WO2023024333A1 - 一种精密的回转体测量装置和测量方法 - Google Patents

一种精密的回转体测量装置和测量方法 Download PDF

Info

Publication number
WO2023024333A1
WO2023024333A1 PCT/CN2021/137450 CN2021137450W WO2023024333A1 WO 2023024333 A1 WO2023024333 A1 WO 2023024333A1 CN 2021137450 W CN2021137450 W CN 2021137450W WO 2023024333 A1 WO2023024333 A1 WO 2023024333A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
data
height
sample
variable
Prior art date
Application number
PCT/CN2021/137450
Other languages
English (en)
French (fr)
Inventor
陈浙泊
叶雪旺
陈一信
余建安
陈龙威
陈镇元
张一航
林建宇
潘凌锋
陈逸宸
Original Assignee
浙江大学台州研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学台州研究院 filed Critical 浙江大学台州研究院
Publication of WO2023024333A1 publication Critical patent/WO2023024333A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts

Definitions

  • the invention relates to the field of laser scanning, in particular to a precision rotating body measuring device and measuring method.
  • crankshafts With the development of the motor industry, various types of crankshafts are required. Since the crankshaft needs to rotate at a high speed, the precision of the crankshaft is extremely high. The accuracy of the crankshaft directly affects the operation of the equipment, including the life of the equipment and the noise of the equipment running. In the traditional method, the manual detection method is used, which has high work intensity, low efficiency, and large error. Therefore, a detection device that can efficiently and precisely measure the dimensional parameters of the rotating body is needed.
  • the purpose of the present invention is to solve the deficiencies of the prior art, and provide a precision rotating body measuring device and measuring method.
  • the present invention adopts the following technical solutions:
  • a precision rotating body measuring device including a data processing device, a fixed platform, a moving device, a positioning component, a scanning device and a distance measuring device, wherein the moving device is arranged on the fixed platform; the positioning component is divided into two parts, which are respectively arranged on the moving On the device and the fixed platform, the positioning component is used to fix the revolving body; the scanning device is arranged on the moving device; the distance measuring device is arranged on the fixed platform, and the distance measuring device is used to detect the traveling distance of the scanning device; the processing device is respectively connected with the distance measuring device , motion device and scanning device communication connection.
  • An accurate method for measuring a rotating body comprising the steps of:
  • Step 1 The scanning device judges whether there is a sample to be tested between the upper positioning cone and the lower positioning cone; if there is a sample to be tested, then enter step 2; otherwise, the display of the data processing device shows that there is no sample to be tested, and the step ends ;
  • Step 2 The scanning device quickly scans the sample to be tested, and combines with the distance measuring device to obtain the fast scan data of the sample to be tested;
  • Step 3 The data processing device acquires the quick scan data, and compares the quick scan data with the pre-stored template data; judges whether there is a corresponding pre-stored template according to the comparison result; if there is a corresponding pre-stored template, proceed to step 4; If there is no corresponding pre-stored template, it will prompt to make a template, and go to step 4 after completing the template creation;
  • Step 4 The data processing device obtains the detection area and the jump area according to the pre-stored template data
  • Step 5 The data processing device plans the variable-speed scanning trajectory according to the detection area and the jump area;
  • Step 6 The scanning device performs variable-speed scanning on the sample to be tested according to the variable-speed scanning trajectory; transmits the variable-speed scanning data to the data processing center;
  • Step 7 The data processing center performs compensation and correction processing on the variable-speed scanning data, and the step ends.
  • the rotating body fixed on the positioning component is scanned by the scanning device to realize the detection of the size of the rotating body, including length and width;
  • the upper and lower ends of the rotating body are fixed to ensure that the position of the rotating body remains unchanged during the measurement process;
  • the distance between the upper positioning device and the scanning device is controlled to avoid contact between the two;
  • the scanning device By setting the scanning device to perform variable-speed scanning according to the variable-speed scanning trajectory, compared with traditional scanning, the data generated by scanning is reduced and the scanning efficiency is improved while ensuring accuracy;
  • the accuracy of the scanning data is guaranteed through preliminary processing of the variable-speed scanning data.
  • Fig. 1 is the overall schematic diagram of the measuring device of Embodiment 1 of the present invention.
  • Fig. 2 is the front view of the measuring device of Embodiment 1 of the present invention.
  • Fig. 3 is the measurement method flowchart of embodiment one of the present invention.
  • Fig. 4 is the inclined self-calibration flow chart of embodiment one of the present invention.
  • Fig. 5 is the X-direction automatic adjustment process of Embodiment 1 of the present invention.
  • Fig. 6 is the Y-direction automatic adjustment process of Embodiment 1 of the present invention.
  • Fig. 7 is the process of making a template in Embodiment 1 of the present invention.
  • Fig. 8 is a schematic diagram of a standard calibration stick in Embodiment 2 of the present invention.
  • FIG. 9 is a horizontal correction calculation process in Embodiment 2 of the present invention.
  • FIG. 10 is a flow chart of height correction calculation in Embodiment 2 of the present invention.
  • a precision rotating body measuring device includes a data processing device, a fixed platform, a moving device 3, a positioning component, a scanning device 6 and a distance measuring device, wherein the moving device 3 is arranged on the fixed platform;
  • the positioning assembly is divided into two parts, which are respectively arranged on the moving device 3 and the fixed platform.
  • the positioning assembly is used to fix the revolving body; the scanning device 6 is arranged on the moving device 3; the distance measuring device is arranged on the fixed platform, and the distance measuring device is used for The traveling distance of the scanning device 6 is detected; the processing device is respectively connected to the distance measuring device, the moving device 3 and the scanning device 6 in communication.
  • the fixed platform includes a base 1 and a stand 2, the stand 2 is vertically arranged on the base 1, and the stand 2 is a square marble slab in this example.
  • the moving device 3 includes a driving group and a screw group, the driving group is arranged on the top of the stand 2, and the screw group is arranged on the side of the stand 2; the driving group and the screw group are connected by transmission.
  • the drive group includes two motors, namely motor one and motor two, wherein motor one is used to drive the scanning component, and motor two is used to drive a part of the positioning component; the screw rod group is connected to the motor one and the second motor respectively.
  • the screw group includes a screw rod, a positioning block and a ball nut, wherein the fixed outer block is arranged between the screw rod and the stand 2, and the positioning blocks are respectively located at both ends of the screw rod; the ball nut is arranged on the screw rod, and the ball nut is used for Fix the scanning device 6 or the positioning assembly.
  • a chute is also provided on the stand 2, and the screw rod is arranged in the chute so that the ball nut can slide along the chute.
  • three screw rods are provided, one of which corresponds to the scanning device 6, and the other two screw rods correspond to the positioning assembly.
  • the two screw mandrels corresponding to the positioning assembly are respectively connected with the second motor through a transmission belt, the second motor and the two screw mandrels are distributed in a triangle, and the rotation of the second motor can drive the two screw mandrels to rotate through the transmission belt.
  • the screw mandrel corresponding to the scanning device 6 is arranged between the two screw mandrels corresponding to the positioning assembly, the purpose of which is to enable the positioning assembly and the scanning device 6 to maintain balance.
  • the positioning assembly includes an upper positioning device 4 and a lower positioning device 5, wherein the lower positioning device 5 is movably arranged on the base 1 of the fixed platform, the upper positioning device 4 is arranged on the screw group, and the upper positioning device 4 is also connected with the stand 2 Between the use of slide rail connection.
  • the lower positioning device 5 includes a lower positioning cone, an adjustment seat and a sliding assembly.
  • the lower positioning cone is arranged on the adjustment seat, and the adjustment seat is movably arranged on the base 1 through the sliding assembly.
  • the tip of the lower positioning cone is connected with one end of the rotating body, and cooperates with the upper positioning device 4 to clamp the rotating body.
  • the sliding assembly includes a sliding rail and a sliding motor. In this example, there are two sliding motors.
  • the two sliding motors are respectively arranged on both sides of the adjustment seat.
  • the two sliding motors are arranged perpendicular to each other.
  • the sliding motors are arranged on the sliding rail through the slider .
  • the Y motor in the two motors is used to adjust the adjustment seat on the Y axis
  • the position in the direction, the X motor is used to adjust the position in the direction of the X axis.
  • the lower positioning device is also provided with a protective cover, the protective cover covers the adjustment seat and the sliding assembly, and the lower positioning cone passes through the protective cover.
  • the upper positioning device 4 includes a sliding plate and an upper positioning cone, wherein the upper positioning cone is arranged on the sliding plate, and in this example, the upper positioning cone is arranged on a fixed seat provided on the sliding plate; the sliding plate is fixedly arranged on the ball nut of the screw mandrel. On; the upper positioning cone is facing the lower positioning cone.
  • the sliding plate is also slidably connected with the stand 2. In this example, the sliding plate is arranged on the slide rails on the side of the stand 2, wherein there are two slide rails connected with the slide plate, and the two slide rails are parallel to each other.
  • the scanning device 6 includes a sliding plate two, a transmitting end and a receiving end, and the transmitting end and the receiving end are all arranged on the sliding plate two, wherein the transmitting end and the receiving end are relatively arranged, and a set distance is maintained between the transmitting end and the receiving end;
  • the upper positioning cone and the lower positioning cone are located between the transmitting end and the receiving end. It should be noted that the direction of the light beam emitted by the emitting end is perpendicular to the moving direction of the scanning device 6 .
  • the second sliding plate is arranged on the ball nut of the screw rod; The slide rails are parallel to each other.
  • the scanning device 6 is also provided with an elastic column, which is used to avoid the collision between the scanning device 6 and the upper positioning device 4; Device 4 also scans into the image.
  • the scanning device 6 is located between the upper positioning device 4 and the lower positioning device 5 in the height direction.
  • the distance measuring device adopts a grating ruler, including a scale grating 7 and a read head 8, wherein the scale grating 7 is arranged on the stand 2, and the read head 8 is arranged on the side of the scanning device 6; the read head 8 and the scale grating 7 Relatively set, the reading head 8 is used to read the data on the scale grating 7 and record the distance data.
  • the distance measuring device is in communication connection with the data processing device.
  • Described data processing device comprises PLC equipment and host computer, and host computer is connected with PLC equipment; PLC equipment is also respectively connected with scanning device 6 and distance measuring device communication; Host computer includes display, lower computer interface and memory etc.; Computer interaction, including displaying scanned images and scanned data.
  • It also includes a workbench 9, wherein the data processing device is arranged in the workbench 9, and the base 1 is arranged in a groove on the upper surface of the workbench 9.
  • the upper surface of the base 1 and the upper surface of the workbench 9 are located at the same plane; the stand 2 is set on the base 1 .
  • the bottom of workbench 9 is provided with universal wheel, is convenient to move.
  • the stand 2 is also provided with limit blocks, wherein there are two limit blocks, one limit block is used to limit the maximum movement height of the upper positioning device 4, and the other limit block is used to limit the maximum movement of the scanning device 6 Height: There is a height difference between the two limit blocks, so as to avoid mutual interference between the highest positions of the upper positioning device 4 and the scanning device 6 .
  • the side of the stand 2 is also provided with drag chains, and the drag chains are used to set the connecting wires on the scanning device 6 to prevent the connecting wires from obstructing the movement of the scanning device 6 .
  • a precise method for measuring a rotating body includes the following steps:
  • Step 1 The scanning device judges whether there is a sample between the upper positioning cone and the lower positioning cone; if there is a sample to be tested, then enter step 2; otherwise, the display of the data processing device shows that there is no sample to be tested, and the step ends;
  • Step 2 The scanning device quickly scans the sample to be tested, and combines with the distance measuring device to obtain the fast scan data of the sample to be tested;
  • Step 3 The data processing device acquires the quick scan data, and compares the quick scan data with the pre-stored template data; judges whether there is a corresponding pre-stored template according to the comparison result; if there is a corresponding pre-stored template, proceed to step 4; If there is no corresponding pre-stored template, it will prompt to make a template, and go to step 4 after completing the template creation;
  • Step 4 The data processing device obtains the detection area and the jump area according to the pre-stored template data
  • Step 5 The data processing device plans the variable-speed scanning trajectory according to the detection area and the jump area;
  • Step 6 The scanning device performs variable-speed scanning on the sample to be tested according to the variable-speed scanning trajectory; transmits the variable-speed scanning data to the data processing center;
  • Step 7 The data processing center performs compensation and correction processing on the variable-speed scanning data, and the step ends.
  • step 1 the relative position of the upper positioning cone and the lower positioning cone needs to be tilted and self-calibrated; the tilted self-calibration includes the following steps:
  • Step S1 The data processing device receives the corresponding instruction and enters the tilt self-calibration mode
  • Step S2 The scanning device scans the standard calibration rod, combined with the distance measuring device, to obtain scanning data;
  • the standard calibration rod is a rotating body with known shaft diameter and height data, and the standard calibration rod is a cylinder in this example;
  • Step S3 The data processing device obtains the inclination angle ⁇ of the standard calibration rod in the Y-Z plane according to the scan data;
  • Step S4 Obtain the inclination angle ⁇ of the standard calibration rod in the X-Z plane according to the inclination angle ⁇ ;
  • Step S5 Determine the relationship between the inclination angle ⁇ and the inclination angle ⁇ and the set threshold; if it is greater than the set threshold, adjust the position of the lower positioning device and display it on the display of the data processing device, and return to step S1; otherwise, Go to step S6;
  • Step S6 Obtain the tilt compensation correction parameter according to the tilt angle ⁇ and the tilt angle ⁇ , and end the step.
  • step S2 the calibration standard is cylindrical in this example.
  • step S3 the inclination angle in the Y-Z plane is obtained by scanning the image.
  • the angle at which the axis of the rotator in the scan image deviates from the vertical direction is the inclination angle ⁇ of the standard calibration rod in the Y-Z plane.
  • the scan width L′ of the standard calibration rod is obtained, combined with the known width L of the standard calibration rod, the inclination angle ⁇ in the Y-Z plane is obtained, as shown in the following formula:
  • step S4 the calculation of the inclination angle ⁇ of the standard calibration rod in the XZ plane first needs to calculate the height change H ⁇ caused by the inclination angle ⁇ in the YZ plane:
  • H represents the known height of standard calibration rod
  • L represents the width of the known upper end or lower end of standard calibration rod, and it should be noted that in this example, the width of the upper end and lower end of standard calibration rod is consistent
  • H ⁇ represents the height change caused by the tilt angle in the YZ plane. It should be noted that in this example, the height change represents the difference between the tilted height and the original height; secondly, obtain the height of the standard calibration rod in the XZ plane Height variation H ⁇ ;
  • h represents the scanning height of the standard calibration rod. According to the tilt relationship, it can be obtained:
  • represents the inclination angle in the X-Z plane.
  • the X direction is the direction in which the scanning light is emitted;
  • the Z direction is the direction in which the scanning device moves, and in this example the Z direction is the vertical direction;
  • the Y direction is perpendicular to the X direction and the Z direction respectively.
  • the content displayed on the display includes the adjustment direction and the adjustment distance; the position adjustment of the lower positioning device can be adjusted by the operator according to the display content on the current display or by the lower positioning device.
  • the sliding components are automatically adjusted.
  • the adjustment direction includes an adjustment direction in the X direction and an adjustment direction in the Y direction.
  • the adjustment direction of the Y direction is determined according to the outline of the scanned image and the coordinates of the vertices.
  • the adjustment direction of the X direction it is first necessary to fine-tune the lower positioning device to the positive or negative direction in the X direction, and then start the scanning device to scan. If the scanning height h' of the scanned image obtained after fine-tuning is smaller than that before For scanning height h, adjust the lower positioning device to the opposite direction of fine adjustment; otherwise, continue to adjust to the direction of fine adjustment.
  • automatic adjustment is performed by the sliding component, and the adjustment process includes the following steps:
  • Step S51 Obtain the adjustment distance ⁇ Y of the lower positioning device in the Y direction according to the inclination angle ⁇ ;
  • Step S52 Obtain the adjustment direction in the Y direction according to the outline and vertex coordinates of the scanned image; if the sum of the coordinates of the upper fixed point is greater than the sum of the coordinates of the lower fixed point, move the lower positioning device to the positive direction of the Y direction, if the upper fixed point If the sum of the coordinates is less than the sum of the coordinates of the lower fixed point, move the lower positioning device to the negative direction of the Y direction;
  • Step S53 Send the adjustment distance and the adjustment direction to the drive of the Y motor in the sliding assembly, and control the Y motor to complete the adjustment in the Y direction;
  • Step S54 Obtain the adjustment distance ⁇ X of the lower positioning device in the X direction according to the inclination angle ⁇ ;
  • Step S55 Control the X motor so that the lower positioning device adjusts the distance ⁇ X' in the positive or negative direction of X, where ⁇ X' is smaller than ⁇ X;
  • Step S56 Obtain the scanned image of the adjusted standard calibration rod
  • Step S57 Judging the height change of the scanned image of the standard calibration stick, if the inclination angle ⁇ in the X-Z plane of the scanned image is smaller than before adjustment, then control the X motor to continue to adjust the distance ( ⁇ X- ⁇ X') along this direction , otherwise adjust the distance of ( ⁇ X+ ⁇ X') in the opposite direction; end the step.
  • step S6 the tilt compensation correction parameters are used to compensate the scan data obtained by the scanning device, so as to improve the accuracy of the scan data. Since it is difficult to adjust with manual adjustment devices for small errors, it is compensated by calculation of data in this example. Obtaining the tilt compensation correction parameters includes the following steps:
  • Step S61 According to the inclination angle ⁇ in the Y-Z plane, the height inclination compensation coefficient A of the Y-Z plane is obtained through conversion of trigonometric functions;
  • Step S62 Perform data compensation on the height data in the scan data obtained by scanning according to the height tilt compensation coefficient A of the Y-Z plane;
  • Step S63 Comparing the compensated data with the real height data of the standard calibration stick to obtain the height tilt compensation coefficient B of the X-Z plane;
  • Step S64 Obtain the width compensation coefficient C according to the inclination angle ⁇ in the Y-Z plane, and end the step.
  • step S61 the calculation of the height tilt compensation coefficient A of the Y-Z plane is as follows:
  • H represents the known height of the standard calibration rod
  • L represents the known width of the upper or lower end of the standard calibration rod
  • represents the inclination angle in the Y-Z plane.
  • step S63 the calculation of the height tilt compensation coefficient B of the X-Z plane is as follows:
  • represents the inclination angle in the X-Z plane.
  • step S64 the calculation of the width compensation coefficient C is as follows:
  • step 1 judge whether there is a sample to be measured between the upper positioning cone and the lower positioning cone by the scanning device at the set height whether there is a scanned image, in this example, the set height is the top height position of the lower positioning cone; After the scanning device determines whether there is a sample to be tested, it will return to the initial position. In some other embodiments, it is also possible to judge whether there is a sample to be tested between the upper positioning cone and the lower positioning cone through the degree of the pressure sensor provided on the lower positioning device, or judge the torque of the motor one corresponding to the upper positioning cone Whether there is a sample to be tested between the upper positioning cone and the lower positioning cone.
  • the fast scanning in the step 2 is that the scanning device scans at a set speed at a constant speed; wherein the scanning data includes the obtained width data scanned by the scanning device and the height data obtained by the distance measuring device, and the height data and the width data are mutually related according to the time relationship Correlation, in this example, the PLC receives the data of the scanning device and the distance measuring device respectively, and uploads the two parts of data to the host computer synchronously according to the receiving time.
  • the process of making the template in the step 3 includes the following steps:
  • Step 31 The scanning device quickly scans the template sample to obtain the fast scan data of the template sample
  • Step 32 The data processing device acquires and stores the fast scan data
  • Step 33 Obtain the transition region of the width of the template sample according to the fast scanning data, and obtain the detection region according to the transition region; in this example, the detection region is the region between adjacent transition regions;
  • Step 34 Acquire the variable-speed scanning trajectory according to the detection area and the jumping area; the scanning device performs variable-speed scanning on the template sample according to the variable-speed scanning trajectory; and transmits the variable-speed scanning data to the data processing center;
  • Step 35 The data processing center performs compensation and correction processing on the variable-speed scanning data, stores the compensated scanning data and the detection area, and ends the step.
  • the storage of the data processing device includes four parts, two of which are stored as a group, and the two storage parts in each group of storage are used to store the height of the distance measurement and the width data of the scan respectively; When it is full, switch to another set of storage, and upload the stored data in the full storage part to the host computer; by setting the two sets of storage to switch between each other, it ensures the continuous scanning process and improves the scanning efficiency.
  • the data processing device also stores the scanning data according to the above-mentioned storage method.
  • the acquisition of the detection area in step 33 includes the following steps:
  • Step 331 according to the result of quick scanning, and according to the change point of the width of the scanned image, the height of the image is segmented;
  • Step 332 Take out the endpoints of all the height segments, and spread the endpoints up and down to obtain the transition area; in this example, add or subtract the set value to the endpoints of the image height segments to obtain the range of the transition area;
  • Step 333 Use the area between adjacent jumping areas as the detection area, and end the step.
  • variable-speed scan in step 34 is the same as the variable-speed scan in step 5.
  • the planning process of the variable-speed scanning trajectory pair includes the following steps:
  • Step 51 Segment the height according to the read detection area and jump area
  • Step 52 Set fast scanning for the detection area, and slow scanning for the jumping area.
  • the fast scanning and slow scanning in step 52 represent the speed of the scanning device, wherein the scanning data frequency of the scanning device is consistent, and the scanning frequency in this example is 2500 Hz.
  • the data processing device After the data processing device receives the variable-speed scanning data, it will perform preliminary processing on the variable-speed scanning data, and obtain accurate scanning data through preliminary processing.
  • the preliminary processing includes outer diameter measurement processing, height measurement processing and synchronous measurement processing .
  • outer diameter measurement process includes the following steps:
  • Step 601 Read the range of each detection area from the pre-stored template data, including the height start point and the height end point end;
  • Step 603 Perform filtering processing on the width detection data set; in this example, the filtering processing includes median filtering and smoothing filtering;
  • Step 604 Obtain the mean value of the filtered width detection data set, and use the mean value as the width value of the detection area; use the difference between the maximum value and its mean value in the width detection data set Mear as the upper tolerance, and the difference between the minimum value and its mean value As lower tolerance; end step.
  • the steps in height measurement processing include:
  • Step 611 Obtain the outer diameter scan data set W and the height scan data set V of each jump area according to the height range of the jump area in the pre-stored template data; wherein the outer diameter scan data set W includes several outer diameter data Mear_w , the height scanning data set V includes several height data Mear_v;
  • Step 612 Perform differential processing on all the outer diameter data Mear_w, and use points whose differential values are greater than the set threshold as step change points to obtain several change points;
  • Step 614 Perform mean filtering on all outer meridian data in the height neighborhood D to obtain data set d1;
  • Step 615 Calculate the slope of each point of the data set d1 to obtain the slope set d2;
  • Step 616 traverse the slope set d2, and filter out all index sets d3 whose slope values are greater than the set threshold;
  • Step 618 Obtain the width information of the transition area in the pre-stored template, and substitute the width information into the fitted straight line equation to obtain height data, and use the height data as the height of the transition point when measuring the sample to be tested.
  • the height of the jump point represents the height at which the width of the sample to be tested is changed.
  • the multiple width data are averaged, and the obtained average width is used as the width value of the sample to be tested at the height of the rotating body; similarly, if a If the width data at a moment corresponds to a plurality of height data, the mean value of the plurality of height data is calculated, and the obtained height mean value corresponds to the width data.
  • the scanning device Because in the process of actual measurement, due to the phase difference between the scanning device and the distance measuring device and the delay of data transmission, there may be no data output from the distance measuring device when the data of the scanning device is output, or when the data of the distance measuring device When outputting, the scanning device has no data output, which will cause errors in the detection data.
  • step 7 the scan data obtained in step 6 is compensated according to the preset tilt compensation correction parameters; in this example, the tilt compensation correction parameters are obtained through step S6, including height tilt compensation coefficients A, B and width compensation coefficient C .
  • the calculation of the compensated height H complement is shown in the following formula:
  • H complement H measurement ⁇ A ⁇ B
  • Hmeasure represents the height measurement value of the sample to be tested
  • A represents the height compensation coefficient A
  • B represents the height compensation coefficient B.
  • Lmeasurement represents the width measurement value of the sample to be tested.
  • the scanning device by setting the scanning device to perform variable-speed scanning according to the variable-speed scanning trajectory, compared with traditional scanning, the data generated by scanning can be reduced while ensuring accuracy, and the scanning efficiency can be improved; through tilt self-calibration, the upper positioning can be verified Whether the cone and the lower positioning cone are aligned, if not, correct it to reduce the scanning error and ensure the accuracy of the scanning data; through tilt compensation for the scanning data, automatic compensation for subtle tilt errors to further ensure the accuracy of the data; The accuracy of the scanning data is guaranteed through preliminary processing of the variable-speed scanning data.
  • Embodiment 1 This embodiment is obtained based on Embodiment 1, wherein the relative position of the upper positioning cone and the lower positioning cone needs to be tilted and self-calibrated before step 1; the tilted self-calibration includes the following steps:
  • Step S1 The data processing device receives the corresponding instruction and enters the tilt self-calibration mode
  • Step S2 The scanning device scans the standard calibration rod, combined with the distance measuring device, to obtain scanning data;
  • the standard calibration rod is a rotating body with known shaft diameter and height data;
  • Step S3 The data processing device obtains the inclination angle ⁇ of the standard calibration rod in the Y-Z plane according to the scan data;
  • Step S4 Obtain the inclination angle ⁇ of the standard calibration rod in the X-Z plane according to the inclination angle ⁇ ;
  • Step S5 Determine the relationship between the inclination angle ⁇ and the inclination angle ⁇ and the set threshold; if it is greater than the set threshold, adjust the position of the lower positioning device and display it on the display of the data processing device, and return to step S1; otherwise, Go to step S6;
  • Step S6 Obtain system compensation correction parameters, and end the step.
  • the standard calibration stick includes cylindrical segments and spherical segments, wherein the cylindrical segments and spherical segments are alternately arranged, and the lengths of the cylindrical segments and the spherical segments are equal, the standard calibration rods
  • the number of cylindrical segments and spherical segments is equal, and the purpose is to make the scanning image of the standard calibration rod and its flipped scanning image complement each other.
  • the height of the scanned image will decrease, and the jump edges of the cylindrical segment and the arc segment are arc-shaped, but it does not affect the scanning result of the diameter; when tilting in the Y direction, the scanned image will The height of is reduced and has an effect on the diameter scan results at the end of the cylinder.
  • step S6 the system compensation correction parameters include horizontal error compensation and height error compensation.
  • the horizontal error compensation is as follows:
  • Step S601 Obtain a scanned image of a standard calibration rod
  • Step S602 Obtain the boundary distance according to the scanned image of the cylinder segment and the boundary of the scanned image, and the boundary distance represents the distance from the image of the cylinder segment to the scanned image; where the boundary distance data is expressed as a T [d 1 ,d 2 ,...d n ], the corresponding height is expressed as h T :[h 1 ,h 2 ,...h n ];
  • step S604 since the inclination angle ⁇ of the standard calibration rod in the X-Z plane does not affect the scanning result of the diameter, only the inclination angle ⁇ in the Y-Z plane is considered.
  • the height error compensation is as follows:
  • Step S611 According to the scanned image of the standard calibration rod, obtain the scanned data A of one segment of the spherical segment: And perform differential processing on the second column of data to obtain detR: Where h T :[h 1 ,h 2 ,...h n ] represents height, r T :[r 1 ,r 2 ,...r n ] represents width, ⁇ represents the inclination angle value in the YZ plane;
  • Step S613 Intercept data S from data A with V1 as the starting point and V2 as the end point: Among them, V1 and V2 represent the initial height and end height of the spherical segment respectively, V1 corresponds to the height value H1, and V2 corresponds to the height value Hm;
  • Step S615 According to the relationship between the chord length and the radius of the circle, obtain Where R represents the radius, L represents the chord length, and H represents the height;
  • Step S616 Take the second column of data in the data S and bring it into obtain as the height truth value
  • Step S617 Establish a mapping relationship F(X) so that established
  • Step S618 Through the "rounding function" method, the and Segmentation; in this example, 0.02mm is set as the segment unit, and one millimeter can be divided into 50 segments, and the data obtained for the first segment is expressed as and the corresponding and
  • Step S6110 Calculate the correction coefficients A and z for all segments, and obtain the height correction coefficient matrix
  • Step S6111 Obtain the height correction coefficients of all arc segments according to steps S611-S6110 for the remaining arc segments;
  • Step S6112 Turn over the calibration rod, repeat the above steps S611-S6111, obtain the height verification parameters of all heights of the standard calibration rod, and end the step.

Abstract

一种精密的回转体测量装置,通过扫描装置(6)扫描固定于定位组件上的回转体,实现对回转体尺寸的检测,包括长度以及宽度;通过设置扫描装置(6)根据变速扫描轨迹进行变速扫描,相比传统的扫描,在保证精度的情况下,减少扫描产生的数据,提高扫描效率。还公开了一种精密的回转体测量方法。

Description

一种精密的回转体测量装置和测量方法 技术领域
本发明涉及激光扫描领域,特别是涉及一种精密的回转体测量装置和测量方法。
背景技术
随着电机行业的发展,需要各种型号的机轴,其中由于机轴需要高速旋转动作,因此对于机轴的精度要求极高。机轴的精度直接影响设备的运行,包括设备的寿命和设备运行的噪音等方面。在传统的方法中,采用人工检测方法,其工作强度大、效率低,而且误差也很大,因此需要一种能够高效、精密测量回转体尺寸参数的检测设备。
发明内容
本发明的目的是解决现有技术的不足,提供一种精密的回转体测量装置和测量方法。
为了解决上述问题,本发明采用如下技术方案:
一种精密的回转体测量装置,包括数据处理装置、固定台、运动装置、定位组件、扫描装置以及测距装置,其中运动装置设置于固定台上;定位组件分为两部分,分别设置于运动装置以及固定台上,定位组件用于固定回转体;扫描装置设置于运动装置上;测距装置设置于固定台上,测距装置用于检测扫描装置的行进距离;处理装置分别与测距装置、运动装置以及扫描装置通信连接。
一种精确的回转体的测量方法,包括如下步骤:
步骤1:扫描装置判断上定位锥和下定位锥之间的是否存在待测样品;若存在待测样品,则进入步骤2;否则,在数据处理装置的显示器上显示无待测样品,结束步骤;
步骤2:扫描装置对待测样品进行快速扫描,结合测距装置,获取待测样品的快速扫描数据;
步骤3:数据处理装置获取快速扫描数据,并将快速扫描数据与预存的模板数据进行比对;根据比对的结果判断是否存在相应的预存模板;若存在相应的预存模板,则进入步骤4;若没有相应的预存模板,则提示制作模板,完成模板制作后进入步骤4;
步骤4:数据处理装置根据预存模板数据,获取检测区域以及跳变区域;
步骤5:数据处理装置根据检测区域以及跳变区域,规划变速扫描轨迹;
步骤6:扫描装置根据变速扫描轨迹对待测样品进行变速扫描;将变速扫描数据传输至数据处理中心;
步骤7:数据处理中心对变速扫描数据进行补偿校正处理,结束步骤。
本发明的有益效果为:
通过扫描装置扫描固定于定位组件上的回转体,实现对回转体尺寸的检测,包括长度以及宽度;
通过上定位装置的上定位锥以及下定位装置的下定位锥,固定回转体的上下端,保证回转体在测量过程的位置不变;
通过在扫描装置上设置弹性立柱,控制上定位装置和扫描装置之间的间距,避免两者相触;
通过在立架上设置限位块,限制上定位装置和扫描装置的运动高度;
通过设置扫描装置根据变速扫描轨迹进行变速扫描,相比传统的扫描,在保证精度的情况下,减少扫描产生的数据,提高扫描效率;
通过倾斜自校,校验上定位锥和下定位锥之间是否对齐,若没有对齐,则进行自动或者手动校正,减少扫描误差,保证扫描数据准确;
通过对扫描数据进行倾斜补偿和系统误差补偿,对于细微的倾斜误差以及系统误差进行自动补偿,进一步保证数据的准确;
通过对变速扫描数据的初步处理,保证扫描数据的准确性。
附图说明
图1为本发明实施例一的测量装置整体示意图;
图2为本发明实施例一的测量装置的主视图;
图3为本发明实施例一的测量方法流程图;
图4为本发明实施例一的倾斜自校流程图;
图5为本发明实施例一的X方向自动调节流程;
图6为本发明实施例一的Y方向自动调节流程;
图7为本发明实施例一的制作模板流程;
图8为本发明实施例二的标准校验棒示意图;
图9为本发明实施例二的水平校正计算流程;
图10为本发明实施例二的高度校正计算流程。
附图标识说明:底座1、立架2、运动装置3、上定位装置4、下定位装置5、扫描装置6、标尺光栅7、读取头8、工作台9。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
实施例一:
如图1、2所示,一种精密的回转体测量装置,包括数据处理装置、固定台、运动装置3、定位组件、扫描装置6以及测距装置,其中运动装置3设置于固定台上;定位组件分为两部分,分别设置于运动装置3以及固定台上,定位组件用于固定回转体;扫描装置6设置于运动装置3上;测距装置设置于固定台上,测距装置用于检测扫描装置6的行进距离;处理装置分别与测距装置、运动装置3以及扫描装置6通信连接。
所述固定台包括底座1以及立架2,立架2竖直设置与底座1上,在本例中立架2为方形的大理石板。
所述运动装置3包括驱动组以及丝杆组,驱动组设置于立架2的顶部,丝杆组设置于立架2的侧面;驱动组与丝杆组传动连接。驱动组包括两个电机,分别为电机一和电机二,其中电机一用于带动扫描组件,电机二用于带动定位组件的一部分;丝杆组分别与电机一和电机二连接。丝杆组包括丝杆、定位块以及滚珠螺母,其中定外块设置于丝杆与立架2之间,定位块分别位于丝杆的两端;滚珠螺母设置于丝杆上,滚珠螺母用于固定扫描装置6或者定位组件。在立架2上还设置有滑槽,丝杆设置于滑槽内,使得滚珠螺母能够沿着滑槽滑动。在本例中设置有三根丝杆,其中一根丝杆对应扫描装置6,另外两根丝杆对应定位组件。对应定位组件的两根丝杆分别与电机二通过传动带连接,电机二和两根丝杆呈三角形分布,电机二转动能够通过传动带带动两根丝杆转动。在本例中对应扫描装置 6的丝杆设置于对应定位组件的两根丝杆之间,其目的是为了使得定位组件和扫描装置6能够保持平衡。
所述定位组件包括上定位装置4以及下定位装置5,其中下定位装置5活动设置于固定台的底座1上,上定位装置4设置于丝杆组上,上定位装置4还与立架2之间用过滑轨连接。下定位装置5包括下定位锥、调节座以及滑动组件,下定位锥设置于调节座上,调节座通过滑动组件活动设置于底座1上,在本例中下定位锥设置于从调节座上凸起的圆柱或圆台上;下定位锥的尖端与回转体的一端连接,配合上定位装置4,用于夹住回转体。滑动组件包括滑轨以及滑动电机,在本例中滑动电机共两个,两个滑动电机分别设置于调节座的两侧,两个滑动电机相互垂直设置,滑动电机通过滑块设置于滑轨上。其中一个滑动电机动作时,推动调节座动作,进而带动另一个滑动电机在其滑轨上产生相对滑动,进而实现调节座的位置调节;两个电机中的Y电机用于调节调节座在Y轴方向上的位置,X电机用于调节X轴方向上的位置。其中下定位装置上还设置有保护盖,保护盖盖于调节座和滑动组件上,下定位锥穿过保护盖。上定位装置4包括滑动板以及上定位锥,其中上定位锥设置于滑动板上,在本例中上定位锥设置于滑动板上设置的固定座上;滑动板固定设置于丝杆的滚珠螺母上;上定位锥正对下定位锥。滑动板还与立架2滑动连接,在本例中滑动板设置于立架2侧面的滑轨上,其中与滑动板连接的滑轨共两条,两条滑轨相互平行。
所述扫描装置6包括滑动板二、发射端以及接收端,发射端和接收端均设置于滑动板二上,其中发射端和接收端相对设置,发射端和接收端之间保持设定距离;上定位锥以及下定位锥位于发射端和接收端之间。需要说明的是发射端发射的光束的方向与扫描装置6的运动方向相垂直。滑动板二设置于丝杆的滚珠螺母上;滑动板二还与立架2滑动连接,滑动板二设置于立架2侧面的滑轨上,与滑动板二连接的滑轨共两条,两条滑轨相互平行。在本例中扫描装置6上还设置有弹性立柱,弹性立柱用于避免扫描装置6和上定位装置4相撞;另外弹性立柱也能够限制扫描装置6的扫描范围,避免扫描装置6将上定位装置4也扫描进图像中。扫描装置6在高度方向上,位于上定位装置4与下定位装置5之间。
所述测距装置采用光栅尺,包括标尺光栅7以及读取头8,其中标尺光栅7设置于立架2上,读取头8设置于扫描装置6的侧面;读取头8与标尺光栅7 相对设置,读取头8用于读取标尺光栅7上的数据,记录距离数据。测距装置与数据处理装置通信连接。
所述数据处理装置包括PLC设备以及上位机,上位机与PLC设备连接;PLC设备还分别与扫描装置6以及测距装置通信连接;上位机包括显示器、下位机接口以及存储器等;显示器用于人机交互,包括显示扫描图像以及扫描数据等。
还包括工作台9,其中数据处理装置设置于工作台9内,底座1设置于工作台9的上表面的凹槽内,在本例中底座1的上表面和工作台9的上表面位于同一平面;立架2设置于底座1上。工作台9的底部设置有万向轮,便于进行移动。
所述立架2上还设置有限位块,其中限位块共两块,一块限位块用于限制上定位装置4的最高运动高度,另一块限位块用于限制扫描装置6的最高运动高度;两块限位块之间存在高度差,避免上定位装置4和扫描装置6的最高位置相互干涉。立架2的侧面还设置有拖链,拖链用于设置扫描装置6上的连接线,避免连接线阻碍扫描装置6的运动。
如图3所示,一种精密的回转体测量方法,包括如下步骤:
步骤1:扫描装置判断上定位锥和下定位锥之间的是否存在样品;若存在待测样品,则进入步骤2;否则,在数据处理装置的显示器上显示无待测样品,结束步骤;
步骤2:扫描装置对待测样品进行快速扫描,结合测距装置,获取待测样品的快速扫描数据;
步骤3:数据处理装置获取快速扫描数据,并将快速扫描数据与预存的模板数据进行比对;根据比对的结果判断是否存在相应的预存模板;若存在相应的预存模板,则进入步骤4;若没有相应的预存模板,则提示制作模板,完成模板制作后进入步骤4;
步骤4:数据处理装置根据预存模板数据,获取检测区域以及跳变区域;
步骤5:数据处理装置根据检测区域以及跳变区域,规划变速扫描轨迹;
步骤6:扫描装置根据变速扫描轨迹对待测样品进行变速扫描;将变速扫描数据传输至数据处理中心;
步骤7:数据处理中心对变速扫描数据进行补偿校正处理,结束步骤。
如图4所示,需要说明的是在步骤1之前还需要对上定位锥和下定位锥的相 对位置进行倾斜自校;倾斜自校包括如下步骤:
步骤S1:数据处理装置接收相应指令,并进入倾斜自校模式;
步骤S2:扫描装置扫描标准校验棒,结合测距装置,获取扫描数据;标准校验棒为轴径以及高度数据均已知的回转体,在本例中标准校验棒为圆柱体;
步骤S3:数据处理装置根据扫描数据获得标准校验棒在Y-Z平面内的倾斜角度α;
步骤S4:根据倾斜角度α,获得标准校验棒在X-Z平面内的倾斜角度β;
步骤S5:判断倾斜角度α和倾斜角度β与设定阈值的关系;若大于设定阈值,则对下定位装置的位置调节,并在数据处理装置的显示器上进行显示,返回步骤S1;否则,进入步骤S6;
步骤S6:根据倾斜角度α和倾斜角度β获得倾斜补偿校正参数,结束步骤。
在步骤S2中,在本例中标准校验棒呈圆柱状。
在步骤S3中,Y-Z平面内的倾斜角度通过扫描图像获得,在本例中扫描图像中的回转体的轴线偏离竖直方向的角度即为标准校验棒在Y-Z平面内的倾斜角度α。根据扫描图像获得标准校验棒的扫描宽度L′,结合标准校验棒的已知宽度L,获得Y-Z平面内的倾斜角度α,如下式所示:
Figure PCTCN2021137450-appb-000001
在步骤S4中,标准校验棒在X-Z平面内的倾斜角度β的计算,首先需要计算Y-Z平面内的倾斜角度α导致的高度变化量H α
H α=(H*cosα+L*sinα)-H
其中,H表示标准校验棒的已知的高度;L表示标准校验棒的已知的上端或下端的宽度,需要说明的是在本例中标准校验棒的上端和下端的宽度一致;H α表示Y-Z平面内的倾斜角度导致的高度变化量,需要说明的是在本例中高度变化量表示倾斜后的高度与原高度的差值;其次,获得标准校验棒在X-Z平面内的高度变化量H β
H β=h-(H+H α)
其中,h表示标准校验棒的扫描高度。根据倾斜关系能够获得:
H β=(H*cosβ+L*sinβ)-H
最后,对上式进行三角函数转换,获得X-Z平面内的倾斜角度β:
Figure PCTCN2021137450-appb-000002
其中,β表示X-Z平面内的倾斜角度。
在本例中X方向为扫描光线发射的方向;Z方向为扫描装置运动的方向,在本例中Z方向为竖直方向;Y方向分别与X方向以及Z方向垂直。
如图5、6所示,在步骤S5中,显示器上显示的内容包括调节方向和调节距离;下定位装置的位置调节可以由操作人员根据现显示器上的显示内容完成调节或者由下定位装置中的滑动组件进行自动调节。调节距离包括X方向调节距离和Y方向调节距离,其中X方向调节距离ΔX=H×sinβ,Y方向调节距离ΔY=H×sinα。调节方向包括X方向的调节方向和Y方向的调节方向。其中Y方向的调节方向根据扫描图像轮廓及顶点坐标决定。X方向的调节方向的判断,首先需要将下定位装置向X方向上的正方向或负方向进行微调,再启动扫描装置进行扫描,若微调后得到的扫描图像的扫描高度h’小于微调之前的扫描高度h,则对下定位装置向微调的反方向进行调节;反之,继续向微调的方向进行调节。在本例中,由滑动组件进行自动调节,调节的过程包括如下步骤:
步骤S51:根据倾斜角度α,获得下定位装置在Y方向上的调节距离△Y;
步骤S52:根据扫描图像的轮廓及顶点坐标,获得Y方向上的调节方向;其中若上定点坐标的和大于下定点坐标的和,则将下定位装置向Y方向的正方向移动,若上定点坐标的和小于下定点坐标的和,则将下定位装置向Y方向的负方向移动;
步骤S53:将调节距离和调节方向发送给滑动组件中的Y电机的驱动,控制Y电机完成Y方向的调节;
步骤S54:根据倾斜角度β,获得下定位装置在X方向上的调节距离△X;
步骤S55:控制X电机,使得下定位装置在X的正方向或负方向上调节距离△X’,其中△X’小于△X;
步骤S56:获得调节后的标准校验棒的扫描图像;
步骤S57:判断标准校验棒的扫描图像的高度变化,若扫描图像X-Z平面内的倾斜角度β较调节前减小,则控制X电机继续沿该方向调整(△X-△X’)的距离,否者向反方向调整(△X+△X’)的距离;结束步骤。
所述步骤S51中,Y方向上的调节距离为△Y=H*sinα,其中H表示标准校验棒的已知的高度。
所述步骤S54中,X方向上的调节距离为△X=H*sinβ,H表示标准校验棒的已知的高度。
所述步骤S55中的△X’小于△X,在本例中△X’=0.5*△X。
需要说明的是,由于电机和电机的驱动之间存在配合误差,另外电机存在转动误差,因此会导致距离所以补偿参数会变化,因此通过拟合方程获得实际调节距离和获得的调整距离之间的关系,并通过拟合方程,对步骤S54和步骤S54获得的调整距离进行调节;在本例中为五阶拟合方程,表示为y=ax^5+bx^4+cx^3+dx^2+ex+f。
在步骤S6中,倾斜补偿校正参数用于对扫描装置获得的扫描数据进行补偿,提高扫描数据的精度。因为对于细微的误差,难以通过手动调节装置进行调节,所以在本例中通过数据的计算进行补偿。倾斜补偿校正参数的获得,包括如下步骤:
步骤S61:根据Y-Z平面内的倾斜角度α,通过三角函数换算,获得Y-Z平面的高度倾斜补偿系数A;
步骤S62:根据Y-Z平面的高度倾斜补偿系数A,对扫描获得的扫描数据中的高度数据进行数据补偿;
步骤S63:将补偿后的数据与标准校验棒的真实高度数据进行比较,获得X-Z平面的高度倾斜补偿系数B;
步骤S64:根据Y-Z平面内的倾斜角度α,获得宽度补偿系数C,结束步骤。
在步骤S61中,Y-Z平面的高度倾斜补偿系数A的计算如下:
Figure PCTCN2021137450-appb-000003
其中,H表示标准校验棒的已知的高度;L表示标准校验棒的已知的上端或下端的宽度;α表示在Y-Z平面内的倾斜角度。
在步骤S63中,X-Z平面的高度倾斜补偿系数B的计算如下:
Figure PCTCN2021137450-appb-000004
其中,β表示在X-Z平面内的倾斜角度。
所述步骤S64中,宽度补偿系数C的计算如下:
C=cosα
所述步骤1中,通过扫描装置在设定高度是否存在扫描图像来判断上定位锥和下定位锥之间是否存在待测样品,在本例中设定高度为下定位锥的顶部高度位置;在扫描装置判断是否存在待测样品后,会回归初始位置。在一些其他实施方式中,也可以通过下定位装置上设置的压力传感器度数,来判断在上定位锥和下定位锥之间是否存在待测样品,或者通过上定位锥对应的电机一的扭矩判断上定位锥和下定位锥之间是否存在待测样品。
所述步骤2中的快速扫描为扫描装置以设定的速度,匀速进行扫描;其中扫描数据包括扫描装置扫描的获得的宽度数据以及测距装置获得高度数据,高度数据与宽度数据根据时间关系相互关联,在本例中由PLC分别接收扫描装置以及测距装置的数据,并将两部分数据根据接收时刻,同步上传至上位机。
如图7所示,所述步骤3中制作模板的过程包括如下步骤:
步骤31:扫描装置对模板样品进行快速扫描,获取模板样品的快速扫描数据;
步骤32:数据处理装置获取并存储快速扫描数据;
步骤33:根据快速扫描数据,获得模板样品的宽度的跳变区域,并根据跳变区域获得检测区域;在本例中检测区域为相邻跳变区域之间的区域;
步骤34:根据检测区域以及跳变区域,获取变速扫描轨迹;扫描装置根据变速扫描轨迹对模板样品进行变速扫描;将变速扫描数据传输至数据处理中心;
步骤35:数据处理中心对变速扫描数据进行补偿校正处理,并将补偿后的扫描数据和检测区域进行存储,结束步骤。
在步骤32中,数据处理装置的存储包括四部分,其中两个存储为一组,每组存储中的两个存储部分分别用于存储测距的高度以及扫描的宽度数据;在一组存储存满后,切换至另一组存储,并将存满的存储部分中的存储数据上传至上位机;通过设置两组存储相互切换,保证扫描过程的连续进行,提高扫描的效率。在对待测样品扫描的过程中,数据处理装置也按照上述存储方式进行扫描数据的存储。
在步骤33中检测区域的获取包括如下步骤:
步骤331:根据快速扫描的结果,并根据扫描图像的宽度的变化点,对图像 的高度进行分段;
步骤332:取出所有高度分段的端点,并将端点向上下扩散,获得跳变区域;在本例中,对图像高度分段的端点加减设定的数值,得到跳变区域的范围;
步骤333:将相邻跳变区域之间的区域作为检测区域,结束步骤。
所述步骤34中的变速扫描同步骤5中的变速扫描。
所述步骤5中,变速扫描轨迹对的规划过程包括如下步骤:
步骤51:根据读取的检测区域以及跳变区域,对高度进行分段;
步骤52:对于检测区域设置为快速扫描,对于跳变区域设置为慢速扫描。
在步骤52中的快速扫描以及慢速扫描表示扫描装置的运动速度快慢,其中扫描装置的扫描数据频率是一致的,在本例中扫描频率为2500Hz。
所述步骤6中,数据处理装置接收了变速扫描数据后,会对变速扫描数据进行初步处理,通过初步处理,获得准确的扫描数据,初步处理包括外径测量处理、高度测量处理以及同步测量处理。
其中外径测量处理包括如下步骤:
步骤601:从预存模板数据中读取每个检测区域的范围,包括高度起点start和高度结束点end;
步骤602:获取高度起点start对应的宽度检测值I_s以及高度结束点end对应的宽度检测值I_e,之间的所有宽度检测数据集,表示为Mear=[I_s,I_e];
步骤603:对宽度检测数据集进行滤波处理;在本例中滤波处理包括中值滤波以及平滑滤波;
步骤604:获取滤波后的宽度检测数据集的均值,并将均值作为该检测区域的宽度值;将宽度检测数据集Mear中极大值与其均值的差作为上公差,极小值与其均值的差作为下公差;结束步骤。
高度测量处理的步骤包括:
步骤611:根据预存模板数据中的跳变区域的高度范围,获取每个跳变区域的外径扫描数据集合W以及高度扫描数据集合V;其中外径扫描数据集合W中包括若干外径数据Mear_w,高度扫描数据集合V中包括若干高度数据Mear_v;
步骤612:对所有的外径数据Mear_w作差分处理,将差分值大于设定阈值的点作为台阶变化点,得若干个变化点;
步骤613:获取差分值最大点对应的高度hmax,并获得以其为中心的高度邻域D=(hmax-d,hmax+d);其中d为设定值;
步骤614:对该高度邻域D内的所有外经数据进行均值滤波,获得数据集d1;
步骤615:对数据集d1的每点求斜率获得斜率集合d2;
步骤616:遍历斜率集合d2,筛选出所有斜率值大于设定阈值的索引集合d3;
步骤617:根据索引集合d3的范围,在数据集d1选取数据,并对该部分数据进行直线拟合,获得直线方程为y=ix+j;其中y表示宽度信息,x表示高度信息;
步骤618:获取预存模板中在该跳变区域的宽度信息,并将宽度信息代入拟合的直线方程,获得高度数据,并将该高度数据作为待测样品测量时的跳变点高度。
在步骤618中跳变点高度表示待测样品的宽度变化位置所处的高度。
同步测量处理,首先需要判断每个时刻的高度数据对应采集的宽度数据的数量,以及每个时刻的宽度数据对应采集的高度数量;若高度数据和宽度数据没有相互对应,则对大于一个的高度数据或者宽度数据求取均值,并将求得的均值作为最终的高度数据或者宽度数据。在本例中,如果一个高度数据对应有多个宽度数据,则将多个宽度数据求均值,并将求得的宽度均值作为回转体待测样品在该高度的宽度值;同理,如果一个时刻的宽度数据对应有多个高度数据,则将多个高度数据求均值,并将求得的高度均值与该宽度数据相对应。因为在实际测量的过程中,由于扫描装置和测距装置之间存在相位差以及数据传输的延迟性,因此可能存在扫描装置数据输出的时候,测距装置没有数据输出,或者当测距装置数据输出的时候,扫描装置没有数据输出,会导致检测数据产生误差。
所述步骤7中,根据预设的倾斜补偿校正参数对步骤6获取的扫描数据进行补偿;在本例中倾斜补偿校正参数通过步骤S6获取,包括高度倾斜补偿系数A、B以及宽度补偿系数C。其中补偿后的高度H 的计算如下式所示:
H =H ×A×B
其中,H 表示待测样品的高度测量值,A表示高度补偿系数A,B表示高度 补偿系数B。补偿后的宽度L 的计算如下式所示:
L =L ×cosα
其中,L 表示待测样品的宽度测量值。
在实施的过程中,通过设置扫描装置根据变速扫描轨迹进行变速扫描,相比传统的扫描,在保证精度的情况下,减少扫描产生的数据,提高扫描效率;通过倾斜自校,校验上定位锥和下定位锥之间是否对齐,若没有对齐,则进行校正,减少扫描误差,保证扫描数据准确;通过对扫描数据进行倾斜补偿,对于细微的倾斜误差进行自动补偿,进一步保证数据的准确;通过对变速扫描数据的初步处理,保证扫描数据的准确性。
实施例二:
本实施例是基于实施例一获得的,其中在步骤1之前需要对上定位锥和下定位锥的相对位置进行倾斜自校;倾斜自校包括如下步骤:
步骤S1:数据处理装置接收相应指令,并进入倾斜自校模式;
步骤S2:扫描装置扫描标准校验棒,结合测距装置,获取扫描数据;标准校验棒为轴径以及高度数据均已知的回转体;
步骤S3:数据处理装置根据扫描数据获得标准校验棒在Y-Z平面内的倾斜角度α;
步骤S4:根据倾斜角度α,获得标准校验棒在X-Z平面内的倾斜角度β;
步骤S5:判断倾斜角度α和倾斜角度β与设定阈值的关系;若大于设定阈值,则对下定位装置的位置调节,并在数据处理装置的显示器上进行显示,返回步骤S1;否则,进入步骤S6;
步骤S6:获得系统补偿校正参数,结束步骤。
如图8所示,在步骤S2中,标准校验棒包括圆柱段和圆球段,其中圆柱段和圆球段交错设置,并且圆柱段和圆球段的长度相等,标准校验棒上的圆柱段和圆球段数量相等,其目的是使标准校验棒的扫描图像和其翻转后的扫描图像能够形成互补。另外,在X方向倾斜时,会导致扫描图像的高度减小,圆柱段和圆弧段的跳变边缘呈圆弧状,但是不影响直径的扫描结果;在Y方向倾斜时,会导致扫描图像的高度减小,并对圆柱端的直径扫描结果产生影响。
如图9所示,在步骤S6中,系统补偿校正参数包括水平误差补偿以及高度 误差补偿。其中水平误差补偿如下步骤:
步骤S601:获得标准校验棒的扫描图像;
步骤S602:根据圆柱段的扫描图像与扫描图像的边界,获得边界距离,边界距离表示圆柱段图像到扫描图像的距离;其中边界距离数据表示为a T[d 1,d 2,...d n],对应的高度表示为h T:[h 1,h 2,...h n];
步骤S603:通过最小二乘法拟合获得圆柱段图像的一次函数f(h)=ph+q;
步骤S604:根据一次函数获得Y方向的倾斜角度值α,其中tanα=p;
步骤S605:获得水平方向误差补偿系数△l=r 直径-r 测量*cosα,r 直径表示圆柱段的真实直径,r 测量表示圆柱段的扫描测量直径,△l表示系统误差。
在步骤S604中,由于标准校验棒在X-Z平面内的倾斜角度β,不影响直径的扫描结果,因此只要考虑Y-Z平面内的倾斜角度α。
如图10所示,所述高度误差补偿如下步骤:
步骤S611:根据标准校验棒的扫描图像,获得其中一段圆球段的扫描数据A:
Figure PCTCN2021137450-appb-000005
并对第二列数据做差分处理,获得detR:
Figure PCTCN2021137450-appb-000006
其中h T:[h 1,h 2,...h n]表示高度,r T:[r 1,r 2,...r n]表示宽度,α表示Y-Z平面内的倾斜角度值;
步骤S612:根据detR,获得绝对值最大的两点,其对应的高度值分别为V1,V2;设定b’=(H1+H2)/2;
步骤S613:从数据A中以V1为起点,V2为终点截取得数据S:
Figure PCTCN2021137450-appb-000007
其中,V1和V2分别表示圆球段的初始高度和结束高度,V1对应高度值H1,V2对应高度值Hm;
步骤S614:根据圆心的高度b’,获得圆球段的图像的一般方程x 2+(y+b’) 2=r 2,其中r为输入的设定值,在本例中r为圆球段的真实直径;
步骤S615:根据圆的弦长和半径的关系,获得
Figure PCTCN2021137450-appb-000008
Figure PCTCN2021137450-appb-000009
其中R表示半径,L表示弦长,H表示高度;
步骤S616:取数据S中的第二列数据带入
Figure PCTCN2021137450-appb-000010
求得
Figure PCTCN2021137450-appb-000011
作为高度真值;
步骤S617:建立映射关系F(X)使
Figure PCTCN2021137450-appb-000012
成立;
步骤S618:通过“取整函数”方法,将
Figure PCTCN2021137450-appb-000013
Figure PCTCN2021137450-appb-000014
分段;在本例中将0.02mm设定为分段单位,一毫米能够分为50段,获得第一段的数据表示为
Figure PCTCN2021137450-appb-000015
以及对应的和
Figure PCTCN2021137450-appb-000016
步骤S619:将为
Figure PCTCN2021137450-appb-000017
作为x,将
Figure PCTCN2021137450-appb-000018
作为F(X),通过最小二乘法进行拟合,获得F(X)=Ax+z中的A和z的值;
步骤S6110:对所有段计算矫正系数A和z,获得高度校正系数矩阵
Figure PCTCN2021137450-appb-000019
步骤S6111:对其余圆弧段根据步骤S611-S6110,获得所有圆弧段的高度校正系数;
步骤S6112:将校验棒翻转,重复上步骤S611-S6111,获得标准校验棒的所有高度的高度校验参数,结束步骤。
以上描述仅是本发明的一个具体实例,不构成对本发明的任何限制。显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修改和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (2)

  1. 一种精密的回转体测量装置,其特征在于,包括数据处理装置、固定台、运动装置、定位组件、扫描装置以及测距装置,其中运动装置设置于固定台上;定位组件分为两部分,分别设置于运动装置以及固定台上,定位组件用于固定回转体;扫描装置设置于运动装置上;测距装置设置于固定台上,测距装置用于检测扫描装置的行进距离;处理装置分别与测距装置、运动装置以及扫描装置通信连接。
  2. 一种精密的回转体测量方法,其特征在于,包括如下步骤:
    步骤1:扫描装置判断上定位锥和下定位锥之间的是否存在待测样品;若存在待测样品,则进入步骤2;否则,在数据处理装置的显示器上显示无待测样品,结束步骤;
    步骤2:扫描装置对待测样品进行快速扫描,结合测距装置,获取待测样品的快速扫描数据;
    步骤3:数据处理装置获取快速扫描数据,并将快速扫描数据与预存的模板数据进行比对;根据比对的结果判断是否存在相应的预存模板;若存在相应的预存模板,则进入步骤4;若没有相应的预存模板,则提示制作模板,完成模板制作后进入步骤4;
    步骤4:数据处理装置根据预存模板数据,获取检测区域以及跳变区域;
    步骤5:数据处理装置根据检测区域以及跳变区域,规划变速扫描轨迹;
    步骤6:扫描装置根据变速扫描轨迹对待测样品进行变速扫描;将变速扫描数据传输至数据处理中心;
    步骤7:数据处理中心对变速扫描数据进行补偿校正处理,结束步骤。
PCT/CN2021/137450 2021-08-27 2021-12-13 一种精密的回转体测量装置和测量方法 WO2023024333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110994121.2A CN113739704A (zh) 2021-08-27 2021-08-27 一种高精度回转体的测量装置和测量方法
CN202110994121.2 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023024333A1 true WO2023024333A1 (zh) 2023-03-02

Family

ID=78733322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137450 WO2023024333A1 (zh) 2021-08-27 2021-12-13 一种精密的回转体测量装置和测量方法

Country Status (2)

Country Link
CN (1) CN113739704A (zh)
WO (1) WO2023024333A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739703A (zh) * 2021-08-27 2021-12-03 浙江大学台州研究院 一种回转体扫描测量方法及其数据补偿校准方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739704A (zh) * 2021-08-27 2021-12-03 浙江大学台州研究院 一种高精度回转体的测量装置和测量方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329420A (ja) * 2002-05-13 2003-11-19 Hidekazu Goto 回転体の表面形状及び画像測定装置
CN2627459Y (zh) * 2003-05-12 2004-07-21 第二炮兵工程学院对外技术服务部 一种回转体部件三维连续高精度测量装置
CN101387495A (zh) * 2008-10-23 2009-03-18 天津大学 气缸套智能检测装置
CN101571378A (zh) * 2009-06-16 2009-11-04 北京理工大学 一种回转体突变截面轴向尺寸测量方法
CN106841093A (zh) * 2017-03-31 2017-06-13 山东省科学院自动化研究所 一种太赫兹连续波快速精准扫描系统及方法
CN108240797A (zh) * 2018-03-23 2018-07-03 郑州金恒电子技术有限公司 一种非接触式高精度回转体零件直径自动测量仪
CN109540032A (zh) * 2019-01-12 2019-03-29 吉林大学 一种非接触激光检测回转体截面轮廓形貌误差装置
CN110645910A (zh) * 2019-09-02 2020-01-03 北京控制工程研究所 一种基于激光扫描的工件三维尺寸自动检测系统及方法
CN112229339A (zh) * 2020-09-18 2021-01-15 赵帅 一种回转体工件内径测量系统
CN113739704A (zh) * 2021-08-27 2021-12-03 浙江大学台州研究院 一种高精度回转体的测量装置和测量方法
CN113739703A (zh) * 2021-08-27 2021-12-03 浙江大学台州研究院 一种回转体扫描测量方法及其数据补偿校准方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329420A (ja) * 2002-05-13 2003-11-19 Hidekazu Goto 回転体の表面形状及び画像測定装置
CN2627459Y (zh) * 2003-05-12 2004-07-21 第二炮兵工程学院对外技术服务部 一种回转体部件三维连续高精度测量装置
CN101387495A (zh) * 2008-10-23 2009-03-18 天津大学 气缸套智能检测装置
CN101571378A (zh) * 2009-06-16 2009-11-04 北京理工大学 一种回转体突变截面轴向尺寸测量方法
CN106841093A (zh) * 2017-03-31 2017-06-13 山东省科学院自动化研究所 一种太赫兹连续波快速精准扫描系统及方法
CN108240797A (zh) * 2018-03-23 2018-07-03 郑州金恒电子技术有限公司 一种非接触式高精度回转体零件直径自动测量仪
CN109540032A (zh) * 2019-01-12 2019-03-29 吉林大学 一种非接触激光检测回转体截面轮廓形貌误差装置
CN110645910A (zh) * 2019-09-02 2020-01-03 北京控制工程研究所 一种基于激光扫描的工件三维尺寸自动检测系统及方法
CN112229339A (zh) * 2020-09-18 2021-01-15 赵帅 一种回转体工件内径测量系统
CN113739704A (zh) * 2021-08-27 2021-12-03 浙江大学台州研究院 一种高精度回转体的测量装置和测量方法
CN113739703A (zh) * 2021-08-27 2021-12-03 浙江大学台州研究院 一种回转体扫描测量方法及其数据补偿校准方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739703A (zh) * 2021-08-27 2021-12-03 浙江大学台州研究院 一种回转体扫描测量方法及其数据补偿校准方法

Also Published As

Publication number Publication date
CN113739704A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2023024333A1 (zh) 一种精密的回转体测量装置和测量方法
US6094269A (en) Apparatus and method for optically measuring an object surface contour
US8650939B2 (en) Surface texture measuring machine and a surface texture measuring method
CN113739703A (zh) 一种回转体扫描测量方法及其数据补偿校准方法
CN101458072A (zh) 一种基于多传感器的三维轮廓测量装置及其测量方法
CN110044293B (zh) 一种三维重构系统及三维重构方法
WO2012057283A1 (ja) 形状測定装置、形状測定方法、構造物の製造方法およびプログラム
CN109238157B (zh) 转盘半径及安装偏心四转位坐标增量检测方法及检测装置
CN110836641A (zh) 一种零件异形表面微结构三维尺寸的检测方法及检测设备
CN102538707B (zh) 一种对工件进行三维定位的装置及方法
CN202304767U (zh) 一种基于多传感器的三维轮廓测量装置
CN106292197B (zh) 一种基于图像处理技术的调焦调平装置及方法
CN111207685A (zh) 一种用于结构光深度测量的全自动标定系统
CN114993202A (zh) 摇臂式多功能中小模数直齿圆柱齿轮视觉检测装置及检测方法
US5864778A (en) Device and process for measuring and calculating geometrical parameters of an object
CN212320647U (zh) 一种圆环形物体旋转扫描设备
CN110657750B (zh) 一种用于刀具刃口钝化的检测系统和方法
CN206058718U (zh) 光学元件共轴调节实验装置
CN116989675A (zh) 预制构件表观检测系统及其检测方法
CN110006921A (zh) 一种大曲率半径球面光学元件自动化位姿调整方法与装置
CN1482433A (zh) 用于校正激光三维测量器的方法及装置
CN109813636B (zh) 一种表面张力系数测量装置及其测量方法
CN208155271U (zh) 灵敏度可调的Shadow Moiré测量系统
CN209673675U (zh) 一种大曲率半径球面光学元件自动化位姿调整装置
JP4638077B2 (ja) 走査型広域被検面形状解析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954849

Country of ref document: EP

Kind code of ref document: A1