WO2023024394A1 - 一种碳纤维全缠绕气瓶及其碳纤维缠绕方法 - Google Patents

一种碳纤维全缠绕气瓶及其碳纤维缠绕方法 Download PDF

Info

Publication number
WO2023024394A1
WO2023024394A1 PCT/CN2021/143773 CN2021143773W WO2023024394A1 WO 2023024394 A1 WO2023024394 A1 WO 2023024394A1 CN 2021143773 W CN2021143773 W CN 2021143773W WO 2023024394 A1 WO2023024394 A1 WO 2023024394A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition assembly
carbon fiber
hoop
layer
wound
Prior art date
Application number
PCT/CN2021/143773
Other languages
English (en)
French (fr)
Inventor
成志钢
何春辉
孙磊
陈晓阳
王朝
赵亚丽
金碧辉
Original Assignee
江苏国富氢能技术装备股份有限公司
张家港氢云新能源研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏国富氢能技术装备股份有限公司, 张家港氢云新能源研究院有限公司 filed Critical 江苏国富氢能技术装备股份有限公司
Publication of WO2023024394A1 publication Critical patent/WO2023024394A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/005Storage of gas or gaseous mixture at high pressure and at high density condition, e.g. in the single state phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0665Synthetics in form of fibers or filaments radially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/067Synthetics in form of fibers or filaments helically wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/0126One vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0308Protective caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a pressure container, in particular to a carbon fiber fully wound gas cylinder and a manufacturing method thereof.
  • the carbon fiber fully wound gas cylinder is mainly composed of an inner tank and a carbon fiber winding layer wound on the inner tank.
  • the inner tank is mainly composed of a cylinder body and a head fixedly connected to the openings at both ends of the cylinder body. layers and helically wound layers.
  • Carbon fiber fully wound gas cylinders currently used in the hydrogen energy industry are mainly used in working environments with a working pressure of 35MPa. However, as hydrogen energy applications become more and more popular, the working pressure of carbon fiber fully wound gas cylinders gradually develops to 70MPa.
  • the carbon fiber fully wound gas cylinders used in hydrogen stations have a working pressure as high as 87.5-100MPa.
  • the thickness of the carbon fiber winding layer wound on the inner tank also needs to increase accordingly to meet the requirements of use; in addition, as the outer diameter of the carbon fiber fully wound gas cylinder increases increase, the thickness of the carbon fiber winding layer wound on the inner tank also needs to be thickened accordingly to meet the use requirements.
  • the thickness of the carbon fiber winding layer of a 35MPa carbon fiber fully wound gas cylinder with an outer diameter of about 376mm reaches 10-14mm
  • the thickness of the carbon fiber winding layer of a 70MPa carbon fiber fully wound gas cylinder with an outer diameter of about 410mm reaches 20-30mm. .
  • the thickness of the carbon fiber winding layer on it is usually 3 to 5 mm.
  • this type of gas cylinder needs to increase its working pressure, as the working pressure increases, the overall thickness of the carbon fiber winding layer increases, and the thickness of the hoop winding layer will also increase accordingly, and the increase in the thickness of the hoop winding layer will lead to
  • the spiral wound layer is wound longitudinally at a small angle or/and at a high angle, the gap between the hoop wound layer and the spiral wound layer exceeds the limit of the flattening of the carbon fiber itself, resulting in There is an overhead void in the transition area between the body and the head.
  • FIG. 1 is a schematic diagram of the hoop winding of the hoop winding layer.
  • the hoop winding gap in the figure is relatively large, but this does not represent the actual winding gap.
  • Another way is to divide the hoop winding layer into multi-layer hoop layers, the helical winding layer 4 formed by longitudinal helical winding at a small angle is also divided into multi-layer helical layers, and the hoop layer and the helical layer are alternately wound to form a package.
  • the carbon fiber winding layer of the inner tank but with the increase of the working pressure of the cylinder and the increase of the outer diameter, the thickness of the hoop layer of each layer will increase accordingly, as shown in Figure 3, when the thickness of the single hoop layer exceeds the fiber
  • the sliding and glue filling reach the upper limit, there will still be an obvious overhead gap A in the transition region between the hoop layer and the helical layer.
  • one solution is to alternately wind the hoop-wound layer and the helically-wound layer 4 formed by longitudinal helical winding at a small angle as much as possible layer by layer, so as to disperse the overhead areas as much as possible.
  • a carbon fiber fully wound gas cylinder is designed with a carbon fiber winding layer of 32 hoop layers + 10 helical layers.
  • the overall thickness of the 32 hoop layers is about 7-8mm.
  • the uniform distribution method is used to evenly distribute the circumferential layer and the helical layer, which can greatly reduce the occurrence of overhead, because the carbon fiber winding tape itself will have a certain slip in the state of glue, Thus, voids can be filled.
  • every other layer or two of the hoop layer reduces the width of the hoop layer by 1-2mm, or even more, to achieve a smooth transition effect.
  • the design line type is as follows: 3 hoop layers/1 helical layer/3 hoop layers/1 helical layer/3 hoop layers/1 helical layer/3 hoop layers/1 helical layer/3 Layer hoop layer/1 helical layer/3 hoop layer/1 helical layer/3 hoop layer/1 helical layer/3 hoop layer/1 1 helical layer/3 hoop layers/1 helical layer/2 hoop layers, while the width of the hoop layer winding decreases by 1mm or 2mm layer by layer.
  • This solution can form a smooth transition area in the transition area between the cylinder body 1 and the head 2, which decreases layer by layer in the hoop direction, thereby reducing the gap in the transition area, but because the hoop winding layer needs to be evenly distributed between the helical layers , resulting in the inability of the hoop winding layer to be wound intensively.
  • Affected by the helical layer, the wrinkling, bending, and deformation of the hoop layer increase, which will affect the fatigue performance of the gas cylinder and reduce the number of fatigue cycles.
  • it is necessary to increase the number of hoop layers In order to ensure that the number of fatigue times does not decrease, it is necessary to increase the number of hoop layers. For example, increasing the designed hoop layer from 32 layers to 38 hoop layers can meet the fatigue times required by the standard specification. This will greatly increase the amount of carbon fiber used, increase the weight of the cylinder, and increase manufacturing costs.
  • the width of the hoop layer decreases layer by layer, away from the sealing layer.
  • the width of the hoop layer is reduced by 2mm, so the total width of the 32 hoop layers is reduced to 64mm. Since the thickness of the hoop layer in the transition zone is weakened, the fatigue leakage point is likely to occur here during the fatigue test. In order to ensure fatigue performance, it is necessary to increase the thickness of the hoop layer to ensure that the performance of the gas cylinder meets the standard requirements, which will greatly increase the amount of carbon fiber used, increase the weight of the gas cylinder, and increase the manufacturing cost.
  • the high-angle spiral winding can be wound after all the small-angle longitudinal spiral windings are completed, or it can be wound on a certain layer in the middle, or it can be wound on the first layer.
  • Figure 2 shows the winding schematic diagram of small-angle longitudinal helical winding with carbon fiber
  • Figure 4 shows the winding schematic diagram of high-angle helical winding with carbon fiber, and the high-angle area is B; as shown in Figure 5, the existing ring Schematic diagram of direction winding, small-angle longitudinal helical winding and high-angle helical winding.
  • the 32-layer hoop layer is divided into four parts for winding, each part has 8 layers, and the 10-layer helical layer is divided into four parts for winding, and each part has 2 to 3 layers.
  • the design line type is as follows: 8 hoop layers/3 helical layers/8 hoop layers/3 helical layers/1 high-angle helical layer/8 hoop layers/2 helical layers/8 hoop layers/ 2 helical layers/1 high angle helical layer.
  • the transition area between the cylinder and the head is wound and reinforced.
  • the calculated winding layup design is 32 layers of hoop + 10 helical layers, and because of the need to add high-angle helical winding layers in the transition area, the final layup design becomes 32 layers of hoop + 10 layers of small-angle spirals + 2 layers of high-angle spirals. This will inevitably increase the use of carbon fiber spiral winding, increase the manufacturing cost, and increase the weight of the gas cylinder.
  • the technical problem to be solved by the present invention is: to provide a high fatigue strength, good stability, low manufacturing cost, reduced overall quality, and can avoid fatigue leakage points from occurring in the transition area between the front head and the cylinder and the rear head
  • a carbon fiber fully-wrapped gas cylinder in the transition area with a cylinder body, and a carbon fiber winding method for the carbon fiber fully-wound gas cylinder is provided.
  • the technical solution adopted by the present invention is: the carbon fiber fully wound gas cylinder, including: an inner tank composed of a cylinder body, a front head and a rear head, a front transition assembly and a rear transition Components;
  • the front transition assembly is provided with a first spherical through hole corresponding to the outer contour of the front head, the front transition assembly is set and fixed on the front head through the first spherical through hole, and the front transition assembly
  • the rear end surface is located at the junction of the front head and the cylinder, the outer contour of the front transition assembly is spherical, and the wall thickness of the rear end of the front transition assembly is greater than the wall thickness of the front end of the front transition assembly;
  • the rear transition assembly A second spherical through hole corresponding to the outer contour of the rear head is opened on the top, and the rear transition assembly is fitted and fixed on the rear head through the second spherical through hole, and the front end of the rear transition assembly is located at the rear end of the rear head.
  • the outer contour of the rear transition assembly is spherical, and the wall thickness of the front end of the rear transition assembly is consistent with the wall thickness of the rear end of the front transition assembly, and the wall thickness of the rear end of the rear transition assembly is It is consistent with the wall thickness of the front end of the front transition assembly;
  • the first hoop winding layer is wound on the barrel between the front transition assembly and the rear transition assembly, and the thickness of the first hoop winding layer is greater than or equal to the front transition assembly
  • the wall thickness of the rear end of the first hoop winding layer, the front head, and the rear head are wound and wrapped in turn with a small-angle longitudinal spiral winding layer and a second hoop winding layer, and the thickness of the second hoop winding layer is ⁇ 0 .
  • the front end of the outer contour of the front transition assembly is in smooth contact with the outer contour of the front head
  • the rear end of the outer contour of the rear transition assembly is in contact with the outer shape of the rear head. Contour smooth contact.
  • the width H of the front transition component is 2 to 3 times the width of the carbon fiber winding tape, and the width of the rear transition component is consistent with the width of the front transition component.
  • the carbon fiber winding method of the carbon fiber fully wound gas cylinder of the above structure specifically includes the following steps:
  • h ⁇ is: the minimum thickness (mm) of the hoop-wound layer
  • R is: the outer radius of the liner (mm);
  • P bl is: the minimum burst pressure of the liner (MPa);
  • P b is: the minimum design burst pressure (MPa) of the carbon fiber fully wound gas cylinder;
  • [ ⁇ f ] is: the minimum tensile strength preservation of carbon fiber (MPa);
  • V f carbon fiber calculation volume percentage (%)
  • is: the average winding angle of the longitudinal helix
  • step (1) determine the thickness h of the actual hoop winding layer of the carbon fiber fully wound gas cylinder, the wall thickness h1 of the rear end of the front transition assembly, and the thickness of the rear end of the transition assembly.
  • the beneficial effects of the present invention are: 1
  • the setting of the front transition assembly and the rear transition assembly makes the stress in the transition area between the front head and the cylinder and the transition area between the rear head and the cylinder smooth, and the gas cylinder is subjected to Under internal pressure, the transition area between the front head and the cylinder and the transition area between the rear head and the cylinder will not produce stress concentration, which greatly reduces the shear stress in the transition area and avoids the reduction due to stress concentration.
  • the problem of the strength utilization rate of the carbon fiber in the helical winding layer can give full play to the strength of the carbon fiber in the helical winding layer, so the helical layer formed by the small-angle longitudinal helical winding can guarantee the longitudinal strength, and there is no need to add multiple layers of high-angle helical winding layers to make up for it.
  • the strong transition area reduces the amount of carbon fiber used in the helical winding direction; in addition, the smooth stress in the transition area can also ensure that the burst pressure and fatigue pressure of the gas cylinder are more stable and reliable, which greatly improves the overall performance of the gas cylinder;
  • the barrel between the transition assembly and the rear transition assembly is hoop-wound to form the first hoop-wrapped layer, and during the hoop-wrapping process, the first hoop-wound layer will not slip to the head area, combining advantages 1 , to ensure the fatigue strength of the gas cylinder, to avoid the fatigue leakage point occurring in the transition area between the front head and the cylinder and the transition area between the rear head and the cylinder, effectively enhancing the fatigue strength and stability of the gas cylinder;
  • the amount of carbon fiber used in the hoop winding direction and the helical winding direction is reduced, and ultimately the overall quality and manufacturing cost of the gas cylinder are
  • FIG. 1 is a schematic diagram of hoop winding when carbon fibers are used in the background technology.
  • Fig. 2 is a schematic diagram of winding when carbon fiber is used for small-angle longitudinal helical winding in the background technology.
  • Fig. 3 is a schematic diagram of the background technology when the thickness of the single-layer hoop layer exceeds the fiber slip and the glue filling reaches the upper limit, resulting in an obvious overhead gap A in the transition region between the hoop layer and the helical layer.
  • Fig. 4 is a schematic diagram of the high-angle helical winding of carbon fibers in the background technology.
  • Fig. 5 is a schematic diagram of carbon fiber winding in the background technology, which includes hoop winding, small-angle longitudinal helical winding and high-angle helical winding.
  • Fig. 6 is a structural schematic diagram of an inner tank with a front transition assembly and a rear transition assembly installed.
  • FIG. 7 is a schematic diagram of the exploded structure of FIG. 6 .
  • Figure 8 is a winding schematic diagram of hoop winding the cylinder between the front transition assembly and the rear transition assembly.
  • Fig. 9 is a schematic structural view of a carbon fiber fully wound gas cylinder according to the present invention.
  • a carbon fiber fully wound gas cylinder includes: Front transition assembly 6 and rear transition assembly 7.
  • Other structures on the gas cylinder belong to conventional structures, and will not be repeated here.
  • the front transition assembly 6 is provided with a first spherical through hole 61 corresponding to the outer contour of the front head 21, and the front transition assembly 6 is fitted and fixed through the first spherical through hole 61
  • the outer contour 62 of the front transition assembly is spherical
  • the rear end of the front transition assembly 6 The wall thickness of the end is greater than the wall thickness of the front end of the front transition assembly. The best solution is to make the front end of the outer contour 62 of the front transition assembly in smooth contact with the outer contour of the front head 21 .
  • the rear transition assembly 7 is provided with a second spherical through hole 71 corresponding to the outer contour of the rear head 22, and the rear transition assembly 7 is fitted and fixed through the second spherical through hole 71
  • the outer contour 72 of the rear transition assembly is spherical, and the front end of the rear transition assembly 7
  • the wall thickness is consistent with the wall thickness of the rear end of the front transition assembly 6, and the wall thickness of the rear end of the rear transition assembly 7 is consistent with the wall thickness of the front end of the front transition assembly 6.
  • the best solution is to have the rear end of the outer profile 72 of the rear transition assembly in smooth contact with the outer profile of the rear head 22 .
  • the front transition assembly 6 and the rear transition assembly 7 can be made of metal or composite materials.
  • the front transition assembly 6 is set and fixed on the front head 21 and the rear transition assembly 7 is set and fixed on the rear head 22.
  • Various fixing methods can be used, such as glue joints, adjusting the fit gap to ensure tight fit, etc. .
  • a first hoop wound layer 31 is wound on the barrel 1 between the front transition assembly 6 and the rear transition assembly 7, and the thickness of the first hoop wound layer 31 is greater than or equal to that of the front
  • the wall thickness of the rear end of the transition assembly 6 is that the first hoop winding layer 31, the front head 21, and the rear head 22 are sequentially wound and wrapped with a small-angle longitudinal helical winding layer 4 and a second hoop winding layer.
  • the thickness of the winding layer is ⁇ 0.
  • the width H of the front transition component 6 is preferably 2 to 3 times the width of the carbon fiber winding tape, and the width of the rear transition component 7 is consistent with the width of the front transition component 6 .
  • the arrangement of the front transition assembly 6 and the rear transition assembly 7 makes the transition area between the front head 21 and the barrel 1 and the transition area between the rear head 22 and the barrel 1 smooth, and the gas cylinder is When subjected to internal pressure, the transition area between the front head 21 and the cylinder 1 and the transition area between the rear head 22 and the cylinder 1 will not produce stress concentration, which greatly reduces the shear stress in the transition area and avoids Due to the problem of reducing the strength of the carbon fiber in the helical winding layer due to stress concentration, the strength of the carbon fiber in the helical winding layer can be fully utilized, so the helical layer formed by longitudinal helical winding at a small angle can ensure the longitudinal strength, and there is no need to add additional layers of high-angle
  • the spiral wound layer is used to reinforce the transition area, which reduces the amount of carbon fiber used in the spiral winding direction; in addition, the smooth stress in the transition area can also ensure that the burst pressure and fatigue pressure of the gas cylinder are more stable and reliable, which greatly improves
  • the barrel between the front transition assembly and the rear transition assembly can be hooped to form the first hoop winding layer, and in the hoop winding process, the first The hoop-wound layers will not slide into the head area.
  • the fatigue strength of the gas cylinder is ensured, and the fatigue leakage point is avoided from occurring in the transition area between the front head 21 and the cylinder body 1 and the transition area between the rear head 22 and the cylinder body 1, effectively strengthening the gas cylinder Fatigue strength and stability;
  • the burst strength and fatigue performance of the gas cylinder reduce the amount of carbon fiber used in the hoop winding and helical winding directions, and ultimately reduce the overall quality and manufacturing cost of the gas cylinder.
  • the structure described in this proposal is suitable for metal liner carbon fiber fully wound gas cylinders, and is also suitable for plastic liner carbon fiber fully wound gas cylinders.
  • the carbon fiber winding method of the carbon fiber fully wound gas cylinder described in this program is characterized in that: specifically comprise the following steps:
  • h ⁇ is: the minimum thickness (mm) of the hoop-wound layer
  • R is: the outer radius of the liner (mm);
  • P bl is: the minimum burst pressure of the liner (MPa);
  • P b is: the minimum design burst pressure (MPa) of the carbon fiber fully wound gas cylinder;
  • [ ⁇ f ] is: the minimum tensile strength preservation of carbon fiber (MPa);
  • V f carbon fiber calculation volume percentage (%)
  • is: the average winding angle of the longitudinal helix
  • step (1) determine the thickness h of the actual hoop winding layer of the carbon fiber fully wound gas cylinder, the wall thickness h 1 of the rear end of the front transition assembly 6, The wall thickness h 2 of the front end of the rear transition assembly 7 , the thickness h 3 of the first hoop wound layer 31 wound on the barrel 1 between the front transition assembly 6 and the rear transition assembly 7 , and the second hoop Thickness h 4 of the winding layer;
  • the barrel 1 between the front transition assembly 6 and the rear transition assembly 7 is hoop-wound to form the first hoop-wound layer 31; then the first hoop-wrap layer 31, the front seal
  • the small-angle longitudinal spiral winding is carried out on the head 21 and the rear head 22 to form a small-angle longitudinal spiral winding layer 4, that is, the carbon fiber winding operation of the entire gas cylinder is completed.
  • the cylinder body 1 between the front transition assembly 6 and the rear transition assembly 7 is hoop-wound to form the first hoop-wound layer 31; then the first hoop-wrap layer 31, the front seal Carry out small-angle longitudinal spiral winding on the head 21 and rear head 22 to form a small-angle longitudinal spiral winding layer 4, and then perform circular winding on the small-angle longitudinal spiral winding layer 4 to form a second circumferential winding layer, that is, to complete the whole gas cylinder. Carbon fiber winding job.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本发明公开了一种碳纤维全缠绕气瓶,包括:由筒体、前封头和后封头构成的内胆,前部过渡组件套装并固定于前封头与筒体之间的交界连接处,后部过渡组件套装并固定于后封头与筒体之间的交界连接处,在前部过渡组件与后部过渡组件之间的筒体上缠绕有第一环向缠绕层,第一环向缠绕层的厚度≥前部过渡组件的后端的壁厚,在环向缠绕层、前封头、后封头上依次缠绕包裹有小角度纵向螺旋缠绕层和第二环向缠绕层,第二环向缠绕层的厚度≥0。本发明还公开了上述碳纤维全缠绕气瓶的碳纤维缠绕方法。上述结构具有疲劳强度高、稳定性好、制造成本低、整体质量减轻、且能避免疲劳泄漏点发生在前封头与筒体的过渡区域以及后封头与筒体的过渡区域等优点。

Description

一种碳纤维全缠绕气瓶及其碳纤维缠绕方法 技术领域
本发明涉及压力容器,尤其涉及一种碳纤维全缠绕气瓶及其制造方法。
背景技术
碳纤维全缠绕气瓶主要由内胆和缠绕于内胆上的碳纤维缠绕层构成,内胆主要由筒体和固定连接于筒体两端敞开口处的封头构成,碳纤维缠绕层由环向缠绕层和螺旋缠绕层构成。目前应用于氢能行业的碳纤维全缠绕气瓶主要用于工作压力为35MPa的工作环境中,然而随着氢能应用越来越普及,碳纤维全缠绕气瓶的工作压力逐渐向70MPa发展,此外加氢站用的碳纤维全缠绕气瓶,工作压力更是高达87.5~100MPa。
随着碳纤维全缠绕气瓶所承受的工作压力的增加,缠绕于内胆上的碳纤维缠绕层的厚度也需要随之增厚才能满足使用要求;此外,随着碳纤维全缠绕气瓶的外径的增加,缠绕于内胆上的碳纤维缠绕层的厚度也需要随之增厚才能满足使用需求。如外径为376mm左右的35MPa的碳纤维全缠绕气瓶的碳纤维缠绕层的厚度达到了10~14mm,外径为410mm左右的70MPa的碳纤维全缠绕气瓶的碳纤维缠绕层的厚度达到了20~30mm。
对于小规格、小直径、工作压力较低的碳纤维全缠绕气瓶,其上的碳纤维缠绕层厚度通常为3~5mm。当这类气瓶需要提升其承载的工作压力时,随着工作压力的提升,碳纤维缠绕层整体厚度增加,环向缠绕层的厚度也会相应增加,而环向缠绕层的厚度的增加会导致螺旋缠绕层在小角度纵向螺旋缠绕或/和高角度螺旋缠绕时,环向缠绕层与螺旋缠绕层之间的架空超过了碳纤维本身滑纱 压平的极限,导致缠绕结束后在内胆的筒体与封头的过渡区域存在架空的空隙,螺旋缠绕层在受到内压的情况下,空隙的存在会导致空隙处存在非常大的剪切应力。经过多次爆破试验发现破口很大概率发生在空隙处,经过多次疲劳试验发现疲劳的泄漏点也很大概率发生在筒体与封头的过渡区域处,由此可见架空区域是影响厚壁气瓶的强度的重大影响因素。
目前对于多种规格的碳纤维全缠绕气瓶因工作压力或/和外径的增加而导致碳纤维缠绕层的厚度随之增加的情况,为提高气瓶的疲劳性能,一种方式是先集中环向缠绕形成环向缠绕层3,然后再进行小角度纵向螺旋缠绕形成螺旋缠绕层,但这种缠绕方式会导致环向缠绕层与螺旋缠绕层之间的架空更加厉害,对筒体与封头的过渡区域的强度影响更加巨大。如图1所示为环向缠绕层环向缠绕的缠绕示意图,为能清晰看出环向缠绕方式,图中环向缠绕间隙示意较大,但这并不代表实际缠绕间隙。另一种方式是将环向缠绕层分为多层环向层,将由小角度纵向螺旋缠绕形成螺旋缠绕层4也分为多层螺旋层,环向层与螺旋层两者层次交替缠绕形成包裹内胆的碳纤维缠绕层,但是随着气瓶的工作压力的增加以及外径的增加,每层的环向层厚度也会相应增加,如图3所示,当单层环向层厚度超过纤维滑移、胶液填充达到上限时会导致环向层与螺旋层之间在过渡区域内依然存在明显的架空的空隙A。
为解决上述问题,一种解决方案是将环向缠绕层与由小角度纵向螺旋缠绕形成的螺旋缠绕层4尽量逐层分别交替缠绕,从而尽量将架空区域分散。比如某碳纤维全缠绕气瓶,其设计碳纤维缠绕层铺层为32层环向层+10层螺旋层,32层环向层的总体厚度约7~8mm,为了减少环向层在过渡区域的架空空隙,采用平均分配的方法将环向层与螺旋层平均分布,这样就能很大程度上减少架空 的产生,因为碳纤维缠绕纱带本身在带有胶液的状态下会有一定的滑移,因而能够填满空隙。同时,由于环向层与螺旋层交替缠绕,环向层每隔一层或二层,将环向层的宽度缩小1~2mm,甚至更多以达到平滑过渡的效果。
设计线型如下:3层环向层/1层螺旋层/3层环向层/1层螺旋层/3层环向层/1层螺旋层/3层环向层/1层螺旋层/3层环向层/1层螺旋层/3层环向层/1层螺旋层/3层环向层/1层螺旋层/3层环向层/1层螺旋层/3层环向层/1层螺旋层/3层环向层/1层螺旋层/2层环向层,同时环向层缠绕的宽度逐层递减1mm或者2mm。
这种方案可以在筒体1与封头2的过渡区域形成一个环向逐层递减的平滑过渡区,从而降低过渡区域的空隙,但是由于环向缠绕层需要平均的分配到各个螺旋层之间,导致环向缠绕层无法集中缠绕,受螺旋层的影响,环向层的折皱、弯曲、变形的情况增加,这种情况会影响气瓶的疲劳性能,降低疲劳次数。而为保证疲劳次数不降低,则需要增加环向层的层数,比如将设计的32层环向层增加到38层环向层才能满足标准规范要求的疲劳次数。这将大大增加碳纤维的使用量,增加气瓶的重量,增加制造成本。
此外,由于环向层逐层递减缠绕,虽然能使封头2与环向层之间过渡平滑,减少架空现象,但是随着总体缠绕层厚度的增加,环向层宽度逐层递减、远离封头部分,比如上面铺层的例子,总共32层环向层,每层减少2mm宽度,则32层的环向层的总宽度减少到64mm。由于过渡区域的环向层的厚度被削弱,在进行疲劳测试时,疲劳的泄漏点很大概率发生在此处。为了保证疲劳的性能,则需要再增加环向层的厚度来保证气瓶的性能符合标准要求,这将大大增加碳纤维的使用量,增加气瓶的重量,增加制造成本。
为解决上述问题,另一种方案是将环向缠绕层分成2~5部分,将由小角度纵向螺旋缠绕形成的螺旋缠绕层4也分成2~5部分,并且在缠绕过程中在筒体与封头的过渡区域增加若干层高角度螺旋缠绕层5,可以是1层、2层或者更多层,这样就可以用高角度螺旋缠绕将空隙填充,另一方面,由于此处存在应力集中,通过增加高角度螺旋缠绕起到补强的作用。高角度螺旋缠绕可以在小角度纵向螺旋缠绕全部结束后缠绕,也可以在中间某一层进行缠绕,也可在第一层就开始缠绕。如图2所示为采用碳纤维进行小角度纵向螺旋缠绕的缠绕示意图;如图4所示为采用碳纤维进行高角度螺旋缠绕的缠绕示意图,高角度区域为B;如图5所示是既有环向缠绕、小角度纵向螺旋缠绕又有高角度螺旋缠绕的缠绕示意图。
例如将32层环向层分成四部分缠绕,每一部分8层,10层螺旋层分成四部分缠绕,每一部分2到3层。设计线型如下:8层环向层/3层螺旋层/8层环向层/3层螺旋层/1层高角螺旋层/8层环向层/2层螺旋层/8层环向层/2层螺旋层/1层高角度螺旋层。
上面的铺层增加了2层高角度螺旋缠绕,对筒体与封头的过渡区域进行了缠绕补强。但是在原来设计的线型基础上,需要根据架空层的大小,增加不同层数的高角度螺旋缠绕层用来填补过渡区域的空隙。比如在本例中,计算的缠绕铺层设计是32层环向层+10层螺旋层,而由于需要在过渡区域增加高角度螺旋缠绕层,则最终的铺层设计变为32层环向+10层小角度螺旋+2层高角螺旋。这样就势必增加了碳纤维螺旋缠绕的使用量,增加了制造成本,增加了气瓶的重量。
发明内容
本发明所需解决的技术问题是:提供一种疲劳强度高、稳定性好、制造成本低、整体质量减轻、且能避免疲劳泄漏点发生在前封头与筒体的过渡区域以及后封头与筒体的过渡区域的一种碳纤维全缠绕气瓶,以及提供一种该碳纤维全缠绕气瓶的碳纤维缠绕方法。
为解决上述问题,本发明采用的技术方案是:所述的一种碳纤维全缠绕气瓶,包括:由筒体、前封头和后封头构成的内胆、前部过渡组件和后部过渡组件;前部过渡组件上开设有与前封头的外轮廓对应匹配的第一球状通孔,前部过渡组件通过第一球状通孔套装并固定于前封头上,且前部过渡组件的后端面位于前封头与筒体的交界连接处,前部过渡组件的外轮廓为球面形状,且前部过渡组件的后端的壁厚大于前部过渡组件的前端的壁厚;后部过渡组件上开设有与后封头的外轮廓对应匹配的第二球状通孔,后部过渡组件通过第二球状通孔套装并固定于后封头上,且后部过渡组件的前端面位于后封头与筒体的交界连接处,后部过渡组件的外轮廓为球面形状,且后部过渡组件的前端的壁厚与前部过渡组件的后端的壁厚一致,后部过渡组件的后端的壁厚与前部过渡组件的前端的壁厚一致;在前部过渡组件与后部过渡组件之间的筒体上缠绕有第一环向缠绕层,第一环向缠绕层的厚度≥前部过渡组件的后端的壁厚,在第一环向缠绕层、前封头、后封头上依次缠绕包裹有小角度纵向螺旋缠绕层和第二环向缠绕层,第二环向缠绕层的厚度≥0。
进一步地,前述的一种碳纤维全缠绕气瓶,其中,前部过渡组件的外轮廓的前端与前封头的外轮廓平滑接触,后部过渡组件的外轮廓的后端与后封头的外轮廓平滑接触。
进一步地,前述的一种碳纤维全缠绕气瓶,其中,前部过渡组件的宽度H 为碳纤维缠绕纱带的宽度的2~3倍,后部过渡组件的宽度与前部过渡组件的宽度一致。
上述结构的碳纤维全缠绕气瓶的碳纤维缠绕方法具体包括以下步骤:
(1)计算出碳纤维全缠绕气瓶的环向缠绕层的最小厚度h θ
Figure PCTCN2021143773-appb-000001
其中,h θ是:环向缠绕层的最小厚度(mm);
R是:内胆的外半径(mm);
P bl是:内胆的最小爆破压力(MPa);
P b是:碳纤维全缠绕气瓶的最小设计爆破压力(MPa);
f]是:碳纤维最小拉伸强度保值(MPa);
V f是:碳纤维计算体积百分含量(%);
α是:纵向螺旋平均缠绕角;
(2)根据步骤(1)中得到的环向缠绕层的最小厚度h θ,确定碳纤维全缠绕气瓶的实际环向缠绕层的厚度h、前部过渡组件的后端的壁厚h1、后部过渡组件的前端的壁厚h 2、在前部过渡组件和后部过渡组件之间的筒体上缠绕的第一环向缠绕层的厚度h 3、以及第二环向缠绕层的厚度h 4
h=1h θ~2h θ
h 1=0.4h~h;
h 2=0.4h~h;
h 3=1h 1~1.1h 1
h 4=h-h 3
(3)计算出碳纤维全缠绕气瓶的小角度纵向螺旋缠绕层的厚度h α
Figure PCTCN2021143773-appb-000002
(4)将前部过渡组件套装并固定于前封头上,将后部过渡组件套装并固定于后封头上后将内胆安装于缠绕机上。
当h 4=0时,对前部过渡组件与后部过渡组件之间的筒体进行环向缠绕形成第一环向缠绕层;然后在第一环向缠绕层、前封头、后封头上进行小角度纵向螺旋缠绕形成小角度纵向螺旋缠绕层,即完成整个气瓶的碳纤维缠绕作业。
当h 4≠0时,对前部过渡组件与后部过渡组件之间的筒体进行环向缠绕形成第一环向缠绕层;然后在第一环向缠绕层、前封头、后封头上进行小角度纵向螺旋缠绕形成小角度纵向螺旋缠绕层,再在小角度纵向螺旋缠绕层上进行环形缠绕形成第二环向缠绕层,即完成整个气瓶的碳纤维缠绕作业。
本发明的有益效果是:①前部过渡组件和后部过渡组件的设置使得前封头与筒体之间的过渡区域以及后封头与筒体之间的过渡区域应力平滑,气瓶在受到内压时,前封头与筒体之间的过渡区域以及后封头与筒体之间的过渡区域不会产生应力集中,大大降低了过渡区域的剪切应力,避免了因应力集中而降低螺旋缠绕层碳纤维的强度发挥率的问题,能够充分发挥螺旋缠绕层碳纤维强度,因而小角度纵向螺旋缠绕形成的螺旋层即能保证纵向的强度,无需再额外增设多层高角度螺旋缠绕层来补强过渡区域,降低了碳纤维在螺旋缠绕方向的使用量;此外,过渡区域应力平滑还能保证气瓶爆破压力及疲劳压力更加稳定、可靠,大大提高了气瓶的综合性能;②可以对前部过渡组件和后部过渡组件之间的筒体进行集中环向缠绕形成第一环向缠绕层,且在环向环绕过程中,第一环向缠绕层不会滑向封头区域,结合优点①,确保气瓶的疲劳强度,避免疲劳泄 漏点发生在前封头与筒体之间的过渡区域以及后封头与筒体之间的过渡区域,有效增强了气瓶的疲劳强度和稳定性;此外,在保证气瓶的爆破强度与疲劳性能的基础上降低碳纤维在环向缠绕方向以及螺旋缠绕方向的使用量,最终降低气瓶的整体质量以及制造成本。
附图说明
图1是背景技术中采用碳纤维进行环向缠绕时的缠绕示意图。
图2是背景技术中采用碳纤维进行小角度纵向螺旋缠绕时的缠绕示意图。
图3是背景技术中当单层环向层厚度超过纤维滑移、胶液填充达到上限时导致环向层与螺旋层之间在过渡区域内存在明显的架空的空隙A的示意图。
图4是背景技术中采用碳纤维进行高角度螺旋缠绕时的缠绕示意图。
图5是背景技术中既有环向缠绕、小角度纵向螺旋缠绕又有高角度螺旋缠绕的碳纤维缠绕示意图。
图6是安装有前部过渡组件和后部过渡组件的内胆的结构示意图。
图7是图6的分解结构示意图。
图8是对前部过渡组件和后部过渡组件之间的筒体进行环向缠绕的缠绕示意图。
图9是本发明所述的一种碳纤维全缠绕气瓶的其中一种结构示意图。
具体实施方式
下面结合附图及优选实施例对本发明所述的技术方案作进一步详细的说明。
如图6、图7、图8和图9所示,本发明所述的一种碳纤维全缠绕气瓶,包括:由筒体1、前封头21和后封头22构成的内胆、前部过渡组件6和后部过 渡组件7。气瓶上的其他结构属于常规结构,这里不再展开赘述。
如图6和图7所示,前部过渡组件6上开设有与前封头21的外轮廓对应匹配的第一球状通孔61,前部过渡组件6通过第一球状通孔61套装并固定于前封头21上,且前部过渡组件6的后端面位于前封头21与筒体1的交界连接处,前部过渡组件的外轮廓62为球面形状,且前部过渡组件6的后端的壁厚大于前部过渡组件的前端的壁厚。最佳方案是使前部过渡组件的外轮廓62的前端与前封头21的外轮廓平滑接触。
如图6和图7所示,后部过渡组件7上开设有与后封头22的外轮廓对应匹配的第二球状通孔71,后部过渡组件7通过第二球状通孔71套装并固定于后封头22上,且后部过渡组件7的前端面位于后封头22与筒体1的交界连接处,后部过渡组件的外轮廓72为球面形状,且后部过渡组件7的前端的壁厚与前部过渡组件6的后端的壁厚一致,后部过渡组件7的后端的壁厚与前部过渡组件6的前端的壁厚一致。最佳方案是使后部过渡组件的外轮廓72的后端与后封头22的外轮廓平滑接触。
前部过渡组件6、后部过渡组件7可以采用金属或者复合材料制成。前部过渡组件6套装固定于前封头21上以及后部过渡组件7套装固定于后封头22上的固定方式可以采用多种固定形式,比如胶接方式、调节配合间隙方式保证紧密配合等。
如图8和图9所示,在前部过渡组件6与后部过渡组件7之间的筒体1上缠绕有第一环向缠绕层31,第一环向缠绕层31的厚度≥前部过渡组件6的后端的壁厚,在第一环向缠绕层31、前封头21、后封头22上依次缠绕包裹有小角度纵向螺旋缠绕层4和第二环向缠绕层,第二环向缠绕层的厚度≥0。
本实施例中,前部过渡组件6的宽度H优选碳纤维缠绕纱带的宽度的2~3倍,后部过渡组件7的宽度与前部过渡组件6的宽度一致。
上述结构的碳纤维全缠绕气瓶具有如下优点:
优点1:前部过渡组件6和后部过渡组件7的设置使得前封头21与筒体1之间的过渡区域以及后封头22与筒体1之间的过渡区域应力平滑,气瓶在受到内压时,前封头21与筒体1之间的过渡区域以及后封头22与筒体1之间的过渡区域不会产生应力集中,大大降低了过渡区域的剪切应力,避免了因应力集中而降低螺旋缠绕层碳纤维的强度发挥率的问题,能够充分发挥螺旋缠绕层碳纤维强度,因而小角度纵向螺旋缠绕形成的螺旋层即能保证纵向的强度,无需再额外增设多层高角度螺旋缠绕层来补强过渡区域,降低了碳纤维在螺旋缠绕方向的使用量;此外,过渡区域应力平滑还能保证气瓶爆破压力及疲劳压力更加稳定、可靠,大大提高了气瓶的综合性能。
优点2:在进行碳纤维缠绕的过程中,可以对前部过渡组件和后部过渡组件之间的筒体进行集中环向缠绕形成第一环向缠绕层,且在环向环绕过程中,第一环向缠绕层不会滑向封头区域。结合优点1,确保气瓶的疲劳强度,避免疲劳泄漏点发生在前封头21与筒体1之间的过渡区域以及后封头22与筒体1之间的过渡区域,有效增强了气瓶的疲劳强度和稳定性;此外,在保证气瓶的爆破强度与疲劳性能的基础上降低碳纤维在环向缠绕以及螺旋缠绕方向的使用量,最终降低气瓶的整体质量以及制造成本。
本方案所述的结构适用于金属内胆碳纤维全缠绕气瓶上,也适用于塑料内胆碳纤维全缠绕气瓶上。
本方案所述的碳纤维全缠绕气瓶的碳纤维缠绕方法,其特征在于:具体包 括以下步骤:
(1)计算出碳纤维全缠绕气瓶的环向缠绕层的最小厚度h θ
Figure PCTCN2021143773-appb-000003
其中,h θ是:环向缠绕层的最小厚度(mm);
R是:内胆的外半径(mm);
P bl是:内胆的最小爆破压力(MPa);
P b是:碳纤维全缠绕气瓶的最小设计爆破压力(MPa);
f]是:碳纤维最小拉伸强度保值(MPa);
V f是:碳纤维计算体积百分含量(%);
α是:纵向螺旋平均缠绕角;
(2)根据步骤(1)中得到的环向缠绕层的最小厚度h θ,确定碳纤维全缠绕气瓶的实际环向缠绕层的厚度h、前部过渡组件6的后端的壁厚h 1、后部过渡组件7的前端的壁厚h 2、在前部过渡组件6和后部过渡组件7之间的筒体1上缠绕的第一环向缠绕层31的厚度h 3、以及第二环向缠绕层的厚度h 4
h=1h θ~2h θ
h 1=0.4h~h;
h 2=0.4h~h;
h 3=1h 1~1.1h 1
h 4=h-h 3
(3)计算出碳纤维全缠绕气瓶的小角度纵向螺旋缠绕层4的厚度h α
Figure PCTCN2021143773-appb-000004
各参数与步骤(1)中对应的参数定义一致;
(4)将前部过渡组件6套装并固定于前封头21上,将后部过渡组件7套装并固定于后封头22上后将内胆安装于缠绕机上。
当h 4=0时,对前部过渡组件6与后部过渡组件7之间的筒体1进行环向缠绕形成第一环向缠绕层31;然后在第一环向缠绕层31、前封头21、后封头22上进行小角度纵向螺旋缠绕形成小角度纵向螺旋缠绕层4,即完成整个气瓶的碳纤维缠绕作业。
例如通过步骤(1)计算出碳纤维全缠绕气瓶的环向缠绕层的最小厚度h θ为10mm,确定碳纤维全缠绕气瓶的实际环向缠绕层的厚度h=11mm、前部过渡组件6的后端的壁厚h 1=10mm、后部过渡组件7的前端的壁厚h 2=10mm、在前部过渡组件6和后部过渡组件7之间的筒体1上缠绕的第一环向缠绕层31的厚度h 3=11mm、第二环向缠绕层的厚度h 4=0。
当h 4≠0时,对前部过渡组件6与后部过渡组件7之间的筒体1进行环向缠绕形成第一环向缠绕层31;然后在第一环向缠绕层31、前封头21、后封头22上进行小角度纵向螺旋缠绕形成小角度纵向螺旋缠绕层4,再在小角度纵向螺旋缠绕层4上进行环形缠绕形成第二环向缠绕层,即完成整个气瓶的碳纤维缠绕作业。
例如通过步骤(1)计算出碳纤维全缠绕气瓶的环向缠绕层的最小厚度h θ为10mm,确定碳纤维全缠绕气瓶的实际环向缠绕层的厚度h=10mm、前部过渡组件6的后端的壁厚h 1=6mm、后部过渡组件7的前端的壁厚h 2=6mm、在前部过渡组件6和后部过渡组件7之间的筒体1上缠绕的第一环向缠绕层31的厚度h 3=6mm、 第二环向缠绕层的厚度h 4=4mm。
以上所述仅是本发明的较佳实施例,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明要求保护的范围。

Claims (4)

  1. 一种碳纤维全缠绕气瓶,包括:由筒体、前封头和后封头构成的内胆,其特征在于:还包括:前部过渡组件和后部过渡组件;前部过渡组件上开设有与前封头的外轮廓对应匹配的第一球状通孔,前部过渡组件通过第一球状通孔套装并固定于前封头上,且前部过渡组件的后端面位于前封头与筒体的交界连接处,前部过渡组件的外轮廓为球面形状,且前部过渡组件的后端的壁厚大于前部过渡组件的前端的壁厚;后部过渡组件上开设有与后封头的外轮廓对应匹配的第二球状通孔,后部过渡组件通过第二球状通孔套装并固定于后封头上,且后部过渡组件的前端面位于后封头与筒体的交界连接处,后部过渡组件的外轮廓为球面形状,且后部过渡组件的前端的壁厚与前部过渡组件的后端的壁厚一致,后部过渡组件的后端的壁厚与前部过渡组件的前端的壁厚一致;在前部过渡组件与后部过渡组件之间的筒体上缠绕有第一环向缠绕层,第一环向缠绕层的厚度≥前部过渡组件的后端的壁厚,在第一环向缠绕层、前封头、后封头上依次缠绕包裹有小角度纵向螺旋缠绕层和第二环向缠绕层,第二环向缠绕层的厚度≥0。
  2. 根据权利要求1所述的一种碳纤维全缠绕气瓶,其特征在于:前部过渡组件的外轮廓的前端与前封头的外轮廓平滑接触,后部过渡组件的外轮廓的后端与后封头的外轮廓平滑接触。
  3. 根据权利要求1或2所述的一种碳纤维全缠绕气瓶,其特征在于:前部过渡组件的宽度H为碳纤维缠绕纱带的宽度的2~3倍,后部过渡组件的宽度与前部过渡组件的宽度一致。
  4. 权利要求1至3所述的任一种碳纤维全缠绕气瓶的碳纤维缠绕方法,其特征在于:具体包括以下步骤:
    (1)计算出碳纤维全缠绕气瓶的环向缠绕层的最小厚度h θ
    Figure PCTCN2021143773-appb-100001
    其中,h θ是:环向缠绕层的最小厚度(mm);
    R是:内胆的外半径(mm);
    P bl是:内胆的最小爆破压力(MPa);
    P b是:碳纤维全缠绕气瓶的最小设计爆破压力(MPa);
    f]是:碳纤维最小拉伸强度保值(MPa);
    V f是:碳纤维计算体积百分含量(%);
    α是:纵向螺旋平均缠绕角;
    (2)根据步骤(1)中得到的环向缠绕层的最小厚度h θ,确定碳纤维全缠绕气瓶的实际环向缠绕层的厚度h、前部过渡组件的后端的壁厚h 1、后部过渡组件的前端的壁厚h 2、在前部过渡组件和后部过渡组件之间的筒体上缠绕的第一环向缠绕层的厚度h 3、以及第二环向缠绕层的厚度h 4
    h=1h θ~2h θ
    h 1=0.4h~h;
    h 2=0.4h~h;
    h 3=1h 1~1.1h 1
    h 4=h-h 3
    (3)计算出碳纤维全缠绕气瓶的小角度纵向螺旋缠绕层的厚度h α
    Figure PCTCN2021143773-appb-100002
    (4)将前部过渡组件套装并固定于前封头上,将后部过渡组件套装并固定于后封头上后将内胆安装于缠绕机上,对前部过渡组件与后部过渡组件之间的筒体进行环向缠绕形成第一环向缠绕层;然后在第一环向缠绕层、前封头、后封头上进行小角度纵向螺旋缠绕形成小角度纵向螺旋缠绕层;当h 4≠0时再在小角度纵向螺旋缠绕层上进行环形缠绕形成第二环向缠绕层。
PCT/CN2021/143773 2021-08-25 2021-12-31 一种碳纤维全缠绕气瓶及其碳纤维缠绕方法 WO2023024394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110980703.5 2021-08-25
CN202110980703.5A CN113915516B (zh) 2021-08-25 2021-08-25 一种碳纤维全缠绕气瓶及其碳纤维缠绕方法

Publications (1)

Publication Number Publication Date
WO2023024394A1 true WO2023024394A1 (zh) 2023-03-02

Family

ID=79233287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143773 WO2023024394A1 (zh) 2021-08-25 2021-12-31 一种碳纤维全缠绕气瓶及其碳纤维缠绕方法

Country Status (2)

Country Link
CN (1) CN113915516B (zh)
WO (1) WO2023024394A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383034A (zh) * 2022-01-17 2022-04-22 光年探索(江苏)空间技术有限公司 一种纤维缠绕相交球壳压力容器
CN115013715A (zh) * 2022-06-17 2022-09-06 张家港氢云新能源研究院有限公司 一种碳纤维全缠绕高压储氢气瓶

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378052A (zh) * 2001-04-04 2002-11-06 中国科学院金属研究所 正交缠绕的复合高压气瓶
JP2006307947A (ja) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd 高圧ガス貯蔵容器の製造方法及び高圧ガス貯蔵容器
JP2010249146A (ja) * 2009-04-10 2010-11-04 Toyota Motor Corp ガスタンク及びガスタンクの製造方法
CN202442097U (zh) * 2012-02-21 2012-09-19 浙江凯博压力容器有限公司 碳纤维缠绕内胆复合气瓶
CN106762222A (zh) * 2016-11-29 2017-05-31 湖北三江航天江北机械工程有限公司 大型分段复合材料壳体连接结构及壳体缠绕方法
CN109282136A (zh) * 2018-09-12 2019-01-29 沈阳中复科金压力容器有限公司 聚酰亚胺纤维增强树脂基复合材料加强环及制备
CN110834418A (zh) * 2019-12-18 2020-02-25 杭州友凯船艇有限公司 一种纤维增强复合材料压力容器及其制备方案

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8474647B2 (en) * 2008-02-08 2013-07-02 Vinjamuri Innovations, Llc Metallic liner with metal end caps for a fiber wrapped gas tank
JP5238577B2 (ja) * 2009-03-31 2013-07-17 Jx日鉱日石エネルギー株式会社 複合容器及び複合容器の製造方法
JP6323254B2 (ja) * 2014-08-26 2018-05-16 トヨタ自動車株式会社 タンク
JP2017110669A (ja) * 2015-12-14 2017-06-22 トヨタ自動車株式会社 タンクの製造方法およびタンク
JP6769348B2 (ja) * 2016-04-14 2020-10-14 トヨタ自動車株式会社 高圧ガスタンクの製造方法
CN111998220A (zh) * 2019-05-27 2020-11-27 上海市特种设备监督检验技术研究院 一种高压复合轻量化储氢瓶
CN112856207A (zh) * 2021-03-30 2021-05-28 广东欧佩亚氢能源科技有限公司 一种预置光纤传感器的全缠绕式气瓶及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378052A (zh) * 2001-04-04 2002-11-06 中国科学院金属研究所 正交缠绕的复合高压气瓶
JP2006307947A (ja) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd 高圧ガス貯蔵容器の製造方法及び高圧ガス貯蔵容器
JP2010249146A (ja) * 2009-04-10 2010-11-04 Toyota Motor Corp ガスタンク及びガスタンクの製造方法
CN202442097U (zh) * 2012-02-21 2012-09-19 浙江凯博压力容器有限公司 碳纤维缠绕内胆复合气瓶
CN106762222A (zh) * 2016-11-29 2017-05-31 湖北三江航天江北机械工程有限公司 大型分段复合材料壳体连接结构及壳体缠绕方法
CN109282136A (zh) * 2018-09-12 2019-01-29 沈阳中复科金压力容器有限公司 聚酰亚胺纤维增强树脂基复合材料加强环及制备
CN110834418A (zh) * 2019-12-18 2020-02-25 杭州友凯船艇有限公司 一种纤维增强复合材料压力容器及其制备方案

Also Published As

Publication number Publication date
CN113915516A (zh) 2022-01-11
CN113915516B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2023024394A1 (zh) 一种碳纤维全缠绕气瓶及其碳纤维缠绕方法
EP2418412B1 (en) Tank and fabrication method thereof
US8474647B2 (en) Metallic liner with metal end caps for a fiber wrapped gas tank
EP2418414B1 (en) Tank and manufacturing method thereof
US20120024745A1 (en) Tank and manufacturing method thereof
JP2006132746A (ja) 圧力容器及び水素貯蔵タンク並びに圧力容器の製造方法
CN103672388B (zh) 一种封头-筒身一体化纤维缠绕复合材料气瓶的设计方法
JP2023505037A (ja) フープ層およびヘリカル層がワインディングされた高圧タンクおよびその製作方法
WO2023284459A1 (zh) 高压储氢瓶
CN212456246U (zh) 一种塑料内胆全缠绕复合气瓶
CN111368439A (zh) 一种基于缠绕成型工艺的压力容器的设计方法
US20200139610A1 (en) Manufacturing method for high pressure tank
WO2024041262A1 (zh) 一种复合成型的99MPa级加氢站用储氢容器制法
WO2010116529A1 (ja) タンクおよびその製造方法
CN114060707A (zh) 一种塑料内胆全缠绕复合气瓶及复合层缠绕方法
JPS5936146B2 (ja) 圧力容器
JP2019019954A (ja) 高圧タンクの製造方法
JP2020139565A (ja) 高圧タンク
JP2020037961A (ja) タンクの製造方法
EP4215796A1 (en) A pressure vessel for storing fluid
JP2020142388A (ja) 高圧タンクの製造方法
EP2716957A1 (en) High-pressure vessel made of composite materials
CN117113753A (zh) 一种高压储氢复合材料缠绕气瓶设计优化方法及系统
CA1171804A (en) Reinforced pressure vessel and a method of manufacturing same
JP6749629B2 (ja) 複合容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE