WO2023023893A1 - 智能穿戴设备的定位方法、装置、设备及存储介质 - Google Patents

智能穿戴设备的定位方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023023893A1
WO2023023893A1 PCT/CN2021/114058 CN2021114058W WO2023023893A1 WO 2023023893 A1 WO2023023893 A1 WO 2023023893A1 CN 2021114058 W CN2021114058 W CN 2021114058W WO 2023023893 A1 WO2023023893 A1 WO 2023023893A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
smart wearable
wearable device
data
devices
Prior art date
Application number
PCT/CN2021/114058
Other languages
English (en)
French (fr)
Inventor
王晓虎
Original Assignee
广东高驰运动科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东高驰运动科技有限公司 filed Critical 广东高驰运动科技有限公司
Priority to PCT/CN2021/114058 priority Critical patent/WO2023023893A1/zh
Priority to EP21954446.7A priority patent/EP4375711A1/en
Priority to CN202180098209.4A priority patent/CN117295977A/zh
Publication of WO2023023893A1 publication Critical patent/WO2023023893A1/zh
Priority to US18/436,573 priority patent/US20240176027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • G01S19/06Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data employing an initial estimate of the location of the receiver as aiding data or in generating aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/017Detecting state or type of motion

Definitions

  • the present application relates to the technical field of smart devices, for example, to a positioning method, device, device and storage medium for smart wearable devices.
  • smart wearable devices generally use Global Positioning System (GPS) satellite positioning technology to achieve positioning functions.
  • GPS Global Positioning System
  • Smart wearable devices receive signals from multiple GPS satellites, gradually analyze the currently received signals, and analyze and analyze the obtained signals.
  • the ephemeris data of each satellite in the data, the ephemeris data includes very detailed satellite orbit and position information; then the smart wearable device calculates the applicable satellite, then locks the applicable satellite, and then uses more than three locked satellites to locate the position .
  • GPS Global Positioning System
  • GPS uses a very slow transmission speed of 50b/s to transmit data, it will take a lot of time to calculate the applicable satellites. After the GPS satellite positioning is started, the positioning speed is very slow. It takes minutes to realize the positioning function.
  • the present application provides a positioning method, device, device, and storage medium for a smart wearable device, which can quickly lock a used satellite and improve the positioning speed.
  • This application provides a positioning method for smart wearable devices, including:
  • the present application also provides a positioning device for a smart wearable device, the device comprising:
  • the reference positioning data acquisition module is configured to obtain reference positioning data sent by other devices around the smart wearable device in one direction;
  • the positioning satellite locking module is configured to lock the positioning satellite matching the smart wearable device according to the reference positioning data
  • the current positioning data determination module is configured to determine the current positioning data of the smart wearable device based on the positioning satellites.
  • the present application also provides a smart wearable device, including: a memory, a processor, and a computer program stored in the memory and operable on the processor;
  • the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned positioning method for a smart wearable device is realized.
  • FIG. 1 is a flow chart of a positioning method for a smart wearable device provided in an embodiment of the present application
  • FIG. 2 is a flow chart of another positioning method for a smart wearable device provided in an embodiment of the present application
  • FIG. 3 is a flow chart of another positioning method for a smart wearable device provided in an embodiment of the present application.
  • FIG. 4 is a flow chart of another positioning method for a smart wearable device provided in an embodiment of the present application.
  • FIG. 5 is a flow chart of another positioning method for a smart wearable device provided in an embodiment of the present application.
  • Fig. 6 is a structural block diagram of a positioning device for a smart wearable device provided in an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a smart wearable device provided by an embodiment of the present application.
  • GPS satellite positioning is divided into cold start and hot start.
  • Cold start is the repositioning start when the GPS receiver does not save valid ephemeris, time and position information.
  • Hot start is a repositioning start when the GPS receiver saves information such as valid ephemeris data, time and position.
  • the last positioning location information (including longitude, latitude and altitude) and the number and trajectory of the satellites above the last positioning location and the predicted four hours will generally be kept/updated.
  • the ephemeris and "last positioning information" in the memory will be different from the current position and the sky above the current position.
  • the ephemeris corresponding to different satellites has a large difference.
  • starting the GPS for positioning is a GPS cold start, and it takes a long time for the GPS cold start to be able to accurately locate.
  • the A-GPS terminal needs to transmit its own base station address information to the positioning server through the network;
  • the approximate position of the terminal transmits GPS auxiliary information (including GPS ephemeris, azimuth, pitch angle, etc.) related to the position to the A-GPS terminal;
  • the A-GPS module of the A-GPS terminal receives the original GPS signal according to the auxiliary information;
  • the GPS terminal demodulates the signal, calculates the pseudo-range (that is, the distance affected by various GPS errors) from the A-GPS terminal to the satellite, and transmits the relevant information to the positioning server through the network;
  • the positioning server according to The incoming GPS pseudo-range information and auxiliary information from other positioning devices (such as differential GPS reference stations, etc.) complete the processing of GPS information, and estimate the position of the A-GPS terminal;
  • the positioning server takes the position of the A-GPS terminal It is transmitted to the positioning
  • A-GPS terminals need to be in open areas such as outdoors to have high positioning accuracy, which is limited by the environment where A-GPS is located. Signals from multiple satellites; at the same time, the positioning of A-GPS terminals must be transmitted through the network multiple times (up to six one-way transmissions), which makes it take up a lot of air resources for operators. For the latter, more traffic charges will be generated, and the power consumption of the A-GPS positioning function is large, which indirectly shortens the standby time of the A-GPS terminal.
  • FIG. 1 is a flow chart of a positioning method for a smart wearable device provided in an embodiment of the present application.
  • the method can be performed by a positioning device of a smart wearable device, and the device can be implemented by software and/or hardware, as shown in Figure 1, the method includes:
  • Reference positioning data refers to data that can determine a reference position, and the reference positioning data may include, for example, reference position data and/or reference ephemeris data; reference position data refers to data related to a reference position, and the reference position data may include, for example, the Longitude and latitude; In addition, the reference position can also include the altitude of the reference position; the reference ephemeris data includes reference satellite orbit data, that is, the ephemeris data of the satellites above the positioning position of other devices in the first preset time, where the first The preset time may be less than or equal to 60 minutes, such as 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes or 40 minutes.
  • other devices around the smart wearable device may be devices within a preset distance range around the smart wearable device, and the preset distance range may be, for example, a range of less than 100 kilometers, a range of less than ten kilometers, or a range of less than one kilometer etc., which may be determined according to the actual situation.
  • the reference position data can directly reflect the current position of other devices, and because the distance between other devices and the smart wearable device is relatively short, Enables the smart wearable device to determine its location based on the reference location data, so as to narrow the positioning range of the smart wearable device; and when the acquired reference ephemeris data is sent one-way by other devices around the smart wearable device, the reference ephemeris
  • the data is ephemeris data in a relatively short period of time, and its data volume is small, which can reduce the amount of data processing, and because the distance between the smart wearable device and other devices around it is relatively short, the smart wearable device can be based on other devices
  • the ephemeris data in a short period of time can quickly know the operating satellites within a certain area above its position.
  • Other devices may be any device that has a positioning function and can send reference positioning data in one direction, and other devices may include portable devices and/or fixed devices, where a portable device refers to a device that is easily carried between places of use, for example, it may be Wearable devices such as mobile phones, watches, bracelets, earphones, glasses, etc., can also be positioning buttons, chassis, luggage, navigators and other portable devices that can be easily moved; fixed devices can be non-portable devices such as servers and base stations.
  • a portable device refers to a device that is easily carried between places of use, for example, it may be Wearable devices such as mobile phones, watches, bracelets, earphones, glasses, etc., can also be positioning buttons, chassis, luggage, navigators and other portable devices that can be easily moved; fixed devices can be non-portable devices such as servers and base stations.
  • the one-way sending of reference positioning data by other devices is the behavior of other devices sending reference positioning data autonomously.
  • the reference positioning data sent is irrelevant, that is, when other devices meet the conditions for sending reference positioning data, no matter whether there is a smart wearable device around to receive the reference positioning data sent by it, it will send the reference positioning data.
  • the way of locating data may not be limited to the environment where the smart wearable device is located and whether an operator is set or not.
  • the unidirectional transmission of reference positioning data by other devices may be a near-field transmission method, that is, a short-distance, low-power transmission method.
  • the near-field transmission method may include but is not limited to radio frequency (Radio Frequency, RF) transmission, For example, it may be broadcast RF, near field communication (Near Field Communication, NFC) or radio frequency identification (Radio Frequency Identification, RFID).
  • other devices around the smart wearable device send reference positioning data through NFC
  • other devices around the smart wearable device can be used as the initiator device, while the smart wearable device acts as the target device, and other devices around the smart wearable device provide radio frequency fields. to send the reference positioning data to the smart wearable device.
