WO2023020628A1 - 一种基于传动效率的减速器工况及结构参数优选方法 - Google Patents

一种基于传动效率的减速器工况及结构参数优选方法 Download PDF

Info

Publication number
WO2023020628A1
WO2023020628A1 PCT/CN2022/119491 CN2022119491W WO2023020628A1 WO 2023020628 A1 WO2023020628 A1 WO 2023020628A1 CN 2022119491 W CN2022119491 W CN 2022119491W WO 2023020628 A1 WO2023020628 A1 WO 2023020628A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducer
parameters
transmission efficiency
gear
power loss
Prior art date
Application number
PCT/CN2022/119491
Other languages
English (en)
French (fr)
Inventor
李学艺
吴宗坤
王海霞
梁慧斌
张华宇
杨通
李远达
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2023020628A1 publication Critical patent/WO2023020628A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to a method for optimizing working conditions and structural parameters of a reducer based on transmission efficiency, and belongs to the technical field of reducers.
  • the transmission efficiency of the reducer is related to the power loss of the reducer, and the power loss reflects the energy loss of the reducer during the working process.
  • the application scenarios of the reducer are different, and the main types of energy consumption are also different.
  • the vehicle reducer with gasoline and diesel as the main fuel has greatly stimulated the consumption of petroleum energy in my country, and at the same time caused serious environmental pollution problems;
  • the main consumption of electric energy Energy consumption of cement grinding roller press reducer accounts for 20%-30% of the total production cost, and the power consumption of the grinding system accounts for 60%-70% of the total power consumption.
  • the optimization of the transmission efficiency of the reducer is essentially the optimization of the working conditions and structural parameters.
  • the methods for optimizing the transmission efficiency of the reducer are mainly orthogonal experiments and genetic algorithms, but the optimization goal selected in the existing optimization methods is only to reduce the unit In terms of power loss, the optimization parameters only select the gear structure parameters or working condition parameters, without comprehensive consideration, ignoring many influencing factors. This method is difficult to greatly improve the transmission efficiency of the reducer.
  • Chinese patent document CN105782428A discloses a method and device for optimizing the transmission ratio of an automobile transmission.
  • the method includes determining optimization parameters; establishing an objective function according to the optimization purpose of automobile transmission parameters; establishing constraints; establishing a mathematical optimization model, and solving the model , to obtain the optimal speed ratio of the transmission and the final drive; input the optimal speed ratio of the transmission and the final drive into the power and economic simulation matching model for calculation, and judge whether the power and economic requirements are met, and if so, end , if not, modify the constraint conditions or optimize the model to solve the model again, and carry out dynamic and economical simulation matching model simulation until the dynamical and economical requirements are met.
  • the Chinese patent document CN106777411A discloses a multi-objective optimization of the gear of the drive axle main reducer.
  • the objective function is to establish a multi-objective optimization mathematical model for the gear transmission of the final drive;
  • the second step to use the fast non-dominated sorting genetic algorithm with an elitist strategy to optimize the gear drive design of the final drive, and obtain the Pareto optimal solution;
  • Step 3 Choose an optimized solution and compare it with the original design solution.
  • the multi-objective optimization of the gear of the main reducer of the driving axle of the present invention shows that the transmission efficiency of the gear of the main reducer is significantly increased, and the transmission torque capacity and the coincidence degree are all improved to a certain extent.
  • the program selects the target parameters and analyzes them, the parameters can be optimized to obtain the optimal solution, and chooses the optimized program to compare with the original program, and obtains the optimal program to improve the transmission efficiency of the reducer.
  • the target selection parameters of this scheme are relatively simple. Although the transmission efficiency can be improved to a certain extent, there is still a lot of room for improvement.
  • the present invention provides a method for optimizing the working conditions and structural parameters of the reducer based on the transmission efficiency.
  • This method has wide adaptability and is not limited to a certain type of reducer. Its own structural parameters and working condition parameters can maximize the transmission efficiency of the reducer.
  • a method for optimizing the operating conditions and structural parameters of a reducer based on transmission efficiency comprising the following steps:
  • Step 1 analyze the transmission efficiency of the reducer and the power loss that determines the transmission efficiency of the reducer, and propose the transmission efficiency of the reducer and the expressions of each power loss;
  • Step 2 According to the power loss expressions, the main influencing parameters of the transmission efficiency of the reducer are obtained and analyzed, and the structural parameters and working condition parameters that can be optimized for the transmission efficiency of the reducer are extracted;
  • Step 3 Establish a simulation analysis model for the transmission efficiency of the reducer, and conduct a simulation analysis of the transmission efficiency of the reducer, that is, analyze the relationship between the structural parameters and working condition parameters extracted in step 2 and the transmission efficiency, and select at least 5 most influential The parameters are used as the optimal parameters of the orthogonal experiment;
  • Step 4 Based on the optimal parameters selected in step 3, the transmission efficiency of the reducer is optimized through the design of the orthogonal test scheme, simulation analysis and evaluation of optimization results, and finally the optimal parameter combination that meets the evaluation criteria is obtained.
  • the expression of the transmission efficiency of the reducer is:
  • is the transmission efficiency
  • P in is the input power of the reducer, kW
  • P out is the output power of the reducer, kW
  • the main types of power loss generated by the reducer are: gear meshing power loss, bearing friction power loss, oil churning power loss and oil seal friction power loss, that is, the total power loss of the reducer can be expressed as:
  • P GS is the power loss of gear sliding friction, kW
  • P GR is the power loss of gear rolling friction, kW
  • the gear sliding friction power loss formula is:
  • the gear rolling friction power loss formula is:
  • M bearing friction torque, N mm
  • n b bearing speed, r/min
  • density of lubricating oil, kg/m 3 ;
  • gear angular velocity, rad/s;
  • r a radius of addendum circle, mm;
  • r radius of pitch circle, mm;
  • h t total tooth height, mm ;
  • C 1 Calculation coefficient of oil churning resistance torque on gear side;
  • C 2 Calculation coefficient of oil churning resistance torque on gear circumferential surface;
  • d S the diameter of the shaft section where the oil seal is located, mm
  • F S the friction force per unit length of the shaft circumference, N/mm
  • n S the rotational speed of the shaft where the oil seal is located, r/min.
  • said step 2 specifically includes the following steps:
  • the factors that affect the transmission efficiency of the reducer can be extracted: normal modulus, transmission ratio, speed, torque, tooth width, helix angle, lubricating oil density, oil immersion depth, lubrication Oil kinematic viscosity; when the lubricating oil is selected for the reducer, the density of the lubricating oil and the kinematic viscosity of the lubricating oil depend on the temperature of the lubricating oil, so the temperature of the lubricating oil is used for unified expression.
  • structural parameters include: normal modulus, transmission ratio (number of teeth), tooth width, and helix angle; working condition parameters include: speed, torque, oil immersion depth, and lubricating oil temperature;
  • the normal modulus in the above structural parameters has a great influence on the bending strength of the gear, and the reducer has certain requirements on the transmission ratio of the gears at all levels, so it is not suitable to optimize these parameters;
  • the torque has certain requirements, and the input speed is determined according to the transmission ratio, so it cannot be optimized.
  • tooth width ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • said step three is based on the Romax Designer software platform, carries out modeling and simulation analysis to the reducer, and according to the simulation analysis results, selects the optimal parameters required for the orthogonal test, specifically including the following steps:
  • Reducer entity modeling used to establish the reducer entity model, including shafts, bearings, gears, oil seals, reducer outer shell, specifically: determine the specific parameters of each component in the reducer, according to the location of each component Carry out component position positioning, perform overall positioning of the transmission system according to the position of the shaft and the center distance of the gear, and store these parameters for subsequent calls;
  • the parameters of the shaft include: the length of the shaft section, the diameter of the shaft end, the material, and the surface treatment form;
  • the gear parameters include: normal modulus, pressure angle, helix angle, helical direction, number of teeth, tooth width, precision grade, material, and displacement coefficient; if it is a planetary gear, the parameters include: normal modulus, pressure angle, Number of planetary gears, number of teeth, standard pitch circle diameter, tooth width, material, transmission ratio;
  • the oil seal parameters include: inner diameter, outer diameter, width;
  • bearing type only the bearing type can be selected.
  • the input of working condition parameters of the reducer is used to determine the input working condition parameters of the reducer to simulate the actual working environment of the reducer.
  • the specific working condition parameters include: input power, power input and output position, input speed, input torque, Oil immersion depth, lubricating oil temperature, reducer continuous working time, and store these parameters for subsequent calls.
  • the transmission efficiency analysis standard is selected as ISO14179-2 (DE) for analysis;
  • the reducer transmission efficiency simulation analysis module on the main interface of Romax Designer software, set the value range of the simulation analysis working condition parameter change, the reducer structural parameters are fixed as the parameters used in the reducer entity modeling step, according to The principle of changing one parameter and keeping the other parameters unchanged, analyze the relationship between each working condition parameter and the transmission efficiency of the reducer, obtain the specific value of the transmission efficiency in the process of changing the working condition parameter, and store the analysis result data in the designated location , for subsequent analysis;
  • the transmission efficiency simulation analysis working condition parameters of the reducer include: oil immersion depth, lubricating oil temperature; the value range of oil immersion depth is lh - 6mm ⁇ lh ⁇ lh + 6mm , and the value range of lubricating oil temperature is 30°C ⁇ T ⁇ 75°C;
  • the reducer transmission efficiency simulation analysis module For the analysis of structural parameters, start the reducer transmission efficiency simulation analysis module on the main interface of Romax Designer software, set the simulation analysis working condition parameters as the rated working condition input parameters, and modify the reducer entity modeling steps for the reducer simulation analysis structural parameters According to the principle of changing one parameter and keeping the other parameters unchanged, the relationship between each structural parameter and the transmission efficiency of the reducer is analyzed respectively.
  • the analysis of the gear structural parameters is the single structural parameter and The analysis between transmission efficiencies, obtain the specific values of transmission efficiency during the change of structural parameters, and store the analysis result data in the designated location for subsequent analysis;
  • the structural parameters of the transmission efficiency simulation analysis of the reducer include: the tooth width of the gears at each level, the helix angle of the gears at all levels; the value range of the gear tooth width is 0.9B ⁇ B ⁇ 1.1B, and the value range of the helix angle is ⁇ -5° ⁇ ⁇ +5°;
  • the selected parameters are taken as the optimal parameters of the transmission efficiency of the reducer, and the determined optimal parameters are classified into structural parameters and working condition parameters.
  • said step four is based on the Romax Designer software platform, adopts the method of orthogonal test to optimize the parameters of the transmission efficiency of the reducer, takes the improvement of the transmission efficiency of the reducer as the test index, and meets the gear strength check standard as the constraint condition, the specific steps as follows:
  • the tooth width B is represented by the tooth width of the large gear
  • the tooth width B is represented by the tooth width of the sun gear
  • the tooth width of the small gear is fixedly increased on the basis of the tooth width of the large gear 5-10mm
  • the tooth width of the ring gear is equal to the tooth width of the sun gear
  • the tooth width of the planetary gear is fixedly increased by 5-10mm compared with the tooth width of the sun gear
  • the value range of the influence factor setting is: the value range of the oil immersion depth is l h -6mm ⁇ l h ⁇ l h +6mm, the value range of the lubricating oil temperature is 30°C ⁇ T ⁇ 75°C, the gear tooth width The value range is 0.9B ⁇ B ⁇ 1.1B, and the value range of the helix angle is ⁇ -5° ⁇ +5°;
  • the division level of influencing factors determines the division level of influencing factors.
  • the selected influencing factors are 5, divide into four levels, that is, select 4 values uniformly within their value range, and formulate L 16 (4 5 ) Orthogonal test table to get 16 groups of test plans;
  • the selected influencing factors are 6, divide five levels, that is, select 5 values uniformly within their value range, and formulate L 25 (5 6 ) normal Submit the test table to obtain 25 groups of test plans;
  • the selected influencing factors are 7, divide six levels, that is, select 6 values uniformly within their value ranges, and formulate L 36 (6 7 ) orthogonal Test table, get 36 groups of test schemes, and so on;
  • the range analysis method is used to obtain the primary and secondary order of each influencing factor on the transmission efficiency of the reducer, and the optimal parameters of each influencing factor are obtained, and the optimal parameters of each influencing factor are combined to obtain the transmission efficiency of the reducer optimal parameter combination.
  • Orthogonal test result evaluation which is used to analyze and evaluate the transmission efficiency and gear strength of the reducer after parameter optimization, specifically:
  • the optimal parameter combination is sorted according to the principle that the transmission efficiency of the optimized rear reducer is compared with the variation amplitude of the unoptimized front reducer from large to small.
  • the optimal parameter combination with the largest increase is No. 1, followed by No. 2. and so on;
  • the evaluation standard refers to increasing the transmission efficiency of the reducer to the largest extent and at the same time meeting the requirements for gear strength verification.
  • the present invention preliminarily analyzes the factors affecting the transmission efficiency of the reducer based on the theoretical calculation formula of the internal power loss of the reducer, and builds a set of special transmission efficiency optimization system of the reducer, which can analyze and extract the influence on the transmission efficiency of the reducer
  • the transmission efficiency of the reducer is optimized by using the orthogonal test method, which can verify whether the reducer meets the requirements of gear strength check after parameter optimization.
  • the present invention fully considers the influencing factors of the entire optimization process, and uses the modeling technology to realize the physical modeling of the reducer, which is more in line with the actual operation situation, and the transmission efficiency is greatly improved.
  • the transmission efficiency optimization system of the reducer is easy to operate, has a wide range of applications, and has strong applicability.
  • the method for optimizing the transmission efficiency of the reducer of the present invention has strong universal adaptability, and is not limited to reducers with specific structures, that is, for reducers with different structures, this optimization method can be used to greatly improve the transmission efficiency of the reducer. Realize the environmental protection concept of energy saving and emission reduction, which has high economic efficiency.
  • Fig. 1 is a flow chart of the method for optimizing the operating conditions and structural parameters of a reducer based on transmission efficiency in the present invention.
  • Optimization refers to taking certain measures for a certain thing to make it excellent. In the present invention, it mainly means that a single parameter has room for improvement.
  • Preferable refers to choosing one or several best solutions from multiple solutions.
  • it mainly refers to selecting one or several parameters from multiple parameters.
  • the present invention provides a method for optimizing the working conditions and structural parameters of the reducer based on transmission efficiency, including the following steps:
  • Step 1 analyze the transmission efficiency of the reducer and the power loss that determines the transmission efficiency of the reducer, and propose the transmission efficiency of the reducer and the expressions of each power loss;
  • Step 2 Analyze the main influencing parameters of the transmission efficiency of the reducer and extract the parameters that can be optimized. According to the power loss expression, the main influencing parameters of the transmission efficiency of the reducer are obtained and analyzed, and the structural parameters and working conditions that can optimize the transmission efficiency parameters of the reducer are extracted. parameter;
  • Step 3 Determine the optimal parameters of the transmission efficiency of the reducer based on the simulation analysis, conduct a simulation analysis on the transmission efficiency of the reducer, analyze the relationship between the optimal parameters and the transmission efficiency, and extract at least 5 parameters with the greatest influence as the optimal parameters of the orthogonal test ;
  • Step 4 Optimize the transmission efficiency parameters of the reducer based on the orthogonal test method, optimize the transmission efficiency of the reducer through the design of the orthogonal test plan, simulation analysis and evaluation of optimization results, and finally obtain the optimal parameter combination that meets the evaluation requirements.
  • Step 1 specifically includes: the calculation of the transmission efficiency of the reducer depends on the size of the input power and output power, the input power is usually a fixed input value, and the output power is related to the power loss generated by the reducer during the working process, so the transmission efficiency can be calculated by The following formula represents:
  • is the transmission efficiency
  • P in is the input power of the reducer, kW
  • P out is the output power of the reducer, kW.
  • the output power of the reducer depends on the power loss generated by each component during the working process, mainly including the power loss of gears, bearings, oil seals and other auxiliary mechanisms.
  • the power loss of these components can be divided into load power loss and non-load power
  • load power loss refers to the power loss caused by the continuous friction or relative slip speed of the contact surface of each power transmission component in the process of transmitting force, mainly including the friction power generated by the gear during the meshing process Loss and bearing friction power loss
  • non-load power loss refers to the parts in the transmission system that rotate and work in the box, but do not transmit power, mainly including power loss caused by oil churning and oil seal.
  • P Z is the total power loss of the reducer, kW; PG is the gear meshing power loss, kW; P B is the bearing friction power loss, kW; P C is the oil churning power loss, kW; P S is the oil seal power loss , kW.
  • the transmission efficiency of the reducer can be calculated from the above formula.
  • Gear meshing power loss is composed of sliding friction and rolling friction between tooth surfaces, which can be expressed by the following formula:
  • P GS is the power loss of gear sliding friction, kW
  • P GR is the power loss of gear rolling friction, kW.
  • the gear sliding friction power loss formula is:
  • the gear rolling friction power loss formula is:
  • Bearing friction power loss is mainly determined by the friction torque and rotational speed of the bearing, and its formula is:
  • M bearing friction torque, N mm
  • n b bearing rotational speed, r/min.
  • the churning power loss includes gear churning and bearing churning.
  • the churning power loss caused by the bearing is negligible compared with the churning power loss of the gear. Therefore, only the churning part of the gear is considered in the churning power loss formula. , the formula is:
  • density of lubricating oil, kg/m 3 ;
  • geometric angular velocity, rad/s;
  • r a radius of addendum circle, mm;
  • r radius of pitch circle, mm;
  • h t total tooth height, mm ;
  • C 1 the calculation coefficient of oil stirring resistance moment on the gear side;
  • C 2 the calculation coefficient of oil stirring resistance moment on the gear circumferential surface; where the calculation coefficient C 1 of the oil stirring resistance moment on the gear side and the calculation coefficient C 2 of the oil stirring resistance moment on the gear circumferential surface
  • the value depends on the depth of oil immersion, tooth width and kinematic viscosity of lubricating oil, and can be determined through reference books.
  • the power loss of the oil seal in the reducer is mainly due to the power loss caused by the relative movement between the oil seal and the shaft friction, which can be expressed as:
  • d S the diameter of the shaft section where the oil seal is located, mm
  • F S the friction force per unit length of the shaft circumference, N/mm
  • n S the rotational speed of the shaft where the oil seal is located, r/min.
  • the second step specifically includes: the analysis of the main influencing factors of the transmission efficiency of the reducer and the extraction of optimized parameters.
  • the specific steps are as follows:
  • the present invention aims at the optimization of the transmission efficiency of the reducer, mainly from the reduction of gear meshing power loss and oil churning. power loss to proceed.
  • the factors that affect the transmission efficiency of the reducer can be extracted: normal modulus, transmission ratio, speed, torque, tooth width, helix angle, lubricating oil density, oil immersion depth, lubricating oil kinematic viscosity.
  • the density of the lubricating oil and the kinematic viscosity of the lubricating oil which can be expressed uniformly by the kinematic viscosity of the lubricating oil.
  • the kinematic viscosity of the lubricating oil depends on the temperature of the lubricating oil, so the lubricating oil The temperature is expressed uniformly.
  • the structural parameters include: normal modulus, transmission ratio (number of teeth), tooth width, and helix angle;
  • Working condition parameters include: speed, torque, oil immersion depth, lubricating oil temperature.
  • the normal modulus in the above structural parameters has a great influence on the bending strength of the gear, and the reducer has certain requirements on the transmission ratio of the gears at all levels, so it is not suitable to optimize these parameters;
  • the torque has certain requirements, and the input speed is determined according to the transmission ratio, so it cannot be optimized.
  • the structural parameters that can be optimized include: tooth width, helix angle;
  • the working condition parameters that can be optimized include: oil immersion depth, lubricating oil temperature.
  • the third step is based on the Romax Designer software platform, modeling and simulation analysis of the reducer, and according to the simulation analysis results, to determine the optimal parameters required for the orthogonal test, specifically including the following steps:
  • Reducer entity modeling used to establish the reducer entity model, including shafts, bearings, gears, oil seals, reducer outer shell, specifically: determine the specific parameters of each component in the reducer, according to the location of each component Carry out component position positioning, perform overall positioning of the transmission system according to the position of the shaft and the center distance of the gear, and store these parameters for subsequent calls;
  • the parameters of the shaft include: the length of the shaft section, the diameter of the shaft end, the material, and the surface treatment form;
  • the gear parameters include: normal modulus, pressure angle, helix angle, helical direction, number of teeth, tooth width, precision grade, material, and displacement coefficient; if it is a planetary gear, the parameters include: normal modulus, pressure angle, Number of planetary gears, number of teeth, standard pitch circle diameter, tooth width, material, transmission ratio;
  • the oil seal parameters include: inner diameter, outer diameter, width;
  • bearing only the bearing type can be selected.
  • the bearing is a standard part, and the bearing model has corresponding parameters.
  • the input of working condition parameters of the reducer is used to determine the input working condition parameters of the reducer to simulate the actual working environment of the reducer.
  • the specific working condition parameters include: input power, power input and output position, input speed, input torque, Lubricating oil temperature, reducer continuous working time, and store these parameters for subsequent calls.
  • the transmission efficiency analysis standard is selected as ISO14179-2 (DE) for analysis. This standard is included in the software and can be directly selected in the software. DE represents the German standard of this standard Version.
  • the reducer transmission efficiency simulation analysis module on the main interface of Romax Designer software, set the value range of the simulation analysis working condition parameter change, the reducer structural parameters are fixed as the parameters used in the reducer entity modeling step, according to The principle of changing one parameter and keeping the other parameters unchanged, analyze the relationship between each working condition parameter and the transmission efficiency of the reducer, obtain the specific value of the transmission efficiency in the process of changing the working condition parameter, and store the analysis result data in the designated location , for subsequent analysis;
  • the transmission efficiency simulation analysis working condition parameters of the reducer include: oil immersion depth, lubricating oil temperature; the value range of oil immersion depth is lh - 6mm ⁇ lh ⁇ lh + 6mm , and the value range of lubricating oil temperature is 30°C ⁇ T ⁇ 75°C;
  • the reducer transmission efficiency simulation analysis module For the analysis of structural parameters, start the reducer transmission efficiency simulation analysis module on the main interface of Romax Designer software, set the simulation analysis working condition parameters as the rated working condition input parameters, and modify the reducer entity modeling steps for the reducer simulation analysis structural parameters According to the principle of changing one parameter and keeping the other parameters unchanged, the relationship between each structural parameter and the transmission efficiency of the reducer is analyzed respectively.
  • the analysis of the gear structural parameters is the single structural parameter and The analysis between transmission efficiencies, obtain the specific values of transmission efficiency during the change of structural parameters, and store the analysis result data in the designated location for subsequent analysis;
  • the structural parameters of the transmission efficiency simulation analysis of the reducer include: the tooth width of the gears at each level, the helix angle of the gears at all levels; the value range of the gear tooth width is 0.9B ⁇ B ⁇ 1.1B, and the value range of the helix angle is ⁇ -5° ⁇ ⁇ +5°;
  • the transmission efficiency simulation analysis program of the reducer is carried out by Romax Designer software, which is applicable to all versions above R17 and below R20 of Romax Designer.
  • the reducer compares the transmission efficiency change amplitude corresponding to each analysis parameter, and select the parameter with the largest change amplitude as the optimal parameter of the orthogonal test.
  • the reducer is a two-stage reducer, select the five parameters with the largest variation amplitude (the five parameters whose variation amplitude decreases from the largest in order) as the optimal parameters of the orthogonal test.
  • the reducer is a three-stage reducer, Select the 6 parameters with the largest variation amplitude as the optimal parameters of the orthogonal test
  • the reducer is a four-stage reducer, select the 7 parameters with the largest variation amplitude as the optimal parameters of the orthogonal test, and so on.
  • the two-stage reducer can choose 5 parameters whose amplitudes decrease from the largest in order: oil immersion depth, lubricating oil temperature, primary gear tooth width, secondary gear tooth width, and primary gear helix angle;
  • the selected parameters are used as the optimal parameters of the transmission efficiency of the reducer, and the number of optimal parameters determined are classified into structural parameters and working condition parameters.
  • the fourth step is based on the Romax Designer software platform, adopts the method of orthogonal test to optimize the parameters of the transmission efficiency of the reducer, takes the improvement of the transmission efficiency of the reducer as the test index, and meets the gear strength check standard as the constraint condition, the specific steps as follows:
  • the tooth width B is represented by the tooth width of the large gear
  • the tooth width B is represented by the tooth width of the sun gear
  • the tooth width of the pinion gear, the tooth width of the planetary gear and the tooth width of the ring gear As a related factor, the tooth width of the large gear and the sun gear will change accordingly.
  • the tooth width of the pinion will increase by 5-10mm on the basis of the tooth width of the large gear, and the tooth width of the ring gear will be equal to the tooth width of the sun gear.
  • the tooth width of the planetary gear is fixedly increased by 5-10mm compared with the tooth width of the sun gear;
  • the value range of the influence factor setting is: the value range of the oil immersion depth is l h -6mm ⁇ l h ⁇ l h +6mm, the value range of the lubricating oil temperature is 30°C ⁇ T ⁇ 75°C, the gear tooth width The value range is 0.9B ⁇ B ⁇ 1.1B, and the value range of the helix angle is ⁇ -5° ⁇ +5°;
  • the division level of influencing factors determines the division level of influencing factors.
  • the selected influencing factors are 5, divide into four levels, that is, select 4 values uniformly within their value range, and formulate L 16 (4 5 ) Orthogonal test table to get 16 groups of test plans;
  • the selected influencing factors are 6, divide five levels, that is, select 5 values uniformly within their value range, and formulate L 25 (5 6 ) normal Submit the test table to obtain 25 groups of test plans.
  • the selected influencing factors are 7, divide six levels, that is, select 6 values uniformly within their value ranges, and formulate L 36 (6 7 ) orthogonal Test table, get 36 groups of test schemes, and so on;
  • the range analysis method is used to obtain the primary and secondary order of each influencing factor on the transmission efficiency of the reducer, and the optimal parameters of each influencing factor are obtained, and the optimal parameters of each influencing factor are combined to obtain the transmission efficiency of the reducer Optimal parameter combination.
  • the optimal parameter combination is sorted according to the principle that the transmission efficiency of the optimized rear reducer is compared with the variation amplitude of the unoptimized front reducer from large to small.
  • the optimal parameter combination with the largest increase is No. 1, followed by No. 2. and so on;
  • step 3 after the entity modeling of the reducer, the input of working condition parameters, and the analysis of the influence relationship between the optimal parameters of the reducer transmission efficiency and the transmission efficiency, the five parameters with the largest variation range are selected in the evaluation of the analysis results ( The five parameters with the amplitude of change decreasing successively from the largest) are used as the optimal parameters of the orthogonal test, and are used as the optimal parameters of the orthogonal test for the optimization of the transmission efficiency of the reducer in the subsequent step 4.
  • step 4 when designing the orthogonal experiment scheme, since this embodiment is a two-stage spur gear reducer, the tooth width B is represented by the tooth width of the large gear, and the tooth width of the small gear is fixedly increased by 5 on the basis of the tooth width of the large gear. -10mm.
  • Divide the selected influencing factors i.e. the 5 optimized parameters of the orthogonal experiment selected in step 3 into four levels, that is, select 4 values (arithmetic series) uniformly within their value ranges respectively, and formulate L 16 ( 45 ) Orthogonal test table to obtain 16 groups of test schemes.
  • Romax Designer software to modify the structural parameters and working condition parameters of the established solid model according to 16 groups of test programs, and conduct simulation analysis to obtain the transmission efficiency value of the reducer corresponding to each group of test programs (that is, to obtain 16 values).
  • step 3 after the entity modeling of the reducer, the input of working condition parameters, and the analysis of the influence relationship between the optimal parameters of the reducer transmission efficiency and the transmission efficiency, the five parameters with the largest variation range are selected in the evaluation of the analysis results ( The five parameters with the amplitude of change decreasing successively from the largest) are used as the optimal parameters of the orthogonal test, and are used as the optimal parameters of the orthogonal test for the optimization of the transmission efficiency of the reducer in the subsequent step 4.
  • step 4 when designing an orthogonal experiment scheme, since this embodiment is a two-stage planetary gear reducer, the tooth width B is represented by the tooth width of the sun gear; the tooth width of the planetary gear and the tooth width of the ring gear are used as related factors, and The tooth width of the sun gear changes accordingly, the tooth width of the ring gear is equal to the tooth width of the sun gear, and the tooth width of the planetary gear is fixedly increased by 5-10mm compared with the tooth width of the sun gear. Divide the selected influencing factors (i.e.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Details Of Gearings (AREA)

Abstract

本发明涉及一种基于传动效率的减速器工况及结构参数优选方法,该方法包括:步骤一,提出减速器传动效率和各功率损失表达式;步骤二,提取出可进行减速器传动效率优化的结构参数和工况参数;步骤三,建立减速器传动效率仿真分析模型,分析步骤二提取出的结构参数和工况参数与传动效率之间的关系,选取出至少5个影响最大的参数作为正交试验优选参数;步骤四,通过设计正交试验方案、仿真分析以及优化结果评价,对减速器传动效率进行优化,最终获得满足评价要求的最优参数组合。本发明整个优化过程影响因素考虑全面,更符合实际作业情况,适用范围广,针对不同结构的减速器,均可以利用这一优化方法实现传动效率的大幅提升。

Description

一种基于传动效率的减速器工况及结构参数优选方法 技术领域
本发明涉及一种基于传动效率的减速器工况及结构参数优选方法,属于减速器技术领域。
背景技术
减速器作为机械设备中重要的组成部分,在建筑、车辆、船舶、航天以及矿山等领域都有着广泛的应用,近年来我国工业的快速发展促进了经济的高速增长,但与之而来的是严峻的环境污染与能源短缺等问题,要想解决这一根本性问题,必须提高工业生产中的节能技术,减速器在工业生产中节能水平的提升主要体现在其传动效率的提升。
减速器传动效率的高低关系到减速器功率损耗的多少,功率损耗即反映出减速器在工作过程中能源损耗的问题。减速器的运用场景不同其主要损耗能源类型也不同,例如以汽油和柴油为主要燃料的车用减速器大大拉动了我国石油能源的消耗,同时造成了严重的环境污染问题;以电能为主要消耗能源的水泥粉磨辊压机减速器,电能消耗成本占总生产成本的20%-30%,粉磨系统电能消耗占总电能消耗的60%-70%。
减速器传动效率的优化,本质上是工况及结构参数的优化,关于减速器传动效率优化的方法主要为正交试验和遗传算法,但是现存的优化方法中所选择的优化目标仅仅为降低单方面功率损失,优化参数也仅选择了齿轮结构参数或者工况参数,并未进行综合考虑,忽略了较多的影响因素,这种方法难以大幅度地提高减速器传动效率。此外,在对减速器传动效率进行优化的过程中,很多现有方法仅针对单对齿轮的啮合效率及搅油进行优化,对减速器传动效率的优化并不全面,且这种优化方法未考虑到减速器工作过程中轴变形、轴承等一些因素的影响,与实际工作情况并不相符,因此,导致减速器传动效率优化的实用性差、优化程度较低。
例如,中国专利文献CN105782428A公开了一种汽车变速器传动比优化方法及装置,该方法包括确定优化参数;根据汽车传动参数的优化目的建立目标函数;建立约束条件;建立数学优化模型,并对模型求解,得到变速器和主减速器的优化速比;将所述变速器和主减速器的优化速比输入动力性与经济性仿真匹配模型进行计算,判断是否满足动力性和经济性要求,若是,则结束,若否,则修改约束条件或优化模型再次对模型求解, 并进行动力性与经济性仿真匹配模型仿真,直至满足动力性和经济性要求。但该方案仅仅是针对汽车现有的发动机和变速器资源被动的进行选型和测试匹配的问题,通过选取各档位速比和主减速器速比,以获得最接近动力性与经济性目标的变速器速比。该方案较为微观具体,与本申请要从宏观、多因素进行不特定减速器的传动效率优化方法不同。
又如,中国专利文献CN106777411A公开了一种驱动桥主减速器齿轮多目标优化,该方法包括第一步:针对驱动桥主减速器齿轮研究,以主减速齿轮传动效率、传递扭矩能力和重合度为目标函数,建立主减速器齿轮传动多目标优化数学模型;第二步:采用带精英策略的快速非支配排序遗传算法,对主减速器齿轮传动进行优化设计,得到了pareto最优解;第三步:从中选择一个优化方案与原始设计方案进行对比。本发明的驱动桥主减速器齿轮多目标优化,结果显示主减速器齿轮的传动效率有明显增加,传递扭矩能力和重合度都有一定的提升。该方案虽然选取目标参数并分析,得到参数可优化最优解,并选择优化方案与原始方案对比,得出提高减速器传动效率的最优方案。但该方案目标选取参数较为单一,虽能在一定程度上提高传动效率,但还有很大的提升空间。
随着减速器传动系统仿真分析技术的成熟及发展,为减速器传动效率的精确仿真检测及主要影响因素分析提供了条件,但目前很少有人对减速器传动效率建模、影响因素分析与参数优选技术进行系统研究。
因此,设计出一种基于传动效率的减速器工况及结构参数优选方法是目前工业生产中急需解决的问题。
发明内容
针对现有技术的不足,本发明提供一种基于传动效率的减速器工况及结构参数优选方法,该方法具有广泛的适应性,并不局限于某一类型的减速器,且综合考虑减速器自身的结构参数以及工况参数,能最大化地提升减速器的传动效率。
本发明的技术方案如下:
一种基于传动效率的减速器工况及结构参数优选方法,包括以下步骤:
步骤一,减速器传动效率及决定减速器传动效率的功率损失分析,并提出减速器传动效率和各功率损失表达式;
步骤二,根据各功率损失表达式获取减速器传动效率主要影响参数并进行分析,提取出可进行减速器传动效率优化的结构参数和工况参数;
步骤三,建立减速器传动效率仿真分析模型,对减速器传动效率进行仿真分析,即 分析步骤二提取出的结构参数和工况参数与传动效率之间的关系,选取出至少5个影响最大的参数作为正交试验优选参数;
步骤四,针对步骤三选取出的正交试验优选参数,通过设计正交试验方案、仿真分析以及优化结果评价,对减速器传动效率进行优化,最终获得满足评价标准的最优参数组合。
优选的,所述步骤一中,减速器传动效率表达式为:
Figure PCTCN2022119491-appb-000001
式中:η为传动效率;P in为减速器输入功率,kW;P out为减速器输出功率,kW;
减速器产生的功率损失类型主要为:齿轮啮合功率损失、轴承摩擦功率损失、搅油功率损失以及油封摩擦功率损失,即减速器总功率损失可表示为:
P Z=P G+P B+P C+P S  (Ⅱ)
式中:P Z为减速器总功率损失,kW;P G为齿轮啮合功率损失,kW;P B为轴承摩擦功率损失,kW;P C为搅油功率损失,kW;P S为油封摩擦功率损失,kW;
则式(Ⅰ)亦可表示为:
Figure PCTCN2022119491-appb-000002
各功率损失表达式为:
P G=P GS+P GR  (Ⅲ)
式中:P GS为齿轮滑动摩擦功率损失,kW;P GR为齿轮滚动摩擦功率损失,kW;
其中齿轮滑动摩擦功率损失公式为:
Figure PCTCN2022119491-appb-000003
式中:
Figure PCTCN2022119491-appb-000004
为平均滑动摩擦系数;F N为齿面法向载荷,N;m n为法向模数,mm;i为齿轮平均传动比;X E为重合度影响系数;
齿轮滚动摩擦功率损失公式为:
Figure PCTCN2022119491-appb-000005
式中:h d为弹性油膜厚度,mm;n 1为主动轮转速,r/min;B—齿宽,mm;β—螺旋 角;r 1为主动轮分度圆半径;α′为啮合角;ε 1、ε 2为啮合节点前后的重合度;
Figure PCTCN2022119491-appb-000006
式中,M—轴承摩擦力矩,N·mm;n b—轴承转速,r/min;
P C≤ρ|ω| 3B(C 1r a 4+C 2r 3h t)  (VII)
式中,ρ—润滑油的密度,kg/m 3;ω—齿轮角速度,rad/s;r a—齿顶圆半径,mm;r—分度圆半径,mm;h t—齿全高,mm;C 1—齿轮侧面搅油阻力矩计算系数;C 2—齿轮圆周面搅油阻力矩计算系数;
Figure PCTCN2022119491-appb-000007
式中,d S—油封所处轴段的直径,mm;F S—轴圆周单位长度的摩擦力,N/mm;n S—油封所在轴的转速,r/min。
优选的,所述步骤二具体包括如下步骤:
从各功率损失表达式中,可以提取出对减速器传动效率存在影响的因素有:法向模数、传动比、转速、转矩、齿宽、螺旋角、润滑油密度、浸油深度、润滑油运动粘度;当减速器选定润滑油后,润滑油密度和润滑油运动粘度的大小取决于润滑油温度,所以采用润滑油温度进行统一表示。
上述参数中,结构参数包括:法向模数、传动比(齿数)、齿宽、螺旋角;工况参数包括:转速、转矩、浸油深度、润滑油温度;
但上述结构参数中法向模数对齿轮弯曲强度影响较大,减速器对各级齿轮传动比有一定的要求,所以不宜针对这些参数进行优化;工况参数中减速器一般对输出转速、转矩有一定的要求,输入转速根据传动比确定,所以不可进行优化。
最终提取出可进行优化的结构参数包括:齿宽、螺旋角,工况参数包括:浸油深度、润滑油温度。
优选的,所述步骤三基于Romax Designer软件平台,对减速器进行建模及仿真分析,以及根据仿真分析结果,选取出正交试验所需优选参数,具体包括以下步骤:
1)减速器实体建模,用于建立减速器实体模型,包括轴、轴承、齿轮、油封、减速器外壳体,具体为:确定减速器内各零部件的具体参数,根据各零部件所在位置进行零部件位置定位,依据轴的位置和齿轮中心距进行传动系统整体定位,并将这些参数进行存储以供后续调用;
所述轴的参数包括:轴段长度、轴端直径、材料、表面处理形式;
所述齿轮参数包括:法向模数、压力角、螺旋角、螺旋方向、齿数、齿宽、精度等级、材料、变位系数;若为行星齿轮,参数包括:法向模数、压力角、行星轮个数、齿数、标准节圆直径、齿宽、材料、传动比;
所述油封参数包括:内径、外径、宽度;
所述轴承,仅选择轴承型号即可。
2)减速器工况参数输入,用于确定减速器输入工况参数以此来模拟减速器实际工作环境,具体工况参数包括:输入功率、功率输入与输出位置、输入转速、输入转矩、浸油深度、润滑油温度、减速器持续工作时间,并将这些参数进行存储以供后续调用。
3)减速器传动效率可优选参数与传动效率影响关系分析,用于建立减速器传动效率仿真分析模型,然后对可进行优选的各结构参数和工况参数与传动效率之间的关系进行仿真分析,具体为:
基于减速器实体模型的创建和工况参数的定义,选择传动效率分析标准为ISO14179-2(DE)进行分析;
针对工况参数的分析,启动Romax Designer软件主界面的减速器传动效率仿真分析模块,设置仿真分析工况参数变化取值范围,减速器结构参数固定为减速器实体建模步骤中所用参数,根据一个参数改变其余参数不变的原则,分别对各工况参数与减速器传动效率之间的关系进行分析,获取工况参数改变过程中传动效率的具体数值,并将分析结果数据存入指定位置,供后续分析使用;
所述减速器传动效率仿真分析工况参数包括:浸油深度、润滑油温度;浸油深度取值范围为l h-6mm≤l h≤l h+6mm,润滑油温度取值范围为30℃≤T≤75℃;
针对结构参数的分析,启动Romax Designer软件主界面的减速器传动效率仿真分析模块,设置仿真分析工况参数即为额定的工况输入参数,减速器仿真分析结构参数通过修改减速器实体建模步骤中的结构参数,根据一个参数改变其余参数不变的原则,分别对各结构参数与减速器传动效率之间的关系进行分析,其中针对齿轮结构参数的分析,为各级齿轮的单一结构参数与传动效率之间的分析,获取结构参数改变过程中传动效率的具体数值,并将分析结果数据存入指定位置,供后续分析使用;
所述减速器传动效率仿真分析结构参数包括:各级齿轮齿宽、各级齿轮螺旋角;齿轮齿宽取值范围为0.9B≤B≤1.1B,螺旋角取值范围为β-5°≤β≤β+5°;
4)可优选参数仿真分析结果评价,用于提取对减速器传动效率影响较大的结构参数和工况参数,以作为减速器传动效率优化正交试验所需的优选参数,具体为:
首先,调取出减速器传动效率分析结果,读取各分析参数在变化过程中,传动效率的最大值与最小值,计算得出传动效率变化幅值;
其次,比较各分析参数所对应的传动效率变化幅值,选取出变化幅值最大的参数作为正交试验优选参数;当减速器为二级减速器时,选择5个变化幅值最大的参数作为正 交试验优选参数,当减速器为三级减速器时,选择6个变化幅值最大的参数作为正交试验优选参数,当减速器为四级减速器时,选择7个变化幅值最大的参数作为正交试验优选参数,以此类推;
最后,将选定参数作为减速器传动效率优选参数,并将确定的优选参数个数归类为结构参数和工况参数。
优选的,所述步骤四基于Romax Designer软件平台,采用正交试验的方法对减速器传动效率进行参数优选,以提升减速器传动效率为试验指标,满足齿轮强度校核标准为约束条件,具体步骤如下:
1)正交试验方案设计,根据传动效率仿真分析结果,选定浸油深度l h、润滑油温度T、齿轮齿宽B和螺旋角β为影响因子;
其中当齿轮为直齿或斜齿轮时,齿宽B取大齿轮齿宽表示,为行星齿轮时,齿宽B取太阳轮齿宽表示,小齿轮齿宽在大齿轮齿宽的基础上固定增加5-10mm,齿圈齿宽与太阳轮齿宽相等,行星轮齿宽相较于太阳轮齿宽固定增加5-10mm;
所述影响因子设定的取值范围为:浸油深度取值范围为l h-6mm≤l h≤l h+6mm,润滑油温度取值范围为30℃≤T≤75℃,齿轮齿宽取值范围为0.9B≤B≤1.1B,螺旋角取值范围为β-5°≤β≤β+5°;
根据选择影响因子个数确定影响因子划分水平,当所选影响因子为5个时,划分四个水平,即分别在其取值范围内各自均匀的选取4个数值,制定L 16(4 5)正交试验表,得到16组试验方案;当所选影响因子为6个时,划分五个水平,即分别在其取值范围内各自均匀的选取5个数值,制定L 25(5 6)正交试验表,得到25组试验方案;当所选影响因子为7个时,划分六个水平,即分别在其取值范围内各自均匀的选取6个数值,制定L 36(6 7)正交试验表,得到36组试验方案,以此类推;
2)利用Romax Designer软件,根据每组试验方案修改已建实体模型的结构参数和工况参数,进行仿真分析,得到每组试验方案所对应的减速器传动效率数值;
接着采用极差分析法,得到各影响因子对减速器传动效率影响的主次顺序,并得到各影响因子的最优参数,将各影响因子的最优参数进行组合,即得到减速器传动效率的最优参数组合。
3)正交试验结果评价,用于对参数优选后的减速器传动效率及齿轮强度进行分析评价,具体为:
将最优参数组合按照优选后减速器传动效率相较于未优化前减速器传动效率变化幅值由大到小的原则进行排序,增幅最大的最优参数组合为1号,其次为2号,以此类推;
因参数优选过程中,涉及齿轮结构参数,需要对参数优选后的齿轮进行强度校核;首先,调用减速器实体建模模块中齿轮参数部分,将其修改为1号试验中齿轮优选参数; 其次,利用Romax Designer软件中自带的齿轮强度校核功能,选用校核标准为ISO6336:2006,对1号试验中的齿轮进行强度校核,若1号试验齿轮强度校核显示“通过”,则停止强度校核;若1号试验齿轮强度校核显示“不通过”,则对2号试验进行强度校核,直至最后寻找到一组减速器传动效率提升幅度最大且满足齿轮强度校核的优选参数。
优选的,所述步骤四中,评价标准是指提升减速器传动效率幅度最大且同时满足齿轮强度校核要求。
本发明的技术特点和有益效果:
1、本发明基于减速器内部功率损失理论计算公式初步分析了减速器传动效率影响因素,并搭建了一套专用的减速器传动效率优化系统,其可以分析并提取出了对减速器传动效率影响较大的工况参数及结构参数,利用正交试验方法对减速器传动效率进行参数优选,可验证参数优选后减速器是否满足齿轮强度校核要求。
2、本发明相较于传统的减速器传动效率优化方式,整个优化过程影响因素考虑全面,利用建模技术实现减速器的实体建模,更符合实际作业情况,传动效率提升程度较大,专用的减速器传动效率优化系统操作简便,适用范围广,应用性较强。
3、本发明减速器传动效率优化方法,具有较强的普适应,不局限于特定结构减速器,即针对不同结构的减速器,均可以利用这一优化方法实现减速器传动效率的大幅提升,实现节能减排的环保理念,具有较高的经济性。
附图说明
图1为本发明基于传动效率的减速器工况及结构参数优选方法流程图。
具体实施方式
下面通过实施例并结合附图对本发明做进一步说明,但不限于此。
优化,是指针对某一事物采取一定措施使其变得优异。本发明中主要是指单一参数具有提升的空间。
优选,是指从多个方案中选择一个或几个最好的方案。本发明中主要是指从多个参数中选择一个或几个参数。
结合附图1,更直观地阐述本发明的技术方案,本发明提供一种基于传动效率的减速器工况及结构参数优选方法,包括以下步骤:
步骤一,减速器传动效率及决定减速器传动效率的功率损失分析,并提出减速器传动效率和各功率损失表达式;
步骤二,减速器传动效率主要影响参数分析与可优化参数提取,根据功率损失表达式获取减速器传动效率主要影响参数并进行分析,提取出可进行减速器传动效率参数优 选的结构参数和工况参数;
步骤三,基于仿真分析的减速器传动效率优选参数确定,对减速器传动效率进行仿真分析,分析可优选参数与传动效率之间的关系,提取至少5个影响最大的参数作为正交试验优选参数;
步骤四,基于正交试验方法的减速器传动效率参数优选,通过设计正交试验方案、仿真分析以及优化结果评价,对减速器传动效率进行优化,最终获得满足评价要求的最优参数组合。
该技术方案具体的实现过程如下:
步骤一具体包括:减速器传动效率的计算取决于输入功率和输出功率的大小,输入功率通常为固定输入值,输出功率则关系到减速器在工作过程中所产生的功率损失,故传动效率可由下式表示:
Figure PCTCN2022119491-appb-000008
式中:η为传动效率;P in为减速器输入功率,kW;P out为减速器输出功率,kW。
减速器输出功率取决于工作过程中各零部件所产生的功率损失,主要包括齿轮、轴承、油封和其他附属机构的功率损失,可将这些零部件的功率损失分为负载功率损失和非负载功率损失两大类;负载功率损失是指各功率传输部件在其传递力的过程中接触面因不断地摩擦或存在相对滑移速度而产生的功率损失,主要包括齿轮在啮合过程中产生的摩擦功率损失与轴承摩擦功率损失;非负载功率损失是指传动系统中各零部件虽然在箱体内旋转工作,但并不传递功率,主要包括搅油、油封造成的功率损失。
总结得到,减速器产生的功率损失类型主要为:齿轮啮合功率损失、轴承摩擦功率损失、搅油功率损失以及油封摩擦功率损失,即减速器总功率损失可表示为:
P Z=P G+P B+P C+P S  (Ⅱ)
式中:P Z为减速器总功率损失,kW;P G为齿轮啮合功率损失,kW;P B为轴承摩擦功率损失,kW;P C为搅油功率损失,kW;P S为油封功率损失,kW。
即可将式(Ⅰ)转化为:
Figure PCTCN2022119491-appb-000009
当可以确定齿轮啮合功率损失、轴承摩擦功率损失、搅油功率损失以及油封功率损失的具体数值时,即可由上式计算出减速器传动效率。
减速器内各功率损失的表达式如下所述:
1)齿轮啮合功率损失由齿面间的滑动摩擦和滚动摩擦组成,可由下式表示:
P G=P GS+P GR  (Ⅲ)
式中:P GS为齿轮滑动摩擦功率损失,kW;P GR为齿轮滚动摩擦功率损失,kW。
其中齿轮滑动摩擦功率损失公式为:
Figure PCTCN2022119491-appb-000010
式中:
Figure PCTCN2022119491-appb-000011
为平均滑动摩擦系数;F N为齿面法向载荷,N;m n为法向模数,mm;i为齿轮平均传动比;X E为重合度影响系数。其中,
Figure PCTCN2022119491-appb-000012
X E通过工具书查找确定。
齿轮滚动摩擦功率损失公式为:
Figure PCTCN2022119491-appb-000013
式中:h d为弹性油膜厚度,mm;n 1为主动轮转速,r/min;B—齿宽,mm;β—螺旋角;r 1为主动轮分度圆半径;α′为啮合角;ε 1、ε 2为啮合节点前后的重合度。其中,ε 1、ε 2通过工具书查找确定。
2)轴承摩擦功率损失主要由轴承的摩擦力矩和转速所决定,其公式为:
Figure PCTCN2022119491-appb-000014
式中,M—轴承摩擦力矩,N·mm;n b—轴承转速,r/min。
3)搅油功率损失中包括齿轮搅油和轴承搅油,轴承所造成的搅油功率损失相较于齿轮搅油功率损失可忽略不计,故搅油功率损失的公式中只考虑齿轮搅油部分,公式为:
P C=ρ|ω| 3B(C 1r a 4+C 2r 3h t)  (Ⅶ)
式中,ρ—润滑油的密度,kg/m 3;ω—齿轮角速度,rad/s;r a—齿顶圆半径,mm;r—分度圆半径,mm;h t—齿全高,mm;C 1—齿轮侧面搅油阻力矩计算系数;C 2—齿轮圆周面搅油阻力矩计算系数;其中齿轮侧面搅油阻力矩计算系数C 1和齿轮圆周面搅油阻力矩计算系数C 2的取值取决于浸油深度、齿宽和润滑油运动粘度,通过工具书查找确定。
4)减速器中油封功率损失主要是由于油封与轴摩擦发生相对运动而产生的功率损失,可表示为:
Figure PCTCN2022119491-appb-000015
式中,d S—油封所处轴段的直径,mm;F S—轴圆周单位长度的摩擦力,N/mm;n S—油封所在轴的转速,r/min。
其中,步骤二具体包括:减速器传动效率主要影响因素分析与可优化参数提取,具 体步骤如下:
针对减速器传动效率优化,需要降低齿轮啮合、轴承摩擦、搅油和油封四个方面的功率损失,而其中轴承作为标准件,不宜对其参数进行优化,更换高精度轴承来改善轴承功率损失的成本较高且收益小,油封相较于齿轮与轴承所造成的功率损失微乎其微,对其优化实用性较低,所以本发明针对减速器传动效率的优化,主要从降低齿轮啮合功率损失和搅油功率损失来进行。
从上述功率损失公式中,可以提取出对减速器传动效率存在影响的因素有:法向模数、传动比、转速、转矩、齿宽、螺旋角、润滑油密度、浸油深度、润滑油运动粘度。而其中,润滑油密度和润滑油运动粘度存在一定的关系,可以用润滑油运动粘度来统一表示,减速器选定润滑油后,其润滑油运动粘度大小取决于润滑油温度,所以采用润滑油温度进行统一表示。
上述参数中,结构参数包括:法向模数、传动比(齿数)、齿宽、螺旋角;
工况参数包括:转速、转矩、浸油深度、润滑油温度。
但上述结构参数中法向模数对齿轮弯曲强度影响较大,减速器对各级齿轮传动比有一定的要求,所以不宜针对这些参数进行优化;工况参数中减速器一般对输出转速、转矩有一定的要求,输入转速根据传动比确定,所以不可进行优化。
所以,可进行优化的结构参数包括:齿宽、螺旋角;
可进行优化的工况参数包括:浸油深度、润滑油温度。
其中,所述步骤三为基于Romax Designer软件平台,对减速器进行建模及仿真分析,以及根据仿真分析结果,确定正交试验所需优选参数,具体包括以下步骤:
1)减速器实体建模,用于建立减速器实体模型,包括轴、轴承、齿轮、油封、减速器外壳体,具体为:确定减速器内各零部件的具体参数,根据各零部件所在位置进行零部件位置定位,依据轴的位置和齿轮中心距进行传动系统整体定位,并将这些参数进行存储以供后续调用;
所述轴的参数包括:轴段长度、轴端直径、材料、表面处理形式;
所述齿轮参数包括:法向模数、压力角、螺旋角、螺旋方向、齿数、齿宽、精度等级、材料、变位系数;若为行星齿轮,参数包括:法向模数、压力角、行星轮个数、齿数、标准节圆直径、齿宽、材料、传动比;
所述油封参数包括:内径、外径、宽度;
所述轴承,仅选择轴承型号即可。轴承为标准件,轴承型号对应有相应的参数。
2)减速器工况参数输入,用于确定减速器输入工况参数以此来模拟减速器实际工作环境,具体工况参数包括:输入功率、功率输入与输出位置、输入转速、输入转矩、润滑油温度、减速器持续工作时间,并将这些参数进行存储以供后续调用。
3)减速器传动效率可优选参数与传动效率影响关系分析,用于建立减速器传动效率 仿真分析模型,然后对可进行优选的各结构参数和工况参数与传动效率之间的关系进行仿真分析,具体为:
基于减速器实体模型的创建和工况参数的定义,选择传动效率分析标准为ISO14179-2(DE)进行分析,该标准包含在软件内,可直接在软件内选择,DE表示为该标准的德国版本。
针对工况参数的分析,启动Romax Designer软件主界面的减速器传动效率仿真分析模块,设置仿真分析工况参数变化取值范围,减速器结构参数固定为减速器实体建模步骤中所用参数,根据一个参数改变其余参数不变的原则,分别对各工况参数与减速器传动效率之间的关系进行分析,获取工况参数改变过程中传动效率的具体数值,并将分析结果数据存入指定位置,供后续分析使用;
所述减速器传动效率仿真分析工况参数包括:浸油深度、润滑油温度;浸油深度取值范围为l h-6mm≤l h≤l h+6mm,润滑油温度取值范围为30℃≤T≤75℃;
针对结构参数的分析,启动Romax Designer软件主界面的减速器传动效率仿真分析模块,设置仿真分析工况参数即为额定的工况输入参数,减速器仿真分析结构参数通过修改减速器实体建模步骤中的结构参数,根据一个参数改变其余参数不变的原则,分别对各结构参数与减速器传动效率之间的关系进行分析,其中针对齿轮结构参数的分析,为各级齿轮的单一结构参数与传动效率之间的分析,获取结构参数改变过程中传动效率的具体数值,并将分析结果数据存入指定位置,供后续分析使用;
所述减速器传动效率仿真分析结构参数包括:各级齿轮齿宽、各级齿轮螺旋角;齿轮齿宽取值范围为0.9B≤B≤1.1B,螺旋角取值范围为β-5°≤β≤β+5°;
所述减速器传动效率仿真分析程序由Romax Designer软件进行,适用于Romax Designer R17以上、R20以下所有版本。
4)可优选参数仿真分析结果评价,用于提取对减速器传动效率影响较大的结构参数和工况参数,以作为减速器传动效率优化正交试验的优选参数,具体为:
首先,调取出减速器传动效率分析结果,读取各分析参数在变化过程中,传动效率的最大值与最小值,计算得出传动效率变化幅值;
其次,比较各分析参数所对应的传动效率变化幅值,选取出变化幅值最大的参数作为正交试验优选参数。当减速器为二级减速器时,选取5个变化幅值最大的参数(变化幅值从最大依次减小的5个参数)作为正交试验优选参数,当减速器为三级减速器时,选取6个变化幅值最大的参数作为正交试验优选参数,当减速器为四级减速器时,选取7个变化幅值最大的参数作为正交试验优选参数,以此类推。例如,二级减速器可选择变化幅值从最大依次减小的5个参数:浸油深度、润滑油温度、一级齿轮齿宽、二级齿轮齿宽、一级齿轮螺旋角;
最后,将选定参数作为减速器传动效率优选参数,将确定的优选参数个数归类为结 构参数和工况参数。
其中,所述步骤四为基于Romax Designer软件平台,采用正交试验的方法对减速器传动效率进行参数优选,以提升减速器传动效率为试验指标,满足齿轮强度校核标准为约束条件,具体步骤如下:
1)正交试验方案设计,根据传动效率仿真分析结果,选定浸油深度l h、润滑油温度T、齿轮齿宽B和螺旋角β为影响因子;
其中当齿轮为直齿或斜齿轮时,齿宽B取大齿轮齿宽表示;为行星齿轮时,齿宽B取太阳轮齿宽表示;小齿轮齿宽、行星轮齿宽和齿圈齿宽作为相关因素,随着大齿轮齿宽和太阳轮齿宽变化而进行相应的变化,小齿轮齿宽在大齿轮齿宽的基础上固定增加5-10mm,齿圈齿宽与太阳轮齿宽相等,行星轮齿宽相较于太阳轮齿宽固定增加5-10mm;
所述影响因子设定的取值范围为:浸油深度取值范围为l h-6mm≤l h≤l h+6mm,润滑油温度取值范围为30℃≤T≤75℃,齿轮齿宽取值范围为0.9B≤B≤1.1B,螺旋角取值范围为β-5°≤β≤β+5°;
根据选择影响因子个数确定影响因子划分水平,当所选影响因子为5个时,划分四个水平,即分别在其取值范围内各自均匀的选取4个数值,制定L 16(4 5)正交试验表,得到16组试验方案;当所选影响因子为6个时,划分五个水平,即分别在其取值范围内各自均匀的选取5个数值,制定L 25(5 6)正交试验表,得到25组试验方案,当所选影响因子为7个时,划分六个水平,即分别在其取值范围内各自均匀的选取6个数值,制定L 36(6 7)正交试验表,得到36组试验方案,以此类推;
2)利用Romax Designer软件,根据每组试验方案修改已建实体模型的结构参数和工况参数,进行仿真分析,得到每组试验方案所对应的减速器传动效率数值;
接着采用极差分析法,得到各影响因子对减速器传动效率影响的主次顺序,并得到各影响因子的最优参数,将各影响因子的最优参数进行组合,即得到减速器传动效率的最优参数组合。
3)正交试验结果评价,用于对参数优选后的减速器传动效率及齿轮强度进行分析评价,具体步骤如下:
将最优参数组合按照优选后减速器传动效率相较于未优化前减速器传动效率变化幅值由大到小的原则进行排序,增幅最大的最优参数组合为1号,其次为2号,以此类推;
因参数优选过程中,涉及齿轮结构参数,需要对参数优选后的齿轮进行强度校核;首先,调用减速器实体建模模块中齿轮参数部分,将其修改为1号试验中齿轮优选参数;其次,利用Romax Designer软件中自带的齿轮强度校核功能,选用校核标准为ISO6336:2006,对1号试验中的齿轮进行强度校核,若1号试验齿轮强度校核显示“通过”,则停止强度校核;若1号试验齿轮强度校核显示“不通过”,则对2号试验进行强度校核, 直至寻找到一组传动效率提升幅度最大且满足齿轮强度校核的优选参数,即为正交试验所优选出的减速器传动效率最优参数组合。
实施例1:
针对小汽车上采用的二级直齿轮减速器,利用上述技术方案进行减速器传动效率优化。
具体地,步骤三中进行减速器实体建模、工况参数输入及减速器传动效率可优选参数与传动效率影响关系分析后,在对分析结果的评价中选取5个变化幅值最大的参数(变化幅值从最大依次减小的5个参数)作为正交试验优选参数,以作为后续步骤四减速器传动效率优化正交试验的优选参数。
步骤四中,在进行正交实验方案设计时,由于本实施例是二级直齿轮减速器,齿宽B取大齿轮齿宽表示,小齿轮齿宽在大齿轮齿宽的基础上固定增加5-10mm。将所选的影响因子(即步骤三选取的5个正交试验优选参数)划分四个水平,即分别在其取值范围内各自均匀的选取4个数值(等差数列),制定L 16(4 5)正交试验表,得到16组试验方案。接着利用Romax Designer软件根据16组试验方案修改已建实体模型的结构参数和工况参数,进行仿真分析,得到每组试验方案所对应的减速器传动效率数值(即得到16个数值)。
实施例2:
针对刮板输送机上的二级行星齿轮减速器,利用上述技术方案进行减速器传动效率优化。
具体地,步骤三中进行减速器实体建模、工况参数输入及减速器传动效率可优选参数与传动效率影响关系分析后,在对分析结果的评价中选取5个变化幅值最大的参数(变化幅值从最大依次减小的5个参数)作为正交试验优选参数,以作为后续步骤四减速器传动效率优化正交试验的优选参数。
步骤四中,在进行正交实验方案设计时,由于本实施例是二级行星齿轮减速器,齿宽B取太阳轮齿宽表示;行星轮齿宽和齿圈齿宽作为相关因素,随着太阳轮齿宽变化而进行相应的变化,齿圈齿宽与太阳轮齿宽相等,行星轮齿宽相较于太阳轮齿宽固定增加5-10mm。将所选的影响因子(即步骤三选取的5个正交试验优选参数)划分四个水平,即分别在其取值范围内各自均匀的选取4个数值(等差数列),制定L 16(4 5)正交试验表,得到16组试验方案。接着利用Romax Designer软件根据16组试验方案修改已建实体模型的结构参数和工况参数,进行仿真分析,得到每组试验方案所对应的减速器传动效率数值(即得到16个数值)。
以上所述,仅为本发明的具体实施方式,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 一种基于传动效率的减速器工况及结构参数优选方法,其特征在于,包括以下步骤:
    步骤一,减速器传动效率及决定减速器传动效率的功率损失分析,并提出减速器传动效率和各功率损失表达式;
    步骤二,根据各功率损失表达式获取减速器传动效率主要影响参数并进行分析,提取出可进行减速器传动效率优化的结构参数和工况参数;
    步骤三,建立减速器传动效率仿真分析模型,对减速器传动效率进行仿真分析,即分析步骤二提取出的结构参数和工况参数与传动效率之间的关系,选取出至少5个影响最大的参数作为正交试验优选参数;
    步骤四,针对步骤三选取出的正交试验优选参数,通过设计正交试验方案、仿真分析以及优化结果评价,对减速器传动效率进行优化,最终获得满足评价标准的最优参数组合。
  2. 如权利要求1所述的基于传动效率的减速器工况及结构参数优选方法,其特征在于,所述步骤一中,减速器传动效率表达式为:
    Figure PCTCN2022119491-appb-100001
    式中:η为传动效率;P in为减速器输入功率,kW;P out为减速器输出功率,kW;
    减速器产生的功率损失类型主要为:齿轮啮合功率损失、轴承摩擦功率损失、搅油功率损失以及油封摩擦功率损失,即减速器总功率损失可表示为:
    P Z=P G+P B+P C+P S  (Ⅱ)
    式中:P Z为减速器总功率损失,kW;P G为齿轮啮合功率损失,kW;P B为轴承摩擦功率损失,kW;P C为搅油功率损失,kW;P S为油封摩擦功率损失,kW;
    则式(Ⅰ)亦可表示为:
    Figure PCTCN2022119491-appb-100002
    各功率损失表达式为:
    P G=P GS+P GR  (Ⅲ)
    式中:P GS为齿轮滑动摩擦功率损失,kW;P GR为齿轮滚动摩擦功率损失,kW;
    其中齿轮滑动摩擦功率损失公式为:
    Figure PCTCN2022119491-appb-100003
    式中:
    Figure PCTCN2022119491-appb-100004
    为平均滑动摩擦系数;F N为齿面法向载荷,N;m n为法向模数,mm;i为齿轮平均传动比;X E为重合度影响系数;
    齿轮滚动摩擦功率损失公式为:
    Figure PCTCN2022119491-appb-100005
    式中:h d为弹性油膜厚度,mm;n 1为主动轮转速,r/min;B—齿宽,mm;β—螺旋角;r 1为主动轮分度圆半径;α′为啮合角;ε 1、ε 2为啮合节点前后的重合度;
    Figure PCTCN2022119491-appb-100006
    式中,M—轴承摩擦力矩,N·mm;n b—轴承转速,r/min;
    Figure PCTCN2022119491-appb-100007
    式中,ρ—润滑油的密度,kg/m 3;ω—齿轮角速度,rad/s;r a—齿顶圆半径,mm;r—分度圆半径,mm;h t—齿全高,mm;C 1—齿轮侧面搅油阻力矩计算系数;C 2—齿轮圆周面搅油阻力矩计算系数;
    Figure PCTCN2022119491-appb-100008
    式中,d S—油封所处轴段的直径,mm;F S—轴圆周单位长度的摩擦力,N/mm;n S—油封所在轴的转速,r/min。
  3. 如权利要求1所述的基于传动效率的减速器工况及结构参数优选方法,其特征在于,所述步骤二具体包括如下步骤:
    从各功率损失表达式中,可以提取出对减速器传动效率存在影响的因素有:法向模数、传动比、转速、转矩、齿宽、螺旋角、润滑油密度、浸油深度、润滑油运动粘度;当减速器选定润滑油后,润滑油密度和润滑油运动粘度的大小取决于润滑油温度,所以采用润滑油温度进行统一表示;
    上述参数中,结构参数包括:法向模数、传动比(齿数)、齿宽、螺旋角;工况参 数包括:转速、转矩、浸油深度、润滑油温度;
    但上述结构参数中法向模数对齿轮弯曲强度影响较大,减速器对各级齿轮传动比有一定的要求,所以不宜针对这些参数进行优化;工况参数中减速器一般对输出转速、转矩有一定的要求,输入转速根据传动比确定,所以不可进行优化;
    最终提取出可进行优化的结构参数包括:齿宽、螺旋角,工况参数包括:浸油深度、润滑油温度。
  4. 如权利要求1所述的基于传动效率的减速器工况及结构参数优选方法,其特征在于,所述步骤三基于Romax Designer软件平台,对减速器进行建模及仿真分析,以及根据仿真分析结果,选取出正交试验所需优选参数,具体包括以下步骤:
    1)减速器实体建模,用于建立减速器实体模型,包括轴、轴承、齿轮、油封、减速器外壳体,具体为:确定减速器内各零部件的具体参数,根据各零部件所在位置进行零部件位置定位,依据轴的位置和齿轮中心距进行传动系统整体定位,并将这些参数进行存储以供后续调用;
    所述轴的参数包括:轴段长度、轴端直径、材料、表面处理形式;
    所述齿轮参数包括:法向模数、压力角、螺旋角、螺旋方向、齿数、齿宽、精度等级、材料、变位系数;若为行星齿轮,参数包括:法向模数、压力角、行星轮个数、齿数、标准节圆直径、齿宽、材料、传动比;
    所述油封参数包括:内径、外径、宽度;
    所述轴承,仅选择轴承型号即可;
    2)减速器工况参数输入,用于确定减速器输入工况参数以此来模拟减速器实际工作环境,具体工况参数包括:输入功率、功率输入与输出位置、输入转速、输入转矩、浸油深度、润滑油温度、减速器持续工作时间,并将这些参数进行存储以供后续调用;
    3)减速器传动效率可优选参数与传动效率影响关系分析,用于建立减速器传动效率仿真分析模型,然后对可进行优选的各结构参数和工况参数与传动效率之间的关系进行仿真分析,具体为:
    基于减速器实体模型的创建和工况参数的定义,选择传动效率分析标准为ISO 14179-2(DE)进行分析;
    针对工况参数的分析,启动Romax Designer软件主界面的减速器传动效率仿真分析模块,设置仿真分析工况参数变化取值范围,减速器结构参数固定为减速器实体建模步骤中所用参数,根据一个参数改变其余参数不变的原则,分别对各工况参数与减速器传动效率之间的关系进行分析,获取工况参数改变过程中传动效率的具体数值,并将分析结果数据存入指定位置,供后续分析使用;
    所述减速器传动效率仿真分析工况参数包括:浸油深度、润滑油温度;浸油深度取值范围为l h-6mm≤l h≤l h+6mm,润滑油温度取值范围为30℃≤T≤75℃;
    针对结构参数的分析,启动Romax Designer软件主界面的减速器传动效率仿真分析模块,设置仿真分析工况参数即为额定的工况输入参数,减速器仿真分析结构参数通过修改减速器实体建模步骤中的结构参数,根据一个参数改变其余参数不变的原则,分别对各结构参数与减速器传动效率之间的关系进行分析,其中针对齿轮结构参数的分析,为各级齿轮的单一结构参数与传动效率之间的分析,获取结构参数改变过程中传动效率的具体数值,并将分析结果数据存入指定位置,供后续分析使用;
    所述减速器传动效率仿真分析结构参数包括:各级齿轮齿宽、各级齿轮螺旋角;齿轮齿宽取值范围为0.9B≤B≤1.1B,螺旋角取值范围为β-5°≤β≤β+5°;
    4)可优选参数仿真分析结果评价,用于提取对减速器传动效率影响较大的结构参数和工况参数,以作为减速器传动效率优化正交试验所需的优选参数,具体为:
    首先,调取出减速器传动效率分析结果,读取各分析参数在变化过程中,传动效率的最大值与最小值,计算得出传动效率变化幅值;
    其次,比较各分析参数所对应的传动效率变化幅值,选取出变化幅值最大的参数作为正交试验优选参数;当减速器为二级减速器时,选择5个变化幅值最大的参数作为正交试验优选参数,当减速器为三级减速器时,选择6个变化幅值最大的参数作为正交试验优选参数,当减速器为四级减速器时,选择7个变化幅值最大的参数作为正交试验优选参数,以此类推;
    最后,将选定参数作为减速器传动效率优选参数,并将确定的优选参数个数归类为结构参数和工况参数。
  5. 如权利要求1所述的基于传动效率的减速器工况及结构参数优选方法,其特征在于,所述步骤四基于Romax Designer软件平台,采用正交试验的方法对减速器传动效率进行参数优选,以提升减速器传动效率为试验指标,满足齿轮强度校核标准为约束条件,具体步骤如下:
    1)正交试验方案设计,根据传动效率仿真分析结果,选定浸油深度l h、润滑油温度T、齿轮齿宽B和螺旋角β为影响因子;
    其中当齿轮为直齿或斜齿轮时,齿宽B取大齿轮齿宽表示,为行星齿轮时,齿宽B取太阳轮齿宽表示,小齿轮齿宽在大齿轮齿宽的基础上固定增加5-10mm,齿圈齿宽与太阳轮齿宽相等,行星轮齿宽相较于太阳轮齿宽固定增加5-10mm;
    所述影响因子设定的取值范围为:浸油深度取值范围为l h-6mm≤l h≤l h+6mm,润滑油温度取值范围为30℃≤T≤75℃,齿轮齿宽取值范围为0.9B≤B≤1.1B,螺旋角取值范围为β-5°≤β≤β+5°;
    根据选择影响因子个数确定影响因子划分水平,当所选影响因子为5个时,划分四个水平,即分别在其取值范围内各自均匀的选取4个数值,制定L 16(4 5)正交试验表,得到16组试验方案;当所选影响因子为6个时,划分五个水平,即分别在其取值范围内 各自均匀的选取5个数值,制定L 25(5 6)正交试验表,得到25组试验方案;当所选影响因子为7个时,划分六个水平,即分别在其取值范围内各自均匀的选取6个数值,制定L 36(6 7)正交试验表,得到36组试验方案,以此类推;
    2)利用Romax Designer软件,根据每组试验方案修改已建实体模型的结构参数和工况参数,进行仿真分析,得到每组试验方案所对应的减速器传动效率数值;
    接着采用极差分析法,得到各影响因子对减速器传动效率影响的主次顺序,并得到各影响因子的最优参数,将各影响因子的最优参数进行组合,即得到减速器传动效率的最优参数组合;
    3)正交试验结果评价,用于对参数优选后的减速器传动效率及齿轮强度进行分析评价,具体为:
    将最优参数组合按照优选后减速器传动效率相较于未优化前减速器传动效率变化幅值由大到小的原则进行排序,增幅最大的最优参数组合为1号,其次为2号,以此类推;
    因参数优选过程中,涉及齿轮结构参数,需要对参数优选后的齿轮进行强度校核;首先,调用减速器实体建模模块中齿轮参数部分,将其修改为1号试验中齿轮优选参数;其次,利用Romax Designer软件中自带的齿轮强度校核功能,选用校核标准为ISO6336:2006,对1号试验中的齿轮进行强度校核,若1号试验齿轮强度校核显示“通过”,则停止强度校核;若1号试验齿轮强度校核显示“不通过”,则对2号试验进行强度校核,直至最后寻找到一组减速器传动效率提升幅度最大且满足齿轮强度校核的优选参数。
  6. 如权利要求1所述的基于传动效率的减速器工况及结构参数优选方法,其特征在于,所述步骤四中,评价标准是指提升减速器传动效率幅度最大且同时满足齿轮强度校核要求。
PCT/CN2022/119491 2022-06-10 2022-09-17 一种基于传动效率的减速器工况及结构参数优选方法 WO2023020628A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210655739.0 2022-06-10
CN202210655739.0A CN114840948A (zh) 2022-06-10 2022-06-10 一种减速器传动效率优化方法

Publications (1)

Publication Number Publication Date
WO2023020628A1 true WO2023020628A1 (zh) 2023-02-23

Family

ID=82574480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119491 WO2023020628A1 (zh) 2022-06-10 2022-09-17 一种基于传动效率的减速器工况及结构参数优选方法

Country Status (2)

Country Link
CN (1) CN114840948A (zh)
WO (1) WO2023020628A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116341123A (zh) * 2023-05-30 2023-06-27 麦格纳动力总成(江西)有限公司 一种汽车变速箱敲击噪声优化方法及系统
CN116611190A (zh) * 2023-07-20 2023-08-18 宁波东力传动设备有限公司 一种轻量化的多级减速器设计方法
CN116842769A (zh) * 2023-09-01 2023-10-03 江西江铃集团车桥齿轮有限责任公司 一种电驱动桥热管理仿真方法、存储介质及计算机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114840948A (zh) * 2022-06-10 2022-08-02 山东科技大学 一种减速器传动效率优化方法
CN115982878A (zh) * 2022-12-18 2023-04-18 重庆大学 人字齿行星传动系统传动效率确定方法
CN116306056B (zh) * 2023-05-25 2023-08-15 天津津荣天宇精密机械股份有限公司 一种旋转铆接工艺参数开发及稳定性验证方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105782428A (zh) * 2016-04-11 2016-07-20 福建省汽车工业集团云度新能源汽车股份有限公司 一种汽车变速器传动比优化方法及装置
CN109902436A (zh) * 2019-03-20 2019-06-18 重庆大学 一种rv减速器正向设计方法
US20200226302A1 (en) * 2017-09-26 2020-07-16 Romax Technology Limited Driveline Designer
CN112734146A (zh) * 2019-10-28 2021-04-30 广州汽车集团股份有限公司 一种汽车变速器效率的计算方法、计算机设备和存储介质
CN113700848A (zh) * 2021-09-02 2021-11-26 北京理工大学 一种用于车辆综合传动的功率损失分析方法和装置
CN114840948A (zh) * 2022-06-10 2022-08-02 山东科技大学 一种减速器传动效率优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105782428A (zh) * 2016-04-11 2016-07-20 福建省汽车工业集团云度新能源汽车股份有限公司 一种汽车变速器传动比优化方法及装置
US20200226302A1 (en) * 2017-09-26 2020-07-16 Romax Technology Limited Driveline Designer
CN109902436A (zh) * 2019-03-20 2019-06-18 重庆大学 一种rv减速器正向设计方法
CN112734146A (zh) * 2019-10-28 2021-04-30 广州汽车集团股份有限公司 一种汽车变速器效率的计算方法、计算机设备和存储介质
CN113700848A (zh) * 2021-09-02 2021-11-26 北京理工大学 一种用于车辆综合传动的功率损失分析方法和装置
CN114840948A (zh) * 2022-06-10 2022-08-02 山东科技大学 一种减速器传动效率优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DU CHUN-PENG;MIN YUN-DONG;WANG JIA;LI JIAN-PING;DONG FENG: "Dynamic Modeling and Analysis of Synchronizer Based on ADAMS", AUTO SCI-TECH, no. 4, 25 July 2018 (2018-07-25), pages 46 - 49, XP093035960, ISSN: 1005-2550, DOI: 10.3969/j.issn.1005-2550.2018.04.007 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116341123A (zh) * 2023-05-30 2023-06-27 麦格纳动力总成(江西)有限公司 一种汽车变速箱敲击噪声优化方法及系统
CN116341123B (zh) * 2023-05-30 2023-08-11 麦格纳动力总成(江西)有限公司 一种汽车变速箱敲击噪声优化方法及系统
CN116611190A (zh) * 2023-07-20 2023-08-18 宁波东力传动设备有限公司 一种轻量化的多级减速器设计方法
CN116611190B (zh) * 2023-07-20 2023-10-03 宁波东力传动设备有限公司 一种轻量化的多级减速器设计方法
CN116842769A (zh) * 2023-09-01 2023-10-03 江西江铃集团车桥齿轮有限责任公司 一种电驱动桥热管理仿真方法、存储介质及计算机
CN116842769B (zh) * 2023-09-01 2024-02-02 江西江铃底盘股份有限公司 一种电驱动桥热管理仿真方法、存储介质及计算机

Also Published As

Publication number Publication date
CN114840948A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023020628A1 (zh) 一种基于传动效率的减速器工况及结构参数优选方法
CN108333921B (zh) 基于动态规划算法的汽车换挡规律优化方法
Lei et al. Research on vibration and noise reduction of electric bus gearbox based on multi-objective optimization
CN109766670B (zh) 基于Copula函数的工业机器人用谐波减速器可靠性分析方法
CN109271702B (zh) 工程车发动机与液力变矩器逆向匹配的优化方法
CN104392041A (zh) 一种利用功能梯度材料减轻齿轮重量的方法
CN110704968A (zh) 基于摆线轮齿廓修形的rv减速器多目标优化方法
Zhang et al. Contact Mechanics Analysis and Optimization of Shape Modification of Electric Vehicle Gearbox.
CN116305633A (zh) 基于nsga-ⅱ算法的二级减速齿轮系统的齿面修形优化方法
Alam et al. A comprehensive review on design and analysisof spur gears
CN114722526A (zh) 一种高转速条件下带式cvt钢带环疲劳寿命计算方法
Tang et al. DYNAMIC CONTACT ANALYSIS AND TOOTH MODIFICATION DESIGN FOR EMU TRACTION GEAR.
Li et al. Shift scheduling strategy development for parallel hybrid construction vehicles
Patel et al. Topology Optimization of Automotive Gear using Fea
CN112172824A (zh) 一种基于整车经济性的cvt速比控制策略确定方法
CN114722540B (zh) 一种基于机器学习的变速器智能变型设计方法
CN111075920A (zh) 基于fft和润滑影响的rv减速器摆线针轮残余应力求解方法
Zhang et al. Multi-field coupling simulation of gear: a review
Zhao et al. Optimisation analysis of gear transmission system of the automobile gearbox based on the MASTA software
Rai et al. Optimizing the design of straight bevel gear with reduced scoring effect
Li et al. Design and optimization of PSD housing using a MIGA-NLPQL hybrid strategy based on a surrogate model
Wei et al. The structural optimization of gearbox based on sequential quadratic programming method
Wu et al. Multi-objective optimization of a 2-stage helical gear transmission system using NSGA-III
Ustynenko et al. Mathematical Model and Optimization Algorithm By Mass of Tracked Load-Carrier/Prime Mover MT-LB Transmission
HAMRAYEV et al. Design and test of 3K planetary gear for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857937

Country of ref document: EP

Kind code of ref document: A1