,其中,Nb、V和N的质量分数满足如下关系:
([Nb]+[V])/[N]可以为3~4.5,其中,[Nb]表示Nb元素的质量分数,[V]表示V元素的质量分数,[N]表示N元素的质量分数。
本公开内容的实施方式中,C是钢中最重要的组成元素,对帘线钢盘条的强度和塑性影响最为显著;限定C的质量分数可以为0.80~0.85%的原因是能够限定最终成品的导热性能和可拉拔性能的稳定,以及可以使盘条的强度和塑性符合标准;当该质量分数取值范围过大时,说明碳含量过多,能够导致盘条的强度不断提高,但是盘条的塑性急剧降低,还能够导致生产控制的难度变大,以及产品质量的稳定性变差;当该质量分数取值范围过小时,说明碳含量不足,能够导致盘条的强度不断降低而盘条的塑性急剧提高,还能够导致生产的控制难度变大,以及产品质量的稳定性变差。
Si是钢中重要的强化元素,能够显著提高拉拔后帘线钢的弹性极限,从而可以降低断丝率;限定Si的质量分数可以为0.15%~0.25%的积极效果是可以有效减少热处理导致的帘线钢强度降低的程度,同时,Si元素还能够减缓拉拔过程渗碳体的破碎,可以提升帘线钢综合力学性能;当该质量分数取值范围过大,说明Si含量过高,能够增大铁素体脆性,可以影响最终帘线钢产品的强度和断丝率;当该质量分数取值范围过小,说明Si含量过低,可以导致帘线钢产品的弹性极限不足,一定程度上能够导致帘线钢产品易断裂。
Mn能与硫结合生成MnS,可以减轻硫的危害,还可以细化珠光体,还可以提高帘线钢的强度;限定Mn的质量分数可以为0.46%~0.59%的积极效果是能够防止Mn在帘线钢中偏聚,从而能够使组织分布均匀,进而能够提高帘线钢的性能;当该质量分数取值范围过大时,可以使Mn发生偏聚,从而可以引起组织分布不均匀,进而能够导致帘线钢产品的性能下降,并且过高的Mn含量还可以增加生产成本;当该质量分数的取值范围过小时,说明Mn含量少,无法充分细化珠光体,使得帘线钢的组织均匀程度不足,从而一定程度上使得钢丝强度不足。
P和S属于有害元素,其中磷容易产生冷脆,而硫容易产生热脆,可以导致帘线钢的强度降低,从而可以影响帘线钢的力学性能,控制P和S的质量分数可以均小于0.01%的积极效果是能够防止P和S恶化热轧阶段的帘线钢的力学性能。
B能够抑制P在晶界的富集,并可以改善夹杂物的形态,从而可以使夹杂物能够细化而分布均匀,进而可以防止夹杂物聚集,从而可以提高盘条的冷加工性能;限定B的质量分数可以为0.0005%~0.0009%的积极效果是能够防止过量的硼减弱晶界结合力,避免使夹杂物聚集成团,影响组织分布的均匀,从而能够恶化帘线钢盘条的力学性能。
Nb可以阻止奥氏体晶粒长大,在一定程度上还可以细化再加热奥氏体晶粒,能够提高组织与性能的均匀性,并且晶界偏聚的铌与碳能够形成较为稳定的组织,该组织可以阻碍碳沿晶界的扩散,从而能够降低中高碳含量的帘线钢的脱碳敏感性;限定Nb的质量分数可以为0.006%~0.012%的积极效果是可以防止过量的Nb使珠光体组织退化,加速渗碳体球化,不利于钢丝强度提升。
V能够减轻先共析晶界渗碳体的析出,还能够抑制奥氏体晶粒长大,形成析出强化,可以提升盘条与钢丝强塑性;V的质量分数可以为0.006~0.012%的积极效果是适量的V能够细化珠光体片层间距;当该质量分数取值范围过大时,将形成大颗粒的V~N颗粒,可以使片层间距粗化,进而能够导致钢丝拉拔或扭转断裂。
Als的质量分数≤0.0008%的积极作用是可以控制酸溶铝的含量不能够过大,可以提高钢材内酸不溶铝的含量,从而能够提高钢材的韧性。
Ti的质量分数≤0.0005%的积极作用是由于Ti能够增强帘线钢的结构,同时Ti的化合物还能够增强帘线钢的硬度,而不利于帘线钢的韧性,因此控制Ti的含量在0.0005%以下,可以得到韧性较好的帘线钢。
Nb和V的质量分数之和可以是N的质量分数的3~4.5倍的积极效果是钢中Nb、V微合金元素的作用离不开与其结合的N元素,而传统的帘线钢中N元素作为有害元素需要严格限制,在该比值范围内,既能够充分发挥Nb、V复合微合金化作用,还能够避免N元素对帘线钢性能的恶化;当该范围取值过大时,说明N的含量过多,过多的氮含量能够影响Nb和V的复合微合金化过程,还能够导致帘线钢性能的恶化;当该范围取值过小时,说明N的含量少,由于Nb、V微合金元素的作用离不开与其结合的N元素,当N含量过少时,Nb和V元素可以进行微合金元素的作用将无法开始,能够影响帘线 钢的稳定性,可以使帘线钢的性能降低。
上述各成分之间能够相互协同,并且还能够通过控制Nb和V的质量分数之和与N的质量分数的比例关系,可以得到捻股断丝率较低的高强度的帘线钢单丝产品。
在一个或多个实施方式中,所述帘线钢的金相组织包括片状珠光体,所述片状珠光体包括索氏体和珠光体。
本公开内容的实施方式中,控制帘线钢的金相组织包括片状珠光体,再控制片状珠光体的组分包括索氏体和珠光体,由于索氏体和珠光体都具有良好的机械性能,因此能够综合提高帘线钢的整体机械性能。
在一个或多个实施方式中,所述片状珠光体的片间距可以为160nm~170nm。
本公开内容的实施方式中,片状珠光体的片间距可以为160nm~170nm的积极作用是该片间距范围中,片状珠光体之间能够均匀分布,从而能够使帘线钢的金相组织分布均匀,可以提高帘线钢的强度和韧性,当该间距取值范围过大,片状珠光体的片间距过大,可以影响纵向的帘线钢的强度,从而一定程度上能够影响帘线钢的韧性;当该间距取值范围过小,片状珠光体的片间距过小,可以影响横向的帘线钢强度,从而一定程度上会影响帘线钢的硬度。
在一个或多个实施方式中,所述片状珠光体的索氏体化率可以是≥98%。
本公开内容的实施方式中,索氏体化率可以是≥98%的积极作用是由于索氏体具有良好的机械性能,在硬度、强度和冲击韧性上均能够高于珠光体,因此高的索氏体含量可以提高帘线钢的整体机械性能;当该索氏体化率取值范围过小,说明索氏体含量过少,一定程度上会使得帘线钢的机械性能过低。
在一个或多个实施方式中,以体积分数计,所述索氏体的含量可以为80%~95%,所述珠光体的含量可以为5%~20%。
本公开内容的实施方式中,索氏体的含量可以为80%~95%的积极效果是在该体积分数范围内,能够使得索氏的含量充足,由于索氏体具有良好的机械性能,在硬度、强度和冲击韧性上均能够高于珠光体,因此高的索氏体含量可以提高帘线钢的整体机械性能。
珠光体的含量可以为5%~20%的积极效果是在该体积分数范围内,能够使得珠光体的含量稳定,避免因珠光体含量过多而导致的索氏体含量过少,进而一定程度上提高帘线钢的整体机械性能。
如图1所示,本公开内容还提供了一种高强度低断丝率的帘线钢的轧制方法,所述方法包括:
S1.获取所述帘线钢的钢坯;
S2.将所述钢坯可以依次进行轧前加热、热轧和轧后冷却,得到帘线钢盘条;所述轧前加热包括预热段、第一加热段、第二加热段和均热段,
所述热轧可以依次包括粗轧、中轧、预精轧、精轧和减定径。
在一个或多个实施方式中,所述预热段的温度可以是≤400℃,所述预热段的预热时间可以是≥5min;
所述第一加热段的温度可以为400℃~800℃,所述第一加热段的加热时间可以是≥10min;
所述第二加热段的温度可以为800℃~1000℃,所述第二加热段的加热时间可以为60min~100min;
所述均热段的温度可以为1000℃~1040℃,所述均热段的均热时间可以为20min~60min。
本公开内容的实施方式中,控制预热段的温度可以是≤400℃的积极作用是在该温度范围内,能够充分加热进行轧制前的钢材,可以使钢材内部的奥氏体开始逐步转化;当该温度取值范围过大时,过高的温度虽然能够提高奥氏体的转化速度,但是过高的温度还能够造成钢材过热,在轧制过程中一定程度上会影响金相组织成型。
预热时间时间可以是≥5min的积极作用是能够提供充足的预热时间,可以使奥氏体转化到目标状态;当该时间取值范围过小时,过短的预热时间,可以导致奥氏体转化时间不足,可以使轧制后钢材的金相组织不均匀,一定程度上会影响钢材的强度和韧性。
第一加热段的温度可以为400℃~800℃的积极作用是使经过预热段加热后的钢材能够进一步加热,从而可以实现第一加热段内钢材的奥氏体开始快速转化;当该温度取值范围过大时,过高的温度能够使得奥氏体转化速度 过快,一定程度上会影响第一加热过程中金相组织成型的均匀程度;当该温度取值范围过小时,过低的温度无法使奥氏体转化到目标状态。
第一加热段的加热时间可以是≥10min的积极作用是能够使第一加热段加内钢材的加热时间足够,从而可以实现第一加热时间内奥氏体能够充分转化;当该时间取值范围过小时,过短的第一加热时间可以使奥氏体转化时间不足,使得轧制后钢材的金相组织不均匀,一定程度上会影响钢材的强度和韧性。
第二加热段的温度可以为800℃~1000℃的积极作用是使第一加热后的钢材能够在第二加热段内进行进一步的奥氏体转化;当该温度取值范围过大时,过高的温度能够导致奥氏体的转化速度过快,一定程度上会影响第二加热过程中金相组织的均匀程度;当该温度取值范围过小时,过低的温度可以使奥氏体无法转化到目标状态。
第二加热段的加热时间可以为60min~100min的积极作用是能够使第二加热段加内钢材的加热时间足够,从而可以实现第二加热时间内奥氏体能够充分转化;当该时间取值范围过小时,过短的第二加热时间能够导致奥氏体转化时间不足,使得轧制后钢材的金相组织不均匀,一定会程度上影响钢材的强度和韧性。
均热段的温度可以为1000℃~1040℃的积极作用是能够保持奥氏体转化所需的温度;当该温度取值范围过大时,过高的温度虽然能够使奥氏体转化完全,但是能源消耗过多,一定程度上会影响工艺耗能;当该温度取值范围过小时,能够导致奥氏体无法开始转化,导致钢材的金相组织不均匀,一定程度上会影响钢材的强度和韧性;
均热段的时间可以为20min~60min的积极作用是能够使第二加热后的钢材在均热段中进行奥氏体的完全转化;当该时间取值范围过大时,过长的时间可以使得工艺时间耗时过长;当该时间取值范围过小时,过短的时间无法使钢材中的奥氏体转化完全,一定程度上会影响钢材的金相组织均匀程度。
在一个或多个实施方式中,所述精轧的进口温度可以为950℃~990℃;所述减定径的进口温度可以为940℃~980℃,所述减定径的吐丝温度可以为935℃~965℃。
本公开内容的实施方式中,精轧的进口温度可以为950℃~990℃的积极效果是控制精轧的温度,能够使钢材的金相组织分分布均匀,可以得到目标强度和韧性的钢材;当该温度的取值范围过大,过高的温度能够增加工艺的能耗,当该温度的取值范围过小,过低的温度可以导致钢材轧制过程中金相组织的分布不均匀,能够影响金相组织的均匀程度,进而一定程度上会影响钢材的强度和韧性。
减定径的进口温度可以为940℃~980℃的积极效果是能够控制减定径的温度,可以使经过减定径后钢材的金相组织分布均匀,可以得到目标强度和韧性的钢材;当该温度的取值范围过大,过高的温度可以增加工艺的能耗,当该温度的取值范围过小,过低的温度能够导致钢材轧制过程中金相组织的分布不均匀,一定程度上会影响金相组织的均匀程度,进而可以影响钢材的强度和韧性。
减定径的吐丝温度可以为935℃~965℃的积极效果是能够使成型的帘线钢中的金相组织稳定,从而可以稳定帘线钢的强度和韧性;当该温度的取值范围过大,过高的温度可以增加工艺的能耗,当该温度的取值范围过小,过低的温度可以使得钢材轧制过程中金相组织的分布不均匀,一定程度上会影响金相组织的均匀程度,进而影响钢材的强度和韧性。
在一个或多个实施方式中,所述轧后冷却可以采用斯太尔摩风冷线进行冷却;所述斯太尔摩风冷线可以包括入口组辊道、n组辊道和n+6台风机,其中,n为正整数。
本公开内容的实施方式中,轧后冷却可以采用斯太尔摩风冷线的积极作用是能够加强冷却阶段对冷却速度的控制,可以防止冷却速度过快或过慢影响钢材的金相组织的均匀程度。
在一个或多个实施方式中,所述入口组辊道速度可以为15m/min~20m/min,当n=1时,第一组辊道速度可以为30m/min~40m/min,所述第n组辊道速度较第n-1组辊道的速度可以提升5%~7%。
本公开内容的实施方式中,入口组辊道速度可以为15m/min~20m/min的积极作用是能够控制钢材进入风冷工序的速度,可以使钢材在风冷工序中冷却完全;当该速度的取值范围过大,过快的入口速度可以使得钢材进入风 冷的速度过快,一定程度上会影响钢材金相组织冷却成型,当该速度的取值范围过小,过低的速度将无法及时使轧制后的钢材进入风冷程序,导致钢材在装置接口处就经过了冷却,一定程度上影响对钢材冷却程度的控制。
第一组辊道速度可以为30m/min~40m/min的积极作用是能够控制钢材开始冷却时的运动速度,可以使钢材开始冷却时的运行速度与冷却速度相匹配;当该速度的取值范围过大,过快的运行速度可以导致钢材受到冷却的时间不足,一定程度上影响钢材的冷却效果,当该速度的取值范围过小,过慢的运行速度可以导致钢材受到冷却的范围不均匀,能够影响后续的钢材的运行速度,一定程度上影响钢材的冷却程度。
第n组辊道速度较第n-1组辊道的速度可以提升5%~7%的积极作用是能够通过逐步增加冷却辊的速度,从而可以逐步增加钢材的运行速度,能够逐步减少冷却的时间,从而实现对冷却速度的梯度控制,一定程度上会使钢材能够冷却充分。
在一个或多个实施方式中,所述第一台风机和所述第二台风机的开口率可以分别为75%~95%,当所述第三台风机入口盘条搭接点处温度为660℃~710℃时,所述第三台风机至所述第六台风机的开口率可以分别为45%~55%,其余处于关闭状态。
本公开内容的实施方式中,第一台和第二台风机的开口度可以为75%~95%的积极作用是能够控制钢材进入装置时的冷却程度,可以使钢材达到目标冷却程度;当该开口度的取值范围过大,过高的开口度可以使钢材冷却速度过快,一定程度上会影响对钢材冷却速度的控制,当该开口度的取值范围过小,过小的开口度可以降低钢材的冷却程度,一定程度上会影响钢材的冷却效果。
第三台风机至第六台风机的开口度都可以为45%~55%的积极作用是能够控制后续的钢材冷却程度,可以使钢材的冷却速度达到目标冷却程度;当该开口度的取值范围过大,过高的开口度可以使钢材冷却速度过快,一定程度上会影响对钢材冷却速度的控制,当该开口度的取值范围过小,过小的开口度可以降低钢材的冷却程度,一定程度上会影响钢材的冷却效果。
在一个或多个实施方式中,所述轧前加热中,钢坯截面的长宽可以分 别为160mm~200mm和160mm~200mm。
本公开内容的实施方式中,钢坯的长宽可以分别为160mm~200mm和160mm~200mm的积极作用是能够使得到的钢坯均匀分布,可以方便后续轧制工序的顺利进行;当该长宽的取值范围过大,不符合机器轧制的最大标准,当该长宽的取值范围过小,由于轧制过程中间隙较大,一定程度上会影响轧制阶段的钢坯的稳定性。
在本公开内容所提供的方法中,可以通过调节轧前加热、热轧和轧后冷却过程中的工艺参数,从而能够调整热轧盘条的抗拉强度和最终帘线钢单丝的抗拉强度的大小,可以实现微调捻股断丝率,因此可以根据不同产品的使用需求,控制轧前加热、热轧和轧后冷却的工艺,能够得到符合需求的帘线钢产品。
各实施例对比例的化学成分如表1所示:
表1 实施例对比例的化学成分表(%)
Figure PCTCN2022100459-appb-000001
Figure PCTCN2022100459-appb-000002
其中,倍数指Nb和V的质量分数之和是N的质量分数的倍数。
各实施例和对比例的轧前加热的工艺参数如表2所示:
表2 实施例和对比例的轧前加热的工艺参数表
Figure PCTCN2022100459-appb-000003
Figure PCTCN2022100459-appb-000004
各实施例和对比例的热轧过程的工艺参数如表3所示:
表3 实施例和对比例的热轧过程的工艺参数表
Figure PCTCN2022100459-appb-000005
Figure PCTCN2022100459-appb-000006
各实施例和对比例的轧后冷却的工艺参数如表4所示:
表4 实施例和对比例的轧后冷却的工艺参数
Figure PCTCN2022100459-appb-000007
Figure PCTCN2022100459-appb-000008
相关实验:
将实施例1~15和对比例1~3制得的帘线钢进行性能检测,测试结果如表5所示。
表5 性能检测结果
Figure PCTCN2022100459-appb-000009
Figure PCTCN2022100459-appb-000010
表5中,
热轧盘条的抗拉强度指热轧结束后所得的盘条的抗拉强度,当抗拉强度越高,能够说明热轧后的帘线钢盘条的韧性越高。
最终帘线钢单丝的抗拉强度指最终得到的帘线钢单丝的抗拉强度,当抗拉强度越高,能够说明帘线钢产品的韧性越好。
最终帘线钢单丝的捻股断丝率指最终得到的帘线钢单丝的强韧程度,当捻股断丝率越低,能够说明帘线钢产品的强韧程度越好。
从实施例1-15的数据可知:
(1)通过控制轧前加热、热轧和轧后冷却的工艺参数,可以在帘线钢化学成分的含量相接近的情况下,能够控制热轧盘条的最终帘线钢单丝的抗拉强度,还能够有效控制捻股断丝率。
(2)通过对所得帘线钢的金相组织金相分析,能够发现其片状珠光体的片间距为160nm~170nm,索氏体化率≥98%。
从对比例1-3的数据可知:
(1)若不控制Nb和V的质量分数之和与N的质量分数的比例关系,如不加入N,能够导致热轧盘条的抗拉强度和最终帘线钢单丝的抗拉强度的降低, 还能够导致捻股断丝率明显升高。
根据本公开内容提供的帘线钢,可以通过控制帘线钢中C元素维持在一定含量范围内,再通过加入Nb能够阻止奥氏体晶粒长大,细化再加热的奥氏体晶粒,从而一定程度上会降低中高碳钢的脱碳敏感性,通过加入V可以减轻先共析晶界渗碳体的析出,同时还可以抑制奥氏体晶粒长大,形成析出强化,进而能够提高帘线钢的盘条和钢丝产品的强塑性,并且通过控制Nb、V和N的质量分数之间成比例关系,可以控制有害元素N的含量的同时还可以控制Nb和V之间的微合金元素作用,能够使帘线钢的组织成分稳定,因此可以实现在不增加碳含量的基础上提高帘线钢的强韧性能,还可以降低帘线钢的断丝率,既可以降低钢铁企业生产成本,还可以满足下游用户对提升钢丝强塑性的要求,能够具有良好的市场应用前景,可以有望全面替代现有传统帘线钢。
需要说明的是,在本公开内容中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开内容的一个或多个实施方式,使本领域技术人员能够理解或实现本公开内容。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开内容的精神或范围的情况下,在其它实施例中实现。因此,本公开内容将不会被限制于本文所示的这些实施例,而是要符合与本公开内容所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种高强度低断丝率的帘线钢,以质量分数计,所述帘线钢的化学成分还包括:
    C:0.80%~0.85%,Mn:0.46%~0.59%,Si:0.15%~0.25%,Nb:0.006%~0.012%,V:0.006%~0.012%,B:0.0005%~0.0009%,其余为Fe及不可避免的杂质;所述帘线钢的化学成分还包括:N,其中,Nb、V和N的质量分数满足如下关系:
    ([Nb]+[V])/[N]为3~4.5,其中,[Nb]表示Nb元素的质量分数,[V]表示V元素的质量分数,[N]表示N元素的质量分数。
  2. 根据权利要求1所述的帘线钢,其中,所述帘线钢的金相组织包括片状珠光体,所述片状珠光体包括索氏体和珠光体。
  3. 根据权利要求2所述的帘线钢,其中,所述片状珠光体的片间距为160nm~170nm。
  4. 根据权利要求2或3所示的帘线钢,其中,所述片状珠光体的索氏体化率≥98%。
  5. 根据权利要求2所述的帘线钢,其中,以体积分数计,所述索氏体的含量为80%~95%,所述珠光体的含量为5%~20%。
  6. 一种帘线钢的轧制方法,包括:
    获取权利要求1-5任一项所述的帘线钢的钢坯;
    将所述钢坯依次进行轧前加热、热轧和轧后冷却,得到帘线钢盘条;
    所述轧前加热包括预热段、第一加热段、第二加热段和均热段,
    所述热轧采用高温奥氏体结晶控制轧制,所述热轧依次包括粗轧、中轧、预精轧、精轧和减定径。
  7. 根据权利要求6所述的方法,其中,所述精轧的入口温度为950℃~990℃。
  8. 根据权利要求6所述的方法,其中,所述减定径的入口温度为940℃~980℃, 所述减定径的吐丝温度为935℃~965℃。
  9. 根据权利要求6所述的方法,其中,所述预热段的终点温度≤400℃,所述预热段的预热时间≥5min;
    所述第一加热段的终点温度为400℃~800℃,所述第一加热段的加热时间≥10min;
    所述第二加热段的终点温度为800℃~1000℃,所述第二加热段的加热时间为60min~100min;
    所述均热段的温度为1000℃~1040℃,所述均热段的均热时间为20min~60min。
  10. 一种轮胎骨架,所述轮胎骨架由权利要求1-5任一项所述的帘线钢制备得到,或由权利要求6-9任一项所述的方法得到的帘线钢制备得到。
PCT/CN2022/100459 2021-08-26 2022-06-22 一种高强度低断丝率的帘线钢、轧制方法及其用途 WO2023024678A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/463,281 US20230416882A1 (en) 2021-08-26 2023-09-07 Tire cord steel with high strength and low wire breakage rate, and rolling method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110992564.8 2021-08-26
CN202110992564.8A CN113913681B (zh) 2021-08-26 2021-08-26 一种高强度低断丝率的帘线钢、轧制方法及其用途

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/463,281 Continuation US20230416882A1 (en) 2021-08-26 2023-09-07 Tire cord steel with high strength and low wire breakage rate, and rolling method and use thereof

Publications (1)

Publication Number Publication Date
WO2023024678A1 true WO2023024678A1 (zh) 2023-03-02

Family

ID=79233227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100459 WO2023024678A1 (zh) 2021-08-26 2022-06-22 一种高强度低断丝率的帘线钢、轧制方法及其用途

Country Status (3)

Country Link
US (1) US20230416882A1 (zh)
CN (1) CN113913681B (zh)
WO (1) WO2023024678A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913681B (zh) * 2021-08-26 2022-03-25 武汉钢铁有限公司 一种高强度低断丝率的帘线钢、轧制方法及其用途

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220649A (ja) * 2000-02-08 2001-08-14 Nippon Steel Corp 延性及び疲労特性の優れた高強度極細鋼線
CN101086052A (zh) * 2006-06-06 2007-12-12 株式会社神户制钢所 拉丝加工性优异的线材及其制造方法
CN102066599A (zh) * 2009-06-22 2011-05-18 新日本制铁株式会社 高强度极细钢线及其制造方法
CN102644029A (zh) * 2012-05-14 2012-08-22 武汉科技大学 一种具有大应变拉拔性能的微合金化帘线钢盘条
JP2012172218A (ja) * 2011-02-23 2012-09-10 Sumitomo Metal Ind Ltd 低Al鋼の溶製方法
CN104109745A (zh) * 2014-06-16 2014-10-22 河北钢铁股份有限公司邯郸分公司 一种帘线钢盘条的轧制工艺
CN107138524A (zh) * 2017-07-10 2017-09-08 中冶赛迪工程技术股份有限公司 一种极小规格帘线钢线材工艺布置及制备方法
CN206997345U (zh) * 2017-07-10 2018-02-13 中冶赛迪工程技术股份有限公司 一种极小规格帘线钢线材工艺布置
CN113699438A (zh) * 2021-07-20 2021-11-26 武汉钢铁有限公司 一种86级低成本帘线钢及其制备工艺
CN113862578A (zh) * 2021-08-26 2021-12-31 武汉钢铁有限公司 一种80级帘线钢、轧制方法及其用途
CN113913681A (zh) * 2021-08-26 2022-01-11 武汉钢铁有限公司 一种高强度低断丝率的帘线钢、轧制方法及其用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646850B2 (ja) * 2006-04-28 2011-03-09 株式会社神戸製鋼所 耐カッピー断線性に優れた高炭素鋼線材
CN102876983B (zh) * 2012-09-29 2014-05-21 攀钢集团成都钢钒有限公司 一种高强度预应力钢丝用82b盘条的生产工艺及其盘条
KR101870063B1 (ko) * 2014-04-24 2018-06-22 신닛테츠스미킨 카부시키카이샤 고강도 스틸 코드용 필라멘트
CN104651724A (zh) * 2015-02-11 2015-05-27 宣化钢铁集团有限责任公司 预应力钢绞线用盘条及其生产方法
CN110629132B (zh) * 2019-09-26 2020-11-17 江苏省沙钢钢铁研究院有限公司 超高强度钢帘线用盘条及其制造方法
CN111069280B (zh) * 2019-11-30 2021-05-14 江苏省沙钢钢铁研究院有限公司 一种低强度帘线钢盘条生产方法
CN111996349A (zh) * 2020-08-05 2020-11-27 鞍钢股份有限公司 一种低强度、高延伸帘线钢盘条的生产方法
CN112359277B (zh) * 2020-10-15 2021-12-17 中天钢铁集团有限公司 一种86级高强帘线钢盘条偏析和网碳的控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220649A (ja) * 2000-02-08 2001-08-14 Nippon Steel Corp 延性及び疲労特性の優れた高強度極細鋼線
CN101086052A (zh) * 2006-06-06 2007-12-12 株式会社神户制钢所 拉丝加工性优异的线材及其制造方法
CN102066599A (zh) * 2009-06-22 2011-05-18 新日本制铁株式会社 高强度极细钢线及其制造方法
JP2012172218A (ja) * 2011-02-23 2012-09-10 Sumitomo Metal Ind Ltd 低Al鋼の溶製方法
CN102644029A (zh) * 2012-05-14 2012-08-22 武汉科技大学 一种具有大应变拉拔性能的微合金化帘线钢盘条
CN104109745A (zh) * 2014-06-16 2014-10-22 河北钢铁股份有限公司邯郸分公司 一种帘线钢盘条的轧制工艺
CN107138524A (zh) * 2017-07-10 2017-09-08 中冶赛迪工程技术股份有限公司 一种极小规格帘线钢线材工艺布置及制备方法
CN206997345U (zh) * 2017-07-10 2018-02-13 中冶赛迪工程技术股份有限公司 一种极小规格帘线钢线材工艺布置
CN113699438A (zh) * 2021-07-20 2021-11-26 武汉钢铁有限公司 一种86级低成本帘线钢及其制备工艺
CN113862578A (zh) * 2021-08-26 2021-12-31 武汉钢铁有限公司 一种80级帘线钢、轧制方法及其用途
CN113913681A (zh) * 2021-08-26 2022-01-11 武汉钢铁有限公司 一种高强度低断丝率的帘线钢、轧制方法及其用途

Also Published As

Publication number Publication date
CN113913681B (zh) 2022-03-25
US20230416882A1 (en) 2023-12-28
CN113913681A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN102876983A (zh) 一种高强度预应力钢丝用82b盘条的生产工艺及其盘条
CN104789880B (zh) 低碳高强度高韧性钢绞线用盘条及其生产工艺
CN106566989B (zh) 一种含钒工具用热轧宽带钢及其生产方法
WO2019218135A1 (zh) 屈服强度1000MPa级低屈强比超高强钢及其制备方法
WO2023024678A1 (zh) 一种高强度低断丝率的帘线钢、轧制方法及其用途
CN105441795A (zh) 一种led引线框架用低碳冷轧钢板及其生产方法
CN112090956B (zh) 一种低偏析高扭转桥梁缆索用盘条的生产控制方法
CN113403537B (zh) 无取向硅钢及其生产方法
CN113862578B (zh) 一种80级帘线钢、轧制方法及其用途
CN104561731A (zh) 一种通条性能均匀的高韧性65Mn弹簧钢的生产方法
CN108004470B (zh) 高强钢绞线用低锰高碳钢盘条及制备方法
CN1928130A (zh) 低屈强比超细晶粒带钢的制造方法
CN109554631B (zh) 一种低合金钢及由其制备的钢丝加工用高强高塑性盘条
CN109023057A (zh) 一种提高x80m级管线钢心部冲击的生产方法
CN113699438B (zh) 一种86级低成本帘线钢及其制备工艺
CN113680814B (zh) 一种中碳低合金线材表面氧化铁皮控制方法
CN103614637A (zh) 一种梳理用齿条钢盘条及其生产方法
CN113718171A (zh) 一种70级高性能帘线钢及其轧制工艺
CN108998730A (zh) 一种过共析工具钢及其制造方法
CN112058912A (zh) 超低碳钢盘条、钢丝及其制备方法
CN110643891B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN107460404B (zh) 一种屈服强度800MPa超高强带钢及其制备方法
JP2001073077A (ja) 面内異方性の小さい加工用高炭素鋼板およびその製造方法
CN114892101B (zh) 一种70级钢帘线用热轧盘条及其制备方法、汽车轮胎
CN114959484B (zh) 一种80级胎圈钢丝用热轧盘条及其制备方法、汽车轮胎

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE