WO2023020603A1 - 用于空中成像的二面角反射器阵列结构 - Google Patents

用于空中成像的二面角反射器阵列结构 Download PDF

Info

Publication number
WO2023020603A1
WO2023020603A1 PCT/CN2022/113469 CN2022113469W WO2023020603A1 WO 2023020603 A1 WO2023020603 A1 WO 2023020603A1 CN 2022113469 W CN2022113469 W CN 2022113469W WO 2023020603 A1 WO2023020603 A1 WO 2023020603A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse
curve
array
optical waveguide
array structure
Prior art date
Application number
PCT/CN2022/113469
Other languages
English (en)
French (fr)
Inventor
张亮亮
李军昌
Original Assignee
安徽省东超科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽省东超科技有限公司 filed Critical 安徽省东超科技有限公司
Publication of WO2023020603A1 publication Critical patent/WO2023020603A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/122Reflex reflectors cube corner, trihedral or triple reflector type
    • G02B5/124Reflex reflectors cube corner, trihedral or triple reflector type plural reflecting elements forming part of a unitary plate or sheet

Definitions

  • the application relates to the field of optical equipment manufacturing, in particular to a dihedral reflector array structure for aerial imaging.
  • the dihedral reflector array can be referred to as "DCRA" for short.
  • the common dihedral reflector array is a kind of flat lens, which uses two layers of periodically distributed array optical waveguides to be A total reflection occurs in each. Due to the mutually orthogonal rectangular structures, the incident angle at the first total reflection is the same as the exit angle at the second total reflection. All the light rays within the light divergence angle of the light source will converge to the plane-symmetric spatial position of the light source after passing through the flat plate lens, so as to obtain a 1:1 floating real image.
  • the present application aims to solve at least one of the technical problems existing in the prior art. For this reason, the present application proposes a dihedral reflector array structure for aerial imaging, which can increase the horizontal viewing angle of a floating real image without generating afterimages.
  • the dihedral reflector array structure has a reference system, which includes: a reference plane, an XOY rectangular coordinate system set on the reference plane , the Z axis perpendicular to the reference plane.
  • the dihedral reflector array structure is provided with a reverse curved surface array composed of a plurality of reverse curved surfaces, and a forward curved surface array composed of a plurality of forward curved surfaces, the reverse curved surface and the forward curved surface are reflective surfaces;
  • the dihedral reflector array structure for aerial imaging by setting the reflective surface into a forward curved surface array and a reverse curved surface array, the vertical projections of the two can be symmetrical with respect to the Y axis and orthogonal to each other, and
  • such arrangement reduces afterimages caused by odd reflections of light in the dihedral reflector array structure, improves imaging quality, and is beneficial to improving viewing experience of users.
  • the floating real image observed at different viewing angles has no significant change in the observed light intensity, which is conducive to improving the consistency of viewing effects at different viewing angles.
  • ranges from 0 to 180 degrees.
  • the encryption reverse curve includes: a primary encryption reverse curve, the primary encryption reverse curve is located between two adjacent reverse curves, and its length coefficient A x is between the length coefficients of the reverse curves on both sides. Between, the starting point is located at or close to the distance between two adjacent inversion curves reaching the first set value; the encryption inverse curve includes: a second encryption inverse curve, the second encryption inverse curve is located at the adjacent Between the reverse curve and the primary encryption reverse curve, the length coefficient A x is between the length coefficients of the reverse curve on both sides and the primary encryption reverse curve, and the starting point is at or close to the reverse curve on both sides The distance from the primary encryption reverse curve reaches the second set value; and so on, the encryption reverse curve is set.
  • the dihedral reflector array structure is also provided with an encrypted forward curved surface and is a reflective surface.
  • the vertical projection of the encrypted forward curved surface on the reference plane is an encrypted forward curve.
  • the encrypted forward curve, the The encryption reverse curve is symmetrical with respect to the Y axis, and any of the encryption forward curve, the encryption reverse curve, and the reverse curve intersect perpendicularly at the intersection.
  • the length coefficient A x of the primary encryption reverse curve is equal to the square root of the arithmetic mean of the square root of the length coefficients of the reverse curves on both sides; the length coefficient A x of the secondary encryption reverse curve , which is equal to the quadratic of the arithmetic mean of the square root of the length coefficients of the inverse curve and the primary encryption inverse curve on both sides; and so on.
  • the quadrangle formed by the intersection of the vertical projections of each reflective surface is a lattice
  • the size of the reflective surface in the direction of the Z axis is its height
  • the height of the reflective surface is the average side of the lattice 2 to 3 times as long.
  • each of the reflective surfaces are equal, and one side of each of the reflective surfaces in the Z-axis direction is flush.
  • the filler between each of the reflective surfaces is air or a piece of highly transparent material.
  • the dihedral reflector array structure includes two groups of optical waveguide arrays, each group of optical waveguide arrays is composed of a plurality of sub-waveguides, and the two groups of optical waveguide arrays include: reverse optical waveguide arrays and forward optical waveguide arrays.
  • the sub-waveguides of the reverse optical waveguide array extend spirally around the point O, and a plurality of the sub-waveguides are arranged in sequence from near to far from the point O, adjacent to each other.
  • the reverse curved surface is arranged between the sub-waveguides.
  • the sub-waveguides of the forward optical waveguide array extend spirally around the point O, and a plurality of the sub-waveguides are arranged in order from near to far from the point O, adjacent to the sub-waveguides
  • the forward curved surface is arranged therebetween; the reverse optical waveguide array and the forward optical waveguide array are arranged along the Z axis.
  • the reverse optical waveguide array and the forward optical waveguide array are straight plates with uniform thickness.
  • the array structure of the dihedral corner reflector includes a single-layer optical waveguide block, the four sides of the optical waveguide block are provided with the reflective surfaces, and the two opposite reflective surfaces constitute the The reverse curved surface and the other two opposite reflective surfaces constitute the forward curved surface.
  • the dihedral corner reflector array structure includes a plurality of metallized film layers to form the reflective surface.
  • the array structure of the dihedral corner reflector is a rectangular flat plate, and the point O is located at the midpoint of the long side of the rectangle.
  • Fig. 1 is a general view of the structure of a prior art planar lens.
  • Fig. 2 is a partial enlarged view of K in Fig. 1 in the side view direction.
  • Fig. 3 is an exploded view of a prior art planar lens.
  • Fig. 4 is a schematic structural view along the Z direction of a two-layer orthogonal optical waveguide array in the prior art.
  • Fig. 5 is a schematic diagram of imaging of a two-layer orthogonal optical waveguide array in the prior art.
  • FIG. 6 is a schematic diagram of imaging in the X direction when a light source image in the prior art passes through a single-layer optical waveguide array.
  • FIG. 7 is a schematic diagram of imaging in three-dimensional directions when the light source image shown in FIG. 6 passes through the single-layer optical waveguide array.
  • Fig. 8 is a schematic diagram of the imaging optical path when the light source image passes through two orthogonal optical waveguide arrays in the prior art.
  • Fig. 9a is a schematic diagram of the ray direction when the light is normally incident and obliquely incident on the reflective surface of the planar lens.
  • Fig. 9b is a schematic diagram of the ray direction when the ray is incident on the reflective surface of the plane lens.
  • Fig. 9c is a schematic diagram of the ray direction path when the ray is obliquely incident on the reflective surface of the planar lens.
  • FIG. 10 is a schematic diagram of the distribution of curves on a reference frame of a dihedral corner reflector array structure according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the distribution of curves on a reference frame of a dihedral corner reflector array structure according to another embodiment of the present application.
  • Fig. 12a is a schematic diagram of the direction change of light rays after they diverge from point O in the structure shown in Fig. 11 .
  • Fig. 12b is a schematic diagram of the local direction change of the light shown in Fig. 12 .
  • the existing dihedral reflector array imaging has the characteristics of a small horizontal viewing angle, and its viewing angle is about ⁇ 30 degrees.
  • the viewing angle range is about ⁇ 30 degrees.
  • the floating real image cannot be seen.
  • the real image seen by the human eye needs to rely on the imaging elements in the corresponding area during imaging, and there will be more obvious afterimages on both sides of the floating real image.
  • the application range of the dihedral reflector array with this characteristic is very limited, and it is not suitable for public places for display purposes.
  • a dihedral reflector array structure 100 for aerial imaging proposed in this application is an improved solution based on the existing problem of dihedral reflector array imaging. Before explaining the scheme of this application, the following briefly introduces the existing scheme so as to better understand the core points of this application.
  • Figures 1 to 10 show the basic structure and imaging principle when the dihedral corner reflector array is a flat lens 1 .
  • the center normal L1 of the plane lens 1, and the opposite sides of the plane lens 1 are the image source side and the viewing side respectively, that is, the light source of the image P1 is located on the image source side, and the image P1 can be formed on the viewing side through the plane lens 1
  • the floating real image P2 is a real image suspended in the air.
  • the planar lens 1 is an optical structure that utilizes two layers of periodically distributed optical waveguide arrays 10 to be orthogonal to each other, so that light is totally reflected once in each of the two layers of optical waveguide arrays 10 . Since the two-layer optical waveguide arrays 10 are rectangular structures orthogonal to each other, the incident angle at the first total reflection is the same as the outgoing angle at the second total reflection. The light within the divergence angle of the light source will converge to the viewing side after passing through the plane lens 1, and a 1:1 floating real image P2 will be obtained.
  • the planar lens 1 includes two groups of optical waveguide arrays 10 .
  • Each set of optical waveguide arrays 10 is composed of single row and multiple rows of sub-waveguides 101 , and the cross-section of each sub-waveguide 101 is rectangular.
  • the cross-section of the sub-waveguide 101 refers to the cross-section of the sub-waveguide 101 in a direction perpendicular to its length direction.
  • two groups of optical waveguide arrays 10 include: a first optical waveguide array 11 and a second optical waveguide array 12, the sub-waveguides 101 of the first optical waveguide array 11 extend along the X direction and form multiple rows along the Y direction , the sub-waveguides 101 of the second optical waveguide array 12 extend along the Y direction and form multiple rows along the X direction, the first optical waveguide array 11 and the second optical waveguide array 12 are arranged along the Z direction, the X direction, the Y direction, and the Z direction Two by two vertical.
  • the extension direction of the sub-waveguide 101 is the length direction of the sub-waveguide 101
  • the length direction of a single sub-waveguide 101 of the first optical waveguide array 11 is the X direction
  • the plurality of sub-waveguides 101 of the first optical waveguide array 11 are closely spaced along the Y direction.
  • the width direction of a single sub-waveguide 101 is the Y direction
  • the length direction of a single sub-waveguide 101 of the second optical waveguide array 12 is the Y direction
  • the multiple sub-waveguides 101 of the second optical waveguide array 12 are closely spaced along the X direction
  • the width direction of a single sub-waveguide 101 is the X direction.
  • the two groups of optical waveguide arrays 10 are respectively in the shape of flat plates.
  • the arrangement direction of the first optical waveguide arrays 11 to the second optical waveguide arrays 12 is the Z direction, and the Z direction is also the thickness direction of the planar lens 1 .
  • Each sub-waveguide 101 is respectively provided with reflective films on two sides in the width direction for total reflection of light.
  • the sub-waveguides 101 of the first optical waveguide array 11 are respectively provided with reflective films on the two sides in the Y direction. Since the first optical waveguide array 11 includes a plurality of sub-waveguides 101, the first optical waveguide array 11 will A plurality of reflective films are arranged.
  • the sub-waveguides 101 of the second optical waveguide array 12 are respectively provided with reflective films on the two sides in the X direction. Since the second optical waveguide array 12 includes a plurality of sub-waveguides 101, the second optical waveguide array 12 will be arranged along the X direction. Lay multiple reflective films.
  • the planar lens 1 may further include a protective cover 30 for supporting and protecting the optical waveguide array 10 .
  • the protective cover 30 may be provided on only one side of the plane lens 1 , or the protective cover 30 may be provided on both sides of the plane lens 1 .
  • the protective cover 30 is a transparent cover, and optionally, the protective cover 30 is a glass plate.
  • the plane lens 1 includes a pair of protective cover plates 30 , which are respectively a first cover plate 31 and a second cover plate 32 .
  • the planar lens 1 also includes two sets of optical waveguide arrays 10 located between the two protective covers 30 , which are respectively the first optical waveguide array 11 and the second optical waveguide array 12 .
  • the X direction is the extension direction of the sub-waveguides 101 in the first optical waveguide array 11
  • the Y direction is the extension direction of the sub-waveguides 101 in the second optical waveguide array 12
  • the Z direction is the thickness direction of the planar lens 1 .
  • the protective cover 30 can also be eliminated, and other ways can be used to protect the optical waveguide array 10 .
  • the core imaging elements of the planar lens 1 are the first optical waveguide array 11 and the second optical waveguide array 12.
  • the first optical waveguide array 11 and the second optical waveguide array 12 include mutually orthogonal single-row multi-row sub-waveguides 101.
  • the lens 1 is in the form of a flat plate as a whole, as shown in FIG. 5 , which can realize point-to-point aberration-free imaging of the image P1.
  • the specific imaging principle is as follows:
  • the two optical waveguide arrays 10 are split.
  • the first optical waveguide array 11 is taken as an example.
  • the single-layer optical waveguide array 10 after passing through the single-side optical waveguide array 10, the single-point light rays on the image source side are divided by the sub-waveguides 101 of each row for mirror modulation, and then converge on a straight line P1' parallel to the X direction. Form a point-to-line one-dimensional imaging effect. As shown in Fig.
  • the incident angle of a single point light on the image source side through a certain sub-waveguide 101 is ⁇ , and its exit angle after being reflected by the sub-waveguide 101 is ⁇ ', and the incident angle ⁇ is equal to the exit angle ⁇ '.
  • the imaging distance m2 of the floating real image P2 is the same as the distance m1 from the original image, which is an equidistant imaging, and the position of the floating real image P2 is in the air, and the real image can be directly presented in the air without a carrier such as a projection screen.
  • this flat lens 1 can make a two-dimensional or three-dimensional light source directly form a real image in the air, and realize a real holographic image. While realizing large field of view, large aperture, high resolution, no distortion, and no dispersion, it also realizes naked-eye three-dimensional display characteristics.
  • This traditional dihedral reflector array has a small field of view, about ⁇ 30° in the horizontal direction, and there will be an afterimage on both sides of the floating real image P2 during the imaging process.
  • Fig. 9a is a schematic diagram of normal incidence and oblique incidence of light on the planar lens 1, the path of the light at normal incidence is shown in Fig. 9b, and the path of light at oblique incidence is shown in Fig. 9c.
  • Figure 9b when the viewing angle is 0°, the light is normal incident.
  • the afterimage is due to the odd number of reflections of the light rays in the flat lens 1, as shown in Figure 9c.
  • the solid line in FIG. 9b is the light that undergoes two reflections to generate the floating real image P2
  • the dotted line in FIG. 9c is the light that undergoes one reflection and generates an afterimage.
  • the dihedral corner reflector array structure 100 according to the embodiment of the present application will be described below with reference to FIGS. 10 to 12 .
  • the dihedral corner reflector array structure 100 is provided with a reverse curved surface array composed of a plurality of reverse curved surfaces, and a plurality of forward curved surfaces. Array along the surface. Both the reverse curved surface and the forward curved surface are reflective surfaces, and the reflective surfaces are used to reflect light.
  • the reference system includes: a reference plane S, an XOY rectangular coordinate system set on the reference plane S, and a Z axis perpendicular to the reference plane S. Through the establishment of this reference system, three coordinate systems can be referenced.
  • the first is the XOY rectangular coordinate system set on the reference plane S.
  • the XOY rectangular coordinate system is composed of an X axis and a Y axis, and the intersection point of the X axis and the Y axis is point O.
  • the Z-axis is perpendicular to the reference plane S, when the Z-axis passes through point O, the X-axis, Y-axis, and Z-axis form a Cartesian coordinate system.
  • the vertical projection of the reverse curved surface array on the reference plane S is a reverse curved array
  • the reverse curved array includes multiple reverse curves f1 corresponding to multiple reverse curved surfaces.
  • All references to the vertical projection of a feature in this article refer to the shadow of the feature falling on the reference plane S when parallel light is projected onto the feature in a direction perpendicular to the reference plane S.
  • the vertical projection of a single reverse curved surface is a single reverse curve f1
  • the vertical projection of multiple reverse curved surfaces is a plurality of reverse curves f1
  • multiple reverse curved surfaces form a reverse curve array
  • multiple reverse curves f1 form a reverse curve array.
  • the length coefficient is A 1
  • length coefficient A 2 A 1 *q
  • the length coefficient A n A 1 *q n-1 of each inverse curve f1 is a set of geometric sequences, and the inverse curve f1 with a larger serial number has a higher length coefficient increase and is farther away from point O.
  • the vertical projection of the forward curved surface array on the reference plane S is a forward curve array
  • the forward curve array includes a plurality of forward curves t1 corresponding to the plurality of forward curved surfaces.
  • a plurality of forward curved surfaces form a forward curve array
  • a plurality of forward curves t1 form a forward curve array.
  • the plurality of reverse curves f1 and the plurality of forward curves t1 are orthogonal to each other, and the corresponding plurality of reverse curved surfaces and the plurality of forward curved surfaces are mutually orthogonal.
  • each mesh is basically a quadrilateral, which is called a lattice here.
  • each side of the quadrilateral is arc-shaped. Since the actual product of the dihedral corner reflector array structure 100 will have denser reflective surfaces, each side of the lattice can be regarded as a straight side. Since the surface is symmetrical with respect to the Y axis, the lengths of the sides of the lattice are close. Since any reverse curve f1 and forward curve t1 intersect perpendicularly at the intersection, the lattice formed by the reverse curve f1 and forward curve t1 is roughly square.
  • the dihedral reflector array structure 100 of this application is the same as the traditional dihedral reflector array when imaging.
  • the floating real image P2 seen by the human eye needs to rely on the imaging elements in the corresponding area, that is, the human eye and the floating real image
  • a dihedral reflector is required on the extension of the connection of P2. So only when the image is small enough or the dihedral reflector array structure 100 is large enough, the horizontal viewing angle can be approximately equal to 180 degrees.
  • the traditional dihedral reflector array since the angle of incidence of the light has deviated far from the required angle of incidence of 45° after the angle of view is 30 degrees away from the center, the light can no longer be re-reflected in the reflector and then converged for imaging. At this time, only the afterimage produced by the odd reflection in the reflector can be seen at the edge of the viewing angle.
  • the dihedral corner reflector array structure 100 of the embodiment of the present application by setting the reflective surface into a forward curved surface array and a reverse curved surface array, the vertical projections of the two can be symmetrical with respect to the Y axis and orthogonal to each other, and the reverse curved array
  • such setting reduces afterimages caused by odd reflections of light in the dihedral reflector array structure 100 , improves imaging quality, and is beneficial to improving viewing experience of users.
  • the observed light intensity of the floating real image P2 observed at different viewing angles has no obvious change.
  • ranges from 0 to 180 degrees. That is, the starting position of the reverse curve is ⁇ equal to 0 degrees, and the starting point of the reverse curve is located on the positive axis of the X axis; the end position of the reverse curve is ⁇ equal to ⁇ , and the end point of the reverse curve is located on the negative axis of the X axis.
  • a forward curve is the opposite of a reverse curve.
  • one side of the dihedral reflector array structure 100 can be designed to be flush with the X axis. angle change. Then, when the light from the angle of 0-180 degrees is incident on the dihedral reflector array structure 100, the light at each angle can be reflected by the crystal lattice for an even number of times, thereby ensuring the stability of the dihedral reflector array structure 100.
  • the horizontal viewing angle can be close to 180 degrees.
  • the size of the reflective surface in the Z-axis direction is its height, the heights of each reflective surface are equal, and one side of each reflective surface in the Z-axis direction is flush, and the other side of each reflective surface in the Z-axis direction The sides are also flush. In this way, the height dimensions of all reflective surfaces are consistent, and such a regular design facilitates processing.
  • the height of the reflective surface is 2 to 3 times the average side length of the crystal lattice. Since the lattice is roughly square, the side length of the lattice is roughly the width of the lattice, and the average side length is the average of the side lengths of all the lattices.
  • the reflective surface will not be too high to cause too many light reflections, and the reflective surface will not be too short to cause the structure to be easily broken.
  • the height of the reflective surface is 2 to 3 times the average side length of the lattice, a considerable part of the light can be incident, and the number of reflections is twice, so that the number of reflections is less and the light consumption is less.
  • the reverse curve f1 In the scheme of this application, if the lattice is only formed by the interweaving of the reverse curve f1 and the forward curve t1, because the two curves extend spirally on the reference plane S, and when the relative O point is arranged from near to far, the reverse curve f1
  • the length coefficient increases by q times, which makes the distance between the two adjacent inverse curves f1 larger as the poles are farther away, resulting in a smaller lattice near the O point and a larger lattice far away from the O point. Therefore, in the direction of radiation from the O point, the lattice changes from dense to sparse.
  • the sizes of several lattices formed by the interweaving of curves can be made to have little correlation.
  • a new curve is inserted at the position equidistant from the two curves, so that the reverse curve f1 and the forward curve t1 are respectively to encrypt.
  • the crystal lattice has a cyclical change process from dense to sparse and then dense.
  • the dihedral corner reflector array structure 100 also has an encrypted reverse curved surface and is a reflective surface.
  • the dihedral reflector array structure 100 also has an encrypted forward curved surface and is a reflective surface.
  • the vertical projection of the encrypted forward curved surface on the reference plane S is an encrypted forward curve t2, and the encrypted forward curve t2 is opposite to the encrypted reverse curve f2.
  • the Y axis is symmetrical, and any encrypted forward curve t2 intersects with the encrypted reverse curve f2 and reverse curve f1 perpendicularly at the intersection.
  • the shape of the encrypted reverse curve f2 is consistent with the shape of the reverse curve f1, except that the starting point of the encrypted reverse curve f2 is no longer ⁇ equal to 0 degrees, but a certain position where ⁇ is greater than 0 degrees.
  • the length coefficient A x of the encrypted reverse curve f2 is no longer proportional to the reverse curve f1, and A x is set according to other rules.
  • the shape of the encryption forward curve t2 is consistent with the shape of the forward curve t1, except that the starting point of the encryption forward curve t2 is no longer ⁇ equal to 0 degrees, but a certain position where ⁇ is greater than 0 degrees.
  • the length coefficient of the encrypted forward curve t2 is no longer proportional to the forward curve t1.
  • each mesh of the mesh formed by interweaving is also called a lattice.
  • lattice When calculating the average side length of the lattice above, this is included The side length of the partial lattice.
  • the reverse curve f1 may be encrypted at least once.
  • the encryption reverse curve f2 includes: one encryption reverse curve f2, one encryption reverse curve f2 is located between two adjacent reverse curves f1, and its length coefficient A x is between the length coefficients of the reverse curve f1 on both sides
  • the starting point is located at or close to the point where the distance between two adjacent inverting curves reaches the first set value. That is to say, the length coefficient of the primary encryption reverse curve f2 is larger than the length coefficient of the previous reverse curve f1, and smaller than the length coefficient of the latter reverse curve f1.
  • the encryption reverse curve f2 When encrypting for the second time, the encryption reverse curve f2 includes: the secondary encryption reverse curve f2, the secondary encryption reverse curve f2 is located between the adjacent reverse curve f1 and the primary encryption reverse curve f2, and the size of its length coefficient A x is Between the length coefficients of the reverse curve f1 on both sides and the reverse curve f2 of primary encryption, the starting point is at or near the point where the distance between the reverse curve f1 on both sides and the reverse curve f2 of primary encryption reaches the second set value.
  • the encryption method of encrypting the forward curve t2 is consistent with the encryption method of encrypting the reverse curve f2, and will not be repeated here.
  • each lattice can be controlled to be similar, so that the light intensity of each point of the floating real image P2 is more uniform.
  • the length coefficient of the encryption curve equation is determined by the length coefficients of two adjacent curves, and the range of ⁇ angle is related to the set maximum interval and the length coefficients of two adjacent curves.
  • the length coefficient A x of the primary encryption reverse curve f2 is equal to the square root of the arithmetic mean of the square root of the length coefficients of the reverse curve f1 on both sides; the length coefficient A of the secondary encryption reverse curve f2 x is equal to the square root of the arithmetic mean of the square root of the length coefficients of the reverse curve f1 on both sides and the primary encrypted reverse curve f2; and so on.
  • the setting method of the encrypted forward curve t2 is similar to that, and will not be repeated here.
  • the lattice size is set between 0.1mm-0.2mm.
  • the distance between two adjacent curves is greater than the set value of 0.2mm at a certain position, the distance between the two curves at this position Insert an encryption curve at an equidistant position, the position is the starting point of angle ⁇ , and the end point is ⁇ .
  • the coefficients of the curve equation are determined by the coefficients of the two adjacent curves, and the range of the ⁇ angle is related to the set maximum interval and the length coefficients of the two adjacent curve equations.
  • the coefficients of two adjacent reverse curves f1 are A 1 and A 2 respectively, then the length coefficient of the primary encryption curve f2 between them is
  • all the length coefficients A 12 , A 23 , A 34 . . . of the primary encryption curve f2 can also form a set of geometric sequences with a common ratio of q.
  • the length coefficients of the two curves corresponding to A 1 and A 12 that is, the reverse curve f1 and the adjacent primary encryption curve f2 in the process of increasing ⁇ from 0 to ⁇ , if the distance at a certain position exceeds the second set If the value is set to 0.2mm, a new curve (that is, the reverse curve f2 of secondary encryption) needs to be inserted at this position, which is the same as the above case.
  • the position of the wire mesh on the dihedral corner reflector array structure 100 is not limited. Since the area of the dihedral reflector array structure 100 is limited, and the curve formed according to the length coefficient set by the geometric sequence can be infinite, the part of the line network finally left on the dihedral reflector array structure 100 is limited.
  • the curve is designed with 0 degree as the starting point and ⁇ as the end point, but affected by the shape of the dihedral reflector array structure 100, the end point of a considerable part of the curve does not reach ⁇ , and some curves are covered by the dihedral reflector array structure
  • the edge of 100 is cut into two or three sections.
  • the dihedral corner reflector array structure 100 is a rectangular plate, only the starting point of the fourth reverse curve f1 is 0 and the end point reaches ⁇ , and the starting point of the other reverse curves f1 is 0 and the end point is less than ⁇ .
  • the starting points of all curves are greater than 0.
  • the dihedral corner reflector array structure 100 is a rectangular flat plate, and the point O is located at the midpoint of the long sides of the rectangle.
  • the middle of the straight plate is exactly the Y axis, so that the dihedral reflector array structure 100 is left-right symmetrical in shape, so that the light intensity on the left and right sides can be kept symmetrical.
  • the filler between the reflective surfaces is air, and air is used as the light-guiding medium, so that the cost of the light-guiding medium is very low, which is conducive to reducing the overall weight of the dihedral corner reflector array structure 100.
  • the filler between the reflective surfaces is a piece of high light-transmitting material.
  • the high light transmission material can not only ensure the efficient transmission of light, but also it is easier to use the high light transmission material to set the reflection surface, and the high light transmission material can also be used as a fixed support structure for the reflection surface, so that the reflection surface is not easy to deform.
  • a vacuum may also be provided between the reflective surfaces.
  • the cost of maintaining a vacuum is high, the effect of vacuum on light transmission is very small, which can improve the efficiency of light transmission.
  • the filler between the reflective surfaces is a piece of high light-transmitting material
  • the high-light-transmitting material piece can be an optical waveguide.
  • the dihedral corner reflector array structure 100 can also adopt various structural forms.
  • the dihedral corner reflector array structure 100 includes two sets of optical waveguide arrays 10 , that is, a double-layer optical waveguide structure.
  • Each group of optical waveguide arrays 10 is composed of a plurality of sub-waveguides 101.
  • Two groups of optical waveguide arrays 10 include: a reverse optical waveguide array and a forward optical waveguide array. 101 are arranged sequentially according to the distance from point O to the direction from near to far, and an inverse curved surface is arranged between adjacent sub-waveguides 101 .
  • the sub-waveguides 101 of the forward optical waveguide array spirally extend around the point O, and a plurality of sub-waveguides 101 are arranged in order from near to far from the point O, and forward curved surfaces are arranged between adjacent sub-waveguides 101 .
  • the reverse optical waveguide array and the forward optical waveguide array are arranged along the Z axis.
  • the two groups of optical waveguide arrays 10 are respectively in the shape of flat plates.
  • the arrangement direction from the reverse optical waveguide arrays to the forward optical waveguide arrays is the Z direction, and the Z direction is also the thickness direction of the dihedral corner reflector array structure 100 .
  • the reverse optical waveguide array can be adjacent to the image source side, and the forward optical waveguide array can also be adjacent to the image source side, which is not limited here.
  • the two layers of sub-waveguides 101 are in a vertical relationship at the intersection, so it is said that the two layers of optical waveguide array 10 are in a mutually orthogonal relationship.
  • reflective films are respectively provided on two sides of each sub-waveguide 101 in the width direction to form reflective surfaces for total reflection of light.
  • the dihedral corner reflector array structure 100 may further include a protective cover 30 for supporting and protecting the optical waveguide array 10 .
  • the protective cover 30 may be provided only on one side of the dihedral corner reflector array structure 100 , or the protective cover 30 may be provided on both sides of the dihedral corner reflector array structure 100 .
  • the protective cover 30 is a transparent cover, and optionally, the protective cover 30 is a glass plate.
  • both the reverse optical waveguide array and the forward optical waveguide array are straight plates with uniform thickness. In this way, the processing is easy, and the positioning is easy, so that the precision can be improved.
  • the reverse curved surface and the forward curved surface are arranged on different layers of the optical waveguide, and in other embodiments, the reverse curved surface and the forward curved surface are arranged on the same layer of the optical waveguide.
  • the dihedral corner reflector array structure 100 includes a single-layer optical waveguide block, and the four sides of the optical waveguide block are provided with reflective surfaces, and wherein two opposite reflective surfaces form a reverse curved surface, and the other two opposite reflective surfaces form a forward curved surface. surface. That is to say, in this solution, the projection of each optical waveguide block on the reference plane S is a lattice, which can reduce the thickness of the dihedral corner reflector array structure 100 on the one hand.
  • the dihedral corner reflector array structure 100 includes a plurality of metallized film layers to form a reflective surface.
  • the metallized film layer can be directly formed on the surface of the high light-transmitting material, so that the cost of forming the reflective surface is very low.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种用于空中成像的二面角反射器阵列结构(100),其设有由多个逆向曲面组成的逆向曲面阵列、由多个顺向曲面组成的顺向曲面阵列,逆向曲面、顺向曲面均为反射面。逆向曲面阵列的垂直投影为逆向曲线阵列,逆向曲线阵列的极坐标方程为r=A n*exp(θ),A n=A 1*q n‑1,q大于1,0<θ<π。顺向曲面阵列的垂直投影为顺向曲线阵列,顺向曲线阵列、逆向曲线阵列相对Y轴对称,任意逆向曲线(f1)与顺向曲线(t1)在相交处为垂直相交。由此,可消除浮空实像两边的残像,提高不同视角处观影效果的一致性,提高成像质量。

Description

用于空中成像的二面角反射器阵列结构
相关申请的交叉引用
本申请基于申请号为2021109565784(申请日为2021-08-19)的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光学设备制造领域,具体涉及用于空中成像的二面角反射器阵列结构。
背景技术
二面角反射器阵列可被简称为“DCRA”,常见的二面角反射器阵列是一种平板透镜,利用两层周期性分布的阵列光波导相互正交,使光线在两层阵列光波导中各发生一次全反射。由于是相互正交的矩形结构,所以会使第一次全反射时的入射角和第二次全反射时的出射角相同。在光源光线发散角内的所有光线在经过平板透镜后会相应的收敛到光源以平板切面为轴的面对称的空间位置,从而得到一个1:1的浮空实像。
目前市场上已有企业采用这种方法实现空中成像,但是现有的这种成像方法存在着一些不足,如实像的左右两侧各有一个倾斜的残像,浮空实像的水平可视角较小(约±30度)等。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种用于空中成像的二面角反射器阵列结构,可以在不产生残像的情况下,增大浮空实像的水平可视角度。
根据本申请实施例的用于空中成像的二面角反射器阵列结构,所述二面角反射器阵列结构具有参考系,其包括:参考平面、设在所述参考平面上的XOY直角坐标系、与所述参考平面相垂直的Z轴。
所述二面角反射器阵列结构设有由多个逆向曲面组成的逆向曲面阵列、由多个顺向曲面组成的顺向曲面阵列,所述逆向曲面、所述顺向曲面均为反射面;所述逆向曲面阵列在所述参考平面上的垂直投影为逆向曲线阵列,所述逆向曲线阵列包括与所述多个逆 向曲面对应的多个逆向曲线,所述逆向曲线阵列的极坐标方程为r=A n*exp(θ),极坐标方程以所述XOY直角坐标系的O点为极点、θ为与正方向上X轴之间的夹角,n为所述逆向曲线相对所述O点由近至远的序列数,A n为对应所述逆向曲线的长度系数,A n=A 1*q n-1,q大于1,0<θ<π;所述顺向曲面阵列在所述参考平面上的垂直投影为顺向曲线阵列,所述顺向曲线阵列包括与所述多个顺向曲面对应的多个顺向曲线,所述顺向曲线阵列、所述逆向曲线阵列相对所述Y轴对称,任意所述逆向曲线与所述顺向曲线在相交处为垂直相交。
根据本申请实施例的用于空中成像的二面角反射器阵列结构,通过将反射面设置成顺向曲面阵列和逆向曲面阵列,二者的垂直投影能相对Y轴对称且相互正交,且逆向曲线阵列的极坐标方程为r=A n*exp(θ),可以增加浮空实像的水平可视角度,甚至能增至近似等于180度。而且如此设置减少了光线在二面角反射器阵列结构中奇次反射产生的残像,提高了成像质量,有利于提高用户的观看体验。另外在不同的视角观察到的浮空实像,所观察到的光强无明显变化,有利于提高不同视角处观影效果的一致性。
具体地,所述逆向曲线阵列、所述顺向曲线阵列的极坐标方程中,θ的范围为0至180度。
在一些实施例中,所述二面角反射器阵列结构还设有加密逆向曲面且为反射面,所述加密逆向曲面在所述参考平面上的垂直投影为加密逆向曲线,其极坐标方程为r=A x*exp(θ)。
其中,所述加密逆向曲线包括:一次加密逆向曲线,所述一次加密逆向曲线位于相邻两个所述逆向曲线之间,其长度系数A x的大小在两侧所述逆向曲线的长度系数之间,起点位于或临近相邻两条所述逆变曲线的间距达第一设定值处;所述加密逆向曲线包括:二次加密逆向曲线,所述二次加密逆向曲线位于相邻的所述逆向曲线和所述一次加密逆向曲线之间,其长度系数A x的大小在两侧所述逆向曲线和所述一次加密逆向曲线的长度系数之间,起点位于或临近两侧所述逆向曲线和所述一次加密逆向曲线间距达第二设定值处;以此类推,设置所述加密逆向曲线。
所述二面角反射器阵列结构还设有加密顺向曲面且为反射面,所述加密顺向曲面在所述参考平面上的垂直投影为加密顺向曲线,所述加密顺向曲线、所述加密逆向曲线相对所述Y轴对称,任意所述加密顺向曲线与所述加密逆向曲线、所述逆向曲线在相交处为垂直相交。
可选地,所述一次加密逆向曲线的长度系数A x,等于两侧的所述逆向曲线的长度系数的平方根的算数平均数的二次方;所述二次加密逆向曲线的长度系数A x,等于两侧的所述逆向曲线和所述一次加密逆向曲线的长度系数的平方根的算数平均数的二次方;以此类推。
具体地,各所述反射面的垂直投影相交形成的四边形为晶格,所述反射面在所述Z轴方向上的尺寸为其高度,所述反射面的高度为所述晶格的平均边长的2至3倍。
进一步地,各所述反射面的高度均相等,且各所述反射面在所述Z轴方向上的一侧平齐。
在一些实施例中,各所述反射面之间的填充物为空气或者高透光材料件。
在一些实施例中,所述二面角反射器阵列结构包括两组光波导阵列,每组所述光波导阵列均由多条子波导组成,所述两组光波导阵列包括:逆向光波导阵列和顺向光波导阵列,所述逆向光波导阵列的所述子波导绕所述O点螺旋延伸,且多个所述子波导按与所述O点距离由近及远的方向依次排布,相邻所述子波导之间设置有所述逆向曲面。
所述顺向光波导阵列的所述子波导绕所述O点螺旋延伸,且多个所述子波导按与所述O点距离由近及远的方向依次排布,相邻所述子波导之间设置有所述顺向曲面;所述逆向光波导阵列和所述顺向光波导阵列沿所述Z轴排布。
具体地,所述逆向光波导阵列和顺向光波导阵列均为厚度均匀的平直板件。
在一些实施例中,所述二面角反射器阵列结构包括单层的光波导块,所述光波导块的四面均设有所述反射面,且其中两个相对的所述反射面构成所述逆向曲面、另两个相对的所述反射面构成所述顺向曲面。
可选地,所述二面角反射器阵列结构包括多个镀金属膜层,以形成所述反射面。
在一些具体实施例中,所述二面角反射器阵列结构为矩形的平直板件,所述O点位于所述矩形的长边中点上。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是现有技术的平面透镜的结构总图。
图2是图1中K处在侧视方向的局部放大图。
图3是现有技术的平面透镜的分解图。
图4是现有技术的两层正交的光波导阵列沿Z方向的结构示意图。
图5是现有技术的两层正交的光波导阵列的成像示意图。
图6是现有技术的光源影像经单层光波导阵列时在X方向的成像示意图。
图7是图6所示的光源影像经单层光波导阵列时在立体方向的成像示意图。
图8是现有技术的光源影像经两层正交的光波导阵列时成像光路原理图。
图9a是光线正入射和斜入射到平面透镜的反射面上时的光线方向路线示意图。
图9b是光线正入射到平面透镜的反射面上时的光线方向路线示意图。
图9c是光线斜入射到平面透镜的反射面上时的光线方向路线示意图。
图10是本申请一实施例的二面角反射器阵列结构在参考系上的曲线分布示意图。
图11是本申请另一实施例的二面角反射器阵列结构在参考系上的曲线分布示意图。
图12a是图11所示结构中当光线从O点发散后光线的方向变化示意图。
图12b是图12所示的光线在局部的方向变化示意图。
附图标记:
1、平面透镜;
10、光波导阵列;11、第一光波导阵列;12、第二光波导阵列;
101、子波导;
30、保护盖板;31、第一盖板;32、第二盖板;
L1、中心法线;
P1、影像;P2、浮空实像;
100、二面角反射器阵列结构;
S、参考平面;
f1、逆向曲线;
f2、加密逆向曲线;
t1、顺向曲线;
t2、加密顺向曲线。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
如上文所说,现有的二面角反射器阵列成像具有水平可视角较小的特点,其可视角约为±30度。当人眼位置偏离可视角范围时,无法看到浮空实像。而且成像时人眼看到的实像需要依托对应区域的成像元件,且在浮空实像两侧会有较为明显的残像。这种特性的二面角反射器阵列适用范围有很大的局限性,不适用于展示用途的公共场合。
本申请提出的一种用于空中成像的二面角反射器阵列结构100,是基于现有的二面角反射器阵列成像问题而提出的改进型方案。在对本申请方案说明之前,下文先对现有方案简单介绍,以便更好理解本申请的核心要点。
图1-图10展示的是二面角反射器阵列为一种平面透镜1时的基本结构和成像原理。
平面透镜1的中心法线L1,平面透镜1的相对两侧分别为像源侧和观影侧,即影像P1的光源位于像源侧,影像P1通过该平面透镜1,可以在观影侧形成浮空实像P2,浮空实像P2为悬浮在空气中的实像。这里如图1-图3所示,平面透镜1是一种利用两层周期性分布的光波导阵列10相互正交,使光线在两层光波导阵列10中各发生一次全反射的光学结构。由于两层光波导阵列10是相互正交的矩形结构,所以会使第一次全反射时的入射角和第二次全反射时的出射角相同。光源光线发散角内的光线在经过平面透镜1后,会相应的收敛到观影侧,得到一个1:1的浮空实像P2。
参阅图1-图3,平面透镜1包括两组光波导阵列10。每组光波导阵列10均由单列多排的子波导101组成,每个子波导101的横截面为矩形。这里子波导101的横截面,指的是子波导101的与其长度方向相垂直方向上的截面。
参阅图2-图4,两组光波导阵列10包括:第一光波导阵列11和第二光波导阵列12,第一光波导阵列11的子波导101沿X方向延伸且沿Y方向形成多排,第二光波导阵列12的子波导101沿Y方向延伸且沿X方向形成多排,第一光波导阵列11和第二光波导阵列12沿Z方向排布,X方向、Y方向、Z方向两两垂直。这里,子波导101的延伸方向就是该子波导101的长度方向,第一光波导阵列11的单个子波导101的长度方向是X方向,第一光波导阵列11的多个子波导101沿Y方向紧密贴合叠加排布,单个子波导101的宽度方向是Y方向;第二光波导阵列12的单个子波导101的长度方向是Y方向,第二光波导阵列12的多个子波导101沿X方向紧密贴合叠加排布,单个子波导101的宽度方向是X方向。两组光波导阵列10分别呈平板状,第一光波导阵列11至第二光波导阵列12的排布方向为Z方向,Z方向也为平面透镜1的厚度方向。
每个子波导101在宽度方向上两个侧面分别设置有反射膜,用于对光线进行全反射。例如将第一光波导阵列11的子波导101,其Y方向上两个侧面分别设有反射膜,由于第一光波导阵列11包括多个子波导101,因此第一光波导阵列11会沿Y方向排布多个反射膜。将第二光波导阵列12的子波导101,其X方向上两个侧面分别设有反射膜,由于第二光波导阵列12包括多个子波导101,因此第二光波导阵列12会沿X方向排布多个反射膜。
有的方案如图1和图3所示,平面透镜1还可以包括保护盖板30,保护盖板30用于支撑和保护光波导阵列10。保护盖板30可以仅设置在平面透镜1的一侧,也可以在平面透镜1的两侧均设置保护盖板30。具体地,保护盖板30为透明盖板,可选地,保护盖板30为玻璃板。
图1-图3为一实施例中平面透镜1的结构示意图。该平面透镜1包括一对保护盖板30,且分别为第一盖板31和第二盖板32。平面透镜1还包括位于两个保护盖板30之间的两组光波导阵列10,且分别为第一光波导阵列11和第二光波导阵列12。X方向为第一光波导阵列11中的子波导101的延伸方向,Y方向为第二光波导阵列12中的子波导101延伸方向,Z方向为平面透镜1的厚度方向。当然有的方案里也可以取消保护盖板30,可采用其他方式保护光波导阵列10。
有的方案如图4所示,成型的光波导阵列10的外轮廓形状为矩形,每个子波导101的延伸方向与光波导阵列10的外轮廓的至少两条边之间的夹角为θ。进一步可选地,θ满足:30°≤θ≤60°,优选的θ=45°,在该角度下浮空实像P2较清晰,残像不明显。
这里,平面透镜1的核心成像元件为第一光波导阵列11和第二光波导阵列12,第一光波导阵列11和第二光波导阵列12包括相互正交的单列多排子波导101,平面透镜1整体呈平板,如图5所示,其可实现对影像P1点对点的无像差成像。
具体成像原理如下:这里将两个光波导阵列10进行拆分。如图6和图7所示,以第一光波导阵列11为例。单层光波导阵列10中,像源侧单点光线经单侧光波导阵列10后,被各排的子波导101分割进行镜像调制,然后重新汇聚在与X方向平行的一条直线P1’上,形成点对线一维成像效果。图6中示出了,像源侧单点光线经某个子波导101的入射角为δ,经子波导101反射后其出射角为δ’,入射角为δ与出射角δ’相等。
如图8所示,为了实现两个方向(X方向、Y方向)均交于一点,需要两组光波导阵列10联合使用,使两层的子波导101排布方向相互垂直,可对目标光源影像P1进行 点对点调制。因此任意方向的光线经过此相互正交的双层光波导阵列10,均可实现在光波导阵列10对称位置重新汇聚成浮空实像P2。浮空实像P2的成像距离m2与到原像距离m1相同,为等距离成像,且浮空实像P2的位置在空中,不需要投屏等载体,可直接把实像呈现在空气中。
因此这种平面透镜1可以使二维或者三维光源直接在空气中成实像,且实现真正的全息影像。在实现大视场、大孔径、高解像、无畸变、无色散的同时,实现裸眼三维立体显示特性。
这种传统的二面角反射器阵列,视场角较小,水平方向约±30°,成像过程中浮空实像P2两侧会各伴随着一个残像。
图9a所示为光线正入射和斜入射到平面透镜1时的示意图,正入射时光线路径如图9b所示,斜入射时光线路径如图9c所示。如图9b所示,当视角为0°时,光线正入射。残像是因为光线在平面透镜1中进行了奇数次反射,如图9c所示。图9b中实线为进行两次反射而产生浮空实像P2的光线,图9c是虚线为进行一次反射而产生残像的光线。
下面参考图10至图12描述根据本申请实施例的二面角反射器阵列结构100。
根据本申请实施例的用于空中成像的二面角反射器阵列结构100,二面角反射器阵列结构100设有由多个逆向曲面组成的逆向曲面阵列,以及由多个顺向曲面组成的顺向曲面阵列。逆向曲面、顺向曲面均为反射面,反射面用于反射光线。
这里需要说明的是,本文中用“顺向”、“逆向”来描述曲面以及下文的曲线,仅为方便读者由名称快速对应到结构特点,两种曲面的名称也可以互换。图10中从一个方向观察二面角反射器阵列结构100时,逆向曲面相对O点沿逆时针方向螺旋延伸,顺向曲面相对O点沿顺时针方向螺旋延伸。但是当从相对方向观察时,上述逆向曲面又相对O点沿顺时针方向螺旋延伸,上述顺向曲面相对O点沿逆时针方向螺旋延伸,此时两曲面的名称可以互换。
为清楚描述反射面为曲面时的结构特征,本文为二面角反射器阵列结构100引入了参考系。参考系包括:参考平面S、设在参考平面S上的XOY直角坐标系、与参考平面S相垂直的Z轴。通过该参考系的建立,可以引用三个坐标系。
首先是在参考平面S上设置的XOY直角坐标系,XOY直角坐标系由X轴、Y轴组成,X轴、Y轴的交点为O点。其次,由于Z轴与参考平面S相垂直,当Z轴过O点时,X轴、Y轴、Z轴组成笛卡尔坐标系。再有,在参考平面S上还具有以O点为极点 的极坐标系。
参阅图10,逆向曲面阵列在参考平面S上的垂直投影为逆向曲线阵列,逆向曲线阵列包括与多个逆向曲面对应的多个逆向曲线f1。本文中所有提及某特征的垂直投影,指的是当平行光沿垂直于参考平面S的方向投射至该特征时,该特征落到参考平面S上的影子。单个逆向曲面的垂直投影为单条逆向曲线f1,多个逆向曲面的垂直投影为多条逆向曲线f1,多个逆向曲面组成逆向曲线阵列,多个逆向曲线f1组成逆向曲线阵列。
逆向曲线阵列的极坐标方程为r=A n*exp(θ),极坐标方程以XOY直角坐标系的O点为极点、θ为与正方向上X轴之间的夹角,n为逆向曲线f1相对O点由近至远的序列数,A n为对应逆向曲线f1的长度系数,A n=A 1*q n-1,q大于1,0<θ<π。
也就是说,上述极坐标方程r=A n*exp(θ)是对多个逆向曲线f1的形状表述。对于距O点最近的逆向曲线f1,n=1,长度系数为A 1,第1条逆向曲线f1的极坐标方程为r=A 1*exp(θ)。对于距O点第2近的逆向曲线f1,n=2,长度系数A 2=A 1*q,第2条逆向曲线f1的极坐标方程为r=A 1*q*exp(θ)。对于距O点第3近的逆向曲线f1,n=3,长度系数A 3=A 1*q 2,第3条逆向曲线f1的极坐标方程为r=A 1*q 2*exp(θ)。如此类推。
各逆向曲线f1的长度系数A n=A 1*q n-1,为一组等比数列,序列号越大的逆向曲线f1,其长度系数增加越高,距离O点越远。
同样的,顺向曲面阵列在参考平面S上的垂直投影为顺向曲线阵列,顺向曲线阵列包括与多个顺向曲面对应的多个顺向曲线t1。多个顺向曲面组成顺向曲线阵列,多个顺向曲线t1组成顺向曲线阵列。
在本申请中,顺向曲线阵列、逆向曲线阵列相对Y轴对称,任意逆向曲线f1与顺向曲线t1在相交处为垂直相交。即顺向曲线阵列的极坐标方程为r=-A n*exp(-θ),(-π<θ<0)或者r=-A n*exp(2π-θ),(π<θ<2π),顺向曲线阵列的极坐标方程也以XOY直角坐标系的O点为极点、θ为与正方向上X轴之间的夹角,n为顺向曲线f1相对O点由近至远的序列数,A n为对应顺向曲线f1的长度系数,A n=A 1*q n-1,q大于1,0<θ<π。需要说明的是,顺向曲线阵列的极坐标方程中,在A n之前的负号不是指极径为负值,而是指方向相反。
当然本申请的逆向曲线f1、顺向曲线t1的参数方程也可以采用其他方式表达:
逆向曲线f1的参数坐标方程:
x=An*exp(t)*cos(t),
y=An*exp(t)*sin(t),
(0<t<π)。
顺向曲线t1的参数坐标方程:
x=-An*exp(t)*cos(-t),
y=-An*exp(t)*sin(-t),
(0<t<π)。
总之,多个逆向曲线f1与多个顺向曲线t1两两正交,对应的多个逆向曲面与多个顺向曲面呈相互正交的关系。
在本申请中,各反射面的垂直投影相交形成网状,各网孔基本为四边形,这里称该四边形为晶格。这里四边形的每一边均为弧形,由于二面角反射器阵列结构100的实际产品中会将反射面设置得较密,晶格的各边可以看成直边。由于曲面是相对Y轴对称的,因此晶格各边长度接近。由于任意逆向曲线f1与顺向曲线t1在相交处为垂直相交,因此由逆向曲线f1与顺向曲线t1形成的晶格大体为正方形。
结合图10-图11可以看出,以O点为圆心的同一圆弧上,该圆弧上所有晶格尺寸相同。而且任一曲线与圆弧的交点处,曲线切线与圆弧切线之间的夹角均为45°。每个晶格的顶角均为90°,从中心向边缘的任何方位观察,在一条直线上看到的所有晶格的顶角均被该条直线分为左右各45°的夹角,即当O点位置的光线向边缘入射时,始终会以45°的入射角入射,如图12a和图12b所示。以此最大程度的实现光线在晶格中进行两次反射,阻止了残像的产生。
本申请的这种二面角反射器阵列结构100在成像时和传统二面角反射器阵列一样,人眼看到的浮空实像P2需要依托于对应区域的成像元件,即人眼和浮空实像P2的连线的延长线上要有二面角反射器。所以只有当图像足够小或者二面角反射器阵列结构100足够大时,水平视角能够近似等于180度。而传统的二面角反射器阵列由于在偏离中心30度的视角后,光线的入射角已经远远偏离所需要的45°入射角,光线已经无法在反射器中发生二次反射再汇聚成像,此时边缘视角只能看到在反射器中奇次反射产生的残像。
根据本申请实施例的二面角反射器阵列结构100,通过将反射面设置成顺向曲面阵列和逆向曲面阵列,二者的垂直投影能相对Y轴对称且相互正交,且逆向曲线阵列的 极坐标方程为r=A n*exp(θ),可以增加浮空实像P2的水平可视角度,甚至能增至近似等于180度。而且如此设置减少了光线在二面角反射器阵列结构100中奇次反射产生的残像,提高了成像质量,有利于提高用户的观看体验。另外在不同的视角观察到的浮空实像P2,所观察到的光强无明显变化。
在本申请的方案中,逆向曲线阵列、顺向曲线阵列的极坐标方程中,θ的范围为0至180度。即逆向曲线的起点位置为θ等于0度,逆向曲线的起点位于X轴的正轴上;逆向曲线的终点位置为θ等于π,逆向曲线的终点位于X轴的负轴上。顺向曲线与逆向曲线正相反。
这样在设计二面角反射器阵列结构100时,可以将二面角反射器阵列结构100的一边设计成与X轴平齐,不仅加工容易,而且可以满足晶格顶角位置从0到180度的角度变化。那么在从0-180度的角度变化的光线射向二面角反射器阵列结构100时,每个角度的光线都能有晶格产生偶数次反射,从而保障二面角反射器阵列结构100的水平视角能够接近180度。而当θ的范围超过180度时,不仅加工不便,而且从物源侧很难有水平角超过180度的光线射向二面角反射器阵列结构100,所以没有必要将θ设计成超过180度。
进一步地,反射面在Z轴方向上的尺寸为其高度,各反射面的高度均相等,且各反射面在Z轴方向上的一侧平齐,各反射面在Z轴方向上的另一侧也平齐。这样所有反射面的高度尺寸是一致的,这样规则的设计,方便加工。
具体地,反射面的高度为晶格的平均边长的2至3倍。由于晶格大体为正方形,晶格的边长大体为晶格的宽度,而平均边长为所有晶格的边长的平均值。
这样反射面不致过高导致光线反射次数过多,而且反射面不致过矮导致结构容易断开。另外,根据模型仿真可知,当反射面的高度为晶格的平均边长的2至3倍时,可以让相当一部分光线射入后,反射次数在两次,这样反射次数少,光耗少。
在本申请的方案中如果晶格仅由逆向曲线f1、顺向曲线t1交织形成,因两种曲线在参考平面S上呈螺旋延伸,且相对O点由近至远排布时逆向曲线f1的长度系数成q倍增加,这就使相邻两逆向曲线f1越是远离极点间距越大,导致临近O点的晶格小而远离O点的晶格大。因此在从O点向外辐射的方向上,晶格存在由密到疏的变化。
为了使浮空实像P2各个点的光强更加均匀,可将由各曲线交织构成的若干个晶格尺寸相关不大。在一些实施例中,当相邻两条曲线在某个位置间隔大于设定值时,在该位置距两曲线等间距的地方插入一条新的曲线,这样对逆向曲线f1、顺向曲线t1分别 进行加密。这样从O点向外辐射的方向上,晶格存在由密到疏再到密的循环变化过程。
具体地,二面角反射器阵列结构100还设有加密逆向曲面且为反射面,加密逆向曲面在参考平面S上的垂直投影为加密逆向曲线f2,其极坐标方程为r=A x*exp(θ)。
二面角反射器阵列结构100还设有加密顺向曲面且为反射面,加密顺向曲面在参考平面S上的垂直投影为加密顺向曲线t2,加密顺向曲线t2、加密逆向曲线f2相对Y轴对称,任意加密顺向曲线t2与加密逆向曲线f2、逆向曲线f1在相交处为垂直相交。
加密逆向曲线f2的形状与逆向曲线f1的形状是一致的,只是加密逆向曲线f2的起点不再是θ等于0度,而是在θ大于0度的某个位置。另外加密逆向曲线f2的长度系数A x不再与逆向曲线f1成等比数列,A x按其他规律设置。同样的,加密顺向曲线t2的形状与顺向曲线t1的形状是一致的,只是加密顺向曲线t2的起点不再是θ等于0度,而是在θ大于0度的某个位置。另外,加密顺向曲线t2的长度系数不再与顺向曲线t1成等比数列。需要说明的是,当逆向曲线f1被加密后、顺向曲线t1被加密后,交织形成的网状的每个网孔也称为晶格,上文在计算晶格平均边长时,包括这部分晶格的边长。
其中,逆向曲线f1可被加密至少一次。
当加密一次时,加密逆向曲线f2包括:一次加密逆向曲线f2,一次加密逆向曲线f2位于相邻两个逆向曲线f1之间,其长度系数A x的大小在两侧逆向曲线f1的长度系数之间,起点位于或临近相邻两条逆变曲线的间距达第一设定值处。也就是说,一次加密逆向曲线f2的长度系数比前一个逆向曲线f1的长度系数大,比后一个逆向曲线f1的长度系数小。
当加密第二次时,加密逆向曲线f2包括:二次加密逆向曲线f2,二次加密逆向曲线f2位于相邻的逆向曲线f1和一次加密逆向曲线f2之间,其长度系数A x的大小在两侧逆向曲线f1和一次加密逆向曲线f2的长度系数之间,起点位于或临近两侧逆向曲线f1和一次加密逆向曲线f2间距达第二设定值处。
当加密再次增加时,加密后曲线设置形式以此类推,具体加密次数不作限制。
加密顺向曲线t2的加密方式与加密逆向曲线f2的加密方式一致,这里不再赘述。
由此,可以控制各晶格尺寸相差不大,让浮空实像P2各个点的光强更加均匀。
上述方法中加密曲线方程的长度系数由相邻两条曲线的长度系数决定,而θ角的范围与设定的最大间隔和相邻两曲线的长度系数有关。
在一些可选实施例中,一次加密逆向曲线f2的长度系数A x,等于两侧的逆向曲线 f1的长度系数的平方根的算数平均数的二次方;二次加密逆向曲线f2的长度系数A x,等于两侧的逆向曲线f1和一次加密逆向曲线f2的长度系数的平方根的算数平均数的二次方;以此类推。加密顺向曲线t2的设置方式与之类同,这里也不再赘述。
在具体方案中,曲线方程的长度系数A 1和q共同决定了晶格的大小,q大于1。且A 1和q值越小,曲线越密,晶格越小。例如在一些可选示例中,选用A n=0.01*2 n-1
在一些具体示例中,考虑到实际加工难度,晶格大小设置在0.1mm-0.2mm之间,当相邻两条曲线在某个位置间隔大于设定值0.2mm时,在该位置距两曲线等间距的地方插入一条加密曲线,该位置为θ角的起点,终点为π。该曲线方程的系数由相邻两条曲线的系数决定,θ角的范围与设定的最大间隔和相邻两曲线方程的长度系数有关。
例如,如果相邻两条逆向曲线f1的系数分别为A 1和A 2,那么二者之间的一次加密曲线f2的长度系数
Figure PCTCN2022113469-appb-000001
以此类推,所有的一次加密曲线f2的长度系数A 12、A 23、A 34……亦能构成一组公比为q的等比数列。
其中长度系数为A 1和A 12对应的两条曲线(即逆向曲线f1与相邻的一次加密曲线f2)在θ从0到π增大的过程中,若在某个位置间距超过第二设定值0.2mm,也需要在该位置插入新的曲线(即二次加密逆向曲线f2),与上述情况相同。
这里还需要说明的是,上文提及的各曲线以及由各曲线所织的线网在建立后,线网在二面角反射器阵列结构100上的位置不作限定。由于二面角反射器阵列结构100的面积是有限的,而按照等比数列所设的长度系数形成的曲线可以是无限的,因此线网最终留在二面角反射器阵列结构100上的部分是有限的。而且在设计时曲线以0度为起点π为终点,但是受二面角反射器阵列结构100形状的影响,相当一部分曲线的终点达不到π,而且有的曲线被二面角反射器阵列结构100的边缘截成两段或者三段。
例如在图10所示的示例中,由于二面角反射器阵列结构100是长方形板,仅第4条逆向曲线f1的起点为0而终点到π,其余逆向曲线f1的起点为0而终点小于π。
又例如有的示例中,所有曲线的起点均大于0。
在一些具体实施例中,如图11所示,二面角反射器阵列结构100为矩形的平直板件,O点位于矩形的长边中点上。该平直板件的中间恰好是Y轴,这样二面角反射器阵列结构100在形状上是左右对称的,使左右两侧光线强度能保持对称。
在一些实施例中,各反射面之间的填充物为空气,以空气作为光导介质,使光导介 质成本非常低,有利于减轻二面角反射器阵列结构100的整体重量。
在另一些实施例中,各反射面之间的填充物为高透光材料件。这样,高透光材料件不仅能保证光的高效传播,而且利用高透光材料件设置反射面较容易,还能用高透光材料件作为反射面的固定支撑结构,使反射面不易变形。
当然,本申请方案不限于此,有的方案也可以将各反射面之间设置成真空。虽然保持真空成本较高,但是真空对光线传播的影响非常小,可提高光传效率。
当各反射面之间的填充物为高透光材料件,该高透光材料件可采用光波导,此时二面角反射器阵列结构100也可以采用多种结构形式。
例如在一些实施例中,二面角反射器阵列结构100包括两组光波导阵列10,即为双层光波导结构。每组光波导阵列10均由多条子波导101组成,两组光波导阵列10包括:逆向光波导阵列和顺向光波导阵列,逆向光波导阵列的子波导101绕O点螺旋延伸,且多个子波导101按与O点距离由近及远的方向依次排布,相邻子波导101之间设置有逆向曲面。顺向光波导阵列的子波导101绕O点螺旋延伸,且多个子波导101按与O点距离由近及远的方向依次排布,相邻子波导101之间设置有顺向曲面。逆向光波导阵列和顺向光波导阵列沿Z轴排布。
两组光波导阵列10分别呈平板状,逆向光波导阵列至顺向光波导阵列的排布方向为Z方向,Z方向也为二面角反射器阵列结构100的厚度方向。需注意,逆向光波导阵列和顺向光波导阵列中,可以由逆向光波导阵列临近像源侧,也可以由顺向光波导阵列临近像源侧,这里不作限制。两层子波导101在相交处呈垂直关系,因此称两层光波导阵列10是相互正交的关系。
可选地,每个子波导101在宽度方向上两个侧面分别设置有反射膜,以构成反射面,用于对光线进行全反射。
在该实施例中,二面角反射器阵列结构100还可以包括保护盖板30,保护盖板30用于支撑和保护光波导阵列10。保护盖板30可以仅设置在二面角反射器阵列结构100的一侧,也可以在二面角反射器阵列结构100的两侧均设置保护盖板30。具体地,保护盖板30为透明盖板,可选地,保护盖板30为玻璃板。
具体地,逆向光波导阵列和顺向光波导阵列均为厚度均匀的平直板件。这样加工容易,而且容易定位,便于提高精度。
上述实施例是将逆向曲面和顺向曲面分设在光波导的不同层上,还有的实施例中将逆向曲面和顺向曲面设在光波导的同一层上。
例如二面角反射器阵列结构100包括单层的光波导块,光波导块的四面均设有反射 面,且其中两个相对的反射面构成逆向曲面、另两个相对的反射面构成顺向曲面。也就是说,这一方案里每个光波导块在参考平面S上的投影就是一个晶格,这一方面可以降低二面角反射器阵列结构100的厚度。
在上述方案里,二面角反射器阵列结构100包括多个镀金属膜层,以形成反射面。这里镀金属膜层可以直接形成在高透光材料件的表面,这样反射面的成型成本非常低。
综上,采用本申请的方案投影,可以消除浮空实像P2两侧的残像,可在水平视角近似180°观察到浮空实像P2。
在本说明书的描述中,参考术语“实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种用于空中成像的二面角反射器阵列结构,其特征在于,
    所述二面角反射器阵列结构具有参考系,其包括:参考平面、设在所述参考平面上的XOY直角坐标系、与所述参考平面相垂直的Z轴;
    所述二面角反射器阵列结构设有由多个逆向曲面组成的逆向曲面阵列、由多个顺向曲面组成的顺向曲面阵列,所述逆向曲面、所述顺向曲面均为反射面;
    所述逆向曲面阵列在所述参考平面上的垂直投影为逆向曲线阵列,所述逆向曲线阵列包括与所述多个逆向曲面对应的多个逆向曲线,所述逆向曲线阵列的极坐标方程为r=A n*exp(θ),极坐标方程以所述XOY直角坐标系的O点为极点、θ为与正方向上X轴之间的夹角,n为所述逆向曲线相对所述O点由近至远的序列数,A n为对应所述逆向曲线的长度系数,A n=A 1*q n-1,q大于1,0<θ<π;
    所述顺向曲面阵列在所述参考平面上的垂直投影为顺向曲线阵列,所述顺向曲线阵列包括与所述多个顺向曲面对应的多个顺向曲线,所述顺向曲线阵列、所述逆向曲线阵列相对所述Y轴对称,任意所述逆向曲线与所述顺向曲线在相交处为垂直相交。
  2. 根据权利要求1所述的用于空中成像的二面角反射器阵列结构,其特征在于,所述逆向曲线阵列、所述顺向曲线阵列的极坐标方程中,θ的范围为0至180度。
  3. 根据权利要求1所述的用于空中成像的二面角反射器阵列结构,其特征在于,
    所述二面角反射器阵列结构还设有加密逆向曲面且为反射面,所述加密逆向曲面在所述参考平面上的垂直投影为加密逆向曲线,其极坐标方程为r=A x*exp(θ);
    其中,所述加密逆向曲线包括:一次加密逆向曲线,所述一次加密逆向曲线位于相邻两个所述逆向曲线之间,其长度系数A x的大小在两侧所述逆向曲线的长度系数之间,起点位于或临近相邻两条所述逆变曲线的间距达第一设定值处;所述加密逆向曲线包括:二次加密逆向曲线,所述二次加密逆向曲线位于相邻的所述逆向曲线和所述一次加密逆向曲线之间,其长度系数A x的大小在两侧所述逆向曲线和所述一次加密逆向曲线的长度系数之间,起点位于或临近两侧所述逆向曲线和所述一次加密逆向曲线间距达第二设定值处;以此类推,设置所述加密逆向曲线;
    所述二面角反射器阵列结构还设有加密顺向曲面且为反射面,所述加密顺向曲面在所述参考平面上的垂直投影为加密顺向曲线,所述加密顺向曲线、所述加密逆向曲线相 对所述Y轴对称,任意所述加密顺向曲线与所述加密逆向曲线、所述逆向曲线在相交处为垂直相交。
  4. 根据权利要求3所述的用于空中成像的二面角反射器阵列结构,其特征在于,所述一次加密逆向曲线的长度系数A x,等于两侧的所述逆向曲线的长度系数的平方根的算数平均数的二次方;所述二次加密逆向曲线的长度系数A x,等于两侧的所述逆向曲线和所述一次加密逆向曲线的长度系数的平方根的算数平均数的二次方;以此类推。
  5. 根据权利要求1所述的用于空中成像的二面角反射器阵列结构,其特征在于,各所述反射面的垂直投影相交形成的四边形为晶格,所述反射面在所述Z轴方向上的尺寸为其高度,所述反射面的高度为所述晶格的平均边长的2至3倍。
  6. 根据权利要求1所述的用于空中成像的二面角反射器阵列结构,其特征在于,各所述反射面的高度均相等,且各所述反射面在所述Z轴方向上的一侧平齐。
  7. 根据权利要求1所述的用于空中成像的二面角反射器阵列结构,其特征在于,各所述反射面之间的填充物为空气或者高透光材料件。
  8. 根据权利要求1所述的用于空中成像的二面角反射器阵列结构,其特征在于,
    所述二面角反射器阵列结构包括两组光波导阵列,每组所述光波导阵列均由多条子波导组成,所述两组光波导阵列包括:逆向光波导阵列和顺向光波导阵列,
    所述逆向光波导阵列的所述子波导绕所述O点螺旋延伸,且多个所述子波导按与所述O点距离由近及远的方向依次排布,相邻所述子波导之间设置有所述逆向曲面;
    所述顺向光波导阵列的所述子波导绕所述O点螺旋延伸,且多个所述子波导按与所述O点距离由近及远的方向依次排布,相邻所述子波导之间设置有所述顺向曲面;
    所述逆向光波导阵列和所述顺向光波导阵列沿所述Z轴排布。
  9. 根据权利要求8所述的用于空中成像的二面角反射器阵列结构,其特征在于,所述逆向光波导阵列和顺向光波导阵列均为厚度均匀的平直板件。
  10. 根据权利要求1所述的用于空中成像的二面角反射器阵列结构,其特征在于,所述二面角反射器阵列结构包括单层的光波导块,所述光波导块的四面均设有所述反射面,且其中两个相对的所述反射面构成所述逆向曲面、另两个相对的所述反射面构成所述顺向曲面。
  11. 根据权利要求1-10中任一项所述的用于空中成像的二面角反射器阵列结构,其特征在于,所述二面角反射器阵列结构包括多个镀金属膜层,以形成所述反射面。
  12. 根据权利要求1-10中任一项所述的用于空中成像的二面角反射器阵列结构,其 特征在于,所述二面角反射器阵列结构为矩形的平直板件,所述O点位于所述矩形的长边中点上。
PCT/CN2022/113469 2021-08-19 2022-08-19 用于空中成像的二面角反射器阵列结构 WO2023020603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110956578.4 2021-08-19
CN202110956578.4A CN113655629B (zh) 2021-08-19 2021-08-19 用于空中成像的二面角反射器阵列结构

Publications (1)

Publication Number Publication Date
WO2023020603A1 true WO2023020603A1 (zh) 2023-02-23

Family

ID=78492475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113469 WO2023020603A1 (zh) 2021-08-19 2022-08-19 用于空中成像的二面角反射器阵列结构

Country Status (2)

Country Link
CN (1) CN113655629B (zh)
WO (1) WO2023020603A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655629B (zh) * 2021-08-19 2023-11-14 安徽省东超科技有限公司 用于空中成像的二面角反射器阵列结构
CN117406467B (zh) * 2023-12-15 2024-03-08 中显全息(北京)科技有限公司 实现全方位角可观测的光学成像器件及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090117A (ja) * 2009-10-21 2011-05-06 Tomohiko Fujishima 光学結像装置及びそれを用いた光学結像方法
JP2017151154A (ja) * 2016-02-22 2017-08-31 大日本印刷株式会社 光学パネル
CN107703638A (zh) * 2016-08-08 2018-02-16 群创光电股份有限公司 图像显示系统
CN110573935A (zh) * 2017-06-29 2019-12-13 亚斯卡奈特股份有限公司 立体像成像装置及立体像成像装置的制造方法
CN113655629A (zh) * 2021-08-19 2021-11-16 安徽省东超科技有限公司 用于空中成像的二面角反射器阵列结构
CN216622748U (zh) * 2021-12-09 2022-05-27 郭生文 一种用于空中成像的光波导阵列结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203457357U (zh) * 2013-09-10 2014-02-26 美的集团股份有限公司 电磁炉线圈盘及具有其的电磁炉
CN105617964B (zh) * 2014-11-07 2018-02-23 广东鼎燊科技有限公司 电磁感应加热反应釜
CN208129937U (zh) * 2017-12-14 2018-11-23 刘玉 聚能导热盘
CN113218231A (zh) * 2021-06-21 2021-08-06 山东爱客多热能科技有限公司 一种新型钢铝复合铸造一体成型换热管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090117A (ja) * 2009-10-21 2011-05-06 Tomohiko Fujishima 光学結像装置及びそれを用いた光学結像方法
JP2017151154A (ja) * 2016-02-22 2017-08-31 大日本印刷株式会社 光学パネル
CN107703638A (zh) * 2016-08-08 2018-02-16 群创光电股份有限公司 图像显示系统
CN110573935A (zh) * 2017-06-29 2019-12-13 亚斯卡奈特股份有限公司 立体像成像装置及立体像成像装置的制造方法
CN113655629A (zh) * 2021-08-19 2021-11-16 安徽省东超科技有限公司 用于空中成像的二面角反射器阵列结构
CN216622748U (zh) * 2021-12-09 2022-05-27 郭生文 一种用于空中成像的光波导阵列结构

Also Published As

Publication number Publication date
CN113655629A (zh) 2021-11-16
CN113655629B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2023020603A1 (zh) 用于空中成像的二面角反射器阵列结构
KR102231367B1 (ko) 공기 중의 이미징에 사용되는 시스템
WO2023040491A1 (zh) 光学结构和光学装置
US8123370B2 (en) Multiple-viewing-point floating image display device
EP0753784A1 (en) Liquid crystal display device
US11662513B2 (en) Non-uniform sub-pupil reflectors and methods in optical waveguides for AR, HMD and HUD applications
WO2022257724A1 (zh) 成像光学系统及显示装置
KR100656996B1 (ko) 마이크로렌즈 배열 프로젝션 스크린
US8733983B2 (en) Sheet and light-emitting device
WO2008075700A1 (ja) 光学システム
EA029832B1 (ru) Сохраняющий поляризацию проекционный экран
JPWO2018042830A1 (ja) 光結像装置
WO2018151220A1 (ja) 光学装置
JP2019139163A (ja) 拡散板、拡散板の設計方法、表示装置、投影装置及び照明装置
JP2015517118A (ja) マルチオブジェクト画像の製造方法と当該方法を実行するための光学フィルム
WO2023035833A1 (zh) 波导结构和电子设备
KR20010009720A (ko) 3차원 영상의 다자 시청용 스크린 및 그 제작방법
EP3933465B1 (en) Optical waveguide unit and array, and flat lens
CN112684610A (zh) 一种高光学效率狭缝光栅3d显示器
US7421180B2 (en) Light guide apparatus for use in rear projection display environments
JPH05150368A (ja) 反射型スクリーン
JP2011133642A (ja) 光学素子およびディスプレイシステム
JP2013210494A (ja) 光拡散フィルム、偏光板、及び液晶表示装置
Kujime et al. Different aerial image formation into two directions by crossed-mirror array
JP4792565B2 (ja) プロジェクションディスプレイ用スクリーン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22857912

Country of ref document: EP

Kind code of ref document: A1