  • the base station can provide a corresponding radio frequency field and send the position of the base station itself as reference positioning data, while the smart wearable device is in the radio frequency field provided by the base station When it is in the middle, the reference positioning data in the radio frequency field can be obtained directly; similarly, when other devices around the smart wearable device are portable devices (such as smart terminals), the smart terminal can provide the corresponding radio frequency field to send the smart terminal Its own positioning data is used as reference positioning data, and when the smart wearable device is in the radio frequency field provided by the smart terminal, it can directly obtain the reference positioning data in the radio frequency field.
  • the smart wearable device can be used as an interrogator, while other devices around the smart wearable device can be used as transponders, and other devices around the smart wearable device can be used as a magnetic field
  • the source establishes a corresponding magnetic field, and can actively send reference positioning data at a frequency, and when the smart wearable device enters the magnetic field established by other devices, it can read the reference positioning data sent by the other device.
  • the area where the smart wearable device is located can be quickly determined based on the reference position data.
  • the corresponding satellite can be selected according to a certain satellite cut-off angle by searching the operating satellites above the area.
  • the positioning satellite of the smart wearable device when the reference positioning data includes reference ephemeris data, the operating satellites in a certain area above its location can be quickly obtained according to the reference ephemeris data, and the satellites in the area can be obtained according to the reference ephemeris data.
  • Operating satellites select the corresponding satellite as the positioning satellite of the smart wearable device according to a certain satellite cut-off angle; in this way, compared with searching all operating satellites to lock the positioning satellite, based on the reference positioning data, only need to search for satellites within a certain area , the positioning satellite matching the smart wearable device can be quickly locked, thereby saving the time required to lock the positioning satellite and reducing the power consumption generated by searching for satellites.
  • the longitude, latitude and altitude of the location of the smart wearable device need to be known when positioning based on the positioning satellites, at least three positioning satellites are locked.
  • the current positioning data is data capable of determining the location information of the smart wearable device, and the current positioning data here may also include current position data and/or current ephemeris data.
  • the current positioning data can include longitude, latitude and altitude; and when the current positioning data is the current ephemeris data, the current ephemeris data can be the ephemeris of the positioning satellite within the first preset time data.
  • the navigation message sent by the positioning satellite can be received in real time.
  • the navigation message can include the ephemeris data of the positioning satellite, working status, clock correction, ionospheric time Delay correction, atmospheric refraction correction and other information, the current position of the positioning satellite can be found based on the ephemeris data of the positioning satellite, and the distance between the smart wearable device and the positioning satellite can be recorded by recording the navigation message sent by the positioning satellite to the smart wearable device. Time is multiplied by the speed of light.
  • the three-dimensional coordinates of the location of the smart wearable device can be solved, that is, the longitude, latitude, and height of the location of the smart wearable device, so that the smart wearable device responds to the longitude, latitude, and height.
  • the positioning of the wearable device, and the longitude, latitude and height of the location of the smart wearable device as the current location data of the smart wearable device.
  • the navigation message sent by the positioning satellite can be received in real time.
  • the navigation message can include the ephemeris data, working status, and clock correction of the positioning satellite.
  • ionospheric delay correction, atmospheric refraction correction and other information can directly determine the ephemeris data of the positioning satellite within the first preset time as the current ephemeris data of the smart wearable device.
  • the smart wearable device can also be made to respond to the determined longitude, latitude and altitude to realize the positioning of the smart wearable device.
  • other devices around the smart wearable device may include portable devices and/or fixed devices, because the positions of the fixed devices are fixed, but the positions of the portable devices can be changed.
  • the portable device can determine its positioning data as reference positioning data through its associated auxiliary device, and the auxiliary device can be a networked device, base station, server, etc. provided with an operator;
  • the portable device can also determine its positioning data as reference positioning data through GPS hot start or GPS cold start.
  • the user takes a smart wearable device to fly from city A to city B.
  • the distance between the two cities is more than 200 kilometers;
  • the reference positioning data sent by other devices in the city that have completed positioning is unidirectional, and based on the reference positioning data, the positioning satellite of the smart wearable device is locked, so as to achieve rapid positioning based on the navigation message sent by the positioning satellite.
  • the corresponding reference positioning data can be obtained without networking and data interaction, which is conducive to shortening the time and cost required for obtaining the reference positioning data.
  • the power consumption does not need to traverse all the satellites.
  • the positioning satellite of the smart wearable device can be quickly locked, so that the smart wearable device can quickly locate, which is beneficial to shorten the positioning time. Improve positioning speed and reduce power consumption of smart wearable devices.
  • the smart wearable device After the smart wearable device completes the positioning, it can also be used as a source of reference positioning data to send reference positioning data one-way to other smart devices around it.
  • FIG. 2 is a flowchart of another positioning method for a smart wearable device provided in the embodiment of the present application. As shown in FIG. 2, the method includes:
  • S2004 Send the current positioning data to other devices around the smart wearable device so that the current positioning data can be used as reference positioning data for other devices.
  • the smart wearable device and other devices around it may be of the same type or of different types, which is not limited in this embodiment of the present application.
  • the smart wearable device can realize the positioning of the smart wearable device in response to the current positioning data.
  • the determined current positioning data of the smart wearable device can be sent as reference positioning data to other devices around it in one direction, so that when other devices around the smart wearable device need to be positioned, they can directly obtain the location information of the smart wearable device.
  • the one-way transmission of the current positioning data by the smart wearable device can also be a near-field transmission method, such as broadcasting RF, NFC or RFID.
  • other devices that can obtain the reference positioning data sent by the smart wearable device can also be other devices within the preset distance range around the smart wearable device, and the closer the distance to the smart wearable device, the better the reference positioning data acquisition.
  • the smart wearable device C1 locks the positioning satellite that matches the smart wearable device C1 according to the reference positioning data sent one-way by the smart wearable device C2, and determines the current positioning data of the smart wearable device C1 based on the positioning satellite, so as to monitor the smart wearable device C1.
  • the wearable device C1 performs positioning; at this time, the smart wearable device C1 can unidirectionally send its current positioning data determined based on the positioning satellite as reference positioning data; when the smart wearable device C3 obtains the reference positioning data sent by the smart wearable device C1, the smart wearable device The wearable device C3 can also lock the positioning satellite highly matched with the smart wearable device C3 according to the reference positioning data sent by the smart wearable device C1, and determine the current positioning data of the smart wearable device C3, so that the smart wearable device C3 can realize fast positioning.
  • any smart wearable device can be used as a transmission source of reference positioning data after successful positioning, thereby reducing the difficulty of obtaining reference positioning data and improving the positioning speed of smart wearable devices.
  • Fig. 3 is a flowchart of another positioning method for a smart wearable device provided in the embodiment of the present application. As shown in Fig. 3, the method includes:
  • the operation mode of the smart wearable device may include but not limited to daily mode, exercise preparation mode, exercise mode, etc.;
  • the exercise preparation module is an operation mode that has not yet entered the recording of the exercise state, and the exercise mode is the operation that starts to record the exercise state in real time Mode, the recorded exercise status may include but not limited to the user's heart rate, speed, acceleration, blood oxygen saturation, real-time location, etc.;
  • the daily mode can be any other mode that is not sports preparation mode and non-sports mode, such as instant messaging mode , standby mode, normal display mode, etc.
  • the data sending condition may include but not limited to no large displacement and/or slow displacement of the smart wearable device.
  • the smart wearable device when the smart wearable device is in the exercise preparation mode, the user can perform warm-up exercises on the spot and/or wait for the instruction to start the exercise, etc. At this time, the user has not entered the real exercise state, and the smart wearable device has not experienced a large displacement , the displacement may include but not limited to displacement in the height direction and/or displacement in the latitude and longitude direction.
  • the exercise preparation mode may include but not limited to exercise preparation modes such as running preparation mode, cross-country preparation mode, swimming preparation mode, and triathlon preparation mode.
  • the current operating mode of the smart wearable device can be determined by the user's operation selection. For example, the user can open the corresponding application software and click to select the operating mode of the smart wearable device in the application software. If the user selects the sports preparation mode, it means that the user will not For large-scale movements and/or fast movements, the user usually stays in place to warm up.
  • the smart wearable device does not need to perform real-time positioning, nor does it need to record the user's motion status, so that its internal operating space and resources are sufficient, and it is considered to meet the positioning Data sending conditions, the current positioning data can be sent to other devices in the smart wearable device cycle in one direction so that the current positioning data can be used as the reference positioning data of other devices; or, the current operating mode of the smart wearable device can also be passed through the movement
  • the detection sensor performs real-time detection. At this time, by acquiring the motion data of the smart wearable device, the current operating mode of the smart wearable device is determined according to the motion data.
  • the motion detection sensor may include but not limited to height detection sensor, speed detection sensor or acceleration detection sensor; motion data may be height data, speed data or acceleration data; When the detected speed is less than the speed threshold, or the detected acceleration is less than the acceleration threshold, it is considered that its current operating mode meets the positioning data sending mode.
  • the height detection sensor can detect the swing arm amplitude of the user wearing the smart wearable device, and determine whether the smart wearable device is in the motion mode; the user detected by the height detection sensor When the swing arm amplitude of the smart wearable device is less than the height threshold, the user is considered not in motion mode, and the user is considered to meet the positioning data sending conditions, and the current positioning data can be sent to other devices in the smart wearable device cycle in one direction so that the current positioning data can be used as the reference positioning of other devices data.
  • the swing arm amplitude of the user detected by the height detection sensor is greater than or equal to the height threshold, it is determined that the smart wearable device is in the motion mode, and then the one-way sending of reference positioning data to other devices around the smart wearable device will be stopped, In order to release the operating space and resources occupied by the smart wearable device for sending reference positioning data, the power consumption of the smart wearable device can be reduced, which is conducive to the rapid operation of the smart wearable device.
  • the reference positioning data is data related to the positioning position of other devices.
  • the method includes:
  • the preset full ephemeris data is the ephemeris data of all existing satellites stored in the smart wearable device, which can be the ephemeris data of all satellites within N days, where 0 ⁇ N ⁇ 30, for example, N can be 10 days , 20 days or 30 days.
  • the preset full ephemeris data can be the full ephemeris data downloaded from the auxiliary device when the smart wearable device is connected to the auxiliary device associated with the smart wearable device, and it can be downloaded periodically to realize preset Set the real-time update of the full ephemeris data, so that when the preset full ephemeris data is used for positioning in the future, the positioning accuracy can be improved;
  • the download cycle can be M days, and M can be greater than or equal to 20;
  • the auxiliary device can be a mobile phone Smart terminals such as computers and computers can also be base stations; when the auxiliary device is a mobile phone, the mobile phone can be connected to the network through the operator to update its stored full ephemeris data in real time.
  • the satellite that matches the reference ephemeris data can be found directly from the preset full ephemeris data, and it is determined that Find the operating satellites in a certain area above the location of the smart wearable device, and select the corresponding satellite from the operating satellites in the area according to a certain satellite cut-off angle as the positioning satellite of the smart wearable device; and when referring to the positioning data
  • location data the area where the smart wearable device is located can be determined, and all operating satellites above the area where the smart wearable device is located can be known by presetting the full ephemeris data, and all operating satellites above the area where the smart wearable device is located , select the corresponding satellite as the positioning satellite of the smart wearable device according to a certain satellite cut-off angle.
  • the operating satellites within a certain area can be determined, and by searching the operating satellites within the area, the positioning of the smart wearable device can be quickly locked Satellites, which can greatly shorten the positioning time of smart wearable devices and improve the positioning speed of smart wearable devices.
  • the embodiment of the present application can quickly lock the positioning satellite of the smart wearable device through the preset full ephemeris data and reference positioning data in the smart wearable device, so that the fast positioning of the smart wearable device can be realized based on the positioning satellite, which is beneficial Shorten the time required to lock the positioning satellite, and improve the positioning speed and positioning accuracy of smart wearable devices.
  • FIG. 5 is a flow chart of another positioning method for a smart wearable device provided in the embodiment of the present application. As shown in FIG. 5, the method includes:
  • the positioning methods of smart wearable devices may include but are not limited to GPS positioning, base station positioning, A-GPS positioning, WIFI positioning, etc.; taking the positioning method of smart wearable devices as GPS positioning as an example, during the normal operation of smart wearable devices, the smart wearable The device can receive the navigation message sent by the satellite in real time based on its internal GPS receiver, so as to realize the real-time positioning of the smart wearable device.
  • the GPS positioning start methods include GPS hot start and GPS cold start. When the GPS is hot start, the smart wearable device can achieve fast positioning; , it will take a long time. At this time, the time required for the positioning of the smart wearable device can be obtained in real time.
  • the positioning time threshold When the time required for its positioning exceeds the positioning time threshold, it can be determined that the current positioning method of the smart wearable device cannot meet the fast positioning requirements of the smart wearable device. It is a GPS cold start. At this time, by obtaining the reference potential data sent one-way by other devices around the smart wearable device, based on the reference positioning data, the positioning satellite can be quickly locked to realize the rapid positioning of the smart wearable device; When the time does not exceed the positioning time threshold, it means that the smart wearable device can achieve fast positioning, and there is no need to obtain the reference potential data sent one-way by other devices around the smart wearable device.
  • the condition of GPS cold start is that the time difference between the current positioning time and the last positioning time is large and/or the distance between the current location and the last positioning position is relatively large, it can also be based on the last positioning of the smart wearable device. Time and/or the last location of the smart wearable device to determine whether it will perform a GPS cold start, as a condition for whether to lock the positioning satellite based on the reference positioning data.
  • the positioning data can also be It is position data or ephemeris data; by judging whether the difference between the last stored positioning data and the reference positioning data is within the preset difference range, when the difference between the last stored positioning data and the reference positioning data is within the preset When the difference is within the range, it means that the current position of the smart wearable device is relatively close to the last positioning position.
  • the positioning satellite of the smart wearable device can be quickly locked, so that according to the positioning satellite of the smart wearable device, Determine the current location of the smart wearable device; and when the difference between the last stored positioning data and the reference positioning data is not within the preset difference range, it can be considered that there is a distance between the current location of the smart wearable device and the last positioning position Far away, it is impossible to quickly lock the positioning satellite of the smart wearable device based on its last positioning position.
  • the reference positioning data lock the positioning satellite that matches the smart wearable device, so as to determine the current positioning of the smart wearable device based on the positioning satellite data to realize rapid positioning of smart wearable devices.
  • FIG. 6 is a structural block diagram of a positioning device for a smart wearable device provided in an embodiment of the present application.
  • the device can be implemented by software and/or hardware.
  • the device 600 may include: a reference positioning data acquisition module 610, configured to obtain reference positioning data sent by other devices around the smart wearable device in one direction; a positioning satellite locking module 620, configured to lock the The positioning satellite matched with the smart wearable device; the current positioning data determination module 630 is configured to determine the current positioning data of the smart wearable device based on the positioning satellite.
  • the reference positioning data sent by other devices around the smart wearable device are obtained, and according to the reference positioning data, the positioning satellite matching the smart wearable device is locked, so as to determine the location of the smart wearable device based on the positioning satellite.
  • the current positioning data so that the corresponding reference positioning data can be obtained without networking and data interaction, which is conducive to shortening the time required to obtain reference positioning data and the power consumption.
  • the satellite based on the reference positioning data, can quickly lock the positioning satellite of the smart wearable device, enabling the smart wearable device to achieve fast positioning, which is beneficial to shorten the positioning time, improve the positioning speed, and reduce the power consumption of the smart wearable device.
  • an embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • the computer program When the computer program is executed by a processor, it can implement a positioning method for a smart wearable device.
  • the method includes: acquiring a smart The reference positioning data sent by other devices around the wearable device in one direction; according to the reference positioning data, the positioning satellite matching the smart wearable device is locked; based on the positioning satellite, the current positioning data of the smart wearable device is determined.
  • the computer program stored in the computer-readable storage medium of the embodiment of the present application when executed by the processor, is not limited to realizing the operation of the positioning method of the smart wearable device as described above, and can also realize the operation provided by any embodiment of the present application. Related operations in the positioning method of the smart wearable device.
  • FIG. 7 is a schematic structural diagram of a smart wearable device provided by an embodiment of the present application.
  • the device 700 includes a memory 710 , a processor 720 and a computer program (not shown) stored in the memory 710 and executable on the processor 720 .
  • the positioning device 600 of the illustrated smart wearable device is only an example of the smart wearable device 700, and the smart wearable device 700 may have more or fewer components than those shown in the figure, and may combine two or more components, or may have different component configurations.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the positioning device, computer-readable storage medium, and smart wearable device provided in the above embodiments can implement the positioning method for the smart wearable device provided in any embodiment of the present application, and have corresponding functional modules and effects for executing the method.
  • the positioning method for a smart wearable device provided in any embodiment of the present application refer to the positioning method for a smart wearable device provided in any embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

智能穿戴设备的定位方法、装置、设备及存储介质,方法包括:获取智能穿戴设备周围其它设备单向发送的参考定位数据;根据参考定位数据,锁定与智能穿戴设备匹配的定位卫星;基于定位卫星,确定智能穿戴设备的当前定位数据。方法无需遍历所有的卫星,即可快速锁定该智能穿戴设备的定位卫星,使得智能穿戴设备实现快速定位。

Description

智能穿戴设备的定位方法、装置、设备及存储介质 技术领域
本申请涉及智能设备技术领域,例如涉及智能穿戴设备的定位方法、装置、设备及存储介质。
背景技术
智能穿戴设备的应用越来越广泛,可以解决的需求越来越多,具有定位功能的智能穿戴设备极大的方便了人们的生活。
相关技术中,智能穿戴设备一般是利用全球定位系统(Global Positioning System,GPS)卫星定位技术实现定位功能,智能穿戴设备接收多颗GPS卫星的信号,逐步解析当前接收到的信号,分析解析得到的数据中每个卫星的星历数据,所述星历数据包括非常详细的卫星轨道和位置信息;然后智能穿戴设备计算适用的卫星,再锁定适用的卫星,继而利用三颗以上的锁定卫星定位位置。
但是,由于GPS使用50b/S的非常慢的传输速度传输数据,因而,计算适用的卫星会花费比较多的时间,GPS卫星定位启动后的定位速度非常慢,一般要在开阔地十几至二十分钟才可以实现定位功能。
发明内容
本申请提供一种智能穿戴设备的定位方法、装置、设备及存储介质,可以快速锁定使用的卫星,提高定位速度。
本申请提供了一种智能穿戴设备的定位方法,包括:
获取所述智能穿戴设备周围其它设备单向发送的参考定位数据;
根据所述参考定位数据,锁定与所述智能穿戴设备匹配的定位卫星;
基于所述定位卫星,确定所述智能穿戴设备的当前定位数据。
本申请还提供了一种智能穿戴设备的定位装置,该装置包括:
参考定位数据获取模块,设置为获取所述智能穿戴设备周围其它设备单向发送的参考定位数据;
定位卫星锁定模块,设置为根据所述参考定位数据,锁定与所述智能穿戴设备匹配的定位卫星;
当前定位数据确定模块,设置为基于所述定位卫星,确定所述智能穿戴设 备的当前定位数据。
本申请还提供了一种智能穿戴设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
所述处理器执行所述计算机程序时实现上述的智能穿戴设备的定位方法。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的智能穿戴设备的定位方法。
附图说明
图1为本申请实施例提供的一种智能穿戴设备的定位方法的流程图;
图2为本申请实施例提供的又一种智能穿戴设备的定位方法的流程图;
图3为本申请实施例提供的又一种智能穿戴设备的定位方法的流程图;
图4为本申请实施例提供的又一种智能穿戴设备的定位方法的流程图;
图5为本申请实施例提供的又一种智能穿戴设备的定位方法的流程图;
图6是本申请实施例提供的一种智能穿戴设备的定位装置的结构框图;
图7为本申请实施例提供的一种智能穿戴设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。
在讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将多个步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,多个步骤的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
GPS卫星定位分为冷启动和热启动两种,冷启动为GPS接收器未保存有效星历、时间及位置信息的重新定位启动。热启动为GPS接收器保存有有效星历数据、时间及位置等信息的重新定位启动。
一旦GPS终端定位成功,在GPS接收芯片的内存中,一般会一直保留/更新最后一次的定位位置信息(包括经度、纬度和高度)和最后一次定位位置上空卫星的数量和轨迹以及预测的四小时之内这些卫星的位置,即短期星历。依赖这组数据,当GPS终端关机或者丢失信号之后,再次启动(即热启动)接受到卫星信号时,就可以不用遍历所有的卫星,只需根据短期星历,简单调整配 对,就可以锁定适用的卫星,从而实现快速定位。
当GPS终端关机时间过长,或者GPS终端在地理位置上发生了较大的变化,例如超过200公里时,内存中的星历和“最后一次的定位位置信息”与当前位置和当前位置的上空的卫星对应的星历产生较大的差异,此时启动GPS进行定位就属于GPS冷启动,GPS冷启动需要较长的时间,才能够准确定位。
为解决GPS终端冷启动定位慢的问题,出现了辅助GPS(Assisted GPS,A-GPS)技术,A-GPS终端需将本身的基站地址信息通过网络传输到定位服务器;定位服务器根据该A-GPS终端的大概位置传输与该位置相关的GPS辅助信息(包含GPS的星历和方位俯仰角等)到A-GPS终端;该A-GPS终端的A-GPS模块根据辅助信息接收GPS原始信号;A-GPS终端在接收到GPS原始信号后解调信号,计算A-GPS终端到卫星的伪距(即受多种GPS误差影响的距离),并将有关信息通过网络传输到定位服务器;定位服务器根据传来的GPS伪距信息和来自其他定位设备(如差分GPS基准站等)的辅助信息完成对GPS信息的处理,并估算该A-GPS终端的位置;定位服务器将该A-GPS终端的位置通过网络传输到定位网关或应用平台(如A-GPS终端上的GPS应用程序)。但是,A-GPS终端需要在室外等空旷地区,才能具有较高的定位精度,即受限于A-GPS所处环境,使得其在室内等受限制的环境中时,A-GPS终端无法取得多个卫星传来的讯号;同时,A-GPS终端的定位实现必须通过多次网络传输(最多可达六次单向传输),使得其对运营商来说占用了大量的空中资源,对消费者而言将产生较多的流量费用,且A-GPS定位功能功耗大,间接缩短了A-GPS终端的待机时间。
为解决上述技术问题,本申请实施例提供一种智能穿戴设备的定位方法,图1为本申请实施例提供的一种智能穿戴设备的定位方法的流程图,本申请实施例可使智能穿戴进行快速定位,该方法可以由智能穿戴设备的定位装置来执行,该装置可由软件和/或硬件来实现,如图1所示,该方法包括:
S1001、获取智能穿戴设备周围其它设备单向发送的参考定位数据。
智能穿戴设备是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如手表、手环、眼镜、服饰等。参考定位数据是指能够确定参考位置的数据,参考定位数据例如可以包括参考位置数据和/或参考星历数据;参考位置数据是指与参考位置相关的数据,参考位置数据例如可以包括参考位置的经度和维度;此外,参考位置还可以包括参考位置的高度;参考星历数据包括参考卫星轨道数据,即其它设备定位位置上空卫星在第一预设时间内的星历数据,此处的第一预设时间可以为小于或等于60分钟的时间,例如可以为15分钟、20分钟、25分钟、30分钟、35分钟或40分钟等。
相应的,智能穿戴设备周围的其它设备可以为智能穿戴设备周围预设距离范围内的设备,该预设距离范围例如可以是小于一百公里的范围、小于十公里的范围或者小于一公里的范围等,其可根据实际情况而定。
如此,当所获取的是智能穿戴设备周围其它设备单向发送的参考位置数据时,该参考位置数据能够直接反应出其它设备的当前位置,且因其它设备与智能穿戴设备之间的距离较近,使得智能穿戴设备能够基于该参考位置数据确定出其所在区域,以缩小智能穿戴设备的定位范围;而当所获取的是智能穿戴设备周围其它设备单向发送的参考星历数据时,该参考星历数据为一较短时间内的星历数据,其数据量较小,可以减少数据处理量,且因智能穿戴设备与其周围的其它设备之间的距离较近,使得智能穿戴设备可基于其它设备的较短时间内的星历数据,快速获知其所处位置上方一定区域范围内的运行卫星。
其它设备可以是任何具有定位功能且可以单向发送参考定位数据的设备,其它设备可以包括便携设备和/或固定设备,其中,便携设备是指在使用场地之间容易携带的设备,例如可以是手机、手表、手环、耳机、眼镜等可穿戴设备,还可以是可方便移动位置的定位纽扣、机箱、行李箱、导航仪等其它便携设备;固定设备可以是服务器、基站等非便携设备。
本申请实施例中获取的是其它设备单向发送的参考定位数据,此处的其它设备单向发送参考定位数据是其它设备自主发送参考定位数据的行为,其与智能穿戴设备是否要获取其所发送的参考定位数据无关,即在其它设备满足参考定位数据发送条件时,无论周围是否有智能穿戴设备要接收其发送的参考定位数据,其均会进行参考定位数据的发送,因此智能穿戴设备在获取参考定位数据时,无需向智能穿戴设备周围的其它设备提出数据发送请求,也就使得智能穿戴设备不会与其周围的其它设备之间存在数据交互的行为;如此,一方面,智能穿戴设备与其它设备之间不进行数据交互,不会占用大量的空中资源,不需要占用数据通信频段,因而获取参考定位数据,不受接收端设备的密度的影响,从而能快速且稳定获取到参考定位数据,提高参考定位数据的传输速率,有利于缩短获取参考定位数据所需的时间,同时能够降低功耗,增加待机时间;另一方面,因其它设备是单向发送参考定位数据的,所以获取参考定位数据的方式可以不受限于智能穿戴设备所处环境和是否设置有运营商等。
可选的,其它设备单向发送参考定位数据的方式可以为近场传输方式,即短距离、低功率的传输方式,该近场传输方式可以包括但不限于射频(Radio Frequency,RF)传输,例如可以是广播RF、近场通信(Near Field Communication,NFC)或射频识别(Radio Frequency Identification,RFID)等。
示例性的,当智能穿戴设备周围的其它设备通过广播RF的方式发送参考定 位数据时,智能穿戴设备周围的其它设备作为发射源,通过无线电波发送参考定位数据,而智能穿戴设备则作为接收对象,直接接收该参考定位数据即可。
当智能穿戴设备周围的其它设备通过NFC的方式发送参考定位数据时,智能穿戴设备周围的其它设备可以作为发起设备,而智能穿戴设备则作为目标设备,智能穿戴设备周围的其它设备提供射频场,以将参考定位数据发送至智能穿戴设备。例如,当智能穿戴设备周围的其它设备为固定设备(例如基站)时,基站可以提供相应的射频场,发送该基站自身的位置作为参考定位数据,而智能穿戴设备处于该基站所提供的射频场中时,就能够直接获取到该射频场中的参考定位数据;同样,当智能穿戴设备周围的其它设备为便携设备(例如智能终端)时,智能终端可以提供相应的射频场,发送该智能终端自身的定位数据作为参考定位数据,而智能穿戴设备处于该智能终端所提供的射频场中时,就能够直接获取到该射频场中的参考定位数据。
当智能穿戴设备周围的其它设备通过RFID的方式发送参考定位数据时,智能穿戴设备可以作为询问器,而智能穿戴设备周围的其它设备则可以作为应答器,智能穿戴设备周围的其它设备作为一磁场源建立相应的磁场,可主动以一频率发送参考定位数据,而在智能穿戴设备进入其它设备所建立的磁场中时,能够读取该其它设备发送的参考定位数据。
S1002、根据参考定位数据,锁定与智能穿戴设备匹配的定位卫星。
当参考定位数据包括参考位置数据时,可以依据该参考位置数据快速确定出智能穿戴设备所处位置所在的区域,此时可通过搜索该区域上方的运行卫星,按一定卫星截止角选择相应的卫星作为该智能穿戴设备的定位卫星;当参考定位数据包括参考星历数据时,可以依据该参考星历数据,快速获知其所处位置上方一定区域范围内的运行卫星,并依据该区域范围内的运行卫星,按一定卫星截止角选择相应的卫星作为该智能穿戴设备的定位卫星;如此,相较于搜索所有运行卫星锁定定位卫星的方式,基于参考定位数据,仅需搜索一定区域范围内的卫星,即可快速锁定出与智能穿戴设备匹配的定位卫星,从而节省锁定定位卫星所需的时间,降低因搜索卫星所产生的功耗。其中,由于在基于定位卫星进行定位时,需要获知智能穿戴设备所处位置的经度、纬度和高度等,因此所锁定的定位卫星至少为三颗。
S1003、基于定位卫星,确定智能穿戴设备的当前定位数据。
当前定位数据为能够确定出智能穿戴设备所处位置信息的数据,此处的当前定位数据同样可以包括当前位置数据和/或当前星历数据。当前定位数据为当前位置数据时,该当前位置数据可包括经度、纬度和高度;而当前定位数据为当前星历数据时,该当前星历数据可以为第一预设时间内定位卫星的星历数据。
若当前定位数据为当前位置数据,在锁定智能穿戴设备的定位卫星后,可实时接收定位卫星发送的导航电文,该导航电文可以包括定位卫星的星历数据、工作状况、时钟改正、电离层时延修正、大气折射修正等信息,基于定位卫星的星历数据可以查找出该定位卫星的当前位置,而智能穿戴设备到定位卫星的距离可通过记录定位卫星发送的导航电文到智能穿戴设备所经历的时间乘以光速得到。如此,通过建立方程,即可求解出智能穿戴设备所处位置的三维坐标,即智能穿戴设备所处位置的经度、纬度和高度,使得智能穿戴设备响应于该经度、纬度和高度,实现对智能穿戴设备的定位,并将智能穿戴设备所处位置的经度、纬度和高度作为智能穿戴设备的当前位置数据。
同样的,若当前定位数据为当前星历数据,在锁定智能穿戴设备的定位卫星后,可实时接收定位卫星发送的导航电文,该导航电文可以包括定位卫星的星历数据、工作状况、时钟改正、电离层时延修正、大气折射修正等信息,可直接确定出第一预设时间内定位卫星的星历数据作为智能穿戴设备的当前星历数据。而智能穿戴设备所处位置处的经度、纬度和高度的确定可参考上述确定智能穿戴设备的当前位置数据,在此不再赘述。此时,同样可以使智能穿戴设备响应于所确定的经度、纬度和高度,实现对智能穿戴设备的定位。
可选的,智能穿戴设备周围的其它设备可以包括便携设备和/或固定设备,由于固定设备的所处位置是固定的,而便携设备所处位置是可以变化的。当智能穿戴设备周围的其它设备为便携设备时,该便携设备可通过与其相关联的辅助设备确定其定位数据作为参考定位数据,辅助设备可以是设置有运营商的联网设备、基站、服务器等;或者,当智能穿戴设备周围的其它设备为便携设备时,该便携设备也可通过GPS热启动或GPS冷启动的方式确定其定位数据作为参考定位数据。
示例性,用户带着智能穿戴设备坐飞机从A城市出发赶往B城市,两个城市相距两百公里以上;到达B城市后,用户的智能穿戴设备需要重新定位,此时可获取同处于B城市的其他已经完成定位的其它设备单向发送的参考定位数据,并基于该参考定位数据锁定智能穿戴设备的定位卫星,从而基于定位卫星发送的导航电文,实现快速定位。
本申请实施例通过获取智能穿戴设备周围其它设备单向发送的参考定位数据,无需联网和进行数据交互,即可获取到相应的参考定位数据,有利于缩短获取参考定位数据所需的时间和所消耗的电量,相较于GPS热启动,无需遍历所有的卫星,基于该参考定位数据,即可快速锁定该智能穿戴设备的定位卫星,使得智能穿戴设备实现快速定位,即有利于缩短定位时间,提高定位速度,降低智能穿戴设备的功耗。
在智能穿戴设备完成定位后,其同样可以作为一个参考定位数据的发射源,向其周围的其它智能设备单向发送参考定位数据。
可选的,图2为本申请实施例提供的又一种智能穿戴设备的定位方法的流程图,如图2所示,该方法包括:
S2001、获取智能穿戴设备周围其它设备单向发送的参考定位数据。
S2002、根据参考定位数据,锁定与智能穿戴设备匹配的定位卫星。
S2003、基于定位卫星,确定智能穿戴设备的当前定位数据。
S2004、向智能穿戴设备周围其它设备发送当前定位数据以使当前定位数据作为其它设备的参考定位数据。
智能穿戴设备和其周围的其它设备可以为同种设备,也可以为不同种设备,本申请实施例对此不做限定。
在确定出智能穿戴设备的当前定位数据后,该智能穿戴设备可以响应于其当前定位数据,实现对智能穿戴设备的定位。此时,可将所确定出的智能穿戴设备的当前定位数据作为参考定位数据单向发送给其周围的其它设备,使得智能穿戴设备周围的其它设备需要进行定位时,可直接获取智能穿戴设备所发送的参考定位数据,从而基于智能穿戴设备所发送的参考定位数据,使得其它设备实现快速定位。其中,智能穿戴设备单向发送当前定位数据的方式同样可以为近场传输方式,例如广播RF、NFC或RFID等。同时,能够获取到智能穿戴设备所发送的参考定位数据的其它设备同样可以为该智能穿戴设备周围预设距离范围内的其它设备,且与智能穿戴设备之间的距离越近越有利于参考定位数据的获取。
示例性的,智能穿戴设备C1根据智能穿戴设备C2单向发送的参考定位数据锁定与智能穿戴设备C1匹配的定位卫星,并基于该定位卫星确定出智能穿戴设备C1的当前定位数据,以对智能穿戴设备C1进行定位;此时,智能穿戴设备C1可以单向发送其基于定位卫星确定的当前定位数据作为参考定位数据;当智能穿戴设备C3获取到智能穿戴设备C1发送的参考定位数据时,智能穿戴设备C3同样能够根据智能穿戴设备C1发送的参考定位数据,锁定与智能穿戴设备C3高度匹配的定位卫星,确定出智能穿戴设备C3的当前定位数据,从而使得智能穿戴设备C3能够实现快速定位。
如此,任何一个智能穿戴设备在定位成功之后,都可以作为一个参考定位数据的发射源,从而能够降低参考定位数据的获取难度,提高智能穿戴设备的定位速度。
可选的,由于在向智能穿戴设备周围的其它设备发送当前定位数据以使当 前定位数据作为其它设备的参考定位数据时,会占用一定的数据处理空间和资源,使得智能穿戴设备具有较高的功耗和/或影响智能穿戴设备的定位速度,因此可以基于智能穿戴设备的运行模式,确定其是否适合发送参考定位数据。图3为本申请实施例提供的又一种智能穿戴设备的定位方法的流程图,如图3所示,该方法包括:
S3001、获取智能穿戴设备周围其它设备单向发送的参考定位数据。
S3002、根据参考定位数据,锁定与智能穿戴设备匹配的定位卫星。
S3003、基于定位卫星,确定智能穿戴设备的当前定位数据。
S3004、获取智能穿戴设备的当前运行模式。
S3005、响应于当前运行模式,在当前运行模式满足定位数据发送条件时,向智能穿戴设备周围其它设备单向发送当前定位数据以使当前定位数据作为其它设备的参考定位数据。
智能穿戴设备的运行模式可以包括但不限于日常模式、运动准备模式、运动模式等;运动准备模块为还未进入对运动状态进行记录的运行模式,运动模式为开始对运动状态进行实时记录的运行模式,所记录的运动状态可以包括但不限于用户的心率、速度、加速度、血氧饱和度、实时位置等;日常模式可以为非运动准备模式和非运动模式的其它任意模式,例如即时通讯模式、待机模式、正常显示模式等。
数据发送条件可以包括但不限于智能穿戴设备未发生较大位移和/或位移较缓慢。例如,在智能穿戴设备处于运动准备模式时,用户可在原地进行热身运动和/或等待运动开始的指令等,此时用户并未进入真正的运动状态,智能穿戴设备并未发生较大的位移,该位移可以包括但不限于高度方向上的位移和/或经纬度方向的位移。其中,运动准备模式可以包括但不限于跑步准备模式、越野准备模式、游泳准备模式、铁人三项准备模式等运动准备模式。
智能穿戴设备的当前运行模式可由用户操作选择来确定,例如用户可打开相应的应用软件,在应用软件中点击选取智能穿戴设备的运行模式,若用户选取的为运动准备模式,表明用户不会进行大幅度的动作和/或快速运动,用户通常会呆在原地进行热身,此时智能穿戴设备无需进行实时定位,也无需记录用户的运动状态,使得其内部运行空间和资源充足,认为其满足定位数据发送条件,可向该智能穿戴设备周期其它设备单向发送当前定位数据以使当前定位数据作为其它设备的参考定位数据;或者,智能穿戴设备的当前运行模式也可以通过智能穿戴设备中的运动检测传感器进行实时检测,此时通过获取智能穿戴设备的运动数据,根据该运动数据,确定智能穿戴设备的当前运行模式。其中, 运动检测传感器可以包括但不限于高度检测传感器、速度检测传感器或加速度检测传感器;运动数据可以是高度数据、速度数据或加速度数据;例如,在运动检测传感器检测到的高度小于高度阈值、检测到的速度小于速度阈值、或者检测到的加速度小于加速度阈值时,认为其当前运行模式满足定位数据发送模式。
示例性的,以运动检测传感器为高度检测传感器为例,该高度检测传感器能够检测穿戴智能穿戴设备的用户的摆臂幅度,确定智能穿戴设备是否处于运动模式;在高度检测传感器所检测到的用户的摆臂幅度小于高度阈值时,认为用户未处于运动模式,认为其满足定位数据发送条件,可向该智能穿戴设备周期其它设备单向发送当前定位数据以使当前定位数据作为其它设备的参考定位数据。相反,在高度检测传感器所检测到的用户的摆臂幅度大于或等于高度阈值时,确定出智能穿戴设备处于运动模式,则会停止向该智能穿戴设备周围的其它设备单向发送参考定位数据,以释放出智能穿戴设备因发送参考定位数据所占用的运行空间和资源,从而能够降低智能穿戴设备的功耗,有利于智能穿戴设备的快速运行。
可选的,参考定位数据是与其它设备的定位位置相关的数据,在基于该参考定位数据,锁定与智能穿戴设备匹配的定位卫星时,还需要参考智能设备中的预置全星历数据。图4是本申请实施例提供的又一种智能穿戴设备的定位方法的流程图,如图4所示,该方法包括:
S4001、获取智能穿戴设备周围其它设备发送的参考定位数据。
S4002、获取智能穿戴设备中的预置全星历数据。
预置全星历数据即为存储于智能穿戴设备中已有的所有卫星的星历数据,其可以是N天内所有卫星的星历数据,其中,0<N≤30,例如N可以为10天、20天或30天。该预置全星历数据可以是在智能穿戴设备与该智能穿戴设备相关联的辅助设备连接时,从该辅助设备中下载下来的全星历数据,其可以呈周期性进行下载,以实现预置全星历数据的实时更新,从而在后续采用该预置全星历数据进行定位时,能够提高定位准确性;该下载周期可以为M天,M可以大于或等于20;辅助设备可以是手机、电脑等智能终端,也可以为基站等;当辅助设备为手机时,手机可以通过运营商进行联网实时更新其所存储的全星历数据。
S4003、确定参考定位数据与预置全星历数据的匹配结果。
S4004、根据匹配结果,锁定与智能穿戴设备匹配的定位卫星。
由于预置全星历数据包括所有卫星的星历数据,因此当参考定位数据为参 考星历数据时,可以直接从预置全星历数据中找到与该参考星历数据相匹配的卫星,确定出智能穿戴设备所处位置上方一定区域范围内的运行卫星,并从该区域范围内的运行卫星中,按一定卫星截止角选择相应的卫星作为该智能穿戴设备的定位卫星;而当参考定位数据为参考位置数据时,可确定出智能穿戴设备所处区域,通过预置全星历数据可以获知该智能穿戴设备所处区域上方的所有运行卫星,并从其所处区域上方的所有运行卫星中,按一定卫星截止角选择相应的卫星作为该智能穿戴设备的定位卫星。如此,通过参考定位数据与预置全星历数据进行比较,就能够确定出一定区域范围内的运行卫星,并通过对该区域范围内的运行卫星进行搜索,即可快速锁定智能穿戴设备的定位卫星,从而能够大大缩短智能穿戴设备的定位时间,提高智能穿戴设备的定位速度。
S4005、基于定位卫星,确定智能穿戴设备的当前定位数据。
本申请实施例通过智能穿戴设备中的预置全星历数据和参考定位数据,能够快速地锁定出智能穿戴设备的定位卫星,以基于该定位卫星能够实现智能穿戴设备的快速定位,从而有利于缩短锁定定位卫星所需的时间,提高智能穿戴设备的定位速度和定位准确性。
可选的,当智能穿戴设备可实现快速定位并且定位时间在一定范围以内,则智能穿戴设备直接进行定位即可,但是当智能穿戴设备的定位时间超过了一定范围时,智能穿戴设备将无法快速定位,此时可基于其它设备单向发送的参考定位数据进行定位。图5为本申请实施例提供的又一种智能穿戴设备的定位方法的流程图,如图5所示,该方法包括:
S5001、实时获取智能穿戴设备进行定位所历经的定位时间;
S5002、响应于定位时间,在定位时间超过定位时间阈值时,获取智能穿戴设备周围其它设备单向发送的参考定位数据。
S5003、根据参考定位数据,锁定与智能穿戴设备匹配的定位卫星。
S5004、基于定位卫星,确定智能穿戴设备的当前定位数据。
智能穿戴设备的定位方式可以包括但不限于GPS定位、基站定位、A-GPS定位、WIFI定位等;以智能穿戴设备的定位方式为GPS定位为例,在智能穿戴设备正常运行期间,该智能穿戴设备可基于其内部的GPS接收器实时接收卫星发送的导航电文,以实现智能穿戴设备的实时定位。但是,由于在智能穿戴设备采用GPS定位方式进行实时定位时,该GPS定位的启动方式包括GPS热启动和GPS冷启动,GPS热启动时,智能穿戴设备可以实现快速定位;而当GPS冷启动时,则需要耗费较长的时间。此时,可以实时获取智能穿戴设备进行定位所需的时间,在其定位所需的时间超过定位时间阈值时,可以确定智能穿戴 设备当前的定位方式无法满足智能穿戴设备的快速定位需求,其可能为GPS冷启动,此时可通过获取智能穿戴设备周围其它设备单向发送的参考电位数据,以基于该参考定位数据,快速锁定定位卫星,实现智能穿戴设备的快速定位;当其定位所需的时间未超出定位时间阈值时,说明智能穿戴设备能够实现快速定位,则无需再获取智能穿戴设备周围其它设备单向发送的参考电位数据。
此外,由于GPS冷启动的条件为当前定位时间与最后一次定位时间之间时间差异较大和/或当前所处位置与最后一次定位位置之间相距较远,因此还可以根据智能穿戴设备最后一次定位时间和/或智能穿戴设备最后一次定位位置,确定其是否将会进行GPS冷启动,作为是否基于参考定位数据锁定定位卫星的条件。
以根据智能穿戴设备最后一次定位位置,作为是否基于参考定位数据锁定定位卫星的条件为例。在获取智能穿戴设备周围其它设备单向发送的参考定位数据后,还可以获取智能穿戴设备最后一次存储的定位数据,该定位数据可以直接反应出智能穿戴设备最后一次定位位置,该定位数据同样可以为位置数据或星历数据;通过判断最后一次存储的定位数据与参考定位数据之间的差异是否在预设差异范围内,当最后一次存储的定位数据与参考定位数据之间的差异在预设差异范围内时,说明智能穿戴设备的当前位置与最后一次定位位置之间相距较近,直接可以基于最后一次定位位置,快速锁定出智能穿戴设备的定位卫星,以根据智能穿戴设备的定位卫星,确定出智能穿戴设备的当前位置;而当最后一次存储的定位数据与参考定位数据之间的差异未在预设差异范围内时,可以认为智能穿戴设备的当前位置与最后一次定位位置之间相距较远,无法基于其最后一次定位位置,快速锁定智能穿戴设备的定位卫星,此时可根据参考定位数据,锁定与智能穿戴设备匹配的定位卫星,以基于定位卫星,确定智能穿戴设备的当前定位数据,实现智能穿戴设备的快速定位。
基于同一构思,本申请实施例还提供一种智能穿戴设备的定位装置,图6为本申请实施例提供的一种智能穿戴设备的定位装置的结构框图,该装置可由软件和/或硬件实现,一般集成在智能穿戴设备中。如图6所示,该装置600可以包括:参考定位数据获取模块610,设置为获取智能穿戴设备周围其它设备单向发送的参考定位数据;定位卫星锁定模块620,设置为根据参考定位数据,锁定与智能穿戴设备匹配的定位卫星;当前定位数据确定模块630,设置为基于定位卫星,确定智能穿戴设备的当前定位数据。
本申请实施例通过获取智能穿戴设备周围其它设备单向发送的参考定位数据,并根据该参考定位数据,锁定与该智能穿戴设备相匹配的定位卫星,以基于定位卫星,确定该智能穿戴设备的当前定位数据,从而无需联网和进行数据 交互,即可获取到相应的参考定位数据,有利于缩短获取参考定位数据所需的时间和所消耗的电量,相较于GPS热启动,无需遍历所有的卫星,基于该参考定位数据,即可快速锁定该智能穿戴设备的定位卫星,使得智能穿戴设备实现快速定位,即有利于缩短定位时间,提高定位速度,降低智能穿戴设备的功耗。
基于同一构思,本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在被处理器执行时,能够实现智能穿戴设备的定位方法,该方法包括:获取智能穿戴设备周围其它设备单向发送的参考定位数据;根据参考定位数据,锁定与智能穿戴设备匹配的定位卫星;基于定位卫星,确定智能穿戴设备的当前定位数据。
本申请实施例的计算机可读存储介质所存储的计算机程序,在被处理器执行时,不限于实现如上所述的智能穿戴设备的定位方法的操作,还可以实现本申请任意实施例所提供的智能穿戴设备的定位方法中的相关操作。
基于同一构思,本申请实施例提供了一种智能穿戴设备,该智能穿戴设备中可集成本申请实施例提供的智能穿戴设备的定位装置。图7为本申请实施例提供的一种智能穿戴设备的结构示意图。如图7所示,该设备700包括存储器710、处理器720及存储在存储器710上并可在处理器720上运行的计算机程序(图中未示出)。
图示智能穿戴设备的定位装置600仅仅是智能穿戴设备700的一个范例,并且智能穿戴设备700可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图中所示出的多种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
上述实施例中提供的智能穿戴设备的定位装置、计算机可读存储介质及智能穿戴设备可执行本申请任意实施例所提供的智能穿戴设备的定位方法,具备执行该方法相应的功能模块和效果。未在上述实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的智能穿戴设备的定位方法。

Claims (15)

  1. 一种智能穿戴设备的定位方法,包括:
    获取所述智能穿戴设备周围其它设备单向发送的参考定位数据;
    根据所述参考定位数据,锁定与所述智能穿戴设备匹配的定位卫星;
    基于所述定位卫星,确定所述智能穿戴设备的当前定位数据。
  2. 根据权利要求1所述的智能穿戴设备的定位方法,其中,所述定位数据包括位置数据和星历数据中的至少之一。
  3. 根据权利要求2所述的智能穿戴设备的定位方法,其中,所述位置数据包括经度和维度;
    所述星历数据包括第一预设时间内的星历数据;所述第一预设时间小于或等于60分钟。
  4. 根据权利要求1所述的智能穿戴设备的定位方法,在所述基于所述定位卫星,确定所述智能穿戴设备的当前定位数据之后,还包括:
    向所述智能穿戴设备周围其它设备单向发送所述当前定位数据以使所述当前定位数据作为所述其它设备的参考定位数据。
  5. 根据权利要求4所述的智能穿戴设备的定位方法,其中,所述向所述智能穿戴设备周围其它设备单向发送所述当前定位数据以使所述当前定位数据作为所述其它设备的参考定位数据,包括:
    获取所述智能穿戴设备的当前运行模式;
    响应于所述当前运行模式,在所述当前运行模式满足定位数据发送条件的情况下,向所述智能穿戴设备周围其它设备单向发送所述当前定位数据以使所述当前定位数据作为所述其它设备的参考定位数据。
  6. 根据权利要求5所述的智能穿戴设备的定位方法,其中,所述获取所述智能穿戴设备的当前运行模式,包括:
    基于所述智能穿戴设备中的运动检测传感器,获取所述智能穿戴设备的运动数据;
    根据所述运动数据,确定所述智能穿戴设备的当前运行模式。
  7. 根据权利要求1所述的智能穿戴设备的定位方法,其中,所述根据所述参考定位数据,锁定与所述智能穿戴设备匹配的定位卫星,包括:
    获取所述智能穿戴设备中的预置全星历数据;
    确定所述参考定位数据与所述预置全星历数据的匹配结果;
    根据所述匹配结果,锁定与所述智能穿戴设备匹配的定位卫星。
  8. 根据权利要求7所述的智能穿戴设备的定位方法,其中,所述预置全星历数据包括N天内所有卫星的星历数据;其中,0<N≤30。
  9. 根据权利要求1所述的智能穿戴设备的定位方法,其中,所述获取所述智能穿戴设备周围其它设备单向发送的参考定位数据,包括:
    实时获取所述智能穿戴设备进行定位所历经的定位时间;
    响应于所述定位时间,在所述定位时间超过定位时间阈值的情况下,获取所述智能穿戴设备周围其它设备单向发送的参考定位数据。
  10. 根据权利要求1所述的智能穿戴设备的定位方法,其中,所述其它设备单向发送所述参考定位数据的方式为近场传输方式。
  11. 根据权利要求10所述的智能穿戴设备的定位方法,其中,所述近场传输方式包括射频传输。
  12. 根据权利要求1所述的智能穿戴设备的定位方法,其中,所述其它设备包括便携设备和固定设备中的至少之一。
  13. 一种智能穿戴设备的定位装置,包括:
    参考定位数据获取模块,设置为获取所述智能穿戴设备周围其它设备单向发送的参考定位数据;
    定位卫星锁定模块,设置为根据所述参考定位数据,锁定与所述智能穿戴设备匹配的定位卫星;
    当前定位数据确定模块,设置为基于所述定位卫星,确定所述智能穿戴设备的当前定位数据。
  14. 一种智能穿戴设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
    所述处理器执行所述计算机程序时实现如权利要求1-12中任一项所述的智能穿戴设备的定位方法。
  15. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-12中任一项所述的智能穿戴设备的定位方法。
PCT/CN2021/114058 2021-08-23 2021-08-23 智能穿戴设备的定位方法、装置、设备及存储介质 WO2023023893A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/114058 WO2023023893A1 (zh) 2021-08-23 2021-08-23 智能穿戴设备的定位方法、装置、设备及存储介质
EP21954446.7A EP4375711A1 (en) 2021-08-23 2021-08-23 Method and apparatus for positioning smart wearable device, device and storage medium
CN202180098209.4A CN117295977A (zh) 2021-08-23 2021-08-23 智能穿戴设备的定位方法、装置、设备及存储介质
US18/436,573 US20240176027A1 (en) 2021-08-23 2024-02-08 Method for positioning smart wearable device, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/114058 WO2023023893A1 (zh) 2021-08-23 2021-08-23 智能穿戴设备的定位方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/436,573 Continuation US20240176027A1 (en) 2021-08-23 2024-02-08 Method for positioning smart wearable device, and device

Publications (1)

Publication Number Publication Date
WO2023023893A1 true WO2023023893A1 (zh) 2023-03-02

Family

ID=85321423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114058 WO2023023893A1 (zh) 2021-08-23 2021-08-23 智能穿戴设备的定位方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20240176027A1 (zh)
EP (1) EP4375711A1 (zh)
CN (1) CN117295977A (zh)
WO (1) WO2023023893A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538600B1 (en) * 1998-10-16 2003-03-25 Lucent Technologies Inc. Wireless assisted GPS using a reference location
JP2004028593A (ja) * 2002-06-21 2004-01-29 Mitsubishi Electric Corp 地上局装置及び移動端末装置
JP2009210321A (ja) * 2008-03-03 2009-09-17 Denso Corp 車載装置
US20160223680A1 (en) * 2015-01-30 2016-08-04 Seiko Epson Corporation Selection method, positioning device and program
CN107064966A (zh) * 2017-04-27 2017-08-18 上海斐讯数据通信技术有限公司 一种智能穿戴设备的定位方法、定位系统及智能穿戴设备
CN108008432A (zh) * 2018-01-05 2018-05-08 深圳市沃特沃德股份有限公司 卫星定位方法、装置和智能手表
CN108919302A (zh) * 2018-05-18 2018-11-30 四川斐讯信息技术有限公司 一种穿戴设备定位系统及定位方法
WO2019134137A1 (zh) * 2018-01-05 2019-07-11 深圳市沃特沃德股份有限公司 卫星定位方法、装置和智能手表
CN111522045A (zh) * 2019-02-02 2020-08-11 中兴通讯股份有限公司 终端的gps模块冷启动方法、装置、终端及存储介质
CN112513576A (zh) * 2020-02-28 2021-03-16 华为技术有限公司 导航方法及装置
CN113126124A (zh) * 2020-01-16 2021-07-16 千寻位置网络有限公司 提供辅助定位信息的方法、服务端及终端

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538600B1 (en) * 1998-10-16 2003-03-25 Lucent Technologies Inc. Wireless assisted GPS using a reference location
JP2004028593A (ja) * 2002-06-21 2004-01-29 Mitsubishi Electric Corp 地上局装置及び移動端末装置
JP2009210321A (ja) * 2008-03-03 2009-09-17 Denso Corp 車載装置
US20160223680A1 (en) * 2015-01-30 2016-08-04 Seiko Epson Corporation Selection method, positioning device and program
CN107064966A (zh) * 2017-04-27 2017-08-18 上海斐讯数据通信技术有限公司 一种智能穿戴设备的定位方法、定位系统及智能穿戴设备
CN108008432A (zh) * 2018-01-05 2018-05-08 深圳市沃特沃德股份有限公司 卫星定位方法、装置和智能手表
WO2019134137A1 (zh) * 2018-01-05 2019-07-11 深圳市沃特沃德股份有限公司 卫星定位方法、装置和智能手表
CN108919302A (zh) * 2018-05-18 2018-11-30 四川斐讯信息技术有限公司 一种穿戴设备定位系统及定位方法
CN111522045A (zh) * 2019-02-02 2020-08-11 中兴通讯股份有限公司 终端的gps模块冷启动方法、装置、终端及存储介质
CN113126124A (zh) * 2020-01-16 2021-07-16 千寻位置网络有限公司 提供辅助定位信息的方法、服务端及终端
CN112513576A (zh) * 2020-02-28 2021-03-16 华为技术有限公司 导航方法及装置

Also Published As

Publication number Publication date
CN117295977A (zh) 2023-12-26
EP4375711A1 (en) 2024-05-29
US20240176027A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
US8108143B1 (en) Navigation system enabled wireless headset
US7978137B2 (en) Performance and power management in direction of arrival determination by utilizing sensor information
US7564405B2 (en) Object locator
JP4945632B2 (ja) 位置モニタリングシステム
US10698117B2 (en) Systems and methods for location assistance with personal area network devices
US8700049B2 (en) System and/or method for reducing initial position uncertainty in SPS operation
US9562976B2 (en) Method and apparatus for distinguishing direct GNSS signals from reflections
WO2013009465A1 (en) Position estimating for a mobile device
CA2404109A1 (en) Methods and apparatuses for using assistance data relating to satellite position systems
EP1903349A1 (en) Mobile communication terminal for receiving position information service and method thereof
KR20140023564A (ko) 글로벌 네비게이션 위성 시스템을 이용한 단말, 단말이 측위 기술을 수행하는 방법, 단말을 이용한 측위 시스템 및 기록매체
CN103983994A (zh) 一种gps定位跟踪器及系统
Lapyko et al. A cloud-based outdoor assistive navigation system for the blind and visually impaired
CN102788982A (zh) 一种辅助定位监控系统
Sahoo et al. Integrating GPS, GSM and cellular phone for location tracking and monitoring
CN105357640B (zh) 定位的方法和装置
KR20020092718A (ko) 지피에스 단말기 및 무선통신 단말기에 대한 측위 방법
KR20150013042A (ko) 시야 가림 정보를 이용하는 휴대용 장치, 이동식 단말기, 데이터베이스 서버, 및 시스템, 그리고 휴대용 장치의 작동 방법
WO2023023893A1 (zh) 智能穿戴设备的定位方法、装置、设备及存储介质
US20170045621A1 (en) Satellite positioning device and electronic device
CN113126124A (zh) 提供辅助定位信息的方法、服务端及终端
WO2022001728A1 (zh) 运动数据获取方法及装置、智能可穿戴设备、存储介质
US20220276394A1 (en) Map-aided satellite selection
Dhondge et al. ECOPS: Energy‐Efficient Collaborative Opportunistic Positioning for Heterogeneous Mobile Devices
KR101077553B1 (ko) 근거리 무선통신을 이용한 위성항법 수신 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098209.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021954446

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021954446

Country of ref document: EP

Effective date: 20240220

NENP Non-entry into the national phase

Ref country code: DE