WO2023020353A1 - 一种医疗支架 - Google Patents

一种医疗支架 Download PDF

Info

Publication number
WO2023020353A1
WO2023020353A1 PCT/CN2022/111601 CN2022111601W WO2023020353A1 WO 2023020353 A1 WO2023020353 A1 WO 2023020353A1 CN 2022111601 W CN2022111601 W CN 2022111601W WO 2023020353 A1 WO2023020353 A1 WO 2023020353A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh structure
medical stent
thick
section
layer
Prior art date
Application number
PCT/CN2022/111601
Other languages
English (en)
French (fr)
Inventor
黄云帆
周炯
Original Assignee
神途医疗科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神途医疗科技(上海)有限公司 filed Critical 神途医疗科技(上海)有限公司
Publication of WO2023020353A1 publication Critical patent/WO2023020353A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure

Definitions

  • the invention relates to the technical field of medical devices, in particular to a medical bracket.
  • Cerebrovascular stenosis is an important cause and risk factor of ischemic cerebrovascular diseases, including common carotid artery stenosis and intracranial vascular stenosis, which will affect the blood supply to the brain and may eventually lead to ischemic death of brain cells.
  • vascular stent treatment There are three main treatment methods for cerebrovascular stenosis, namely drug treatment, surgical treatment and vascular stent treatment.
  • Drug therapy improves cerebral blood perfusion by promoting collateral circulation compensation, and is not suitable for patients with severe stenosis or multiple stenosis.
  • Surgical treatment is traumatic and older patients cannot tolerate this treatment, while Vascular stent therapy is famous for its minimal invasiveness, low invasiveness, high surgical effect and simple implementation, and it has gradually emerged in recent years.
  • Vascular stent treatment for cerebrovascular stenosis is divided into two types: thrombus removal and stent placement.
  • thrombus removal When the patient has in situ stenosis, the plaque cannot be removed by mechanical fitting of the stent, or the blood vessel condition is poor, and it is easy to reapply even after removal.
  • stenosis When stenosis is formed, it can only be treated by placing a stent.
  • This type of stent needs to have the following properties: (1) The mesh density is appropriate to cover the plaque and prevent the thrombus from escaping to the distal end causing catastrophic consequences; (2) The stent has good adhesion to the wall, good bending flexibility, and cerebral vascular shape Rich and complex, with tortuous blood routes, the hemodynamics at the site must not be affected after the stent is placed, and no new thrombus will be generated due to the gap between the stent and the vessel wall; (3) The head end is open and adheres well.
  • the purpose of the present invention is to provide a medical bracket that can meet various performance requirements.
  • the present invention provides a medical stent, which is a tubular body formed by integral braiding of thick wires and thin wires.
  • the medical stent includes a head section, a middle section and a tail section connected in sequence; wherein,
  • the head section and the tail section include a first mesh structure, and the first mesh structure is formed by mixing the thick wire and the thin wire;
  • the middle section includes a second mesh structure including a first single-layer mesh structure formed by weaving the thick filaments and a second single-layer mesh structure formed by weaving the fine filaments , the first single-layer mesh structure and the second single-layer mesh structure cover each other.
  • the medical stent is interwoven with braided wires in opposite helical directions, and each braided wire in a helical direction includes the thick wire and the thin wire.
  • the number of thick wires and the number of thin wires of the first mesh structure are alternately arranged at m:n intervals, wherein, Both m and n are positive integers.
  • the number of the thin wires is greater than or equal to the number of the thick wires.
  • the medical stent includes twisted structures with opposite helical directions, and each twisted structure is formed by intertwining and intertwining the thick wires and/or the thin wires.
  • each twisted structure includes one thick wire and one thin wire intertwined and intertwined with each other.
  • the head section and/or the tail section includes a flaring section, and the flaring section gradually expands radially outward in a direction away from the middle section , the flaring section is formed by extending and weaving the thick and/or thin filaments along a first direction and then convolutedly extending and weaving along a second direction, the second direction being opposite to the first direction.
  • the flare angle of the flared section relative to the axis of the middle section is 5°-75°.
  • the flaring section includes a first flaring structure formed by extending and braiding the thick wire along the first direction and then convolutedly extending and braiding along the second direction and the thin wire along the
  • the second flaring structure formed by extending the weaving along the second direction is convoluted after the first direction extending weaving.
  • the first flared structure is farther away from the middle section than the second flared structure, or the second flared structure and the first flared structure The structure is equidistant from said intermediate section.
  • the flare angles of the first flaring structure and the second flaring structure relative to the axis of the middle section are the same.
  • the axial length of the middle section accounts for 40%-95% of the total length of the medical stent.
  • the mesh area of the third single-layer mesh structure is 0.01 mm 2 -1 mm 2
  • the mesh area of the second single-layer mesh structure is 0.01 mm 2 to 1 mm 2
  • the mesh area of the three single-layer mesh structure is more than 4 times.
  • the second mesh structure further includes a third single-layer mesh structure formed by braiding the thick wire or the thin wire, and the third single-layer mesh The structure and the first single-layer mesh structure cover each other, or the third single-layer mesh structure and the second single-layer mesh structure cover each other.
  • the first mesh structure is a single-layer structure.
  • the present invention provides a medical stent
  • the medical stent is a tubular body formed by integral braiding of thick wires and thin wires
  • the medical stent includes a head section, a middle section and a tail section connected in sequence; wherein, The head section and the tail section include a first mesh structure, the first mesh structure is formed by mixing the thick wire and the thin wire; the middle section is a second mesh structure, the The second mesh structure is formed by covering each other with the first single-layer mesh structure formed by braiding the thick filaments and the second single-layer mesh structure formed by braiding the thin filaments.
  • the middle section of the medical stent utilizes the first single-layer mesh structure to ensure the wall-attachment performance of the middle section of the bracket, it also ensures plaque coverage and prevents thrombus from escaping through the second single-layer mesh structure;
  • the medical stent is integrally braided from thick wires and thin wires, and the weaving and assembly process is simple and efficient.
  • the head end and/or tail end of the medical stent adopts a back-knitting design, and there is no exposed wire head, which can avoid the damage of the blood vessel wall by the exposed wire head;
  • the head end and/or tail end of the medical stent adopt back-knitting design to form a flaring section, so that the stent is easier to open after being pushed out of the microcatheter, and the anchoring ability of the stent end is increased simultaneously;
  • the head section and the tail section of the medical stent are single-layer mixed braided structures, which are convenient for assembly and transportation.
  • FIG. 1 is a schematic structural view of a medical stent provided by Embodiment 1 of the present invention.
  • Fig. 2 is another schematic structural view of the medical stent provided by Embodiment 2 of the present invention.
  • Figures 3a to 3d are illustrations of the state of contact between the first mesh structure and the vessel wall in Embodiment 1 of the present invention.
  • Figures 4a-4b are illustrations of the state of contact between the second mesh structure and the blood vessel wall in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of the weaving method of the mesh structure in Embodiment 1 of the present invention.
  • Fig. 6 is a schematic structural view of the first flaring section of the medical stent provided by Embodiment 1 of the present invention.
  • Fig. 7 is a schematic structural view of the medical stent provided by Embodiment 1 of the present invention including the first flaring section and the second flaring section;
  • Fig. 8 is a schematic structural view of the first flaring section of the medical stent provided by Embodiment 2 of the present invention.
  • Fig. 9 is a schematic structural view of the second flaring section of the medical stent provided by Embodiment 2 of the present invention.
  • Fig. 10 is a schematic structural diagram of a twisted structure in Embodiment 2 of the present invention.
  • the present embodiment provides a medical stent, which is a tubular body formed by braiding thick wire 1 and thin wire 2 integrally, and the medical stent includes a head section 100, a middle Section 200 and end section 300, wherein,
  • the head section 100 and the tail section 300 include a first mesh structure 10, and the first mesh structure 10 is formed by mixing the thick wire 1 and the thin wire 2;
  • the middle section 200 includes a second mesh structure, the second mesh structure is a first single-layer mesh structure 20 formed by weaving the thick filaments 1 and a second single-layer mesh structure formed by weaving the thin filaments 2
  • the mesh structures 30 are formed by covering each other.
  • the middle section 200 has a double-layer structure, which is formed by covering each other with the first single-layer mesh structure 20 woven with the thick wire 1 and the second single-layer mesh structure 30 woven with the thin wire 2 , while using the first single-layer mesh structure 20 to ensure the wall-attachment performance of the middle section 200 of the stent, the second single-layer mesh structure 30 is also used to ensure plaque coverage and prevent thrombus from escaping, and the medical stent is made of thick wire 1 It is integrally braided with the filament 2, and the weaving and assembly process is simple and efficient.
  • the second mesh structure may further include a third single-layer mesh structure (not shown) formed by braiding the thick wire or the thin wire, and the third single-layer mesh The hole structure and the first single-layer mesh structure 20 cover each other, or the third single-layer mesh structure and the second single-layer mesh structure 30 cover each other. But the present application is not limited thereto.
  • the second mesh structure may also include a fourth mesh structure formed by braiding the thick wire or the thin wire and covering each other with other single-layer mesh structures of the second mesh structure. Single-layer structure and so on.
  • the thick wire 1 and the thin wire 2 can use the same material, such as cobalt-chromium alloy, nickel-titanium alloy, tungsten wire, stainless steel wire, or the thick wire 1 and the thin wire 2 can use different materials. materials, such as any one of cobalt-chromium alloy, nickel-titanium alloy, tungsten wire, stainless steel wire, and metal composite wire, or any one or several of the thick wire 1 and the thin wire 2
  • the root adopts radiopaque developing wire, such as any one or any several kinds of developing wires such as platinum wire, platinum tungsten wire, and platinum iridium wire.
  • the medical stent is formed by interweaving braided wires with opposite spirals, and the braided wires in each helical direction include the thick wire 1 and the thin wire 2.
  • the medical stent is integrally braided from a plurality of thick wires 1 and a plurality of thin wires 2, and each of the thick wires 1 and each thin wire 2 is spirally extended to form a helical structure, thereby making the
  • the medical stent has multiple left-handed helical structures and multiple right-handed helical structures, and the helical structures in the same helical direction do not intersect each other.
  • “left and right” is a non-limiting description, it should be understood that “left and right” are relative to the central axis of the formed helical structure, and left-handed and right-handed mean two opposite directions of rotation relative to the central axis. spiral direction.
  • the number of thick filaments 1 and the number of thin filaments 2 of the first mesh structure 10 are arranged alternately at m:n intervals, wherein m and n are both positive integers.
  • m is 1 and n is 1 as an example, but it should be understood that m and n can also take other values, and the value range of m:n can be 1:1 ⁇ 5:1 , for example, m is 1, n is 2, or m is 2, n is 3, etc., the present application is not limited thereto.
  • the first single-layer mesh structure 20 is formed by weaving thick filaments 1 in two different directions
  • the second single-layer mesh structure 30 is formed by weaving thin filaments 2 in two different directions.
  • the first single-layer mesh structure 20 formed by weaving the thick filaments 1 constitutes the inner layer of the second mesh structure
  • Two single-layer mesh structures 30 constitute the outer layer of the second mesh structure, and as shown in FIG. 4a, the second mesh structure is in contact with the vessel wall 3 through the first single-layer mesh structure 20 , that is, or, as shown in FIG.
  • the second single-layer mesh structure 30 formed by weaving the thin filaments 2 constitutes the inner layer of the second mesh structure
  • the second single-layer mesh structure 30 formed by weaving the thick filaments 1 The first single-layer mesh structure 20 constitutes the outer layer of the second mesh structure, and as shown in Figure 4b, the second mesh structure can pass through the second single-layer mesh structure 30 and the blood vessel wall 3 connected.
  • the mesh area of the second single-layer mesh structure 30 is 0.01 mm 2 -0.64 mm 2 to ensure plaque coverage and prevent thrombus from escaping
  • the mesh area of the first single-layer mesh structure 20 is
  • the mesh area of the second single-layer mesh structure 30 is more than 4 times to ensure the wall-attachment performance of the middle section 200 of the bracket.
  • the number of the thin wires 2 is greater than or equal to the number of the thick wires 1, that is, viewed from the cross section of the medical stent, the thin wires 2
  • the number of wires 2 is greater than or equal to the number of thick wires 1, and further preferably, the number of thin wires 2 is greater than the number of thick wires 1, so that the medical stent formed by braiding can be While the thick wire 1 is used to provide sufficient radial support force, the mesh area is also as small as possible.
  • the first mesh structure is a single-layer structure, and when the head section and the tail section of the medical stent adopt a single-layer structure, it can be easily assembled and transported.
  • the first mesh structure 10, the first single-layer mesh structure 20, and the second single-layer mesh structure 30 can be plain weave or a variation of plain weave, that is, two directions at an angle to each other
  • the braided wires on the top are braided in the ways of 1 sinking and 1 floating, 2 sinking and 1 floating, 3 sinking and 1 floating, 2 sinking and 2 floating, 2 sinking and 3 floating, etc. shown in Figure 5 to form each of the mesh structures. It should also be understood that FIG. 5 only exemplifies the weaving manner of each of the mesh structures, and does not distinguish whether the braided wires are thick wires 1 or thin wires 2 .
  • the head section 100 and/or the tail section 300 includes a flared section
  • the flared section opens away from the middle section 200
  • the flared section 101 The thick filaments 1 are formed by extending and weaving along the first direction shown in FIG. 6 and then convolutedly extending and weaving along the second direction. After helically extending in one direction to form a helical structure, the convolutes are helically extending in the opposite direction to form a helical structure again, thereby forming two helical structures with opposite helical directions and opposite extending directions through one thick filament 1 .
  • the flaring section only includes the first flaring structure 101 formed by braiding thick filaments extending along the first direction and then convolutedly braiding along the second direction.
  • the stent does not have the thick wire 1 exposed, so that the thick wire 1 can be avoided from damaging the blood vessel wall.
  • the stent can be opened more easily after being pushed out of the microcatheter, and at the same time Increased anchoring capacity at the end of the stent.
  • the filament 2 forming the medical catheter may not be braided convolutedly, that is, the end of the filament 2 is exposed, or, further preferably, as shown in FIG.
  • the head section 100 and/or the The tail section 300 includes the first flaring structure 101 formed by extending the thick filaments along the first direction, weaving them and then convolutely extending them along the second direction, and forming the thin filaments extending along the first direction and then weaving them convolutedly along the second direction.
  • the second flaring structure 102 of the stent so that the stent also has no filaments 2 exposed.
  • the thin wire 2 also adopts a convoluted design on the basis of the thick wire 1, which can reduce the damage to the blood vessel. Damage to the pipe wall is minimized.
  • the medical stent provided by the embodiment of the present invention can have the following several forms:
  • the thick wire large mesh in the double layer in the middle of the bracket is in the inner layer, and only the head end has a thick wire re-weaving structure
  • the thick wire large mesh in the double layer in the middle of the bracket has a thick wire back braided structure on the inner layer, and the head and tail ends;
  • the thick wire large mesh in the double layer in the middle of the stent has a thick wire back-knitting structure and a thin wire back-knitting structure at the head end and tail end;
  • the thick wire large mesh in the double layer in the middle of the bracket is in the outer layer, and the head end and the tail end all have a thick wire weaving structure;
  • the large meshes of thick wires in the double layer in the middle of the stent are in the outer layer, and there are thick wire back-knitting structures and thin wire back-knitting structures at the head end and tail end.
  • the flares of the first flared structure 101 and the second flared structure 102 relative to the axis of the middle section 200 are the same, of course, in some other embodiments, the flaring angles of the first flaring structure 101 and the second flaring structure may also be different.
  • the second flaring structure 102 is farther away from the middle section 200 than the first flaring structure 101 , or, referring to FIG. 9 , the second flaring structure 102 and the first flaring structure 101 are at the same distance from the middle section 200 .
  • Such a design makes the ends of the medical stent always give radial tension through the thick wire 1, thereby ensuring the anchoring effect and opening effect of the stent.
  • the value range of the flaring angles of the first flaring structure 101 and the second flaring structure 102 relative to the axis of the middle section 200 may be 5°-75°, within this range , the anchoring effect and opening effect of the medical stent are the best.
  • the value range of the swirl angle ⁇ formed by the swirling of the thick filament and/or the thin filament may be 10°-150°.
  • the axial length of the intermediate section 200 accounts for 40% to 95% of the total length of the medical stent, and the specific axial length of the intermediate section 200 can be set according to the length of the diseased blood vessel.
  • the length of the middle section 200 can be as close as possible to the length of the diseased blood vessel, so that the second single-layer mesh structure 30 of the middle section 200 can better cover the plaque.
  • the first mesh structure 10 can also have a certain covering effect. Therefore, the present application does not limit the length of the middle section 200 and the lesion Vessels are equal in length.
  • This embodiment provides a medical stent, which has the same components as the medical stent provided in Embodiment 1, that is, it also includes a head section 100, a middle section 200, and a tail section 300 connected in sequence, and the The head section 100 and the tail section 300 are a first mesh structure 10 formed by mixing the thick wire 1 and the thin wire 2, the middle section 200 is a second mesh structure, and the second The mesh structure is formed by covering each other with the first single-layer mesh structure 20 formed by weaving the thick filaments 1 and the second single-layer mesh structure 30 formed by weaving the thin filaments 2, and is the same as the one provided in the first embodiment.
  • the above medical stents have the same performance.
  • the medical stent is interwoven with twisted structures with opposite helical directions, and each twisted structure is formed by the thick wire 1 And/or the filaments 2 are formed by rotating and interweaving each other.
  • the kink structure can be a first kink structure formed by intertwining two thick filaments 1 , or a second kink structure formed by intertwining two thin filaments 2 . Kinked structure, or a third twisted structure formed by intertwining and intertwining one thick wire 1 and one thin wire 2 .
  • the medical stent When the medical stent includes a first twisted structure formed by intertwining two thick filaments 1 and a second twisted structure formed by intertwining two thin filaments 2, in the same helical direction , the first twisted knot structure and the second twisted knot structure may be arranged alternately according to 1:1, 1:2, etc. and do not intersect each other.
  • the medical stent includes the first twisted structure, the second twisted structure, and the third twisted structure, in the same helical direction, the first twisted structure, the second twisted structure
  • the structure and the third twisted structure can be alternately arranged in sequence according to 1:1:1 and do not intersect with each other.
  • the medical stent also includes the first twisted structure, the second twisted structure 1.
  • Other combinations and arrangements of the third twisted structure it is only necessary to ensure that the combination and arrangement can provide sufficient radial support force, and after integral braiding, the middle section 200
  • the mesh area of the second single-layer mesh structure 30 is 0.01 mm 2 to 0.64 mm 2 , which ensures plaque coverage and prevents thrombus from escaping.
  • the medical stent only includes the third twisted structure, that is, each twisted structure of the medical stent includes one thick wire 1 and one thick wire 1 intertwined with each other.
  • the thin wire 2 is so designed that the medical stent has a uniform radial support force.
  • the head section 100 and/or the tail section 300 has a flaring section that is open away from the middle section 200.
  • the The flaring section only includes the first flaring structure 101, the first flaring structure 101 is formed by extending and weaving the thick filament 1 along the first direction and then convolutedly extending and weaving along the second direction, and the second direction Contrary to the first direction, in this embodiment, each of the twisted structures is first helically extended in one direction to form a helical structure, and then helically extended in the opposite direction to form a helical structure.
  • the twisted structure forms two helical structures with opposite helical directions and opposite extending directions.
  • the flaring section in this embodiment includes a first flaring structure 101 and a second flaring structure 102, and the second flaring structure 102 is formed by extending and weaving the twisted structure along the first direction and then convolutedly extending and weaving along the second direction. Therefore, the medical stent provided in this embodiment can also exist in the eight forms described in Embodiment 1.
  • Figure 10 illustrates a structure of the twisted structure, but the application is not limited thereto. Any twisted way that can be wound and interwoven to form a twisted structure with interwoven loops and interwoven points is within the protection scope of the present application within.
  • the present invention provides a medical stent
  • the medical stent is a tubular body formed by integral braiding of thick wires and thin wires
  • the medical stent includes a head section, a middle section and a tail section connected in sequence; wherein, The head section and the tail section include a first mesh structure, the first mesh structure is formed by mixing the thick wire and the thin wire; the middle section includes a second mesh structure, the The second mesh structure is formed by covering each other with the first single-layer mesh structure formed by braiding the thick filaments and the second single-layer mesh structure formed by braiding the thin filaments.
  • the middle section of the medical stent is a double-layer structure formed by covering each other with the first single-layer mesh structure woven by thick wire and the second single-layer mesh structure woven by fine wire. While ensuring the wall-attachment performance of the middle section of the stent, the second single-layer mesh structure also ensures the plaque coverage to prevent thrombus from escaping, and the medical stent is integrally woven from thick and thin wires, and the weaving and assembly process is simple and efficient.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the differences from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • different parts of the various embodiments can also be used in combination with each other, which is not limited in the present invention.
  • the medical stent provided by the present invention can be used in the carotid artery, and can also be applied to other parts in need, such as subclavian artery, vertebral artery ostium, intracranial blood vessels, peripheral blood vessels, coronary arteries, etc. This application is not limited to this.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种医疗支架,为由粗丝(1)和细丝(2)一体编织形成的管状体,医疗支架包括依次连接的头段(100)、中间段(200)及尾段(300);其中,头段(100)及尾段(300)包括第一网孔结构(10),第一网孔结构(10)由粗丝(1)和细丝(2)混编形成;中间段(200)包括第二网孔结构,第二网孔结构由粗丝(1)编织形成的第一单层网孔结构(20)和由细丝(2)编织形成的第二单层网孔结构(30)相互覆盖形成。医疗支架的中间段(200)为双层结构,在利用单层粗丝网孔结构保证支架中间段(200)贴壁性能的同时,也通过单层细丝网孔结构保证斑块覆盖率防止血栓逃逸,且医疗支架由粗丝(1)和细丝(2)一体编织成型,编织和组装工艺简单高效。

Description

一种医疗支架 技术领域
本发明涉及医疗器械技术领域,特别涉及一种医疗支架。
背景技术
脑血管狭窄是造成缺血性脑血管疾病的一个重要病因和危险因素,包括常见的颈动脉狭窄和颅内血管狭窄,狭窄会影响脑部供血并可能最终导致脑细胞缺血死亡。
脑血管狭窄主要有三种治疗方式,分别是药物治疗、外科手术治疗及血管支架治疗。药物治疗通过促进侧支循环代偿来改善脑组织血流灌注,不适用于狭窄程度较重或者伴多处狭窄的患者,外科手术治疗创伤大,年龄大的患者不耐受该治疗方式,而血管支架治疗以其微创性、低侵入性以及手术成效高且施行简易闻名,近年来逐步兴起。
针对脑血管狭窄的血管支架治疗,又分取栓和支架置入两种,当患者为原位狭窄病变,斑块无法通过支架机械嵌合的方式取出,或血管条件差,即使取出后易再次形成狭窄时,只能通过置入支架来达到治疗目的。该类支架需要具备以下性能:(1)网孔密度适宜,对斑块形成覆盖,防止血栓向远端逃逸造成灾难性后果;(2)支架贴壁性良好、弯曲柔顺性佳,脑血管形态丰富且复杂,血路迂曲,支架置入后需不影响该处的血流动力学,不会因支架与管壁存在间隙而新生成血栓;(3)头端打开贴壁性能良好。
发明内容
本发明的目的在于提供一种能够满足多种性能需求的医疗支架。
基于上述思想,本发明提供一种医疗支架,所述医疗支架为由粗丝和细丝一体编织形成的管状体,所述医疗支架包括依次连接的头段、中间段及尾段;其中,
所述头段及所述尾段包括第一网孔结构,所述第一网孔结构由所述粗丝和所述细丝混编形成;
所述中间段包括第二网孔结构,所述第二网孔结构包括由所述粗丝编织形成的第一单层网孔结构和由所述细丝编织形成的第二单层网孔结构,所述第一单层网孔结构和第二单层网孔结构相互覆盖。
可选的,在所述的医疗支架中,所述医疗支架由螺旋方向相反的编织线交织而成,每个螺旋方向上的所述编织线包括所述粗丝和所述细丝。
可选的,在所述的医疗支架中,在同一螺旋方向上,所述第一网孔结构的所述粗丝的数量和所述细丝的数量按m:n交替间隔排布,其中,m和n均为正整数。
可选的,在所述的医疗支架中,所述细丝的数量大于或等于所述粗丝的数量。
可选的,在所述的医疗支架中,所述医疗支架包括螺旋方向相反的拧结结构,每个所述拧结结构由所述粗丝和/或所述细丝相互缠绕交织而成。
可选的,在所述的医疗支架中,每个所述拧结结构包括相互缠绕交织的一根所述粗丝和一根所述细丝。
可选的,在所述的医疗支架中,所述头段和/或所述尾段包括扩口区段,所述扩口区段朝远离所述中间段的方向沿径向逐渐向外扩张,所述扩口区段通过将所述粗丝和/或细丝沿第一方向延伸编织后回旋沿第二方向延伸编织形成,所述第二方向与所述第一方向相反。
可选的,在所述的医疗支架中,所述扩口区段相对所述中间段的轴线的扩口角度为5°~75°。
可选的,在所述的医疗支架中,所述扩口区段包括所述粗丝沿第一方向延伸编织后回旋沿第二方向延伸编织形成的第一扩口结构和所述细丝沿第一方向延伸编织后回旋沿第二方向延伸编织形成的第二扩口结构。
可选的,在所述的医疗支架中,所述第一扩口结构比所述第二扩口结构更远离所述中间段,或者,所述第二扩口结构及所述第一扩口结构与所述中间段的距离相等。
可选的,在所述的医疗支架中,所述第一扩口结构及所述第二扩口结构相对所述中间段的轴线的扩口角度相同。
可选的,在所述的医疗支架中,所述中间段的轴向长度占所述医疗支架总长的40%~95%。
可选的,在所述的医疗支架中,所述第三单层网孔结构的网孔面积为0.01mm 2~1mm 2,所述第二单层网孔结构的网孔面积为所述第三单层网孔结构的网孔面积的4倍以上。
可选的,在所述的医疗支架中,所述第二网孔结构还包括由所述粗丝或所述细丝编织形成的第三单层网孔结构,所述第三单层网孔结构与所述第一单层网孔结构相互覆盖,或者,所述第三单层网孔结构与所述第二单层网孔结构相互覆盖。
可选的,在所述的医疗支架中,所述第一网孔结构为单层结构。
综上所述,本发明提供一种医疗支架,所述医疗支架为由粗丝和细丝一体编织形成的管状体,所述医疗支架包括依次连接的头段、中间段及尾段;其中,所述头段及所述尾段包括第一网孔结构,所述第一网孔结构由所述粗丝和所述细丝混编形成;所述中间段为第二网孔结构,所述第二网孔结构由所述粗丝编织形成的第一单层网孔结构和由所述细丝编织形成的第二单层网孔结构相互覆盖形成。与现有支架相比,具有如下优势:
(1)所述医疗支架的中间段在利用第一单层网孔结构保证支架中间段贴壁性能的同时,也通过第二单层网孔结构保证斑块覆盖率防止血栓逃逸;
(2)所述医疗支架由粗丝和细丝一体编织成型,编织和组装工艺简单高效。
(3)进一步的,所述医疗支架的首端和/或尾端采用回编设计,无丝头裸露,可以避免丝头裸露损伤血管壁;
(4)进一步的,所述医疗支架的首端和/或尾端采用回编设计形成扩口区段,使支架推出微导管后更易打开,同时增加了支架端部的锚定能力;
(5)进一步的,所述医疗支架的头段及尾段为单层混编结构,便于组装及输送。
附图说明
图1为本发明实施例一提供的医疗支架的一种结构示意图;
图2为本发明实施例二提供的医疗支架的另一种结构示意图;
图3a~3d分别为本发明实施例一中第一网孔结构与血管壁接触状态示例图;
图4a~4b分别为本发明实施例一中第二网孔结构与血管壁接触状态示例图;
图5为本发明实施例一中网孔结构的编织方式示意图;
图6为本发明实施例一提供的医疗支架包括第一扩口区段的结构示意图;
图7为本发明实施例一提供的医疗支架包括第一扩口区段和第二扩口区段的结构示意图;
图8为本发明实施例二提供的医疗支架包括第一扩口区段的结构示意图;
图9为本发明实施例二提供的医疗支架包括第二扩口区段的结构示意图;
图10为本发明实施例二中一种拧结结构的结构示意图;
其中,各附图标记说明如下:
11-头段;12-中间段;13-尾段;
1-粗丝;2-细丝;3-血管壁;
10-第一网孔结构;20-第一单层网孔结构;30-第二单层网孔结构;
101-第一扩口结构;102-第二扩口结构。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。还应当理解的是,除非特别说明或者指出,否则说明书中的术语“第一”、“第二”、“第三”等描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。
【实施例一】
请参见图1及图2,本实施例提供一种医疗支架,所述医疗支架为由粗丝1和细丝2一体编织形成的管状体,所述医疗支架包括依次连接的头段100、中间段200及尾段300,其中,
所述头段100及所述尾段300包括第一网孔结构10,所述第一网孔结构10由所述粗丝1和所述细丝2混编形成;
所述中间段200包括第二网孔结构,所述第二网孔结构由所述粗丝1编织形成的第一单层网孔结构20和由所述细丝2编织形成的第二单层网孔结构30相互覆盖形成。
本实施例提供的所述医疗支架,中间段200为双层结构,由粗丝1编织的第一单层网孔结构20和细丝2编织的第二单层网孔结构30相互覆盖而成,在利用第一单层网孔结构20保证支架中间段200贴壁性能的同时,也通过第二单层网孔结构30保证斑块覆盖率防止血栓逃逸,且所述医疗支架由粗丝1和细丝2一体编织成型,编织和组装工艺简单高效。
在另外一些实施例中,所述第二网孔结构还可包括由所述粗丝或所述细丝编织形成的第三单层网孔结构(未图示),所述第三单层网孔结构与所述第一单层网孔结构20相互覆盖,或者,所述第三单层网孔结构与所述第二单层网孔结构30相互覆盖。但本申请不限于此,所述第二网孔结构还可包括由所述粗丝或所述细丝编织形成的与所述第二网孔结构的其它单层网孔结构相互覆盖的第四单层结构等等。
所述粗丝1和所述细丝2可采用相同的材料,例如为钴铬合金、镍钛合金、钨丝、不锈钢丝,或者,所述粗丝1和所述细丝2可采用不同的材料,例如分别采用钴铬合金、镍钛合金、钨丝、不锈钢丝、金属复合丝中的任意一种,又或者,所述粗丝1和所述细丝2中的任意一根或任意几根采用不透射线的显影丝,例如铂金丝、铂钨丝、铂铱丝等显影丝中的任意一种或任意几种。
请继续参见图2及图3,本实施例中,所述医疗支架由螺旋相反的编织线交织而成,每个螺旋方向上的所述编织线均包括所述粗丝1和所述细丝2。
具体而言,所述医疗支架由多根粗丝1及多根细丝2一体编织成型,每根所述粗丝1和每根细丝2分别螺旋延伸形成一螺旋结构,由此,使得所述医疗支架具有左旋的多个螺旋结构及右旋的多个螺旋结构,同一螺旋方向上的螺旋结构之间互不相交。虽然“左和右”为非限制性的描述,但应理解,“左和右”是相对于所形成的螺旋结构的中心轴线而言,左旋和右旋表示相对中心轴线旋转方向相反的两个螺旋方向。在同一螺旋方向上,所述第一网孔结构10的所述粗丝1的数量和所述细丝2的数量按m:n交替间隔排布,其中,m,n均为正整数。图1及图2中所示,是以m为1,n为1做出示例,但应理解,m和n也可取其它数值,m:n的取值范围可为1:1~5:1,例如,m为1,n为2,或者,m为2,n为3等,本申请不以此为限。当m:n=1:1时,所述第一网孔结构10与血管壁的接触情况如图3a所示,当m:n=1:2时,所述第一网孔结构10与血管壁的接触情况如图3b所示,当m:n=2:2时,所述第一网孔结构10与血管壁3的接触情况如图3c所示,当m:n=2:1时,所述第一网孔结构10与血管壁的接触情况如图3d所示。
当通过所述粗丝1和所述细丝2交替螺旋排布形成所述第一网孔结构10,也可使得所述医疗支架一体编织成型时,在所述第二网孔结构部分,形成由两个不同方向的粗丝1编织形成的第一单层网孔结构20和由两个不同方向的细丝2编织形成的第二单层网孔结构30。
可选的,如图2所示,由所述粗丝1编织形成的第一单层网孔结构20构成所述第二网孔结构的内层,而由所述细丝2编织形成的第二单层网孔结构30构成所述第二网孔结构的外层,进而如图4a所示,所述第二网孔结构通过所述第一单层网孔结构20与血管壁3相接触,即,又或者,如图1所示,由所述细丝2编织形成的第二单层网孔结构30构成所述第二网孔结构的内层,而由所述粗丝1编织形成的第一单层网孔结构20构成所述第二网孔结构的外层,进而如图4b所示,所述第二网孔结构可通过所述第二单层网孔结构30与血管壁3相接。其中,所述第二单层网孔结构30的网孔面积为0.01mm 2~0.64mm 2,保证斑块覆盖率防止血栓逃逸,所述第一单层网孔结构20的网孔面积为所述第二单层网孔结构30的网孔面积的4倍以上,保证支架 中间段200的贴壁性能。本实施例中,较佳的,在形成所述医疗支架时,所述细丝2的数量大于或等于所述粗丝1的数量,即从所述医疗支架的横截面来看,所述细丝2的数量大于或等于所述粗丝1的数量,且进一步较佳的,所述细丝2的数量大于所述粗丝1的数量,如此,可使得编织形成的所述医疗支架,在利用粗丝1提供足够径向支撑力的同时,网孔面积也尽可能小。
本实施例中,优选的,所述第一网孔结构为单层结构,当所述医疗支架的头段及尾段采用单层结构时,可以便于组装及输送。
所述第一网孔结构10、所述第一单层网孔结构20、所述第二单层网孔结构30可为平纹组织或平纹组织的变化组织,即,互成角度的两个方向上的编织线按图5中所示的1沉1浮、2沉1浮、3沉1浮、2沉2浮、2沉3浮等方式编织形成各所述网孔结构。还需理解,图5中仅示例出各所述网孔结构编织成型的编织方式,并未对编织线为粗丝1或细丝2予以区分。
本实施例中,优选的,所述头段100和/或所述尾段300包括扩口区段,所述扩口区段背离所述中间段200开放,所述扩口区段101通过将所述粗丝1沿图6中所示第一方向延伸编织后回旋沿第二方向延伸编织形成,所述第二方向与所述第一方向相反,即,每根所述粗丝1首先沿一方向螺旋延伸形成一螺旋结构后,回旋沿相反方向螺旋延伸再形成一螺旋结构,由此通过一根所述粗丝1形成两个螺旋方向相反,且延伸方向相反的两个螺旋结构。
可选的,本实施例中,如图6所示,所述扩口区段仅包括粗丝沿第一方向延伸编织后回旋沿第二方向编织形成的第一扩口结构101。利用粗丝1回旋形成的所述第一扩口结构101,使得支架无粗丝1裸露,从而可以避免粗丝1裸露损伤血管壁,另外,也可使得支架在推出微导管后更易打开,同时增加了支架端部的锚定能力。此时,形成所述医疗导管的所述细丝2可不进行回旋编织,即,细丝2的末端暴露,或者,进一步优选的,如图7所示,所述头段100和/或所述尾段300包括所述粗丝沿第一方向延伸编织后回旋沿第二方向延伸编织形成的第一扩口结构101和所述细丝沿第一方向延伸编织后回旋沿第二方向延伸编织形成的第二扩口结构102,如此,使得支架也无细丝2暴露。虽然细丝2裸露对血管管壁的伤害很大程度上小于粗丝1裸露对血管 管壁的伤害,但在粗丝1采用回旋设计的基础上细丝2也采用回旋设计,可将对血管管壁的伤害减小到最低。
基于上述描述可知,本发实施例提供的所述医疗支架可有如下几种存在形式:
(1)支架中部的双层中的粗丝大网孔在内层,仅头端有粗丝回编结构;
(2)支架中部的双层中的粗丝大网孔在内层,仅头端有粗丝和细丝回编结构;
(3)支架中部的双层中的粗丝大网孔在内层,头端和尾端均有粗丝回编结构的支架;
(4)支架中部的双层中的粗丝大网孔在内层,头端和尾端有粗丝回编结构和细丝回编结构;
(5)支架中部的双层中的粗丝大网孔在外层,仅尾端有粗丝回编结构;
(6)支架中部的双层中的粗丝大网孔在外层,仅尾端有粗丝回编结构和细丝回编结构;
(7)支架中部的双层中的粗丝大网孔在外层,头端和尾端均有粗丝回编结构;
(8)支架中部的双层中的粗丝大网孔在外层,头端和尾端有粗丝回编结构和细丝回编结构。
另外,本实施例中,较佳的,为使支架在推出微导管后易打开,所述第一扩口结构101及所述第二扩口结构102相对所述中间段200的轴线的扩口角度相同,当然,在其它一些实施例中,所述第一扩口结构101和所述第二扩口结构的扩口角度也可以不同。进一步较佳的,如图7所示,所述第二扩口结构102比所述第一扩口结构101更远离所述中间段200,或者,请参见图9,所述第二扩口结构102及所述第一扩口结构101与所述中间段200的距离相等。如此设计,使得所述医疗支架的端部始终通过粗丝1给予径向张力,从而可以保证支架的锚定效果以及打开效果。
本实施例中,所述第一扩口结构101及所述第二扩口结构102相对所述中间段200的轴线的扩口角度的取值范围可为5°~75°,在此范围内,所述医 疗支架的锚定效果以及打开效果最佳。所述粗丝和/或所述细丝回旋形成的回旋角θ的取值范围可为10°~150°。
另外,本实施例中,所述中间段200的轴向长度占所述医疗支架总长的40%~95%,所述中间段200的具体轴向长度可根据病变血管的长度来进行设置,所述中间段200的长度可尽可能接近病变血管的长度,以通过所述中间段200的第二单层网孔结构30对斑块起到较好的覆盖效果。当然,当所述中间段200的长度小于病变血管的长度时,所述第一网孔结构10也能够起到一定的覆盖效果,因此,本申请并不限定所述中间段200的长度与病变血管的长度相等。
【实施例二】
本实施例提供一种医疗支架,所述医疗支架与实施例一提供的所述医疗支架具有相同的组成部分,即,也包括依次连接的头段100、中间段200及尾段300,且所述头段100及所述尾段300为由所述粗丝1和所述细丝2混编形成的第一网孔结构10,所述中间段200为第二网孔结构,所述第二网孔结构由所述粗丝1编织形成的第一单层网孔结构20和由所述细丝2编织形成的第二单层网孔结构30相互覆盖形成,且与实施例一提供的所述医疗支架具有相同的性能。
与实施例一不同的是,请参见图8及图9,本实施例中,所述医疗支架由螺旋方向相反的拧结结构交织而成,每个所述拧结结构由所述粗丝1和/或所述细丝2相互旋转交织而成。也就是说,所述拧结结构可为由两根所述粗丝1相互缠绕交织而成的第一拧结结构,也可为由两根所述细丝2相互缠绕交织而成的第二拧结结构,或者由一根所述粗丝1和一根所述细丝2相互缠绕交织而成的第三拧结结构。当所述医疗支架包括由两根所述粗丝1缠绕交织而成的第一拧结结构和由两根所述细丝2相互缠绕交织而成的第二拧结结构时,同一螺旋方向上,所述第一拧结结构和所述第二拧结结构可按1:1、1:2等依次交替排布且互不相交。当所述医疗支架包括所述第一拧结结构、所述第二拧结结构、所述第三拧结结构时,同一螺旋方向上,所述第一拧结结构、所述第二拧结结构、所述第三拧结结构可按1:1:1依次交替排布且互不相 交。
以上虽仅示例出几种利用各拧结结构形成所述医疗支架的方式,但本申请不以此为限,所述医疗支架还包括所述第一拧结结构、所述第二拧结结构、所述第三拧结结构的其它组合形式和排布形式,只需保证该组合形式和排布形式能提供足够的径向支撑力,且一体编织成型后,所述中间段200的所述第二单层网孔结构30的网孔面积为0.01mm 2~0.64mm 2,保证斑块覆盖率防止血栓逃逸。
在一较佳实施方式中,所述医疗支架仅包括所述第三拧结结构,即,所述医疗支架的每个所述拧结结构包括相互缠绕交织的一根所述粗丝1和一根所述细丝2,如此设计,可使得所述医疗支架具有均匀的径向支撑力。
请继续参见图8,与实施例一类似的,本实施例中,所述头段100和/或所述尾段300具有背离所述中间段200开放的扩口区段,可选的,所述扩口区段仅包括第一扩口结构101,所述第一扩口结构101通过将所述粗丝1沿第一方向延伸编织后回旋沿第二方向延伸编织形成,所述第二方向与所述第一方向相反,本实施例中,每个所述拧结结构首先沿一方向螺旋延伸形成一螺旋结构后,回旋沿相反方向螺旋延伸再形成一螺旋结构,由此通过一个所述拧结结构形成两个螺旋方向相反,且延伸方向相反的两个螺旋结构。
或者,进一步的,请继续参见图9,与实施例一类似的,本实施例中所述扩口区段包括第一扩口结构101和第二扩口结构102,所述第二扩口结构102通过将所述拧结结构沿所述第一方向延伸编织后回旋沿所述第二方向延伸编织形成。因此,本实施例提供的所述医疗支架也可以实施例一中所述的8种形式存在。
关于所述第一扩口结构101和所述第二扩口结构102之间的相对位置关系、所述第一扩口结构101与所述第二扩口结构102的扩口角度以及所述中间段200的轴向长度在总长度中的占比的描述请参见实施例一,在此不再赘述。
图10示例出一种所述拧结结构的结构,但本申请不以此为限,任意能够缠绕交织成型形成具有交织圈及交织点的拧结结构的拧结方式均在本申请的 保护范围之内。
综上所述,本发明提供一种医疗支架,所述医疗支架为由粗丝和细丝一体编织形成的管状体,所述医疗支架包括依次连接的头段、中间段及尾段;其中,所述头段及所述尾段包括第一网孔结构,所述第一网孔结构由所述粗丝和所述细丝混编形成;所述中间段包括第二网孔结构,所述第二网孔结构由所述粗丝编织形成的第一单层网孔结构和由所述细丝编织形成的第二单层网孔结构相互覆盖形成。所述医疗支架的中间段为由粗丝编织的第一单层网孔结构和细丝编织的第二单层网孔结构相互覆盖而成的双层结构,在利用第一单层网孔结构保证支架中间段贴壁性能的同时,也通过第二单层网孔结构保证斑块覆盖率防止血栓逃逸,且所述医疗支架由粗丝和细丝一体编织成型,编织和组装工艺简单高效。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可,此外,各个实施例之间不同的部分也可互相组合使用,本发明对此不作限定。
另外需要说明的是,本发明提供的所述医疗支架可以用于颈动脉,也可以适用于其它有需要的部位,例如锁骨下动脉、椎动脉口、颅内血管、外周血管、冠脉等,本申请对此不作限制。
此外还应该认识到,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围。

Claims (15)

  1. 一种医疗支架,其特征在于,所述医疗支架为由粗丝和细丝一体编织形成的管状体,所述医疗支架包括依次连接的头段、中间段及尾段;其中,
    所述头段及所述尾段包括第一网孔结构,所述第一网孔结构由所述粗丝和所述细丝混编形成;
    所述中间段包括第二网孔结构,所述第二网孔结构包括由所述粗丝编织形成的第一单层网孔结构和由所述细丝编织形成的第二单层网孔结构,所述第一单层网孔结构和第二单层网孔结构相互覆盖。
  2. 如权利要求1所述的医疗支架,其特征在于,所述医疗支架由螺旋方向相反的编织线交织而成,每个螺旋方向上的所述编织线包括所述粗丝和所述细丝。
  3. 如权利要求2所述的医疗支架,其特征在于,在同一螺旋方向上,所述第一网孔结构的所述粗丝的数量和所述细丝的数量按m:n交替间隔排布,其中,m和n均为正整数。
  4. 如权利要求1所述的医疗支架,其特征在于,所述医疗支架中,所述细丝的数量大于或等于所述粗丝的数量。
  5. 如权利要求1所述的医疗支架,其特征在于,所述医疗支架包括螺旋方向相反的拧结结构,每个所述拧结结构由所述粗丝和/或所述细丝相互缠绕交织而成。
  6. 如权利要求5所述的医疗支架,其特征在于,每个所述拧结结构包括相互缠绕交织的一根所述粗丝和一根所述细丝。
  7. 如权利要求1所述的医疗支架,其特征在于,所述头段和/或所述尾段包括扩口区段,所述扩口区段朝远离所述中间段的方向沿径向逐渐向外扩张,所述扩口区段通过将所述粗丝和/或细丝沿第一方向延伸编织后回旋沿第二方向延伸编织形成,所述第二方向与所述第一方向相反。
  8. 如权利要求7所述的医疗支架,其特征在于,所述扩口区段相对所述中间段的轴线的扩口角度为5°~75°。
  9. 如权利要求7所述的医疗支架,其特征在于,所述扩口区段包括所述粗丝沿第一方向延伸编织后回旋沿第二方向延伸编织形成的第一扩口结构和所述细丝沿第一方向延伸编织后回旋沿第二方向延伸编织形成的第二扩口结构。
  10. 如权利要求9所述的医疗支架,其特征在于,所述第一扩口结构比所述第二扩口结构更远离所述中间段,或者,所述第二扩口结构及所述第一扩口结构与所述中间段的距离相等。
  11. 如权利要求9所述的医疗支架,其特征在于,所述第一扩口结构及所述第二扩口结构相对所述中间段的轴线的扩口角度相同。
  12. 如权利要求1所述的医疗支架,其特征在于,所述中间段的轴向长度占所述医疗支架总长的40%~95%。
  13. 如权利要求1所述的医疗支架,其特征在于,所述第三单层网孔结构的网孔面积为0.01mm 2~1mm 2,所述第二单层网孔结构的网孔面积为所述第三单层网孔结构的网孔面积的4倍以上。
  14. 如权利要求1所述的医疗支架,其特征在于,所述第二网孔结构还包括由所述粗丝或所述细丝编织形成的第三单层网孔结构,所述第三单层网孔结构与所述第一单层网孔结构相互覆盖,或者,所述第三单层网孔结构与所述第二单层网孔结构相互覆盖。
  15. 如权利要求1所述的医疗支架,其特征在于,所述第一网孔结构为单层结构。
PCT/CN2022/111601 2021-08-16 2022-08-11 一种医疗支架 WO2023020353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110939150.9A CN115702842A (zh) 2021-08-16 2021-08-16 一种医疗支架
CN202110939150.9 2021-08-16

Publications (1)

Publication Number Publication Date
WO2023020353A1 true WO2023020353A1 (zh) 2023-02-23

Family

ID=85181241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111601 WO2023020353A1 (zh) 2021-08-16 2022-08-11 一种医疗支架

Country Status (2)

Country Link
CN (1) CN115702842A (zh)
WO (1) WO2023020353A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116570409B (zh) * 2023-05-06 2024-01-26 上海励楷科技有限公司 双层弹簧支架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040176658A1 (en) * 2003-03-03 2004-09-09 Mcmurray Brian Warp knit fabrics useful for medical articles and methods of making same
CN203059974U (zh) * 2013-01-24 2013-07-17 威海维心医疗设备有限公司 颅内自膨胀阶段覆膜编织支架
CN110269729A (zh) * 2015-01-12 2019-09-24 微仙美国有限公司 支架
CN212326686U (zh) * 2020-04-16 2021-01-12 四川大学华西医院 一种血管内多层裸支架系统
CN112386364A (zh) * 2020-11-10 2021-02-23 苏州中天医疗器械科技有限公司 混合编织支架
CN212940080U (zh) * 2020-07-06 2021-04-13 丁剑 一种沿轴向可压缩和拉伸的裸支架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040176658A1 (en) * 2003-03-03 2004-09-09 Mcmurray Brian Warp knit fabrics useful for medical articles and methods of making same
CN203059974U (zh) * 2013-01-24 2013-07-17 威海维心医疗设备有限公司 颅内自膨胀阶段覆膜编织支架
CN110269729A (zh) * 2015-01-12 2019-09-24 微仙美国有限公司 支架
CN212326686U (zh) * 2020-04-16 2021-01-12 四川大学华西医院 一种血管内多层裸支架系统
CN212940080U (zh) * 2020-07-06 2021-04-13 丁剑 一种沿轴向可压缩和拉伸的裸支架
CN112386364A (zh) * 2020-11-10 2021-02-23 苏州中天医疗器械科技有限公司 混合编织支架

Also Published As

Publication number Publication date
CN115702842A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
CA2247891C (en) An expandable stent
JP5695259B1 (ja) 高柔軟性ステント
CN212234823U (zh) 一种血管支架
US20110264195A1 (en) Helical Stent with Opposing and/or Alternating Pitch Angles
US20170319364A1 (en) Stent prosthesis
CN112569027B (zh) 一种静脉血管支架
KR20070083742A (ko) 스텐트
US20240033111A1 (en) Vascular stent
KR20140093923A (ko) 현상성능이 개선된 혈관 스텐트, 및 혈관 스텐트의 현상성능을 강화시키는 방법
WO2015090237A1 (zh) 管道支架及其制备方法
JP2024503633A (ja) 血管インプラントおよび医療機器
WO2023020353A1 (zh) 一种医疗支架
WO2022179095A1 (zh) 血管支架
CN114052820B (zh) 一种血管支架
WO2017047569A1 (ja) ステント及びステントグラフト
WO2016159162A1 (ja) 高柔軟性ステント
US11963893B2 (en) Esophageal stents with helical thread
US20220023076A1 (en) Stent with angled struts and crowns
CN214761637U (zh) 一种外周血管支架
CN114948364A (zh) 一种外周血管支架及其制备方法
CN209392162U (zh) 医用支架
WO2023284595A1 (zh) 医疗支架
WO2022178740A1 (zh) 一种外周血管支架及其制备方法和应用
US11911259B2 (en) Multi-layer folding flow diverters
US11986408B2 (en) Stent with mid-crowns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE