WO2023021887A1 - Electronic component module - Google Patents

Electronic component module Download PDF

Info

Publication number
WO2023021887A1
WO2023021887A1 PCT/JP2022/027542 JP2022027542W WO2023021887A1 WO 2023021887 A1 WO2023021887 A1 WO 2023021887A1 JP 2022027542 W JP2022027542 W JP 2022027542W WO 2023021887 A1 WO2023021887 A1 WO 2023021887A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
electrodes
layer
component module
electrode
Prior art date
Application number
PCT/JP2022/027542
Other languages
French (fr)
Japanese (ja)
Inventor
善史 齋藤
芳希 飛田
義典 金
智樹 山本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023021887A1 publication Critical patent/WO2023021887A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits

Definitions

  • the present invention relates to electronic component modules.
  • Patent Documents 1 and 2 disclose electronic component modules in which electronic components are mounted on one side or both sides of a substrate.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an electronic component module capable of suppressing the occurrence of mounting defects.
  • An electronic component module of the present invention is an electronic component module in which components are mounted on both sides of a substrate, and has a first main surface provided with a plurality of first electrodes and a second main surface provided with a plurality of second electrodes. a first electronic component having a mounting surface provided with a plurality of external terminals connected to the plurality of first electrodes; a planarizing layer covering the second main surface; and the planarizing layer a second electronic component having a mounting surface provided with a plurality of third electrodes provided thereon and connected to the plurality of second electrodes; and a mounting surface provided with a plurality of external terminals connected to the plurality of third electrodes; characterized by comprising
  • an electronic component module capable of suppressing the occurrence of mounting defects.
  • FIG. 1 is a cross-sectional view schematically showing an example of an electronic component module of the present invention (first embodiment).
  • FIG. 2 is a cross-sectional view schematically showing an example of Cu pillar bumps included in the electronic component of the present invention (first embodiment).
  • FIG. 3 is an SEM photograph showing a cross section of the LTCC substrate used in the evaluation test.
  • FIG. 4 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a step of mounting the first electronic component.
  • FIG. 5 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a first resin sealing process.
  • FIG. 6 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in the manufacturing process, showing the grinding process of the sealing resin layer.
  • FIG. 7 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in the manufacturing process, showing the forming process of the flattening layer.
  • FIG. 8 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in the manufacturing process, showing a via hole forming process in the planarizing layer.
  • FIG. 9 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a formation process of vias and electrodes.
  • FIG. 10 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a process of mounting the second electronic component and the third electronic component.
  • FIG. 11 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a second resin sealing process.
  • FIG. 12 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a forming process of a metal conductor layer.
  • FIG. 13 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment).
  • FIG. 14 is a cross-sectional view schematically showing another example of the electronic component module of the present invention (second embodiment).
  • FIG. 15 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in a manufacturing process, showing a step of mounting the first electronic component.
  • FIG. 16 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing the first resin sealing process.
  • FIG. 17 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing the grinding process of the sealing resin layer.
  • FIG. 15 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in a manufacturing process, showing a step of mounting the first electronic component.
  • FIG. 16 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing the first resin
  • FIG. 18 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing the forming process of the planarizing layer.
  • FIG. 19 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing a via hole forming process in the planarizing layer.
  • FIG. 20 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing the formation process of vias and electrodes.
  • FIG. 21 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in a manufacturing process, showing a process of mounting the second electronic component and the third electronic component.
  • FIG. 22 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in a manufacturing process, showing a second resin sealing process.
  • FIG. 23 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in a manufacturing process, showing a forming process of a metal conductor layer.
  • FIG. 24 is a cross-sectional view schematically showing an example of an electronic component module according to a comparative embodiment;
  • the electronic component module of the present invention will be described below.
  • the present invention is not limited to the following configurations and aspects, and can be appropriately modified and applied without changing the gist of the present invention.
  • a combination of two or more of the individual preferred configurations and aspects of the present invention described below is also the present invention.
  • the electronic component module according to the first embodiment includes an electronic component having Cu (copper) pillar bumps as an electronic component having mounting surfaces provided with a plurality of external terminals on both sides of a low-temperature fired ceramic substrate as an inorganic material substrate ( Preferably, it is a module mounted with an IC), a flattening layer is formed on the major surface of the two surfaces of the low-temperature co-fired ceramic substrate, which has larger unevenness, and the above-mentioned electronic components are mainly mounted on the flattening layer.
  • Cu copper
  • a flattening layer is formed on the major surface of the two surfaces of the low-temperature co-fired ceramic substrate, which has larger unevenness, and the above-mentioned electronic components are mainly mounted on the flattening layer.
  • a flattening layer is formed from a resin material or the like on the main surface of the larger unevenness to flatten it, and then the electrodes of the low-temperature co-fired ceramic substrate are pulled out onto the flattening layer for component mounting.
  • the electrodes that is, the mounting pads
  • the mounting portion of the electronic component has a flat structure.
  • FIG. 1 is a cross-sectional view schematically showing an example of an electronic component module of the present invention (first embodiment).
  • the electronic component module 100 shown in FIG. 1 is a substantially rectangular parallelepiped module, and includes a mounting surface 101, a top surface 102 facing the mounting surface 101, and four side surfaces 103 connecting the mounting surface 101 and the top surface 102. have.
  • the mounting surface 101 is provided with a plurality of input/output electrodes (I/O electrodes) 104 connected to other electronic components and substrates.
  • the electronic component module 100 is an electronic component module in which components are mounted on both sides of a substrate. It includes a substrate (hereinafter, LTCC substrate) 110 , first electronic components 121 mounted on a first main surface 111 , and a plurality of second electronic components 122 mounted on a second main surface 112 .
  • the first electronic component 121 has a mounting surface provided with a plurality of Cu pillar bumps 131 as external terminals.
  • Each second electronic component 122 also has a mounting surface provided with a plurality of Cu pillar bumps 132 as external terminals.
  • the LTCC substrate 110 is a ceramic multilayer substrate in which insulating layers (at least one layer may be provided with vias) and conductor layers provided with wiring and electrodes are laminated.
  • Metal materials such as silver and copper are used as materials for conductor layers and vias, and low-temperature sintered ceramic materials are used as insulating materials for insulating layers.
  • a low-temperature sintering ceramic material is one type of ceramic material, and is a material that can be fired simultaneously with silver and copper used as metal materials at a firing temperature of 1000° C. or less .
  • the first main surface 111 of the LTCC substrate 110 is provided with a plurality of first electrodes (mounting pads) 141 corresponding to the plurality of Cu pillar bumps 131 (external terminals) of the first electronic component 121 one-to-one.
  • the first electronic component 121 is flip-chip mounted on the first main surface 111 by connecting each Cu pillar bump 131 to the corresponding first electrode 141 .
  • Each first electrode 141 is connected to corresponding wiring (not shown) of the LTCC substrate 110 .
  • the first electronic component 121 is not particularly limited as long as it has a mounting surface provided with a plurality of external terminals.
  • a surface mount type electronic component having a plurality of Cu pillar bumps 131 as external terminals is mounted.
  • the first electronic component 121 is preferably an IC, and an SOI (Silicon On Insulator) 121a is mounted here.
  • the first electronic component 121 may be, for example, a GaAs IC, Si IC, SiC IC, or the like.
  • the electronic component module 100 includes a plurality of input/output electrodes 151 provided on the first main surface 111 of the LTCC substrate 110 and connected to the columnar input/output electrodes 104, the first electronic component 121 and the input/output electrodes. and a sealing resin layer 152 filled around 104 .
  • At least one first electronic component 121 may be mounted on the first main surface 111 of the LTCC substrate 110, and a plurality of first electronic components 121 may be mounted.
  • a plurality of second electrodes 142 and a planarizing layer 161 covering the second main surface 112 are provided on the second main surface 112 of the LTCC substrate 110 . Furthermore, a plurality of third electrodes (mounting pads) 143 connected to the plurality of second electrodes 142 are provided on the planarization layer 161 .
  • the second electrodes 142 are provided in one-to-one correspondence with the plurality of Cu pillar bumps 132 (external terminals) of each second electronic component 122
  • the third electrodes 143 are provided in one-to-one correspondence with the second electrodes 142 .
  • each second electronic component 122 is flip-chip mounted on the second main surface 112 by connecting each Cu pillar bump 132 to the second electrode 142 via the corresponding third electrode 143 .
  • each third electrode 143 is connected to the corresponding second electrode 142 through vias 162 provided in the planarization layer 161 .
  • Each second electrode 142 is connected to corresponding wiring (not shown) of the LTCC substrate 110 .
  • the planarization layer 161 forms a substantially flat surface by absorbing unevenness of the base.
  • the material of the flattening layer 161 is not particularly limited, but a material having fluidity before curing is preferable. mentioned.
  • the second electronic component 122 is not particularly limited as long as it has a mounting surface provided with a plurality of external terminals.
  • a surface-mounted electronic component having a plurality of Cu pillar bumps 132 as external terminals is mounted.
  • the second electronic component 122 is preferably an IC, and here, an HBT (Heterojunction Bipolar Transistor) IC 122a, a SAW (Surface Acoustic Wave) filter 122b and a GaAs IC 122c are mounted.
  • HBT Heterojunction Bipolar Transistor
  • SAW Surface Acoustic Wave
  • each third electrode 143 is arranged directly above the corresponding second electrode 142 here, each third electrode 143 extends in the substrate in-plane direction from directly above the corresponding second electrode 142 . , may be connected to the Cu pillar bumps 132 of the second electronic component 122 at locations other than directly above the corresponding second electrodes 142 .
  • a plurality of third electronic components 123 each having a pair of external electrodes 133 instead of Cu pillar bumps (external terminals) are mounted on the second main surface 112 of the LTCC substrate 110 .
  • the second major surface 112 has a plurality of fourth electrodes 144 and a plurality of fifth electrodes (mounting pads) 145 provided on the planarization layer 161 and connected to the plurality of fourth electrodes 144 . and is provided.
  • the fourth electrodes 144 are provided in one-to-one correspondence with the pair of external electrodes 133 of each third electronic component 123
  • the fifth electrodes 145 are provided in one-to-one correspondence with the fourth electrodes 144.
  • Each third electronic component 123 is surface-mounted on the second main surface 112 by connecting each external electrode 133 to a fourth electrode 144 via a corresponding fifth electrode 145 .
  • Each external electrode 133 is connected to a corresponding fifth electrode 145 via, for example, solder 135 , and each fifth electrode 145 is connected to a corresponding fourth electrode 145 via vias 163 provided in the planarization layer 161 . It is connected with the electrode 144 .
  • the third electronic component 123 is not particularly limited, here, for example, a chip capacitor 123a and a chip inductor 123b are mounted.
  • Each fourth electrode 144 is connected to corresponding wiring (not shown) of the LTCC substrate 110 .
  • the planarization layer 161 covers the plurality of second electrodes 142 and the plurality of fourth electrodes 144 except for the portions where the vias 162 and 163 are formed.
  • the planarizing layer 161, vias such as the via 162 provided in the planarizing layer 161, and the second electrode 142 and the like provided on the planarizing layer 161 function as a rewiring layer.
  • the electrodes such as the first electrode 141 provided on the first main surface 111 of the LTCC substrate 110 and the electrodes such as the second electrode 142 and the fourth electrode 144 provided on the second main surface 112 of the LTCC substrate 110 are It is formed by firing together with a low-temperature sintering ceramic material.
  • electrodes such as the third electrode 143 provided on the planarizing layer 161 are formed after the firing.
  • At least one second electronic component 122 may be mounted on the second main surface 112 of the LTCC substrate 110, and electronic components other than the second electronic component 122 (for example, the third electronic component 123) are omitted. may
  • a sealing resin layer 153 that covers the second electronic component 122 and the third electronic component 123 is provided on the second main surface 112 of the LTCC substrate 110 .
  • the LTCC substrate 110 has a plurality of ground electrodes 154 drawn out from the inside of the LTCC substrate 110 to the side surface of the LTCC substrate 110 , and each ground electrode 154 is a metal conductor on the side surface of the electronic component module 100 . It is connected with layer 105 .
  • FIG. 2 is a cross-sectional view schematically showing an example of Cu pillar bumps included in the electronic component of the present invention (first embodiment).
  • the first electronic component 121 includes a pad electrode 31 formed of gold or the like on the semiconductor 30, a passivation film 32 covering the semiconductor 30 except for the pad electrode formation portion, and a passivation film 32 except for the pad electrode formation portion.
  • a resin layer 33 covering the passivation film 32 and a Cu pillar bump 131 connected to the pad electrode 31 are provided.
  • the resin layer 33 is made of, for example, a thermosetting resin such as benzocyclobutene (BCB), and has a thickness T1 of, for example, 5 ⁇ m.
  • BCB benzocyclobutene
  • the Cu pillar bump 131 is a bump having a pillar-shaped copper pillar (copper post).
  • the barrier/seed layer 34 has a structure in which a barrier metal layer (for example, TiW with a thickness of 320 nm) and a seed layer (for example, copper with a thickness of 400 nm) are laminated in this order by, for example, sputtering.
  • the copper post 35 is, for example, a cylindrical conductor made of copper, and has a diameter D of 75 ⁇ m and a height T2 of 40 ⁇ m, for example.
  • the solder cap 36 is formed of an alloy such as Sn-2.5% Ag by electrolytic plating, for example, and has a thickness T3 of 30 ⁇ m, for example.
  • the second electronic component 122 also has Cu pillar bumps 132 similar to the Cu pillar bumps 131 of the first electronic component 121 .
  • the electronic component module 100 includes the planarization layer 161 covering the second main surface 112 of the LTCC substrate 110 on which the plurality of second electrodes 142 are provided. is large, the surface of the planarizing layer 161 can be planarized, and the plurality of third electrodes 143 for mounting the second electronic component 122 can be formed on the planar surface. Therefore, even in the second electronic component 122 having a plurality of Cu pillar bumps 132 (external terminals), each Cu pillar bump 132 (external terminal) is connected to the second electrode 142 of the LTCC substrate 110 via the corresponding third electrode 143. It is possible to reliably connect to the That is, it is possible to suppress the occurrence of mounting defects such as open defects.
  • the first electronic component 121 is directly connected to the plurality of first electrodes 141 provided on the first main surface 111 of the LTCC substrate 110.
  • an inorganic material substrate such as an LTCC substrate has at least one main surface. Since it is possible to make it flat, even in the case of the first electronic component 121 having a plurality of Cu pillar bumps 131 (external terminals), each Cu pillar bump 131 (external terminal) is placed against the first electrode 141 of the LTCC substrate 110. It is possible to connect reliably by
  • the difference between the maximum and minimum heights of the plurality of second electrodes 142 with respect to the reference plane (for example, the mounting surface 101) parallel to the LTCC substrate 110 (hereafter referred to as the height variation of the second electrodes 142) ) is the difference between the maximum and minimum heights of the plurality of first electrodes 141 with respect to a reference plane (for example, the mounting surface 101) parallel to the LTCC substrate 110 (hereinafter referred to as the difference between the heights of the first electrodes 141). height variation). Even in such a case, it is possible to reliably mount the first electronic component 121 and the second electronic component 122 on the LTCC substrate 110 .
  • the height variation of the first electrode 141 is preferably 15 ⁇ m or less.
  • the first electronic component 121 having a plurality of Cu pillar bumps 131 can be more reliably connected to the first electrodes 141 of the LTCC substrate 110 . This is because it is empirically known that electronic components having external terminals such as Cu pillar bumps can be reliably mounted on the mounting pads if the difference between the maximum and minimum heights of the mounting pads is 15 ⁇ m or less.
  • the height variation of the second electrode 142 may exceed 15 ⁇ m. Even in this case, since the planarization layer 161 is provided on the second main surface 112 , the second electronic component 122 having the plurality of Cu pillar bumps 132 (external terminals) is placed on the planarization layer 161 . It is possible to reliably connect to the second electrode 142 of the LTCC substrate 110 via the three electrodes 143 .
  • the "height of the electrode with respect to the reference plane” means the shortest distance between the reference plane and the highest point of the electrode, and can be measured with a laser microscope, for example.
  • the “reference plane” may be a plane parallel to the LTCC substrate 110 .
  • the height variation of the second electrodes 142 is measured for each electrode group for each second electronic component 122 .
  • the height variation of the first electrodes 141 is measured for each electrode group for each first electronic component 121 .
  • Variation in height of the first electrode 141 is preferably as small as possible, and the lower limit is not particularly limited. .
  • the upper limit of the height variation of the second electrode 142 is not particularly limited, it may be 50 ⁇ m or less, for example.
  • the rewiring layer may be provided on either main surface side of the LTCC substrate 110, but should be provided on the second main surface 112 opposite to the mounting surface 101 as described above. is preferred. That is, electronic component module 100 preferably has mounting surface 101 on which input/output electrodes 104 are provided on first main surface 111 side of LTCC substrate 110 .
  • FIG. 3 shows the unevenness of the LTCC substrate used for this evaluation.
  • FIG. 3 is an SEM photograph showing a cross section of the LTCC substrate used in the evaluation test.
  • the LTCC substrate used in the evaluation test has a flat lower surface corresponding to the first main surface 111 (see the lower dashed line), while an upper surface corresponding to the second main surface 112 is flat. It was confirmed that there was unevenness and it was not in a flat state (see the upper dashed line).
  • FIG. 4 to 12 are cross-sectional views schematically showing an example of the electronic component module of the present invention (first embodiment) in the manufacturing process.
  • FIG. 4 shows the mounting process of the first electronic component
  • FIG. 6 shows the sealing resin layer grinding step
  • FIG. 7 shows the planarizing layer forming step
  • FIG. 9 shows the via and electrode forming process
  • FIG. 10 shows the mounting process of the second electronic component and the third electronic component
  • FIG. 11 shows the second resin sealing process
  • FIG. 12 indicates a step of forming a metal conductor layer.
  • a plurality of Cu electrodes are formed as external terminals on a first main surface 171 (corresponding to the first main surface 111 of the LTCC substrate 110), which is a flat surface of an aggregate substrate 170 composed of a plurality of LTCC substrates.
  • a first electronic component 121 having pillar bumps 131 is mounted and reflowed.
  • a Cu (copper) pin is formed as the input/output electrode 104 on the input/output electrode 151 .
  • a sealing resin layer 152 is formed on the first main surface 171 of the collective board 170 so as to cover the first electronic components 121 and the input/output electrodes 104 .
  • a sheet-like sealing resin in a semi-cured state for example, a sheet made of thermosetting resin such as epoxy resin
  • the sealing resin is used for molding. Heat while pressing with a plate.
  • the sealing resin fluidizes and fills spaces such as gaps between the first electronic component 121 and the collective substrate 170, and then changes to a cured state.
  • the sealing resin layer 152 is ground to a predetermined thickness to expose the top surface of the first electronic component 121 and one end surface of the input/output electrode 104 . At this time, the top surface portion of the first electronic component 121 may be shaved to thin the first electronic component 121 .
  • a planarization layer 161 is formed on the second main surface 172 (corresponding to the second main surface 112 of the LTCC substrate 110), which is the uneven surface of the collective substrate 170.
  • the planarization layer 161 that covers the second electrode 142 and the fourth electrode 144 of the collective substrate 170 and has a flat surface is formed.
  • a semi-cured sheet-like flattening layer resin for example, a sheet made of a thermosetting resin such as epoxy resin
  • the flattening layer resin is fluidized to fill the unevenness of the second main surface 172, and then changes to a cured state.
  • a non-hardened liquid flattening layer resin (for example, a thermosetting resin material such as epoxy resin) is applied on the second main surface 172 by printing, dispenser, spin coating, or the like, and leveling is adjusted to flatten the surface. After curing, it may be cured by heating with hot air or the like.
  • the thickness of the flattening layer 161 is not particularly limited as long as it can cover the second electrode 142 and the like and have a flat surface.
  • the thickness may be greater than 15 ⁇ m and capable of absorbing height variations of the second electrode 142 of 50 ⁇ m or less.
  • the planarization layer 161 may have a thickness of at least 5 ⁇ m at the highest point of the second electrode 142 where the height is at its maximum.
  • the planarizing layer resin may contain fillers such as alumina, silica, silicon nitride, and aluminum hydroxide.
  • the average particle diameter of the filler contained in the planarizing layer resin may be, for example, 0.5 ⁇ m or more and less than 5 ⁇ m, 1 ⁇ m or more and 3 ⁇ m or less, or 1.5 ⁇ m or more and 2 ⁇ m or more. .5 ⁇ m or less, or 2 ⁇ m.
  • the content of the filler contained in the flattening layer resin may be, for example, 20% by weight or more and 60% by weight or less, or 30% by weight or more, based on the total amount of the flattening layer resin. It may be 50% by weight or less, 35% by weight or more and 45% by weight or less, or 40% by weight.
  • the average particle size of the filler can generally be measured using a laser diffraction particle size distribution analyzer.
  • the Young's modulus of the flattening layer resin at 25° C. may be, for example, 2 GPa or more and 20 GPa or less.
  • the Young's modulus can generally be measured by a viscoelasticity measurement method.
  • via holes are formed in the planarization layer 161 by CO 2 laser or photolithography, and then desmeared to remove resin residue.
  • vias 162 and 163 are formed in the via holes of the planarization layer 161 and the third electrode 143 and the fifth electrode 145 are formed on the planarization layer 161 .
  • a metal film (plating power supply film) is formed on the surface of the planarizing layer 161 by sputtering, and then a plated film is formed in the via holes and on the surface of the planarizing layer 161 by electroplating. do.
  • the plating film is patterned by photolithography to form the third electrode 143 and the fifth electrode 145 .
  • the vias 162 and 163 may be formed from a conductive paste.
  • a second electronic component 122 having a plurality of Cu pillar bumps 132 as external terminals and other electronic components such as a third electronic component 123 are mounted on the surface on the planarization layer 161 side, reflow.
  • a sealing resin layer 153 is formed on the surface of the flattening layer 161 so as to cover the second electronic component 122 and other electronic components.
  • the sealing resin layer 153 can be formed in the same manner as the sealing resin layer 152 . That is, for example, after placing a semi-cured sheet-like sealing resin (for example, a sheet made of thermosetting resin such as epoxy resin) on the surface of the flattening layer 161, the sealing resin is placed on the molding plate. Heat while pressing with As a result, the sealing resin is fluidized and filled in the gap between the second electronic component 122 and the planarization layer 161, and then changed to a cured state.
  • a semi-cured sheet-like sealing resin for example, a sheet made of thermosetting resin such as epoxy resin
  • the sealing resin for the sealing resin layers 152 and 153 may contain fillers such as alumina, silica, silicon nitride, aluminum hydroxide, barium titanate, and titania.
  • the average particle size of the filler contained in the sealing resin for the sealing resin layers 152 and 153 may be, for example, 5 ⁇ m or more and 15 ⁇ m or less, 7 ⁇ m or more and 13 ⁇ m or less, or 9 ⁇ m. Above, it may be 11 ⁇ m or less, or may be 10 ⁇ m.
  • the content of the filler contained in the sealing resin for the sealing resin layers 152 and 153 may be, for example, 70% by weight or more and 98% by weight or less with respect to the total amount of the sealing resin.
  • the filler content in the flattening layer resin may be less than the filler content in the sealing resins for the sealing resin layers 152 and 153 .
  • the Young's modulus at 25° C. of the sealing resin for the sealing resin layers 152 and 153 may be, for example, 10 GPa or more and 30 GPa or less.
  • the Young's modulus of the resin for the planarization layer at 25° C. may be smaller than the Young's modulus of the sealing resin for the sealing resin layers 152 and 153 at 25° C.
  • the sealing resins for the sealing resin layers 152 and 153 may have different materials and/or properties, or may be the same.
  • the sealing resins for the sealing resin layers 152 and 153 may have the same material and characteristics as the flattening layer resin, but are preferably different.
  • each LTCC substrate 110 is cut out by cutting the collective substrate 170 at a predetermined position with a dicer or the like to individualize it.
  • a metal conductor layer 105 is formed on the surfaces other than the mounting surface 101 .
  • the LTCC substrate 110 is placed on a tray for sputtering with the mounting surface 101 facing downward.
  • paste or tape may be attached to the mounting surface 101 in order to prevent the sputtered film from wrapping around.
  • a stainless steel thin film for example, 0.15 ⁇ m thick
  • a copper thin film for example, 2 ⁇ m thick
  • a conductor layer 105 is formed.
  • the metal conductor layer 105 may have a multi-layer structure including an adhesion layer, a corrosion-resistant layer, etc. in addition to the conductive layer as described above, or may have a single-layer structure consisting of only the conductive layer.
  • the electronic component module 100 according to the first embodiment is manufactured.
  • the ground electrode was pulled out from between the ceramics constituting the insulating layers of the LTCC substrate to the side surface of the LTCC substrate and connected to the metal conductor layer.
  • the brittleness and ductility of the metal conductors that make up the ground electrode and the ceramics differ greatly, in this structure, cracks may occur in the ceramics and the metal conductors may stretch during the process of dividing the aggregate substrate. There is a risk that burrs will occur in the ceramic or the ground electrode, and that the spatter will not flow well when forming the metal conductor layer, resulting in poor adhesion between the ground electrode and the metal conductor layer.
  • the ground electrode is drawn out on the second main surface of the LTCC substrate, and further, between the planarization layer as the rewiring layer and the sealing resin layer, or between the LTCC substrate
  • the main feature is that the space between the second main surface and the flattened layer as the rewiring layer is pulled out to the side surface of the electronic component module and connected to the metal conductor layer.
  • FIG. 13 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment).
  • An electronic component module 200 shown in FIG. 13 includes a metal conductor layer 105 forming surfaces other than the mounting surface 101, ie, a top surface 102 and four side surfaces 103, as in the first embodiment.
  • the electronic component module 200 also includes an LTCC substrate 210 having a first main surface 211 on the mounting surface 101 side and a second main surface 212 on the top surface 102 side.
  • a plurality of second electrodes 142, a planarizing layer 161, a plurality of third electrodes 143, a plurality of fourth electrodes 144, A fifth electrode 145 and a sealing resin layer 153 are provided, and the second electronic component 122 and the third electronic component 123 are mounted.
  • the LTCC substrate 210 has a ground electrode 254 provided on the second principal surface 212 .
  • Ground electrode 254 is drawn out from internal electrode 255 of LTCC substrate 210 onto second main surface 212 via via 257 .
  • the electronic component module 200 further includes a ground wiring 256 provided on the planarization layer 161 and connected to the ground electrode 254 .
  • the ground wiring 256 is connected to the ground electrode 254 through vias 264 provided in the planarization layer 161 .
  • the ground electrode 254, via 257 and internal electrode 255 are formed by firing together with a low-temperature sintered ceramic material.
  • the ground wiring 256 and via 264 are formed after the firing.
  • the ground wiring 256 is extended between the planarizing layer 161 and the sealing resin layer 153 and connected to the metal conductor layer 105 .
  • the material forming the planarizing layer 161 and the sealing resin layer 153 does not usually have brittleness like ceramics, but has ductility like the metal conductor forming the ground wiring 256 . Therefore, compared to the structure in which the ground electrode is pulled out from between the ceramics to the side surface of the LTCC substrate as in the first embodiment, cracking of the ceramic and elongation of the metal conductor can be suppressed in the process of dividing the collective substrate. Deterioration of the adhesion and coverage of the metal conductor layer 105 due to burrs can be suppressed.
  • the ground wiring 256 extends between the flattening layer 161 and the sealing resin layer 153 from directly above the ground electrode 254 to the side surface of the electronic component module 200, for example, in a straight line. It is connected to layer 105 .
  • a fourth electronic component 224 having a pair of external electrodes 234 instead of Cu pillar bumps (external terminals) is mounted on the first main surface 211 of the LTCC substrate 210 .
  • a plurality of sixth electrodes 246 are provided on the first major surface 211 .
  • the sixth electrodes 246 are provided in one-to-one correspondence with the pair of external electrodes 234 of the fourth electronic component 224 , and each external electrode 234 is connected to the corresponding sixth electrode 246 to form the fourth electrode 246 .
  • An electronic component 224 is mounted on the first major surface 211 .
  • Each external electrode 234 is connected to the corresponding sixth electrode 246 via solder 235, for example.
  • the fourth electronic component 224 is not particularly limited, here, for example, a chip capacitor 224a is mounted, and the chip capacitor as the third electronic component 123 is not mounted on the second main surface 212 accordingly.
  • Each sixth electrode 246 is connected to corresponding wiring (not shown) of the LTCC substrate 210 .
  • a planarization layer 281 is provided on the first main surface 211 side of the LTCC substrate 210, and the planarization layer 281 covers the first electronic component 121, the fourth electronic component 224, and the sealing resin layer 152. are doing.
  • the electronic component module 200 includes columnar electrodes 258 connected to the input/output electrodes 151 provided on the first main surface 211 of the LTCC substrate 210, and the columnar electrodes 258 provided on the planarization layer 281. and connected input/output electrodes 204 .
  • Each input/output electrode 204 is connected to the corresponding columnar electrode 258 through vias 282 provided in the planarization layer 281 .
  • the planarization layer 281 covers the electronic components mounted on the first main surface 211, the electronic components mounted on the first main surface 211, especially ICs, are prevented from being damaged by impact. can do.
  • the area of the input/output electrode is determined according to the size of the mounting pad of the component (for example, substrate) on which it is mounted, and cannot be reduced at will.
  • the arrangement area of the columnar electrode 258 and the via 282 can be reduced while securing the area required for the input/output electrode 204 . Therefore, extra space can be secured on the first main surface 211, and other electronic components such as the fourth electronic component 224 can be further arranged in addition to the first electronic component 121, as described above.
  • a 0.15 ⁇ m-thick stainless thin film and a 2 ⁇ m-thick copper thin film were formed in this order by sputtering on the surface other than the mounting surface to form a metal conductor layer, and the strength and coverage of the metal conductor layer were checked.
  • an adhesive tape was attached to the formed metal conductor layer and then removed, and whether or not the metal conductor layer was peeled off together with the adhesive tape was evaluated, and the structural product after the adhesive tape was peeled off was observed. As a result, it was confirmed that there was no peeling of the metal conductor layer in all the workpieces, and that the metal conductor layer could be covered.
  • the ground electrode is extended to the side surface of the electronic component module between the second main surface of the LTCC substrate and the planarization layer as the rewiring layer, and is connected to the metal conductor layer.
  • FIG. 14 is a cross-sectional view schematically showing another example of the electronic component module of the present invention (second embodiment).
  • An electronic component module 300 shown in FIG. 14 includes an LTCC substrate 310 having a first main surface 311 on the mounting surface 101 side and a second main surface 312 on the top surface 102 side.
  • LTCC substrate 310 is substantially the same as LTCC substrate 310 shown in FIG. is the same as
  • the ground electrode 354 is drawn out from the internal electrode 255 of the LTCC substrate 310 onto the second main surface 312 via the via 257 .
  • the ground electrode 354 is extended between the LTCC substrate 310 and the planarization layer 161 and connected to the metal conductor layer 105 .
  • cracking of the ceramic and elongation of the metal conductor can be suppressed in the process of dividing the collective substrate, compared to the structure in which the ground electrode is pulled out from between the ceramics to the side surface of the LTCC substrate as in the first embodiment. Therefore, it is possible to suppress deterioration of adhesion and coverage of the metal conductor layer 105 due to burrs of the ceramic or metal conductor.
  • the electronic component module 300 shown in FIG. 14 is more preferable than the electronic component module 300 shown in FIG. 14 from the viewpoint of improving the adhesion and coverage of the metal conductor layer 105 .
  • the electronic component module 300 shown in FIG. 14 since it is not necessary to provide the ground wiring on the planarization layer 161, a wider area for mounting the electronic components on the planarization layer 161 is secured accordingly. be able to.
  • the ground electrode 354 extends between the LTCC substrate 310 and the planarization layer 161 from directly above the internal electrode 255 to the side surface of the electronic component module 300, for example, in a straight line. It is connected to the.
  • Electronic component module 200 is manufactured, for example, by the following method.
  • 15 to 23 are cross-sectional views schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process
  • FIG. 15 shows the mounting process of the first electronic component
  • FIG. 17 shows the sealing resin layer grinding process
  • FIG. 18 shows the planarizing layer forming process
  • FIG. 19 shows the planarizing layer via hole forming process
  • 20 shows the via and electrode forming process
  • FIG. 21 shows the mounting process of the second electronic component and the third electronic component
  • FIG. 22 shows the second resin sealing process
  • FIG. 23 indicates a step of forming a metal conductor layer.
  • a plurality of Cu electrodes are formed as external terminals on a first main surface 271 (corresponding to the first main surface 211 of the LTCC substrate 210), which is a flat surface of an aggregate substrate 270 composed of a plurality of LTCC substrates.
  • the first electronic component 121 having the pillar bumps 131 and the fourth electronic component 224 are mounted and reflowed.
  • a Cu (copper) pin is formed as the columnar electrode 258 on the input/output electrode 151 .
  • the first electronic component 121, the fourth electronic component 224, and the columnar electrodes 258 are covered with the first electronic component 121, the fourth electronic component 224, and the columnar electrode 258 in the same manner as described in the first embodiment.
  • a sealing resin layer 152 is formed on the main surface 271 .
  • the sealing resin layer 152 is ground to a predetermined thickness to expose one end surface of the columnar electrode 258 .
  • the top surface of the first electronic component 121 and/or the top surface of the fourth electronic component 224 may also be exposed. Further, the top surface portion of the first electronic component 121 may be shaved to thin the first electronic component 121 .
  • a planarizing layer 281 is formed on the first main surface 271 of the collective substrate 270, and a second main surface 272 (the second main surface of the LTCC substrate 210), which is an uneven surface of the collective substrate 270, is formed.
  • a planarization layer 161 is formed on the surface (corresponding to the surface 212).
  • a flattened layer 281 that covers the first electronic component 121 and the like and has a flat surface is formed.
  • a flattening layer 161 having a flat surface is formed to cover the second electrode 142, the fourth electrode 144 and the ground electrode 254 of the collective substrate 270. As shown in FIG.
  • a semi-cured sheet-like flattening layer resin (for example, a sheet made of thermosetting resin such as epoxy resin) is applied on the first principal surface 271 and the second principal surface 272 .
  • the resin for the flattening layer is heated while being pressed with a molding plate.
  • the flattening layer resin on the first main surface 271 side is fluidized and then changed to a cured state.
  • the planarizing layer resin on the second main surface 272 side is fluidized to fill the unevenness of the second main surface 272, and then changes to a cured state.
  • a non-cured liquid planarization layer resin for example, a thermosetting resin material such as epoxy resin
  • a thermosetting resin material such as epoxy resin
  • leveling is adjusted to achieve planarization. After curing, it may be cured by heating with hot air or the like.
  • an uncured liquid planarizing layer resin for example, a thermosetting resin material such as epoxy resin
  • an uncured liquid planarizing layer resin is applied by printing, dispenser, spin coating, or the like, and leveling is adjusted. It may be cured by heating with hot air or the like after flattening.
  • planarizing layer resin for the planarizing layer 281 the planarizing layer resin for the planarizing layer 161 described in the first embodiment can be used.
  • the planarizing layer resins for the planarizing layers 161 and 281 may have different materials and/or characteristics, or may be the same.
  • via holes are formed in the planarization layers 161 and 281 by CO 2 laser or photolithography, and then desmeared to remove resin residues.
  • vias 282 are formed in the via holes of the planarization layer 281 and the input/output electrodes 204 are formed on the planarization layer 281 .
  • via holes 162 , 163 and 264 are formed in the via holes of the planarization layer 161
  • the third electrode 143 , the fifth electrode 145 and the ground wiring 256 are formed on the planarization layer 161 .
  • metal films plating power supply films
  • electroplating is performed in the via holes of the planarizing layers 161 and 281 and in the respective via holes.
  • a plating film is formed on the surface.
  • the plated film is patterned by photolithography to form the input/output electrodes 204, and the third electrode 143, the fifth electrode 145, and the ground wiring 256 are formed.
  • vias 282, 162, 163 and 264 may be formed from a conductive paste.
  • a second electronic component 122 having a plurality of Cu pillar bumps 132 as external terminals and other electronic components such as a third electronic component 123 are mounted on the surface on the planarization layer 161 side, reflow.
  • sealing resin is applied to the surface of the flattening layer 161 side so as to cover the second electronic component 122 and other electronic components in the same manner as described in the first embodiment.
  • Layer 153 is formed.
  • each LTCC substrate 210 is cut out by cutting the collective substrate 270 at a predetermined position with a dicer or the like to individualize it.
  • the metal conductor layer 105 is formed on the surface of the LTCC substrate 210 excluding the mounting surface 101 in the same manner as in the first embodiment.
  • the electronic component module 200 according to the second embodiment is manufactured.
  • the electronic component module 300 is manufactured by the same method as the electronic component module 200, except that the ground wiring 256 and the via 264 for the ground wiring 256 are not formed.
  • the metal conductor layer included in the electronic component module of the present invention constitutes at least one side surface of the electronic component module. It's fine if you do. That is, in the second embodiment, at least the side surface 103 from which the ground wiring 256 or the ground electrode 354 is drawn out should be made of the metal conductor layer 105 . However, from the viewpoint of shielding properties, etc., it is preferable that the metal conductor layer included in the electronic component module of the present invention forms substantially the entire surface of the electronic component module except for the mounting surface.
  • the LTCC substrate is used as the inorganic material substrate, but the inorganic material substrate included in the electronic component module of the present invention is a circuit that uses an inorganic material (preferably ceramic) as an insulating material.
  • an inorganic material preferably ceramic
  • the first electronic component 121 having a mounting surface provided with a plurality of Cu pillar bumps 131 and the second electronic component 122 having a mounting surface provided with a plurality of Cu pillar bumps 132 are mounted,
  • the first electronic component and the second electronic component included in the electronic component module of the present invention are not particularly limited as long as they are electronic components having a mounting surface provided with a plurality of external terminals. It may be an electronic component (preferably an IC) having a Land Grid Array (Land Grid Array) structure or an electronic component (preferably an IC) having a BGA (Ball Grid Array) structure.
  • each external terminal may be connected to the inorganic material substrate with solder.
  • three or more external terminals are normally arranged regularly at equal pitches only on the mounting surface. For example, they may be arranged on the mounting surface in a ring shape such as a rectangular shape, or may be arranged in a lattice shape (matrix shape) on the mounting surface.
  • FIG. 24 is a cross-sectional view schematically showing an example of an electronic component module according to a comparative embodiment
  • the electronic component module 400 shown in FIG. 24 is substantially the same as the electronic component module 100 according to the first embodiment shown in FIG. 1 except that the planarization layer 161 and the plurality of third electrodes 143 are not provided. It is.
  • each second electronic component 122 having a plurality of Cu pillar bumps 132 as external terminals is directly connected to the corresponding second electrode 142 .
  • Each ground electrode 154 drawn out from the inside of the LTCC substrate 110 to the side surface is connected to the metal conductor layer 105 on the side surface of the electronic component module 400 .
  • a plurality of structural products (corresponding to the electronic component module 400 at the stage before forming the metal conductor layer 105, see FIG. 24) in which the ground electrodes are pulled out from between the ceramics of the LTCC substrate to the side surface, except for the mounting surface, are provided.
  • a 0.15 ⁇ m-thick stainless thin film and a 2 ⁇ m-thick copper thin film were formed in this order on the other surface by sputtering to form a metal conductor layer, and the strength and coverage of the metal conductor layer were checked.
  • an adhesive tape was attached to the formed metal conductor layer and then removed, and whether or not the metal conductor layer was peeled off together with the adhesive tape was evaluated, and the structural product after the adhesive tape was peeled off was observed.
  • peeling of the metal conductor layer occurred at the lead-out portion of the ground electrode from the LTCC substrate, and it was confirmed that some workpieces were not covered with the metal conductor layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

An electronic component module 100 in which components are mounted on both surfaces of a substrate is characterized by being provided with: an inorganic material substrate 110 having a first main surface 111 on which a plurality of first electrodes 141 are provided, and a second main surface 112 on which a plurality of second electrodes 142 are provided; a first electronic component 121 having a mounting surface on which a plurality of external terminals 131 connected to the plurality of first electrodes 141 are provided; a planarizing layer 161 covering the second main surface 112; a plurality of third electrodes 143 which are provided on the planarizing layer 161 and which are connected to the plurality of second electrodes 142; and a second electronic component 122 having a mounting surface on which a plurality of external terminals 132 connected to the plurality of third electrodes 143 are provided.

Description

電子部品モジュールElectronic component module
 本発明は、電子部品モジュールに関する。 The present invention relates to electronic component modules.
 特許文献1及び2には、基板の一方の面又は両面に電子部品を実装した電子部品モジュールが開示されている。 Patent Documents 1 and 2 disclose electronic component modules in which electronic components are mounted on one side or both sides of a substrate.
国際公開第2015/098793号WO2015/098793 特開2012-33885号公報JP 2012-33885 A
 近年、低温焼成セラミック(LTCC:Low Temperature Co-Fired Ceramics)基板等の無機材料基板の両面に、複数の外部端子が設けられた実装面を有する電子部品、例えばIC(Integrated Circuit)を実装する製品が増えてきており、無機材料基板の実装部の凹凸部の高低差を、例えば15μm以下と極力小さくする必要がある。特に、低温焼成セラミック基板では片方の主面をフラットにすると、その反対側の主面は基板内部の配線の影響を受け、凹凸(コプラナリティー)が大きくなる傾向がある。その結果、実装される電子部品のコプラナリティーや端子ピッチによっては、実装不良、具体的にはオープン不良が発生することがあった。特に、Cuピラーバンプを有する電子部品(特にIC)を低温焼成セラミック基板の両面に実装する場合に実装不良が発生しやすい。 In recent years, products that mount electronic components such as ICs (Integrated Circuits) that have mounting surfaces with multiple external terminals on both sides of inorganic material substrates such as low temperature co-fired ceramics (LTCC) substrates. is increasing, and it is necessary to minimize the height difference of the unevenness of the mounting portion of the inorganic material substrate to, for example, 15 μm or less. In particular, when one main surface of a low-temperature co-fired ceramic substrate is flattened, the opposite main surface tends to be affected by the wiring inside the substrate and have large unevenness (coplanarity). As a result, depending on the coplanarity and terminal pitch of the electronic component to be mounted, mounting defects, specifically open defects, may occur. In particular, when electronic components (especially ICs) having Cu pillar bumps are mounted on both sides of a low-temperature fired ceramic substrate, mounting defects are likely to occur.
 本発明は上記の課題を解決するためになされたものであり、実装不良の発生を抑制可能な電子部品モジュールを提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an electronic component module capable of suppressing the occurrence of mounting defects.
 本発明の電子部品モジュールは、基板両面に部品実装された電子部品モジュールであって、複数の第1電極が設けられた第1主面及び複数の第2電極が設けられた第2主面を有する無機材料基板と、上記複数の第1電極に接続された複数の外部端子が設けられた実装面を有する第1電子部品と、上記第2主面を覆う平坦化層と、上記平坦化層上に設けられ、上記複数の第2電極に接続された複数の第3電極と、上記複数の第3電極に接続された複数の外部端子が設けられた実装面を有する第2電子部品と、を備えることを特徴とする。 An electronic component module of the present invention is an electronic component module in which components are mounted on both sides of a substrate, and has a first main surface provided with a plurality of first electrodes and a second main surface provided with a plurality of second electrodes. a first electronic component having a mounting surface provided with a plurality of external terminals connected to the plurality of first electrodes; a planarizing layer covering the second main surface; and the planarizing layer a second electronic component having a mounting surface provided with a plurality of third electrodes provided thereon and connected to the plurality of second electrodes; and a mounting surface provided with a plurality of external terminals connected to the plurality of third electrodes; characterized by comprising
 本発明によれば、実装不良の発生を抑制可能な電子部品モジュールを提供することができる。 According to the present invention, it is possible to provide an electronic component module capable of suppressing the occurrence of mounting defects.
図1は、本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of an electronic component module of the present invention (first embodiment). 図2は、本発明(第1実施形態)の電子部品が有するCuピラーバンプの一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of Cu pillar bumps included in the electronic component of the present invention (first embodiment). 図3は、評価試験に用いたLTCC基板の断面を示すSEM写真である。FIG. 3 is an SEM photograph showing a cross section of the LTCC substrate used in the evaluation test. 図4は、製造工程における本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、第1電子部品の実装工程を示す。FIG. 4 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a step of mounting the first electronic component. 図5は、製造工程における本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、第1の樹脂封止工程を示す。FIG. 5 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a first resin sealing process. 図6は、製造工程における本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、封止樹脂層の研削工程を示す。FIG. 6 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in the manufacturing process, showing the grinding process of the sealing resin layer. 図7は、製造工程における本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、平坦化層の形成工程を示す。FIG. 7 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in the manufacturing process, showing the forming process of the flattening layer. 図8は、製造工程における本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、平坦化層のビアホール形成工程を示す。FIG. 8 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in the manufacturing process, showing a via hole forming process in the planarizing layer. 図9は、製造工程における本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、ビア及び電極の形成工程を示す。FIG. 9 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a formation process of vias and electrodes. 図10は、製造工程における本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、第2電子部品及び第3電子部品の実装工程を示す。FIG. 10 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a process of mounting the second electronic component and the third electronic component. 図11は、製造工程における本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、第2の樹脂封止工程を示す。FIG. 11 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a second resin sealing process. 図12は、製造工程における本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、金属導体層の形成工程を示す。FIG. 12 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (first embodiment) in a manufacturing process, showing a forming process of a metal conductor layer. 図13は、本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図である。FIG. 13 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment). 図14は、本発明(第2実施形態)の電子部品モジュールの他の例を模式的に示す断面図である。FIG. 14 is a cross-sectional view schematically showing another example of the electronic component module of the present invention (second embodiment). 図15は、製造工程における本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、第1電子部品の実装工程を示す。FIG. 15 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in a manufacturing process, showing a step of mounting the first electronic component. 図16は、製造工程における本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、第1の樹脂封止工程を示す。FIG. 16 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing the first resin sealing process. 図17は、製造工程における本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、封止樹脂層の研削工程を示す。FIG. 17 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing the grinding process of the sealing resin layer. 図18は、製造工程における本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、平坦化層の形成工程を示す。FIG. 18 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing the forming process of the planarizing layer. 図19は、製造工程における本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、平坦化層のビアホール形成工程を示す。FIG. 19 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing a via hole forming process in the planarizing layer. 図20は、製造工程における本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、ビア及び電極の形成工程を示す。FIG. 20 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, showing the formation process of vias and electrodes. 図21は、製造工程における本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、第2電子部品及び第3電子部品の実装工程を示す。FIG. 21 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in a manufacturing process, showing a process of mounting the second electronic component and the third electronic component. 図22は、製造工程における本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、第2の樹脂封止工程を示す。FIG. 22 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in a manufacturing process, showing a second resin sealing process. 図23は、製造工程における本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、金属導体層の形成工程を示す。FIG. 23 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment) in a manufacturing process, showing a forming process of a metal conductor layer. 図24は、比較形態に係る電子部品モジュールの一例を模式的に示す断面図である。FIG. 24 is a cross-sectional view schematically showing an example of an electronic component module according to a comparative embodiment;
 以下、本発明の電子部品モジュールについて説明する。
 しかしながら、本発明は、以下の構成及び態様に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の好ましい構成及び態様を2つ以上組み合わせたものもまた本発明である。
The electronic component module of the present invention will be described below.
However, the present invention is not limited to the following configurations and aspects, and can be appropriately modified and applied without changing the gist of the present invention. A combination of two or more of the individual preferred configurations and aspects of the present invention described below is also the present invention.
 [第1実施形態]
 第1実施形態に係る電子部品モジュールは、無機材料基板としての低温焼成セラミック基板の両面に、複数の外部端子が設けられた実装面を有する電子部品として、Cu(銅)ピラーバンプを有する電子部品(好適にはIC)を実装したモジュールであり、低温焼成セラミック基板の両面のうちの凹凸が大きい方の主面に平坦化層を形成し、平坦化層上に上記電子部品を実装することを主な特徴としている。すなわち、再配線層として、まず、凹凸が大きい方の主面に樹脂材料等から平坦化層を形成して平坦化し、そして、低温焼成セラミック基板の電極を平坦化層上に引き出して部品搭載用電極、すなわち実装パッドを形成することによって、電子部品の実装部を平坦な構造としている。
[First embodiment]
The electronic component module according to the first embodiment includes an electronic component having Cu (copper) pillar bumps as an electronic component having mounting surfaces provided with a plurality of external terminals on both sides of a low-temperature fired ceramic substrate as an inorganic material substrate ( Preferably, it is a module mounted with an IC), a flattening layer is formed on the major surface of the two surfaces of the low-temperature co-fired ceramic substrate, which has larger unevenness, and the above-mentioned electronic components are mainly mounted on the flattening layer. It is characterized by That is, as the rewiring layer, first, a flattening layer is formed from a resin material or the like on the main surface of the larger unevenness to flatten it, and then the electrodes of the low-temperature co-fired ceramic substrate are pulled out onto the flattening layer for component mounting. By forming the electrodes, that is, the mounting pads, the mounting portion of the electronic component has a flat structure.
 図1は、本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図である。
 図1に示す電子部品モジュール100は、略直方体状のモジュールであり、実装面101と、実装面101に対向する天面102と、実装面101及び天面102を連結する4つの側面103とを有している。実装面101には、他の電子部品や基板に接続される複数の入出力電極(I/O電極)104が設けられており、実装面101を除く面、すなわち天面102及び4つの側面103は、電磁波を遮断するための金属導体層(シールド電極)105から構成されている。
FIG. 1 is a cross-sectional view schematically showing an example of an electronic component module of the present invention (first embodiment).
The electronic component module 100 shown in FIG. 1 is a substantially rectangular parallelepiped module, and includes a mounting surface 101, a top surface 102 facing the mounting surface 101, and four side surfaces 103 connecting the mounting surface 101 and the top surface 102. have. The mounting surface 101 is provided with a plurality of input/output electrodes (I/O electrodes) 104 connected to other electronic components and substrates. is composed of a metal conductor layer (shield electrode) 105 for blocking electromagnetic waves.
 また、電子部品モジュール100は、基板両面に部品実装された電子部品モジュールであり、内部に、実装面101側の第1主面111及び天面102側の第2主面112を有する低温焼成セラミック基板(以下、LTCC基板)110と、第1主面111に実装された第1電子部品121と、第2主面112に実装された複数の第2電子部品122と、を備えている。
 第1電子部品121は、外部端子として複数のCuピラーバンプ131が設けられた実装面を有している。
 各第2電子部品122もまた、外部端子として複数のCuピラーバンプ132が設けられた実装面を有している。
Further, the electronic component module 100 is an electronic component module in which components are mounted on both sides of a substrate. It includes a substrate (hereinafter, LTCC substrate) 110 , first electronic components 121 mounted on a first main surface 111 , and a plurality of second electronic components 122 mounted on a second main surface 112 .
The first electronic component 121 has a mounting surface provided with a plurality of Cu pillar bumps 131 as external terminals.
Each second electronic component 122 also has a mounting surface provided with a plurality of Cu pillar bumps 132 as external terminals.
 LTCC基板110は、絶縁層(少なくとも1層にはビアが設けられてもよい)と、配線や電極が設けられた導体層とが積層されたセラミックス多層基板である。導体層やビアの材料としては、例えば銀や銅等の金属材料が用いられ、絶縁層の絶縁材料として、低温焼結セラミック材料が用いられている。低温焼結セラミック材料は、セラミック材料の1種であり、1000℃以下の焼成温度で、金属材料として使用される銀や銅と同時に焼成可能な材料であり、例えば、SiO-CaO-Al-B系ガラスセラミック又はSiO-MgO-Al-B系ガラスセラミックを含むものが挙げられる。 The LTCC substrate 110 is a ceramic multilayer substrate in which insulating layers (at least one layer may be provided with vias) and conductor layers provided with wiring and electrodes are laminated. Metal materials such as silver and copper are used as materials for conductor layers and vias, and low-temperature sintered ceramic materials are used as insulating materials for insulating layers. A low-temperature sintering ceramic material is one type of ceramic material, and is a material that can be fired simultaneously with silver and copper used as metal materials at a firing temperature of 1000° C. or less . O 3 —B 2 O 3 based glass ceramics or SiO 2 —MgO—Al 2 O 3 —B 2 O 3 based glass ceramics.
 LTCC基板110の第1主面111には、第1電子部品121の複数のCuピラーバンプ131(外部端子)に1対1で対応する複数の第1電極(実装パッド)141が設けられており、各Cuピラーバンプ131が対応する第1電極141と接続されることによって、第1電子部品121が第1主面111にフリップチップ実装されている。
 なお、各第1電極141は、LTCC基板110の対応する配線(図示せず)に接続されている。
The first main surface 111 of the LTCC substrate 110 is provided with a plurality of first electrodes (mounting pads) 141 corresponding to the plurality of Cu pillar bumps 131 (external terminals) of the first electronic component 121 one-to-one. The first electronic component 121 is flip-chip mounted on the first main surface 111 by connecting each Cu pillar bump 131 to the corresponding first electrode 141 .
Each first electrode 141 is connected to corresponding wiring (not shown) of the LTCC substrate 110 .
 第1電子部品121は、複数の外部端子が設けられた実装面を有する電子部品であれば特に限定されないが、ここでは外部端子として複数のCuピラーバンプ131を有する表面実装型の電子部品が実装されている。
 また、第1電子部品121は、ICが好適であり、ここではSOI(Silicon On Insulator)121aが実装されている。第1電子部品121としては、例えば他に、GaAs IC、Si IC、SiC IC等であってもよい。
The first electronic component 121 is not particularly limited as long as it has a mounting surface provided with a plurality of external terminals. Here, a surface mount type electronic component having a plurality of Cu pillar bumps 131 as external terminals is mounted. ing.
Also, the first electronic component 121 is preferably an IC, and an SOI (Silicon On Insulator) 121a is mounted here. The first electronic component 121 may be, for example, a GaAs IC, Si IC, SiC IC, or the like.
 また、電子部品モジュール100は、LTCC基板110の第1主面111に設けられ、柱状の入出力電極104にそれぞれ接続された複数の入出力用電極151と、第1電子部品121及び入出力電極104の周囲に充填された封止樹脂層152と、を備えている。 Further, the electronic component module 100 includes a plurality of input/output electrodes 151 provided on the first main surface 111 of the LTCC substrate 110 and connected to the columnar input/output electrodes 104, the first electronic component 121 and the input/output electrodes. and a sealing resin layer 152 filled around 104 .
 なお、LTCC基板110の第1主面111には、第1電子部品121が少なくとも1つ実装されていればよく、複数の第1電子部品121が実装されてもよい。 At least one first electronic component 121 may be mounted on the first main surface 111 of the LTCC substrate 110, and a plurality of first electronic components 121 may be mounted.
 LTCC基板110の第2主面112には、複数の第2電極142と、第2主面112を覆う平坦化層161とが設けられている。更に、平坦化層161上には、複数の第2電極142に接続された複数の第3電極(実装パッド)143が設けられている。 A plurality of second electrodes 142 and a planarizing layer 161 covering the second main surface 112 are provided on the second main surface 112 of the LTCC substrate 110 . Furthermore, a plurality of third electrodes (mounting pads) 143 connected to the plurality of second electrodes 142 are provided on the planarization layer 161 .
 第2電極142は、各第2電子部品122の複数のCuピラーバンプ132(外部端子)に1対1で対応して設けられており、第3電極143は、各第2電極142に1対1で対応して設けられており、各Cuピラーバンプ132が対応する第3電極143を介して第2電極142と接続されることによって、各第2電子部品122が第2主面112にフリップチップ実装されている。また、各第3電極143は、平坦化層161に設けられたビア162を介して対応する第2電極142と接続されている。
 なお、各第2電極142は、LTCC基板110の対応する配線(図示せず)に接続されている。
The second electrodes 142 are provided in one-to-one correspondence with the plurality of Cu pillar bumps 132 (external terminals) of each second electronic component 122 , and the third electrodes 143 are provided in one-to-one correspondence with the second electrodes 142 . , and each second electronic component 122 is flip-chip mounted on the second main surface 112 by connecting each Cu pillar bump 132 to the second electrode 142 via the corresponding third electrode 143 . It is Also, each third electrode 143 is connected to the corresponding second electrode 142 through vias 162 provided in the planarization layer 161 .
Each second electrode 142 is connected to corresponding wiring (not shown) of the LTCC substrate 110 .
 平坦化層161は、下地の凹凸を吸収して実質的に平坦な表面を形成するものである。平坦化層161の材料は、特に限定されないが、硬化前等に流動性をもつ材料が好ましく、例えば熱硬化性エポキシ樹脂、ポリイミド樹脂等の硬化性樹脂材料や、液晶ポリマー等の熱可塑性ポリマーが挙げられる。 The planarization layer 161 forms a substantially flat surface by absorbing unevenness of the base. The material of the flattening layer 161 is not particularly limited, but a material having fluidity before curing is preferable. mentioned.
 第2電子部品122は、複数の外部端子が設けられた実装面を有する電子部品であれば特に限定されないが、ここでは外部端子として複数のCuピラーバンプ132を有する表面実装型の電子部品が実装されている。
 また、第2電子部品122は、ICが好適であり、ここでは、HBT(Heterojunction Bipolar Transistor) IC122a、SAW(Surface Acoustic Wave)フィルタ122b及びGaAs IC122cが実装されている。
The second electronic component 122 is not particularly limited as long as it has a mounting surface provided with a plurality of external terminals. Here, a surface-mounted electronic component having a plurality of Cu pillar bumps 132 as external terminals is mounted. ing.
Also, the second electronic component 122 is preferably an IC, and here, an HBT (Heterojunction Bipolar Transistor) IC 122a, a SAW (Surface Acoustic Wave) filter 122b and a GaAs IC 122c are mounted.
 また、ここでは、各第3電極143は、対応する第2電極142の直上に配置されているが、各第3電極143は、対応する第2電極142の直上から基板面内方向に延伸され、対応する第2電極142の直上から外れた場所にて第2電子部品122のCuピラーバンプ132に接続されてもよい。 Also, although each third electrode 143 is arranged directly above the corresponding second electrode 142 here, each third electrode 143 extends in the substrate in-plane direction from directly above the corresponding second electrode 142 . , may be connected to the Cu pillar bumps 132 of the second electronic component 122 at locations other than directly above the corresponding second electrodes 142 .
 また、LTCC基板110の第2主面112には、Cuピラーバンプ(外部端子)ではなく一対の外部電極133を各々有する複数の第3電子部品123が実装されている。 A plurality of third electronic components 123 each having a pair of external electrodes 133 instead of Cu pillar bumps (external terminals) are mounted on the second main surface 112 of the LTCC substrate 110 .
 より詳細には、第2主面112には、複数の第4電極144と、平坦化層161上に設けられ、複数の第4電極144に接続された複数の第5電極(実装パッド)145と、が設けられている。第4電極144は、各第3電子部品123の一対の外部電極133に1対1で対応して設けられており、第5電極145は、各第4電極144に1対1で対応して設けられており、各外部電極133が対応する第5電極145を介して第4電極144と接続されることによって、各第3電子部品123が第2主面112に表面実装されている。また、各外部電極133は、例えばはんだ135を介して対応する第5電極145と接続されており、各第5電極145は、平坦化層161に設けられたビア163を介して対応する第4電極144と接続されている。第3電子部品123は、特に限定されないが、ここでは、例えばチップコンデンサ123a及びチップインダクタ123bが実装されている。
 なお、各第4電極144は、LTCC基板110の対応する配線(図示せず)に接続されている。
More specifically, the second major surface 112 has a plurality of fourth electrodes 144 and a plurality of fifth electrodes (mounting pads) 145 provided on the planarization layer 161 and connected to the plurality of fourth electrodes 144 . and is provided. The fourth electrodes 144 are provided in one-to-one correspondence with the pair of external electrodes 133 of each third electronic component 123, and the fifth electrodes 145 are provided in one-to-one correspondence with the fourth electrodes 144. Each third electronic component 123 is surface-mounted on the second main surface 112 by connecting each external electrode 133 to a fourth electrode 144 via a corresponding fifth electrode 145 . Each external electrode 133 is connected to a corresponding fifth electrode 145 via, for example, solder 135 , and each fifth electrode 145 is connected to a corresponding fourth electrode 145 via vias 163 provided in the planarization layer 161 . It is connected with the electrode 144 . Although the third electronic component 123 is not particularly limited, here, for example, a chip capacitor 123a and a chip inductor 123b are mounted.
Each fourth electrode 144 is connected to corresponding wiring (not shown) of the LTCC substrate 110 .
 平坦化層161は、ビア162及び163の形成部を除いて、複数の第2電極142及び複数の第4電極144を被覆している。
 平坦化層161と、平坦化層161に設けられたビア162等のビアと、平坦化層161上に設けられた第2電極142等が再配線層として機能する。
The planarization layer 161 covers the plurality of second electrodes 142 and the plurality of fourth electrodes 144 except for the portions where the vias 162 and 163 are formed.
The planarizing layer 161, vias such as the via 162 provided in the planarizing layer 161, and the second electrode 142 and the like provided on the planarizing layer 161 function as a rewiring layer.
 LTCC基板110の第1主面111に設けられた第1電極141等の電極と、LTCC基板110の第2主面112に設けられた第2電極142、第4電極144等の電極とは、低温焼結セラミック材料とともに焼成されることによって形成されたものである。一方、平坦化層161上に設けられた第3電極143等の電極は、当該焼成後に形成されたものである。 The electrodes such as the first electrode 141 provided on the first main surface 111 of the LTCC substrate 110 and the electrodes such as the second electrode 142 and the fourth electrode 144 provided on the second main surface 112 of the LTCC substrate 110 are It is formed by firing together with a low-temperature sintering ceramic material. On the other hand, electrodes such as the third electrode 143 provided on the planarizing layer 161 are formed after the firing.
 なお、LTCC基板110の第2主面112には、第2電子部品122が少なくとも1つ実装されていればよく、第2電子部品122以外の電子部品(例えば第3電子部品123)は省略してもよい。 At least one second electronic component 122 may be mounted on the second main surface 112 of the LTCC substrate 110, and electronic components other than the second electronic component 122 (for example, the third electronic component 123) are omitted. may
 また、LTCC基板110の第2主面112には、第2電子部品122及び第3電子部品123を被覆する封止樹脂層153が設けられている。 A sealing resin layer 153 that covers the second electronic component 122 and the third electronic component 123 is provided on the second main surface 112 of the LTCC substrate 110 .
 更に、LTCC基板110は、LTCC基板110の内部からLTCC基板110の側面に引き出された複数のグランド電極154を有しており、各グランド電極154は、電子部品モジュール100の側面部にて金属導体層105と接続されている。 Furthermore, the LTCC substrate 110 has a plurality of ground electrodes 154 drawn out from the inside of the LTCC substrate 110 to the side surface of the LTCC substrate 110 , and each ground electrode 154 is a metal conductor on the side surface of the electronic component module 100 . It is connected with layer 105 .
 図2は、本発明(第1実施形態)の電子部品が有するCuピラーバンプの一例を模式的に示す断面図である。
 図2に示すように、第1電子部品121は、半導体30上に金等から形成されたパッド電極31と、パッド電極形成部を除き半導体30を覆うパッシベーション膜32と、パッド電極形成部を除きパッシベーション膜32を覆う樹脂層33と、パッド電極31に接続されたCuピラーバンプ131と、を備えている。樹脂層33は、例えば、ベンゾシクロブテン(BCB)等の熱硬化性樹脂から形成され、その厚みT1は、例えば5μmである。
FIG. 2 is a cross-sectional view schematically showing an example of Cu pillar bumps included in the electronic component of the present invention (first embodiment).
As shown in FIG. 2, the first electronic component 121 includes a pad electrode 31 formed of gold or the like on the semiconductor 30, a passivation film 32 covering the semiconductor 30 except for the pad electrode formation portion, and a passivation film 32 except for the pad electrode formation portion. A resin layer 33 covering the passivation film 32 and a Cu pillar bump 131 connected to the pad electrode 31 are provided. The resin layer 33 is made of, for example, a thermosetting resin such as benzocyclobutene (BCB), and has a thickness T1 of, for example, 5 μm.
 Cuピラーバンプ131は、柱状の銅ピラー(銅ポスト)を有するバンプであり、例えば、図2に示すように、パッド電極31に接続されたバリア・シード層34と、バリア・シード層34に接続された柱状の銅ポスト35と、銅ポスト35の一端面に接続されたはんだキャップ36と、を備えている。バリア・シード層34は、例えば、スパッタリングにより、バリアメタル層(例えば膜厚320nmのTiW)と、シード層(例えば膜厚400nmの銅)とがこの順に積層された構造を有する。銅ポスト35は、銅から形成された例えば円柱状の導電体であり、例えば、直径Dが75μm、高さT2が40μmである。はんだキャップ36は、例えば、電解めっきによりSn-2.5%Ag等の合金から形成され、その厚みT3は、例えば30μmである。 The Cu pillar bump 131 is a bump having a pillar-shaped copper pillar (copper post). For example, as shown in FIG. and a solder cap 36 connected to one end surface of the copper post 35 . The barrier/seed layer 34 has a structure in which a barrier metal layer (for example, TiW with a thickness of 320 nm) and a seed layer (for example, copper with a thickness of 400 nm) are laminated in this order by, for example, sputtering. The copper post 35 is, for example, a cylindrical conductor made of copper, and has a diameter D of 75 μm and a height T2 of 40 μm, for example. The solder cap 36 is formed of an alloy such as Sn-2.5% Ag by electrolytic plating, for example, and has a thickness T3 of 30 μm, for example.
 第2電子部品122についても第1電子部品121のCuピラーバンプ131と同様のCuピラーバンプ132を備えている。 The second electronic component 122 also has Cu pillar bumps 132 similar to the Cu pillar bumps 131 of the first electronic component 121 .
 電子部品モジュール100は、上述のように、複数の第2電極142が設けられたLTCC基板110の第2主面112を覆う平坦化層161を備えることから、例え第2主面112のコプラナリティーが大きくても、平坦化層161の表面を平坦化でき、その平坦面上に第2電子部品122実装用の複数の第3電極143を形成することができる。そのため、複数のCuピラーバンプ132(外部端子)を有する第2電子部品122であっても、各Cuピラーバンプ132(外部端子)を対応する第3電極143を介してLTCC基板110の第2電極142に対して確実に接続することが可能となる。すなわち、実装不良、例えばオープン不良の発生を抑制することができる。 As described above, the electronic component module 100 includes the planarization layer 161 covering the second main surface 112 of the LTCC substrate 110 on which the plurality of second electrodes 142 are provided. is large, the surface of the planarizing layer 161 can be planarized, and the plurality of third electrodes 143 for mounting the second electronic component 122 can be formed on the planar surface. Therefore, even in the second electronic component 122 having a plurality of Cu pillar bumps 132 (external terminals), each Cu pillar bump 132 (external terminal) is connected to the second electrode 142 of the LTCC substrate 110 via the corresponding third electrode 143. It is possible to reliably connect to the That is, it is possible to suppress the occurrence of mounting defects such as open defects.
 他方、LTCC基板110の第1主面111に設けられた複数の第1電極141には第1電子部品121が直接接続されるが、一般にLTCC基板等の無機材料基板では少なくとも片方の主面をフラットにすることは可能であるので、複数のCuピラーバンプ131(外部端子)を有する第1電子部品121であっても、各Cuピラーバンプ131(外部端子)をLTCC基板110の第1電極141に対して確実に接続することが可能である。 On the other hand, the first electronic component 121 is directly connected to the plurality of first electrodes 141 provided on the first main surface 111 of the LTCC substrate 110. In general, an inorganic material substrate such as an LTCC substrate has at least one main surface. Since it is possible to make it flat, even in the case of the first electronic component 121 having a plurality of Cu pillar bumps 131 (external terminals), each Cu pillar bump 131 (external terminal) is placed against the first electrode 141 of the LTCC substrate 110. It is possible to connect reliably by
 このように、LTCC基板110と平行な基準面(例えば、実装面101でもよい)に対する複数の第2電極142の高さの最大値と最小値の差(以下、第2電極142の高さばらつきという場合がある)は、LTCC基板110と平行な基準面(例えば、実装面101でもよい)に対する複数の第1電極141の高さの最大値と最小値の差(以下、第1電極141の高さばらつきという場合がある)より大きくてもよい。
 このような場合であっても、第1電子部品121及び第2電子部品122をLTCC基板110に確実に実装することが可能である。
In this way, the difference between the maximum and minimum heights of the plurality of second electrodes 142 with respect to the reference plane (for example, the mounting surface 101) parallel to the LTCC substrate 110 (hereafter referred to as the height variation of the second electrodes 142) ) is the difference between the maximum and minimum heights of the plurality of first electrodes 141 with respect to a reference plane (for example, the mounting surface 101) parallel to the LTCC substrate 110 (hereinafter referred to as the difference between the heights of the first electrodes 141). height variation).
Even in such a case, it is possible to reliably mount the first electronic component 121 and the second electronic component 122 on the LTCC substrate 110 .
 具体的には、第1電極141の高さばらつきは、15μm以下であることが好ましい。
 これにより、複数のCuピラーバンプ131(外部端子)を有する第1電子部品121をLTCC基板110の第1電極141に対してより確実に接続することが可能である。実装パッドの高さの最大値と最小値の差が15μm以下であれば、Cuピラーバンプ等の外部端子を有する電子部品を確実に実装パッドに実装できることが経験的に分かっているためである。
Specifically, the height variation of the first electrode 141 is preferably 15 μm or less.
As a result, the first electronic component 121 having a plurality of Cu pillar bumps 131 (external terminals) can be more reliably connected to the first electrodes 141 of the LTCC substrate 110 . This is because it is empirically known that electronic components having external terminals such as Cu pillar bumps can be reliably mounted on the mounting pads if the difference between the maximum and minimum heights of the mounting pads is 15 μm or less.
 他方、第2電極142の高さばらつきは、15μmを超えてもよい。
 この場合であっても、第2主面112上には平坦化層161が設けられることから、複数のCuピラーバンプ132(外部端子)を有する第2電子部品122を、平坦化層161上の第3電極143を介して、LTCC基板110の第2電極142に対して確実に接続することが可能である。
On the other hand, the height variation of the second electrode 142 may exceed 15 μm.
Even in this case, since the planarization layer 161 is provided on the second main surface 112 , the second electronic component 122 having the plurality of Cu pillar bumps 132 (external terminals) is placed on the planarization layer 161 . It is possible to reliably connect to the second electrode 142 of the LTCC substrate 110 via the three electrodes 143 .
 なお、ここで、「基準面に対する電極の高さ」とは、基準面と電極の最高地点との間の最短距離を意味し、例えば、レーザ顕微鏡により測定することができる。また、「基準面」は、LTCC基板110と平行な平面であってもよい。
 また、第2電極142の高さばらつきとは、各第2電子部品122用の電極群についてそれぞれ測定されたものである。
 複数の第1電子部品121が実装される場合も同様に、第1電極141の高さばらつきとは、各第1電子部品121用の電極群についてそれぞれ測定される。
Here, the "height of the electrode with respect to the reference plane" means the shortest distance between the reference plane and the highest point of the electrode, and can be measured with a laser microscope, for example. Also, the “reference plane” may be a plane parallel to the LTCC substrate 110 .
Further, the height variation of the second electrodes 142 is measured for each electrode group for each second electronic component 122 .
Similarly, when a plurality of first electronic components 121 are mounted, the height variation of the first electrodes 141 is measured for each electrode group for each first electronic component 121 .
 第1電極141の高さばらつきは、より小さいほど好ましく、その下限は特に限定されないが、例えば、0μm以上であってもよいし、5μm以上であってもよいし、10μm以上であってもよい。 Variation in height of the first electrode 141 is preferably as small as possible, and the lower limit is not particularly limited. .
 第2電極142の高さばらつきの上限も特に限定されないが、例えば、50μm以下であってもよい。 Although the upper limit of the height variation of the second electrode 142 is not particularly limited, it may be 50 μm or less, for example.
 再配線層(平坦化層161等)は、LTCC基板110のいずれの主面側に設けられてもよいが、上述のように実装面101と反対側である第2主面112に設けられることが好ましい。すなわち、電子部品モジュール100は、LTCC基板110の第1主面111側に、入出力電極104が設けられた実装面101を有することが好ましい。 The rewiring layer (planarization layer 161, etc.) may be provided on either main surface side of the LTCC substrate 110, but should be provided on the second main surface 112 opposite to the mounting surface 101 as described above. is preferred. That is, electronic component module 100 preferably has mounting surface 101 on which input/output electrodes 104 are provided on first main surface 111 side of LTCC substrate 110 .
 図1に示したように、再配線層を形成したLTCC基板にIC及びその他部品をはんだ実装し、リフロー後に搭載状態を確認したところ、導通不良はないことを確認した。 As shown in Figure 1, the IC and other parts were solder-mounted on the LTCC substrate on which the rewiring layer was formed, and when the mounting state was checked after reflow, it was confirmed that there was no conduction failure.
 また、この評価に用いたLTCC基板の凹凸状態を図3に示す。
 図3は、評価試験に用いたLTCC基板の断面を示すSEM写真である。
 図3に示すように、評価試験に用いたLTCC基板は、第1主面111に相当する下面はフラット状態となっている一方(下側の破線参照)、第2主面112に相当する上面は凹凸があり、フラット状態になっていないことが確認された(上側の破線参照)。
FIG. 3 shows the unevenness of the LTCC substrate used for this evaluation.
FIG. 3 is an SEM photograph showing a cross section of the LTCC substrate used in the evaluation test.
As shown in FIG. 3, the LTCC substrate used in the evaluation test has a flat lower surface corresponding to the first main surface 111 (see the lower dashed line), while an upper surface corresponding to the second main surface 112 is flat. It was confirmed that there was unevenness and it was not in a flat state (see the upper dashed line).
 電子部品モジュール100は、例えば、以下の方法で製造される。
 図4~図12は、製造工程における本発明(第1実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、図4は、第1電子部品の実装工程を示し、図5は、第1の樹脂封止工程を示し、図6は、封止樹脂層の研削工程を示し、図7は、平坦化層の形成工程を示し、図8は、平坦化層のビアホール形成工程を示し、図9は、ビア及び電極の形成工程を示し、図10は、第2電子部品及び第3電子部品の実装工程を示し、図11は、第2の樹脂封止工程を示し、図12は、金属導体層の形成工程を示す。
 なお、以下では、複数のLTCC基板からなる集合基板について説明するが、便宜上、図4~図11では個片化されたLTCC基板を集合基板として図示している。
Electronic component module 100 is manufactured, for example, by the following method.
4 to 12 are cross-sectional views schematically showing an example of the electronic component module of the present invention (first embodiment) in the manufacturing process. FIG. 4 shows the mounting process of the first electronic component, and FIG. shows the first resin sealing step, FIG. 6 shows the sealing resin layer grinding step, FIG. 7 shows the planarizing layer forming step, and FIG. 9 shows the via and electrode forming process, FIG. 10 shows the mounting process of the second electronic component and the third electronic component, FIG. 11 shows the second resin sealing process, and FIG. 12 indicates a step of forming a metal conductor layer.
Although an aggregate substrate made up of a plurality of LTCC substrates will be described below, for the sake of convenience, individualized LTCC substrates are shown as an aggregate substrate in FIGS.
 まず、図4に示すように、複数のLTCC基板からなる集合基板170のフラットな面である第1主面171(LTCC基板110の第1主面111に相当)に、外部端子として複数のCuピラーバンプ131を有する第1電子部品121を実装し、リフローする。また、入出力用電極151上に入出力電極104として、例えばCu(銅)ピンを形成する。 First, as shown in FIG. 4, a plurality of Cu electrodes are formed as external terminals on a first main surface 171 (corresponding to the first main surface 111 of the LTCC substrate 110), which is a flat surface of an aggregate substrate 170 composed of a plurality of LTCC substrates. A first electronic component 121 having pillar bumps 131 is mounted and reflowed. For example, a Cu (copper) pin is formed as the input/output electrode 104 on the input/output electrode 151 .
 次に、図5に示すように、第1電子部品121及び入出力電極104を被覆するように、集合基板170の第1主面171に封止樹脂層152を形成する。
 具体的には、例えば、第1主面171上に半硬化状態のシート状の封止樹脂(例えば、エポキシ樹脂等の熱硬化性樹脂からなるシート)を配置した後、封止樹脂を成型用プレートでプレスしながら加熱する。これにより、封止樹脂は流動化して第1電子部品121と集合基板170の間の隙間等のスペースに充填された後、硬化状態に変化する。
Next, as shown in FIG. 5, a sealing resin layer 152 is formed on the first main surface 171 of the collective board 170 so as to cover the first electronic components 121 and the input/output electrodes 104 .
Specifically, for example, a sheet-like sealing resin in a semi-cured state (for example, a sheet made of thermosetting resin such as epoxy resin) is placed on the first main surface 171, and then the sealing resin is used for molding. Heat while pressing with a plate. As a result, the sealing resin fluidizes and fills spaces such as gaps between the first electronic component 121 and the collective substrate 170, and then changes to a cured state.
 次に、図6に示すように、封止樹脂層152を所定の厚みまで研削し、第1電子部品121の天面と、入出力電極104の一端面とを露出させる。このとき、第1電子部品121の天面部分を削って第1電子部品121を薄くしてもよい。 Next, as shown in FIG. 6, the sealing resin layer 152 is ground to a predetermined thickness to expose the top surface of the first electronic component 121 and one end surface of the input/output electrode 104 . At this time, the top surface portion of the first electronic component 121 may be shaved to thin the first electronic component 121 .
 次に、図7に示すように、集合基板170の凹凸面である第2主面172(LTCC基板110の第2主面112に相当)に平坦化層161を形成する。この結果、集合基板170の第2電極142及び第4電極144を被覆するとともに、表面が平坦な平坦化層161が形成される。
 具体的には、例えば、第2主面172上に半硬化状態のシート状の平坦化層用樹脂(例えば、エポキシ樹脂等の熱硬化性樹脂からなるシート)を配置した後、平坦化層用樹脂を成型用プレートでプレスしながら加熱する。これにより、平坦化層用樹脂は流動化して第2主面172の凹凸を埋めた後、硬化状態に変化する。
 なお、第2主面172上に硬化していない液状の平坦化層用樹脂(例えば、エポキシ樹脂等の熱硬化性樹脂材料)を印刷、ディスペンサーやスピンコート等により塗布し、レベリング調整して平坦化した後、熱風等で加熱して硬化させてもよい。
Next, as shown in FIG. 7, a planarization layer 161 is formed on the second main surface 172 (corresponding to the second main surface 112 of the LTCC substrate 110), which is the uneven surface of the collective substrate 170. Next, as shown in FIG. As a result, the planarization layer 161 that covers the second electrode 142 and the fourth electrode 144 of the collective substrate 170 and has a flat surface is formed.
Specifically, for example, after placing a semi-cured sheet-like flattening layer resin (for example, a sheet made of a thermosetting resin such as epoxy resin) on the second main surface 172, The resin is heated while being pressed with a molding plate. As a result, the flattening layer resin is fluidized to fill the unevenness of the second main surface 172, and then changes to a cured state.
A non-hardened liquid flattening layer resin (for example, a thermosetting resin material such as epoxy resin) is applied on the second main surface 172 by printing, dispenser, spin coating, or the like, and leveling is adjusted to flatten the surface. After curing, it may be cured by heating with hot air or the like.
 平坦化層161の厚さは、第2電極142等を被覆して表面が平坦となることができる厚さであれば特に限定されない。例えば、15μmを超えて、50μm以下である第2電極142の高さばらつきを吸収できる厚さであってもよい。また、平坦化層161は、高さが最大値である第2電極142の最高地点において、少なくとも5μmの厚さを有していてもよい。 The thickness of the flattening layer 161 is not particularly limited as long as it can cover the second electrode 142 and the like and have a flat surface. For example, the thickness may be greater than 15 μm and capable of absorbing height variations of the second electrode 142 of 50 μm or less. Also, the planarization layer 161 may have a thickness of at least 5 μm at the highest point of the second electrode 142 where the height is at its maximum.
 平坦化層用樹脂は、アルミナ、シリカ、窒化ケイ素、水酸化アルミニウム等のフィラーを含有していてもよい。
 平坦化層用樹脂に含有されるフィラーの平均粒径は、例えば、0.5μm以上、5μm未満であってもよいし、1μm以上、3μm以下であってもよいし、1.5μm以上、2.5μm以下であってもよいし、2μmであってもよい。
 また、平坦化層用樹脂に含有されるフィラーの含有量は、平坦化層用樹脂全量に対して、例えば、20重量%以上、60重量%以下であってもよいし、30重量%以上、50重量%以下であってもよいし、35重量%以上、45重量%以下であってもよいし、40重量%であってもよい。
 なお、フィラーの平均粒径は、一般的にはレーザー回折式粒度分布測定装置により測定可能である。
The planarizing layer resin may contain fillers such as alumina, silica, silicon nitride, and aluminum hydroxide.
The average particle diameter of the filler contained in the planarizing layer resin may be, for example, 0.5 μm or more and less than 5 μm, 1 μm or more and 3 μm or less, or 1.5 μm or more and 2 μm or more. .5 μm or less, or 2 μm.
Further, the content of the filler contained in the flattening layer resin may be, for example, 20% by weight or more and 60% by weight or less, or 30% by weight or more, based on the total amount of the flattening layer resin. It may be 50% by weight or less, 35% by weight or more and 45% by weight or less, or 40% by weight.
The average particle size of the filler can generally be measured using a laser diffraction particle size distribution analyzer.
 平坦化層用樹脂の25℃におけるヤング率は、例えば、2GPa以上、20GPa以下であってもよい。
 なお、ヤング率は、一般的には粘弾性測定法により測定可能である。
The Young's modulus of the flattening layer resin at 25° C. may be, for example, 2 GPa or more and 20 GPa or less.
The Young's modulus can generally be measured by a viscoelasticity measurement method.
 次に、図8に示すように、COレーザーやフォトリソ工法により平坦化層161にビアホールを形成した後、デスミアして樹脂残渣を除去する。 Next, as shown in FIG. 8, via holes are formed in the planarization layer 161 by CO 2 laser or photolithography, and then desmeared to remove resin residue.
 次に、図9に示すように、平坦化層161のビアホール内にビア162及び163を形成するとともに、平坦化層161上に第3電極143及び第5電極145を形成する。
 具体的には、例えば、まず、スパッタリングにより平坦化層161の表面に金属膜(めっき給電膜)を形成し、次に、電解めっきにより平坦化層161のビアホール内と表面上にめっき膜を形成する。その後、フォトリソ工法によりめっき膜をパターニングして第3電極143及び第5電極145を形成する。
 なお、ビア162及び163は、導電性ペーストから形成してもよい。
Next, as shown in FIG. 9 , vias 162 and 163 are formed in the via holes of the planarization layer 161 and the third electrode 143 and the fifth electrode 145 are formed on the planarization layer 161 .
Specifically, for example, first, a metal film (plating power supply film) is formed on the surface of the planarizing layer 161 by sputtering, and then a plated film is formed in the via holes and on the surface of the planarizing layer 161 by electroplating. do. After that, the plating film is patterned by photolithography to form the third electrode 143 and the fifth electrode 145 .
Note that the vias 162 and 163 may be formed from a conductive paste.
 次に、図10に示すように、平坦化層161側の面に、外部端子として複数のCuピラーバンプ132を有する第2電子部品122や他の電子部品、例えば第3電子部品123を実装し、リフローする。 Next, as shown in FIG. 10, a second electronic component 122 having a plurality of Cu pillar bumps 132 as external terminals and other electronic components such as a third electronic component 123 are mounted on the surface on the planarization layer 161 side, reflow.
 次に、図11に示すように、第2電子部品122や他の電子部品を被覆するように、平坦化層161側の面に封止樹脂層153を形成する。
 封止樹脂層153は、封止樹脂層152と同様にして形成することができる。すなわち、例えば、平坦化層161側の面上に半硬化状態のシート状の封止樹脂(例えば、エポキシ樹脂等の熱硬化性樹脂からなるシート)を配置した後、封止樹脂を成型用プレートでプレスしながら加熱する。これにより、封止樹脂は流動化して第2電子部品122と平坦化層161との隙間内等に充填された後、硬化状態に変化する。
Next, as shown in FIG. 11, a sealing resin layer 153 is formed on the surface of the flattening layer 161 so as to cover the second electronic component 122 and other electronic components.
The sealing resin layer 153 can be formed in the same manner as the sealing resin layer 152 . That is, for example, after placing a semi-cured sheet-like sealing resin (for example, a sheet made of thermosetting resin such as epoxy resin) on the surface of the flattening layer 161, the sealing resin is placed on the molding plate. Heat while pressing with As a result, the sealing resin is fluidized and filled in the gap between the second electronic component 122 and the planarization layer 161, and then changed to a cured state.
 封止樹脂層152及び153用の封止樹脂は、アルミナ、シリカ、窒化ケイ素、水酸化アルミニウム、チタン酸バリウム、チタニア等のフィラーを含有していてもよい。
 封止樹脂層152及び153用の封止樹脂に含有されるフィラーの平均粒径は、例えば、5μm以上、15μm以下であってもよいし、7μm以上、13μm以下であってもよいし、9μm以上、11μm以下であってもよいし、10μmであってもよい。
 また、封止樹脂層152及び153用の封止樹脂に含有されるフィラーの含有量は、封止樹脂全量に対して、例えば、70重量%以上、98重量%以下であってもよい。
 なお、平坦化層用樹脂に含有されるフィラーの含有量は、封止樹脂層152及び153用の封止樹脂に含有されるフィラーの含有量よりも少なくてもよい。
The sealing resin for the sealing resin layers 152 and 153 may contain fillers such as alumina, silica, silicon nitride, aluminum hydroxide, barium titanate, and titania.
The average particle size of the filler contained in the sealing resin for the sealing resin layers 152 and 153 may be, for example, 5 μm or more and 15 μm or less, 7 μm or more and 13 μm or less, or 9 μm. Above, it may be 11 μm or less, or may be 10 μm.
Also, the content of the filler contained in the sealing resin for the sealing resin layers 152 and 153 may be, for example, 70% by weight or more and 98% by weight or less with respect to the total amount of the sealing resin.
The filler content in the flattening layer resin may be less than the filler content in the sealing resins for the sealing resin layers 152 and 153 .
 封止樹脂層152及び153用の封止樹脂の25℃におけるヤング率は、例えば、10GPa以上、30GPa以下であってもよい。
 このように、平坦化層用樹脂の25℃におけるヤング率は、封止樹脂層152及び153用の封止樹脂の25℃におけるヤング率はよりも小さくてもよい。
The Young's modulus at 25° C. of the sealing resin for the sealing resin layers 152 and 153 may be, for example, 10 GPa or more and 30 GPa or less.
Thus, the Young's modulus of the resin for the planarization layer at 25° C. may be smaller than the Young's modulus of the sealing resin for the sealing resin layers 152 and 153 at 25° C.
 封止樹脂層152及び153用の封止樹脂は、材質及び/又は特性が互いに異なるものであってもよいし、同じものであってもよい。
 また、封止樹脂層152及び153用の封止樹脂は、材質及び特性が平坦化層用樹脂と同じものであってもよいが、異なるものであることが好ましい。
The sealing resins for the sealing resin layers 152 and 153 may have different materials and/or properties, or may be the same.
The sealing resins for the sealing resin layers 152 and 153 may have the same material and characteristics as the flattening layer resin, but are preferably different.
 次に、ダイサー等により集合基板170を所定の位置で切断して個片化することで、各LTCC基板110を切り出す。 Next, each LTCC substrate 110 is cut out by cutting the collective substrate 170 at a predetermined position with a dicer or the like to individualize it.
 そして、図12に示すように、実装面101を除く面に金属導体層105を形成する。
 例えば、実装面101を下にしてLTCC基板110をスパッタ用のトレイに載置する。このとき、スパッタ膜の回り込みを防止するために、実装面101にペーストやテープを貼り付けておいてもよい。そして、スパッタリングにより、実装面101を除く面に、密着層として例えばステンレス薄膜(例えば膜厚0.15μm)を形成した後、導電層として例えば銅薄膜(例えば膜厚2μm)を順次形成して金属導体層105を形成する。
Then, as shown in FIG. 12, a metal conductor layer 105 is formed on the surfaces other than the mounting surface 101 .
For example, the LTCC substrate 110 is placed on a tray for sputtering with the mounting surface 101 facing downward. At this time, paste or tape may be attached to the mounting surface 101 in order to prevent the sputtered film from wrapping around. Then, by sputtering, on the surfaces other than the mounting surface 101, for example, a stainless steel thin film (for example, 0.15 μm thick) is formed as an adhesion layer, and then, for example, a copper thin film (for example, 2 μm thick) is sequentially formed as a conductive layer. A conductor layer 105 is formed.
 なお、金属導体層105は、上述のように導電層の他に密着層や耐食層等を含む多層構造であってもよいし、導電層のみからなる単層構造であってもよい。 Note that the metal conductor layer 105 may have a multi-layer structure including an adhesion layer, a corrosion-resistant layer, etc. in addition to the conductive layer as described above, or may have a single-layer structure consisting of only the conductive layer.
 以上により、第1実施形態に係る電子部品モジュール100が製造される。 Thus, the electronic component module 100 according to the first embodiment is manufactured.
 [第2実施形態]
 第1実施形態では、グランド電極がLTCC基板の絶縁層を構成するセラミック間からLTCC基板の側面に引き出されて金属導体層に接続されていた。しかしながら、グランド電極を構成する金属導体と、セラミックとの間で脆性や延性が大きく異なるため、この構造では、集合基板の分割工程において、セラミックにワレが発生したり、金属導体が伸びたりしてセラミックやグランド電極にばりが発生し、金属導体層形成時にスパッタがうまく回り込まず、グランド電極と金属導体層との間で密着不良が発生するおそれがある。
[Second embodiment]
In the first embodiment, the ground electrode was pulled out from between the ceramics constituting the insulating layers of the LTCC substrate to the side surface of the LTCC substrate and connected to the metal conductor layer. However, since the brittleness and ductility of the metal conductors that make up the ground electrode and the ceramics differ greatly, in this structure, cracks may occur in the ceramics and the metal conductors may stretch during the process of dividing the aggregate substrate. There is a risk that burrs will occur in the ceramic or the ground electrode, and that the spatter will not flow well when forming the metal conductor layer, resulting in poor adhesion between the ground electrode and the metal conductor layer.
 そこで、第2実施形態に係る電子部品モジュールは、LTCC基板の第2主面上にグランド電極を引き出し、更に、再配線層としての平坦化層と封止樹脂層との間、又はLTCC基板の第2主面と再配線層としての平坦化層との間を電子部品モジュールの側面部まで引き出して金属導体層に接続することを主な特徴としている。これにより、セラミックのワレや金属導体の伸びを抑制でき、セラミックや金属導体のばりに起因して金属導体層の密着性や被覆率が悪化するのを抑制することができる。
 第2実施形態では、この特徴について主に説明する。
Therefore, in the electronic component module according to the second embodiment, the ground electrode is drawn out on the second main surface of the LTCC substrate, and further, between the planarization layer as the rewiring layer and the sealing resin layer, or between the LTCC substrate The main feature is that the space between the second main surface and the flattened layer as the rewiring layer is pulled out to the side surface of the electronic component module and connected to the metal conductor layer. As a result, cracking of the ceramic and elongation of the metal conductor can be suppressed, and deterioration of adhesion and coverage of the metal conductor layer due to burrs of the ceramic and metal conductor can be suppressed.
This feature will be mainly described in the second embodiment.
 図13は、本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図である。
 図13に示す電子部品モジュール200は、第1実施形態と同様に、実装面101を除く面、すなわち天面102及び4つの側面103を構成する金属導体層105を備えている。
 また、電子部品モジュール200は、実装面101側の第1主面211及び天面102側の第2主面212を有するLTCC基板210を備えている。
FIG. 13 is a cross-sectional view schematically showing an example of the electronic component module of the present invention (second embodiment).
An electronic component module 200 shown in FIG. 13 includes a metal conductor layer 105 forming surfaces other than the mounting surface 101, ie, a top surface 102 and four side surfaces 103, as in the first embodiment.
The electronic component module 200 also includes an LTCC substrate 210 having a first main surface 211 on the mounting surface 101 side and a second main surface 212 on the top surface 102 side.
 LTCC基板210の第2主面212には、第1実施形態と同様に、複数の第2電極142と、平坦化層161と、複数の第3電極143と、複数の第4電極144と、第5電極145と、封止樹脂層153と、が設けられており、第2電子部品122及び第3電子部品123が実装されている。 On the second main surface 212 of the LTCC substrate 210, as in the first embodiment, a plurality of second electrodes 142, a planarizing layer 161, a plurality of third electrodes 143, a plurality of fourth electrodes 144, A fifth electrode 145 and a sealing resin layer 153 are provided, and the second electronic component 122 and the third electronic component 123 are mounted.
 一方、LTCC基板210は、第2主面212上に設けられたグランド電極254を有している。グランド電極254は、ビア257を介してLTCC基板210の内部電極255から第2主面212上に引き出されている。 On the other hand, the LTCC substrate 210 has a ground electrode 254 provided on the second principal surface 212 . Ground electrode 254 is drawn out from internal electrode 255 of LTCC substrate 210 onto second main surface 212 via via 257 .
 また、電子部品モジュール200は、平坦化層161上に設けられ、グランド電極254に接続されたグランド配線256を更に備えている。グランド配線256は、平坦化層161に設けられたビア264を介してグランド電極254と接続されている。 The electronic component module 200 further includes a ground wiring 256 provided on the planarization layer 161 and connected to the ground electrode 254 . The ground wiring 256 is connected to the ground electrode 254 through vias 264 provided in the planarization layer 161 .
 グランド電極254、ビア257及び内部電極255は、低温焼結セラミック材料とともに焼成されることによって形成されたものである。一方、グランド配線256及びビア264は、当該焼成後に形成されたものである。 The ground electrode 254, via 257 and internal electrode 255 are formed by firing together with a low-temperature sintered ceramic material. On the other hand, the ground wiring 256 and via 264 are formed after the firing.
 そして、グランド配線256は、平坦化層161及び封止樹脂層153の間を延伸されて金属導体層105に接続されている。
 ここで、平坦化層161及び封止樹脂層153を構成する材料は、通常、セラミックのような脆性はなく、グランド配線256を構成する金属導体と同様に延性を有する。そのため、第1実施形態のようにセラミック間からグランド電極をLTCC基板の側面に引き出す構造に比べて、集合基板の分割工程において、セラミックのワレや金属導体の伸びを抑制でき、セラミックや金属導体のばりに起因して金属導体層105の密着性や被覆率が悪化するのを抑制することができる。
The ground wiring 256 is extended between the planarizing layer 161 and the sealing resin layer 153 and connected to the metal conductor layer 105 .
Here, the material forming the planarizing layer 161 and the sealing resin layer 153 does not usually have brittleness like ceramics, but has ductility like the metal conductor forming the ground wiring 256 . Therefore, compared to the structure in which the ground electrode is pulled out from between the ceramics to the side surface of the LTCC substrate as in the first embodiment, cracking of the ceramic and elongation of the metal conductor can be suppressed in the process of dividing the collective substrate. Deterioration of the adhesion and coverage of the metal conductor layer 105 due to burrs can be suppressed.
 なお、グランド配線256は、平坦化層161及び封止樹脂層153の間を、グランド電極254の直上から電子部品モジュール200の側面部まで、例えば直線状に延伸され、その側面部にて金属導体層105に接続されている。 The ground wiring 256 extends between the flattening layer 161 and the sealing resin layer 153 from directly above the ground electrode 254 to the side surface of the electronic component module 200, for example, in a straight line. It is connected to layer 105 .
 以下、本実施形態と第1実施形態との間の他の相違点について説明する。 Other differences between this embodiment and the first embodiment will be described below.
 LTCC基板210の第1主面211には、Cuピラーバンプ(外部端子)ではなく一対の外部電極234を有する第4電子部品224が実装されている。 A fourth electronic component 224 having a pair of external electrodes 234 instead of Cu pillar bumps (external terminals) is mounted on the first main surface 211 of the LTCC substrate 210 .
 より詳細には、第1主面211には、複数の第6電極246が設けられている。第6電極246は、第4電子部品224の一対の外部電極234に1対1で対応して設けられており、各外部電極234が対応する第6電極246と接続されることによって、第4電子部品224が第1主面211に実装されている。各外部電極234は、例えばはんだ235を介して対応する第6電極246と接続されている。第4電子部品224は、特に限定されないが、ここでは、例えばチップコンデンサ224aが実装されており、その分だけ第2主面212には第3電子部品123としてのチップコンデンサが実装されていない。
 なお、各第6電極246は、LTCC基板210の対応する配線(図示せず)に接続されている。
More specifically, a plurality of sixth electrodes 246 are provided on the first major surface 211 . The sixth electrodes 246 are provided in one-to-one correspondence with the pair of external electrodes 234 of the fourth electronic component 224 , and each external electrode 234 is connected to the corresponding sixth electrode 246 to form the fourth electrode 246 . An electronic component 224 is mounted on the first major surface 211 . Each external electrode 234 is connected to the corresponding sixth electrode 246 via solder 235, for example. Although the fourth electronic component 224 is not particularly limited, here, for example, a chip capacitor 224a is mounted, and the chip capacitor as the third electronic component 123 is not mounted on the second main surface 212 accordingly.
Each sixth electrode 246 is connected to corresponding wiring (not shown) of the LTCC substrate 210 .
 また、LTCC基板210の第1主面211側には、平坦化層281が設けられており、平坦化層281は、第1電子部品121、第4電子部品224及び封止樹脂層152を被覆している。 In addition, a planarization layer 281 is provided on the first main surface 211 side of the LTCC substrate 210, and the planarization layer 281 covers the first electronic component 121, the fourth electronic component 224, and the sealing resin layer 152. are doing.
 更に、電子部品モジュール200は、LTCC基板210の第1主面211に設けられた各入出力用電極151と接続された柱状電極258と、平坦化層281上に設けられ、各柱状電極258に接続された入出力電極204と、を備えている。各入出力電極204は、平坦化層281に設けられたビア282を介して対応する柱状電極258と接続されている。 Further, the electronic component module 200 includes columnar electrodes 258 connected to the input/output electrodes 151 provided on the first main surface 211 of the LTCC substrate 210, and the columnar electrodes 258 provided on the planarization layer 281. and connected input/output electrodes 204 . Each input/output electrode 204 is connected to the corresponding columnar electrode 258 through vias 282 provided in the planarization layer 281 .
 この構造によれば、平坦化層281が第1主面211に実装された電子部品を被覆することから、第1主面211に実装された電子部品、特にICが衝撃により破損するのを抑制することができる。
 また、一般的に、入出力電極の面積は、実装先の部品(例えば基板)の実装パッドの大きさに応じて決定されるものであり、随意に小さくすることはできないが、上記構造では、入出力電極204で必要とされる面積を確保しつつ、柱状電極258及びビア282の配置面積を小さくすることができる。そのため、第1主面211上に余分なスペースを確保でき、上述のように、第1電子部品121に加えて第4電子部品224等の他の電子部品を更に配置することができる。
According to this structure, since the planarization layer 281 covers the electronic components mounted on the first main surface 211, the electronic components mounted on the first main surface 211, especially ICs, are prevented from being damaged by impact. can do.
In general, the area of the input/output electrode is determined according to the size of the mounting pad of the component (for example, substrate) on which it is mounted, and cannot be reduced at will. The arrangement area of the columnar electrode 258 and the via 282 can be reduced while securing the area required for the input/output electrode 204 . Therefore, extra space can be secured on the first main surface 211, and other electronic components such as the fourth electronic component 224 can be further arranged in addition to the first electronic component 121, as described above.
 平坦化層及び封止樹脂層の間からグランド配線を側面部まで引き出した複数の構造品(金属導体層105を形成する前の段階の電子部品モジュール200に相当するもの、図13参照)に、実装面を除いた面にスパッタリングにて膜厚0.15μmのステンレス薄膜と膜厚2μmの銅薄膜とをこの順に形成して金属導体層とし、金属導体層の強度及び被覆率をチェックした。詳細には、形成した金属導体層に粘着テープを貼り付けてから剥がし、金属導体層が粘着テープとともに剥離しないかを評価するとともに、粘着テープ剥離後の構造品を観察した。その結果、全てのワークで金属導体層の剥離はなく、金属導体層が被覆できていることを確認した。 In a plurality of structural products (corresponding to the electronic component module 200 at the stage before forming the metal conductor layer 105, see FIG. 13) in which the ground wiring is pulled out from between the flattening layer and the sealing resin layer to the side surface, A 0.15 μm-thick stainless thin film and a 2 μm-thick copper thin film were formed in this order by sputtering on the surface other than the mounting surface to form a metal conductor layer, and the strength and coverage of the metal conductor layer were checked. Specifically, an adhesive tape was attached to the formed metal conductor layer and then removed, and whether or not the metal conductor layer was peeled off together with the adhesive tape was evaluated, and the structural product after the adhesive tape was peeled off was observed. As a result, it was confirmed that there was no peeling of the metal conductor layer in all the workpieces, and that the metal conductor layer could be covered.
 ここで、本実施形態の変形例について説明する。この例では、グランド電極がLTCC基板の第2主面と再配線層としての平坦化層との間を電子部品モジュールの側面部まで引き出されて金属導体層に接続される。 Here, a modified example of this embodiment will be described. In this example, the ground electrode is extended to the side surface of the electronic component module between the second main surface of the LTCC substrate and the planarization layer as the rewiring layer, and is connected to the metal conductor layer.
 図14は、本発明(第2実施形態)の電子部品モジュールの他の例を模式的に示す断面図である。
 図14に示す電子部品モジュール300は、実装面101側の第1主面311及び天面102側の第2主面312を有するLTCC基板310を備えている。
FIG. 14 is a cross-sectional view schematically showing another example of the electronic component module of the present invention (second embodiment).
An electronic component module 300 shown in FIG. 14 includes an LTCC substrate 310 having a first main surface 311 on the mounting surface 101 side and a second main surface 312 on the top surface 102 side.
 LTCC基板310は、グランド配線256を有さず、グランド電極254の代わりに第2主面312上に設けられたグランド電極354を有することを除いて、図13に示したLTCC基板310と実質的に同じものである。 LTCC substrate 310 is substantially the same as LTCC substrate 310 shown in FIG. is the same as
 グランド電極354は、ビア257を介してLTCC基板310の内部電極255から第2主面312上に引き出されている。 The ground electrode 354 is drawn out from the internal electrode 255 of the LTCC substrate 310 onto the second main surface 312 via the via 257 .
 そして、グランド電極354は、LTCC基板310及び平坦化層161の間を延伸されて金属導体層105に接続されている。
 これにより、第1実施形態のようにセラミック間からグランド電極をLTCC基板の側面に引き出す構造に比べて、集合基板の分割工程において、セラミックのワレや金属導体の伸びを抑制することができる。そのため、セラミックや金属導体のばりに起因して金属導体層105の密着性や被覆率が悪化するのを抑制することができる。
The ground electrode 354 is extended between the LTCC substrate 310 and the planarization layer 161 and connected to the metal conductor layer 105 .
As a result, cracking of the ceramic and elongation of the metal conductor can be suppressed in the process of dividing the collective substrate, compared to the structure in which the ground electrode is pulled out from between the ceramics to the side surface of the LTCC substrate as in the first embodiment. Therefore, it is possible to suppress deterioration of adhesion and coverage of the metal conductor layer 105 due to burrs of the ceramic or metal conductor.
 ただし、金属導体層105の密着性や被覆率の向上の観点からは、図14に示した電子部品モジュール300よりも図13に示した電子部品モジュール200の方が好ましい。
 一方、図14に示した電子部品モジュール300では、平坦化層161上にグランド配線を設ける必要がないため、その分だけ、平坦化層161上に電子部品を実装可能なエリアをより広く確保することができる。
13 is more preferable than the electronic component module 300 shown in FIG. 14 from the viewpoint of improving the adhesion and coverage of the metal conductor layer 105 .
On the other hand, in the electronic component module 300 shown in FIG. 14, since it is not necessary to provide the ground wiring on the planarization layer 161, a wider area for mounting the electronic components on the planarization layer 161 is secured accordingly. be able to.
 なお、グランド電極354は、LTCC基板310及び平坦化層161の間を、内部電極255の直上から電子部品モジュール300の側面部まで、例えば直線状に延伸され、その側面部にて金属導体層105に接続されている。 The ground electrode 354 extends between the LTCC substrate 310 and the planarization layer 161 from directly above the internal electrode 255 to the side surface of the electronic component module 300, for example, in a straight line. It is connected to the.
 電子部品モジュール200は、例えば、以下の方法で製造される。
 図15~図23は、製造工程における本発明(第2実施形態)の電子部品モジュールの一例を模式的に示す断面図であり、図15は、第1電子部品の実装工程を示し、図16は、第1の樹脂封止工程を示し、図17は、封止樹脂層の研削工程を示し、図18は、平坦化層の形成工程を示し、図19は、平坦化層のビアホール形成工程を示し、図20は、ビア及び電極の形成工程を示し、図21は、第2電子部品及び第3電子部品の実装工程を示し、図22は、第2の樹脂封止工程を示し、図23は、金属導体層の形成工程を示す。
 なお、以下では、複数のLTCC基板からなる集合基板について説明するが、便宜上、図15~図22では個片化されたLTCC基板を集合基板として図示している。
Electronic component module 200 is manufactured, for example, by the following method.
15 to 23 are cross-sectional views schematically showing an example of the electronic component module of the present invention (second embodiment) in the manufacturing process, FIG. 15 shows the mounting process of the first electronic component, and FIG. shows the first resin sealing process, FIG. 17 shows the sealing resin layer grinding process, FIG. 18 shows the planarizing layer forming process, and FIG. 19 shows the planarizing layer via hole forming process. 20 shows the via and electrode forming process, FIG. 21 shows the mounting process of the second electronic component and the third electronic component, FIG. 22 shows the second resin sealing process, and FIG. 23 indicates a step of forming a metal conductor layer.
Although an aggregate substrate made up of a plurality of LTCC substrates will be described below, for the sake of convenience, individualized LTCC substrates are shown as an aggregate substrate in FIGS.
 まず、図15に示すように、複数のLTCC基板からなる集合基板270のフラットな面である第1主面271(LTCC基板210の第1主面211に相当)に、外部端子として複数のCuピラーバンプ131を有する第1電子部品121と、第4電子部品224とを実装し、リフローする。また、入出力用電極151上に柱状電極258として、例えばCu(銅)ピンを形成する。 First, as shown in FIG. 15, a plurality of Cu electrodes are formed as external terminals on a first main surface 271 (corresponding to the first main surface 211 of the LTCC substrate 210), which is a flat surface of an aggregate substrate 270 composed of a plurality of LTCC substrates. The first electronic component 121 having the pillar bumps 131 and the fourth electronic component 224 are mounted and reflowed. For example, a Cu (copper) pin is formed as the columnar electrode 258 on the input/output electrode 151 .
 次に、図16に示すように、第1実施形態で説明した場合と同様にして、第1電子部品121、第4電子部品224及び柱状電極258を被覆するように、集合基板270の第1主面271に封止樹脂層152を形成する。 Next, as shown in FIG. 16, the first electronic component 121, the fourth electronic component 224, and the columnar electrodes 258 are covered with the first electronic component 121, the fourth electronic component 224, and the columnar electrode 258 in the same manner as described in the first embodiment. A sealing resin layer 152 is formed on the main surface 271 .
 次に、図17に示すように、封止樹脂層152を所定の厚みまで研削し、柱状電極258の一端面を露出させる。このとき、第1電子部品121の天面及び/又は第4電子部品224の天面も露出させてもよい。また、第1電子部品121の天面部分を削って第1電子部品121を薄くしてもよい。 Next, as shown in FIG. 17, the sealing resin layer 152 is ground to a predetermined thickness to expose one end surface of the columnar electrode 258 . At this time, the top surface of the first electronic component 121 and/or the top surface of the fourth electronic component 224 may also be exposed. Further, the top surface portion of the first electronic component 121 may be shaved to thin the first electronic component 121 .
 次に、図18に示すように、集合基板270の第1主面271に平坦化層281を形成するとともに、集合基板270の凹凸面である第2主面272(LTCC基板210の第2主面212に相当)に平坦化層161を形成する。この結果、第1電子部品121等を被覆するとともに、表面が平坦な平坦化層281が形成される。また、集合基板270の第2電極142、第4電極144及びグランド電極254を被覆するとともに、表面が平坦な平坦化層161が形成される。
 具体的には、例えば、第1主面271上と第2主面272上に、半硬化状態のシート状の平坦化層用樹脂(例えば、エポキシ樹脂等の熱硬化性樹脂からなるシート)をそれぞれ配置した後、平坦化層用樹脂を成型用プレートでプレスしながら加熱する。これにより、第1主面271側の平坦化層用樹脂は流動化した後、硬化状態に変化する。また、第2主面272側の平坦化層用樹脂は流動化して第2主面272の凹凸を埋めた後、硬化状態に変化する。
 なお、第1主面271に、硬化していない液状の平坦化層用樹脂(例えば、エポキシ樹脂等の熱硬化性樹脂材料)を印刷、ディスペンサーやスピンコート等により塗布し、レベリング調整して平坦化した後、熱風等で加熱して硬化させてもよい。
 同様に、第2主面272上に、硬化していない液状の平坦化層用樹脂(例えば、エポキシ樹脂等の熱硬化性樹脂材料)を印刷、ディスペンサーやスピンコート等により塗布し、レベリング調整して平坦化した後、熱風等で加熱して硬化させてもよい。
Next, as shown in FIG. 18, a planarizing layer 281 is formed on the first main surface 271 of the collective substrate 270, and a second main surface 272 (the second main surface of the LTCC substrate 210), which is an uneven surface of the collective substrate 270, is formed. A planarization layer 161 is formed on the surface (corresponding to the surface 212). As a result, a flattened layer 281 that covers the first electronic component 121 and the like and has a flat surface is formed. Further, a flattening layer 161 having a flat surface is formed to cover the second electrode 142, the fourth electrode 144 and the ground electrode 254 of the collective substrate 270. As shown in FIG.
Specifically, for example, a semi-cured sheet-like flattening layer resin (for example, a sheet made of thermosetting resin such as epoxy resin) is applied on the first principal surface 271 and the second principal surface 272 . After each placement, the resin for the flattening layer is heated while being pressed with a molding plate. As a result, the flattening layer resin on the first main surface 271 side is fluidized and then changed to a cured state. Further, the planarizing layer resin on the second main surface 272 side is fluidized to fill the unevenness of the second main surface 272, and then changes to a cured state.
A non-cured liquid planarization layer resin (for example, a thermosetting resin material such as epoxy resin) is applied to the first main surface 271 by printing, dispenser, spin coating, or the like, and leveling is adjusted to achieve planarization. After curing, it may be cured by heating with hot air or the like.
Similarly, on the second main surface 272, an uncured liquid planarizing layer resin (for example, a thermosetting resin material such as epoxy resin) is applied by printing, dispenser, spin coating, or the like, and leveling is adjusted. It may be cured by heating with hot air or the like after flattening.
 平坦化層281用の平坦化層用樹脂としては、第1実施形態で説明した平坦化層161用の平坦化層用樹脂を用いることができる。
 平坦化層161及び281用の平坦化層用樹脂は、材質及び/又は特性が互いに異なるものであってもよいし、同じものであってもよい。
As the planarizing layer resin for the planarizing layer 281, the planarizing layer resin for the planarizing layer 161 described in the first embodiment can be used.
The planarizing layer resins for the planarizing layers 161 and 281 may have different materials and/or characteristics, or may be the same.
 次に、図19に示すように、COレーザーやフォトリソ工法により平坦化層161及び281にビアホールを形成した後、デスミアして樹脂残渣を除去する。 Next, as shown in FIG. 19, via holes are formed in the planarization layers 161 and 281 by CO 2 laser or photolithography, and then desmeared to remove resin residues.
 次に、図20に示すように、平坦化層281のビアホール内にビア282を形成するとともに、平坦化層281上に入出力電極204を形成する。また、平坦化層161のビアホール内にビア162、163及び264を形成するとともに、平坦化層161上に第3電極143、第5電極145及びグランド配線256を形成する。
 具体的には、例えば、まず、スパッタリングにより平坦化層161及び281の表面にそれぞれ金属膜(めっき給電膜)を形成し、次に、電解めっきにより平坦化層161及び281のビアホール内とそれぞれの表面上にめっき膜を形成する。その後、フォトリソ工法によりめっき膜をパターニングして入出力電極204を形成するとともに第3電極143、第5電極145及びグランド配線256を形成する。
 なお、ビア282、162、163及び264は、導電性ペーストから形成してもよい。
Next, as shown in FIG. 20 , vias 282 are formed in the via holes of the planarization layer 281 and the input/output electrodes 204 are formed on the planarization layer 281 . Also, via holes 162 , 163 and 264 are formed in the via holes of the planarization layer 161 , and the third electrode 143 , the fifth electrode 145 and the ground wiring 256 are formed on the planarization layer 161 .
Specifically, for example, first, metal films (plating power supply films) are formed on the surfaces of the planarizing layers 161 and 281 by sputtering, and then electroplating is performed in the via holes of the planarizing layers 161 and 281 and in the respective via holes. A plating film is formed on the surface. Thereafter, the plated film is patterned by photolithography to form the input/output electrodes 204, and the third electrode 143, the fifth electrode 145, and the ground wiring 256 are formed.
Note that vias 282, 162, 163 and 264 may be formed from a conductive paste.
 次に、図21に示すように、平坦化層161側の面に、外部端子として複数のCuピラーバンプ132を有する第2電子部品122や他の電子部品、例えば第3電子部品123を実装し、リフローする。 Next, as shown in FIG. 21, a second electronic component 122 having a plurality of Cu pillar bumps 132 as external terminals and other electronic components such as a third electronic component 123 are mounted on the surface on the planarization layer 161 side, reflow.
 次に、図22に示すように、第1実施形態で説明した場合と同様にして、第2電子部品122や他の電子部品を被覆するように、平坦化層161側の面に封止樹脂層153を形成する。 Next, as shown in FIG. 22, sealing resin is applied to the surface of the flattening layer 161 side so as to cover the second electronic component 122 and other electronic components in the same manner as described in the first embodiment. Layer 153 is formed.
 次に、ダイサー等により集合基板270を所定の位置で切断して個片化することで、各LTCC基板210を切り出す。 Next, each LTCC substrate 210 is cut out by cutting the collective substrate 270 at a predetermined position with a dicer or the like to individualize it.
 そして、図23に示すように、第1実施形態で説明した場合と同様にして、LTCC基板210の実装面101を除く面に金属導体層105を形成する。 Then, as shown in FIG. 23, the metal conductor layer 105 is formed on the surface of the LTCC substrate 210 excluding the mounting surface 101 in the same manner as in the first embodiment.
 以上により、第2実施形態に係る電子部品モジュール200が製造される。 Thus, the electronic component module 200 according to the second embodiment is manufactured.
 なお、電子部品モジュール300は、例えば、グランド配線256と、グランド配線256用のビア264を形成しないことを除いて、電子部品モジュール200と同様の方法で製造される。 Note that the electronic component module 300 is manufactured by the same method as the electronic component module 200, except that the ground wiring 256 and the via 264 for the ground wiring 256 are not formed.
 また、上記実施形態では、実装面101を除く全面が金属導体層105で構成される場合について説明したが、本発明の電子部品モジュールが備える金属導体層は、電子部品モジュールの少なくとも一側面を構成していればよい。すなわち、第2実施形態では、少なくとも、グランド配線256又はグランド電極354が引き出される側面103が金属導体層105から構成されていればよい。ただし、シールド性等の観点からは、本発明の電子部品モジュールが備える金属導体層は、電子部品モジュールの実装面を除く実質的に全ての面を構成することが好ましい。 Further, in the above embodiment, the case where the entire surface except for the mounting surface 101 is composed of the metal conductor layer 105 has been described, but the metal conductor layer included in the electronic component module of the present invention constitutes at least one side surface of the electronic component module. It's fine if you do. That is, in the second embodiment, at least the side surface 103 from which the ground wiring 256 or the ground electrode 354 is drawn out should be made of the metal conductor layer 105 . However, from the viewpoint of shielding properties, etc., it is preferable that the metal conductor layer included in the electronic component module of the present invention forms substantially the entire surface of the electronic component module except for the mounting surface.
 また、上記実施形態では、無機材料基板としてLTCC基板を用いた場合について説明したが、本発明の電子部品モジュールが備える無機材料基板は、絶縁材料として無機材料(好適にはセラミック)を使用した回路基板(好適には多層基板)であれば特に限定されない。 In addition, in the above-described embodiments, the LTCC substrate is used as the inorganic material substrate, but the inorganic material substrate included in the electronic component module of the present invention is a circuit that uses an inorganic material (preferably ceramic) as an insulating material. There is no particular limitation as long as it is a substrate (preferably a multilayer substrate).
 また、上記実施形態では、複数のCuピラーバンプ131が設けられた実装面を有する第1電子部品121と、複数のCuピラーバンプ132が設けられた実装面を有する第2電子部品122とを実装する場合について説明したが、本発明の電子部品モジュールが備える第1電子部品及び第2電子部品は、複数の外部端子が設けられた実装面を有する電子部品であれば特に限定されず、例えば、LGA(Land Grid Array)構造の電子部品(好適にはIC)であってもよいし、BGA(Ball Grid Array)構造の電子部品(好適にはIC)であってもよい。
 なお、LGA構造の電子部品である場合は、各外部端子(ランド)は、はんだで無機材料基板に接続されてもよい。
 いずれの場合も、複数の外部端子は、通常、実装面のみに規則的に等ピッチで3つ以上配列されている。例えば、矩形状等の環状に実装面に配列されてもよいし、格子状(マトリクス状)に実装面に配列されてもよい。
Further, in the above embodiment, when the first electronic component 121 having a mounting surface provided with a plurality of Cu pillar bumps 131 and the second electronic component 122 having a mounting surface provided with a plurality of Cu pillar bumps 132 are mounted, However, the first electronic component and the second electronic component included in the electronic component module of the present invention are not particularly limited as long as they are electronic components having a mounting surface provided with a plurality of external terminals. It may be an electronic component (preferably an IC) having a Land Grid Array (Land Grid Array) structure or an electronic component (preferably an IC) having a BGA (Ball Grid Array) structure.
In addition, in the case of an electronic component having an LGA structure, each external terminal (land) may be connected to the inorganic material substrate with solder.
In either case, three or more external terminals are normally arranged regularly at equal pitches only on the mounting surface. For example, they may be arranged on the mounting surface in a ring shape such as a rectangular shape, or may be arranged in a lattice shape (matrix shape) on the mounting surface.
 [比較形態]
 図24は、比較形態に係る電子部品モジュールの一例を模式的に示す断面図である。
 図24に示す電子部品モジュール400は、平坦化層161及び複数の第3電極143が設けられないことを除いて、図1に示した第1実施形態に係る電子部品モジュール100と実質的に同じものである。
[Comparative form]
FIG. 24 is a cross-sectional view schematically showing an example of an electronic component module according to a comparative embodiment;
The electronic component module 400 shown in FIG. 24 is substantially the same as the electronic component module 100 according to the first embodiment shown in FIG. 1 except that the planarization layer 161 and the plurality of third electrodes 143 are not provided. It is.
 すなわち、外部端子として複数のCuピラーバンプ132を有する各第2電子部品122は、対応する第2電極142と直接接続されている。
 また、LTCC基板110の内部から側面に引き出された各グランド電極154は、電子部品モジュール400の側面部にて金属導体層105と接続されている。
That is, each second electronic component 122 having a plurality of Cu pillar bumps 132 as external terminals is directly connected to the corresponding second electrode 142 .
Each ground electrode 154 drawn out from the inside of the LTCC substrate 110 to the side surface is connected to the metal conductor layer 105 on the side surface of the electronic component module 400 .
 図24に示したように、再配線層を有さないLTCC基板にIC及びその他部品をはんだ実装し、リフロー後に搭載状態を確認したところ、オープン不良が多発した。 As shown in FIG. 24, when ICs and other parts were solder-mounted on an LTCC substrate that did not have a rewiring layer, and the mounting state was checked after reflow, open defects occurred frequently.
 また、LTCC基板のセラミック間からグランド電極を側面まで引き出した複数の構造品(金属導体層105を形成する前の段階の電子部品モジュール400に相当するもの、図24参照)に、実装面を除いた面にスパッタリングにて膜厚0.15μmのステンレス薄膜と膜厚2μmの銅薄膜とをこの順に形成して金属導体層とし、金属導体層の強度及び被覆率をチェックした。詳細には、形成した金属導体層に粘着テープを貼り付けてから剥がし、金属導体層が粘着テープとともに剥離しないかを評価するとともに、粘着テープ剥離後の構造品を観察した。その結果、LTCC基板からのグランド電極の引き出し部で金属導体層の剥離が発生し、金属導体層が被覆できていないワークが確認された。 In addition, a plurality of structural products (corresponding to the electronic component module 400 at the stage before forming the metal conductor layer 105, see FIG. 24) in which the ground electrodes are pulled out from between the ceramics of the LTCC substrate to the side surface, except for the mounting surface, are provided. A 0.15 μm-thick stainless thin film and a 2 μm-thick copper thin film were formed in this order on the other surface by sputtering to form a metal conductor layer, and the strength and coverage of the metal conductor layer were checked. Specifically, an adhesive tape was attached to the formed metal conductor layer and then removed, and whether or not the metal conductor layer was peeled off together with the adhesive tape was evaluated, and the structural product after the adhesive tape was peeled off was observed. As a result, peeling of the metal conductor layer occurred at the lead-out portion of the ground electrode from the LTCC substrate, and it was confirmed that some workpieces were not covered with the metal conductor layer.
100、200、300 電子部品モジュール
101 電子部品モジュールの実装面
102 電子部品モジュールの天面
103 電子部品モジュールの側面
104、204 入出力電極
105 金属導体層
110、210、310 低温焼成セラミック基板
111、211、311 低温焼成セラミック基板の第1主面
112、212、312 低温焼成セラミック基板の第2主面
121 第1電子部品
121a SOI
122 第2電子部品
122a HBT IC
122b SAWフィルタ
122c GaAs IC
123 第3電子部品
123a、224a チップコンデンサ
123b チップインダクタ
131、132 Cuピラーバンプ
133、234 外部電極
135、235 はんだ
141 第1電極
142 第2電極
143 第3電極
144 第4電極
145 第5電極
151 入出力用電極
152、153 封止樹脂層
154、254、354 グランド電極
161、281 平坦化層
162、163、257、264、282 ビア
170、270 集合基板
171、271 集合基板の第1主面
172、272 集合基板の第2主面
224 第4電子部品
246 第6電極
255 内部電極
256 グランド配線
258 柱状電極

 
100, 200, 300 electronic component module 101 electronic component module mounting surface 102 electronic component module top surface 103 electronic component module side surfaces 104, 204 input/output electrodes 105 metal conductor layers 110, 210, 310 low temperature fired ceramic substrates 111, 211 , 311 first main surface 112, 212, 312 of low-temperature co-fired ceramic substrate second main surface 121 of low-temperature co-fired ceramic substrate first electronic component 121a SOI
122 second electronic component 122a HBT IC
122b SAW filter 122c GaAs IC
123 Third electronic components 123a, 224a Chip capacitor 123b Chip inductors 131, 132 Cu pillar bumps 133, 234 External electrodes 135, 235 Solder 141 First electrode 142 Second electrode 143 Third electrode 144 Fourth electrode 145 Fifth electrode 151 Input/ output electrodes 152, 153 sealing resin layers 154, 254, 354 ground electrodes 161, 281 planarization layers 162, 163, 257, 264, 282 vias 170, 270 aggregate substrates 171, 271 first major surfaces 172, 272 of aggregate substrates Second main surface 224 of collective board Fourth electronic component 246 Sixth electrode 255 Internal electrode 256 Ground wiring 258 Columnar electrode

Claims (10)

  1.  基板両面に部品実装された電子部品モジュールであって、
     複数の第1電極が設けられた第1主面及び複数の第2電極が設けられた第2主面を有する無機材料基板と、
     前記複数の第1電極に接続された複数の外部端子が設けられた実装面を有する第1電子部品と、
     前記第2主面を覆う平坦化層と、
     前記平坦化層上に設けられ、前記複数の第2電極に接続された複数の第3電極と、
     前記複数の第3電極に接続された複数の外部端子が設けられた実装面を有する第2電子部品と、
     を備えることを特徴とする電子部品モジュール。
    An electronic component module in which components are mounted on both sides of a substrate,
    an inorganic material substrate having a first main surface provided with a plurality of first electrodes and a second main surface provided with a plurality of second electrodes;
    a first electronic component having a mounting surface provided with a plurality of external terminals connected to the plurality of first electrodes;
    a planarization layer covering the second main surface;
    a plurality of third electrodes provided on the planarization layer and connected to the plurality of second electrodes;
    a second electronic component having a mounting surface provided with a plurality of external terminals connected to the plurality of third electrodes;
    An electronic component module comprising:
  2.  前記無機材料基板と平行な基準面に対する前記複数の第2電極の高さの最大値と最小値の差は、前記無機材料基板と平行な基準面に対する前記複数の第1電極の高さの最大値と最小値の差より大きい請求項1に記載の電子部品モジュール。 The difference between the maximum and minimum heights of the plurality of second electrodes relative to a reference plane parallel to the inorganic material substrate is the maximum height of the plurality of first electrodes relative to a reference plane parallel to the inorganic material substrate. 2. The electronic component module according to claim 1, wherein the difference is greater than the difference between the value and the minimum value.
  3.  前記無機材料基板と平行な基準面に対する前記複数の第2電極の高さの最大値と最小値の差は、15μmを超える請求項2に記載の電子部品モジュール。 The electronic component module according to claim 2, wherein the difference between the maximum height and the minimum height of the plurality of second electrodes with respect to a reference plane parallel to the inorganic material substrate exceeds 15 µm.
  4.  前記無機材料基板と平行な基準面に対する前記複数の第1電極の高さの最大値と最小値の差は、15μm以下である請求項2又は3に記載の電子部品モジュール。 4. The electronic component module according to claim 2, wherein the difference between the maximum and minimum heights of the plurality of first electrodes with respect to a reference plane parallel to the inorganic material substrate is 15 μm or less.
  5.  前記第1主面側に、入出力電極が設けられた実装面を有する請求項1~4のいずれかに記載の電子部品モジュール。 The electronic component module according to any one of claims 1 to 4, which has a mounting surface on which input/output electrodes are provided on the first main surface side.
  6.  前記第2電子部品を被覆する封止樹脂層と、
     前記電子部品モジュールの少なくとも側面を構成する金属導体層と、
     前記第2主面上に設けられたグランド電極と、
     前記平坦化層上に設けられ、前記グランド電極に接続されたグランド配線と、を更に備え、
     前記グランド配線は、前記平坦化層及び前記封止樹脂層の間を延伸されて前記金属導体層に接続される請求項1~5のいずれかに記載の電子部品モジュール。
    a sealing resin layer covering the second electronic component;
    a metal conductor layer forming at least a side surface of the electronic component module;
    a ground electrode provided on the second main surface;
    a ground wiring provided on the planarization layer and connected to the ground electrode;
    6. The electronic component module according to claim 1, wherein the ground wiring extends between the flattening layer and the sealing resin layer and is connected to the metal conductor layer.
  7.  入出力電極が設けられた実装面と、
     前記電子部品モジュールの少なくとも側面を構成する金属導体層と、
     前記第2主面上に設けられたグランド電極と、を更に備え、
     前記グランド電極は、前記無機材料基板及び前記平坦化層の間を延伸されて前記金属導体層に接続される請求項1~5のいずれかに記載の電子部品モジュール。
    a mounting surface provided with input/output electrodes;
    a metal conductor layer forming at least a side surface of the electronic component module;
    A ground electrode provided on the second main surface,
    6. The electronic component module according to claim 1, wherein the ground electrode extends between the inorganic material substrate and the planarization layer and is connected to the metal conductor layer.
  8.  前記無機材料基板は、低温焼成セラミック基板である請求項1~7のいずれかに記載の電子部品モジュール。 The electronic component module according to any one of claims 1 to 7, wherein the inorganic material substrate is a low temperature fired ceramic substrate.
  9.  前記第1電子部品は、ICである請求項1~8のいずれかに記載の電子部品モジュール。 The electronic component module according to any one of claims 1 to 8, wherein the first electronic component is an IC.
  10.  前記第2電子部品は、ICである請求項1~9のいずれかに記載の電子部品モジュール。 The electronic component module according to any one of claims 1 to 9, wherein the second electronic component is an IC.
PCT/JP2022/027542 2021-08-20 2022-07-13 Electronic component module WO2023021887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-135121 2021-08-20
JP2021135121 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023021887A1 true WO2023021887A1 (en) 2023-02-23

Family

ID=85240556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027542 WO2023021887A1 (en) 2021-08-20 2022-07-13 Electronic component module

Country Status (1)

Country Link
WO (1) WO2023021887A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245139A (en) * 2009-04-02 2010-10-28 Tatsuta Electric Wire & Cable Co Ltd High-frequency module having shielding and heat-releasing property and method of manufacturing the same
WO2020179504A1 (en) * 2019-03-07 2020-09-10 株式会社村田製作所 High-frequency module and communication device
US20210125970A1 (en) * 2019-10-24 2021-04-29 PlayNitride Display Co., Ltd. Micro light-emitting device module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245139A (en) * 2009-04-02 2010-10-28 Tatsuta Electric Wire & Cable Co Ltd High-frequency module having shielding and heat-releasing property and method of manufacturing the same
WO2020179504A1 (en) * 2019-03-07 2020-09-10 株式会社村田製作所 High-frequency module and communication device
US20210125970A1 (en) * 2019-10-24 2021-04-29 PlayNitride Display Co., Ltd. Micro light-emitting device module

Similar Documents

Publication Publication Date Title
US6784530B2 (en) Circuit component built-in module with embedded semiconductor chip and method of manufacturing
TWI496259B (en) Flip chip package assembly and process for making same
JP4092890B2 (en) Multi-chip module
US6784554B2 (en) Semiconductor device and manufacturing method thereof
TWI436717B (en) Wiring board capable of having built-in functional element and method for manufacturing the same
US20160323996A1 (en) Multilayer circuit board and inspection apparatus including the same
JP5367523B2 (en) Wiring board and method of manufacturing wiring board
TW201501248A (en) Power overlay structure and method of making same
US20090017613A1 (en) Method of manufacturing interconnect substrate and semiconductor device
JP5588620B2 (en) Wafer level package and method of forming the same
KR20010070217A (en) Semiconductor device and manufacturing method of the same
TWI649841B (en) High frequency module and manufacturing method thereof
CN110459521B (en) Flip chip package substrate and electronic package
JP2004253738A (en) Package substrate and flip chip type semiconductor device
WO2023021887A1 (en) Electronic component module
TWI521655B (en) High frequency module and high frequency module carrying device
JP4324732B2 (en) Manufacturing method of semiconductor device
TWI742749B (en) Package structure and method of forming the same
JP3947043B2 (en) Semiconductor device
WO2023021888A1 (en) Electronic component module
TWI631684B (en) Medium substrate and the manufacture thereof
WO2024106030A1 (en) Module and method for manufacturing module
US20240096838A1 (en) Component-embedded packaging structure
US11804382B2 (en) Method of forming package substrate with partially recessed capacitor
US12014934B2 (en) Semiconductor substrate structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE