WO2023020139A1 - 制动操作器控制方法、装置、设备、介质及程序产品 - Google Patents

制动操作器控制方法、装置、设备、介质及程序产品 Download PDF

Info

Publication number
WO2023020139A1
WO2023020139A1 PCT/CN2022/103597 CN2022103597W WO2023020139A1 WO 2023020139 A1 WO2023020139 A1 WO 2023020139A1 CN 2022103597 W CN2022103597 W CN 2022103597W WO 2023020139 A1 WO2023020139 A1 WO 2023020139A1
Authority
WO
WIPO (PCT)
Prior art keywords
operator
pose information
parameter
brake
brake operator
Prior art date
Application number
PCT/CN2022/103597
Other languages
English (en)
French (fr)
Inventor
由佳
任向飞
夏金龙
于江
万兴
霍晓锋
柏杨
李果
王来平
孔德龙
王俊
庞士伟
Original Assignee
浙江吉利控股集团有限公司
宁波吉利汽车研究开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 宁波吉利汽车研究开发有限公司 filed Critical 浙江吉利控股集团有限公司
Publication of WO2023020139A1 publication Critical patent/WO2023020139A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/03Brake assistants

Definitions

  • the present application relates to the technical field of vehicles, in particular to a method, device, equipment, medium and program product for controlling a brake operator.
  • the existing decoupled electronic power-assisted braking device senses the driver's braking intention through a pedal sensor, thereby controlling the pipeline pressure of the four brake wheel cylinders to achieve the effect of controlling vehicle deceleration.
  • the control strategy of the existing electronic power-assisted braking device is still mainly designed around the vehicle as the core function, ignoring the driver's individual control needs, and can only switch among a limited set of control parameters, and cannot be aimed at driving. Members themselves can make more targeted adjustments.
  • the present application provides a brake operator control method, device, equipment, medium and program product to solve the technical problem in the prior art that the control parameters of the brake operator cannot be fully adjusted according to the characteristics of the brake operator.
  • the present application provides a method for controlling a brake operator, including:
  • the first pose information is used to indicate the fulcrum of the operator's limb force, the action distance and the force direction;
  • a first control parameter of the brake actuator is determined as a function of the first control parameter.
  • the first control parameter includes a first braking parameter and a first feedback parameter
  • the first feedback parameter is used to control the magnitude and/or direction of the feedback force.
  • the first adjustment parameter of the brake operator is determined according to the preset adjustment model and the first pose information, including:
  • the first regulation parameter is determined according to the category information and the characteristic curve of the brake operator.
  • the first pose information is obtained, including:
  • the first pose information is determined according to the seat pose information.
  • the first pose information before obtaining the first pose information, it also includes:
  • the category information corresponding to the operator is determined according to the identity information and the first pose information.
  • the identity information includes: identification mark, age and gender.
  • the first pose information after obtaining the first pose information, it also includes:
  • Determine the category information corresponding to the operator according to the first pose information including:
  • the category information is determined according to the second pose information and the first pose information by using a preset geometric model.
  • obtaining the second pose information includes:
  • the second pose information is determined according to the pose information of the rearview mirror.
  • the category information is determined according to the second pose information and the first pose information, including:
  • the category information corresponding to the operator is determined.
  • the seat pose information when the seat pose information is obtained, it also includes:
  • the identity information, the first pose information, and the second pose information determine the category information corresponding to the operator, including:
  • the category information corresponding to the operator is determined.
  • the second control parameter is determined according to the second adjustment parameter and the first control parameter.
  • the first preset condition includes: after the attribute parameter of the brake operator is adjusted to the second braking parameter and the second feedback parameter, the driving mileage of the vehicle is greater than the first mileage and less than the second mileage.
  • the first mileage is greater than or equal to 0 meters
  • the second mileage is greater than or equal to the first mileage
  • a third control parameter is determined according to the second control parameter by using a preset optimization model.
  • the third control parameter is determined according to the second control parameter by using the preset optimization model, including:
  • the cloud server determines the third control parameter according to the trained neural network optimization model and the second control parameter.
  • the third control parameter after determining the third control parameter, it also includes:
  • the second control parameter is correspondingly updated to the third control parameter.
  • the third control parameter after determining the third control parameter, it further includes:
  • the third control parameter sent by the cloud server is received and updated to the control module or device of the brake operator.
  • the third control parameter after determining the third control parameter, it further includes:
  • the third control parameter is restored to the second control parameter.
  • a brake operator control device including:
  • the obtaining module is used to obtain the first pose information, and the first pose information is used to represent the fulcrum of the operator's limb force, the action distance and the force direction;
  • a processing module configured to determine a first adjustment parameter of the brake operator according to a preset adjustment model and first pose information; determine a first control parameter of the brake operator according to the first adjustment parameter.
  • the first control parameter includes: a first braking parameter and a first feedback parameter, and the first feedback parameter is used to control the magnitude and/or direction of the feedback force.
  • a processing module for:
  • the first regulation parameter is determined according to the category information and the characteristic curve of the brake operator.
  • modules are obtained for:
  • the first pose information is determined according to the seat pose information.
  • the acquiring module is also used to acquire the facial image of the operator
  • the processing module is also used to determine the identity information of the operator according to the facial image by using the preset recognition model; determine the category information corresponding to the operator according to the identity information and the first pose information.
  • the identity information includes: identification mark, age and gender.
  • the obtaining module is also used to obtain second pose information, and the second pose information is used to indicate the operator's head position;
  • the processing module is further configured to use a preset geometric model to determine category information according to the second pose information and the first pose information.
  • the obtaining module is used to obtain the pose information of the rearview mirror
  • the processing module is used to determine the second pose information according to the pose information of the rearview mirror.
  • the processing module is configured to determine the category information corresponding to the operator according to the identity information, the first pose information, and the second pose information.
  • the acquiring module is also used to acquire the weight information collected by the weight sensor on the seat;
  • the processing module is configured to determine the category information corresponding to the operator according to the identity information, the first pose information, the second pose information and the weight information.
  • the acquiring module is further configured to acquire a second adjustment parameter input by the operator when the first preset condition is satisfied;
  • the processing module is further configured to determine a second control parameter according to the second adjustment parameter and the first control parameter.
  • the first preset condition includes: after the attribute parameter of the brake operator is adjusted to the second braking parameter and the second feedback parameter, the driving mileage of the vehicle is greater than the first mileage and less than the second mileage.
  • the first mileage is greater than or equal to 0 meters
  • the second mileage is greater than or equal to the first mileage
  • the processing module is further configured to use a preset optimization model to determine a third control parameter according to the second control parameter.
  • the processing module is further configured to send the second control parameter to the cloud server; the cloud server determines the third control parameter according to the trained neural network optimization model and the second control parameter.
  • processing module is also used to output application prompt information, and the application prompt information is used to apply to the operator to apply the third control parameter;
  • the obtaining module is also used to obtain the feedback instruction input by the operator;
  • the processing module is also used to determine whether to update the second control parameter to the third control parameter according to the feedback instruction; if the operator chooses to accept the update, then update the second control parameter to the third control parameter.
  • the third control parameter after determining the third control parameter, it further includes:
  • the acquisition module is also used to receive the third control parameter sent by the cloud server;
  • the processing module is also used to update it into the control parameters of the brake operator.
  • the processing module is further configured to output trial prompt information, and correspondingly update the second control parameter to the third control parameter within the preset experience time;
  • the acquisition module is also used to receive the recovery instruction input by the user during the experience time, then
  • the processing module is further configured to restore the third control parameter back to the second control parameter.
  • the present application provides an electronic device, including:
  • the processor is configured to call and execute the program instructions in the memory, and execute any possible brake operator control method provided in the first aspect.
  • the present application provides a vehicle, including: a decoupled brake operator and the electronic device provided in the third aspect;
  • the decoupling brake operator is electrically connected with the brake system of the vehicle to control the brake system to achieve vehicle braking, and feeds back the feedback force of the braking process to the brake operator.
  • the present application provides a storage medium, where a computer program is stored in the readable storage medium, and the computer program is used to execute any possible brake operator control method provided in the first aspect.
  • the present application further provides a computer program product, including a computer program.
  • a computer program product including a computer program.
  • the computer program is executed by a processor, any possible brake operator control system method provided in the first aspect is implemented.
  • the present application provides a control method, device, equipment, medium and program product of a brake operator.
  • the first pose information is used to indicate the fulcrum of the operator's limb force, the action distance and the application distance. Force direction; determining a first adjustment parameter of the brake operator according to a preset adjustment model and first pose information; determining a first control parameter of the brake operator according to the first adjustment parameter.
  • Figures 1a-1b are schematic diagrams of an application scenario of a brake operator control provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for controlling a brake operator provided in an embodiment of the present application
  • Fig. 3 is a schematic diagram of a brake pedal force characteristic curve provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a brake pedal stroke characteristic curve provided by the embodiment of the present application.
  • Fig. 5 is a schematic flowchart of another method for controlling a brake operator provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a user-defined adjustment brake pedal force characteristic curve provided by the embodiment of the present application.
  • Fig. 7 is a schematic diagram of a user-defined adjustment brake pedal stroke characteristic curve provided by the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a brake operator control device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by the present application.
  • FIGs 1a-1b are schematic diagrams of an application scenario of brake operator control provided by an embodiment of the present application.
  • the brake operator is a brake pedal 200
  • the position of the fulcrum of each limb of the operator 100 is acquired through the sensor installed on the vehicle, including: head fulcrum 101, neck fulcrum 102 , shoulder fulcrum 103, hip fulcrum 104, knee fulcrum 105, ankle fulcrum 106, elbow fulcrum 107 and wrist fulcrum 108 and so on.
  • the brake operator includes: a hand brake 501 and a foot brake pedal 502, and the positions of the fulcrums of each limb on the operator's body include: head/neck fulcrum 401, shoulder fulcrum 402, buttocks Fulcrum 403, knee fulcrum 404, ankle fulcrum 405, elbow fulcrum 406, wrist fulcrum 407 and so on.
  • the position of the fulcrum of the above-mentioned limb force can be set on the wearable sensor worn by the operator, such as the sensor built in the clothing, or set on the protective gear (such as helmet, neck guard, elbow pad, glove, knee pad, shoe, etc. ) After the sensor on the ) detects it, it is transmitted to the controller of the brake operator in a wireless form.
  • the force fulcrums of each limb are different for different operators 100, which can be obtained directly through cameras and infrared sensors, or through the electronic sensors on the seat posture and position set on the seat 000
  • the collected seat posture is obtained, for example, the angle of the seat back lift, the position of the headrest sliding up and down, the angle of the headrest swinging back and forth, the distance of the seat sliding back and forth, and the angle of the seat cushion lifting are obtained through conversion.
  • the position information of the fulcrum of the limb force is obtained directly through cameras and infrared sensors, or through the electronic sensors on the seat posture and position set on the seat 000
  • the collected seat posture is obtained, for example, the angle of the seat back lift, the position of the headrest sliding up and down, the angle of the headrest swinging back and forth, the distance of the seat sliding back and forth, and the angle of the seat cushion lifting are obtained through conversion.
  • the position information of the fulcrum of the limb force is obtained directly through cameras and infrared sensors, or through
  • the pitch angle of the steering wheel and the telescoping angle of the steering wheel can also be combined to obtain more positions of limb force points.
  • the position and posture information of at least one of the left exterior mirror 301, the right exterior mirror 302, and the interior mirror 303 can also be combined to obtain the position of the operator's eyes through a preset mapping relationship. , and then the position of the top of the head can be calculated according to the position of the eyes to obtain the height information of the operator.
  • At least one weight sensor may be arranged above the seat to detect the operator's weight information, so as to distinguish different operating requirements of operators of different weights at the same height.
  • Fig. 2 is a schematic flowchart of a method for controlling a brake operator provided by an embodiment of the present application. As shown in Figure 2, the specific steps of the brake operator control method include:
  • the first pose information is used to indicate the fulcrum of the operator's limb force, the action distance, and the force application direction.
  • the seat pose information is acquired, and the first pose information is determined according to the seat pose information.
  • the brake operator is used to control the brake system on the vehicle to brake the vehicle.
  • Vehicles include: passenger cars, trucks, mopeds, electric wheelchairs, motorcycles, electric vehicles, four-wheel all-terrain Off-road vehicles, tricycles, etc.
  • the brake operator can be operated by hand and/or foot, or by other contact methods, and can also be combined with artificial limbs to realize that the disabled can also normally operate the brake system of the vehicle.
  • the seat pose information includes: seat height, backrest angle, longitudinal position (the positive direction is the direction of the front of the vehicle), lateral position (the position of the seat in the left and right directions of the vehicle), seat cushion pitch Angle, headrest up and down telescopic position, headrest pitch angle and so on.
  • the seat pose information is collected by each position sensor on the seat, and then using the preset geometric conversion model to correspond the seat pose information conversion, you can get the spatial position coordinates of the fulcrums of the body such as the head fulcrum 101, the neck fulcrum 102, the shoulder fulcrum 103, the hip fulcrum 104, the knee fulcrum 105, the ankle fulcrum 106, etc., thus forming the first pose information.
  • the specific positions of the head fulcrum 101, the elbow fulcrum 107, and the wrist fulcrum 108 can be obtained by using the pose information of the steering wheel and the pose information of the internal and external rearview mirrors. Location.
  • the wearable sensor worn by the operator such as the sensor built into the clothing, or setting it on the protective gear (such as helmet, neck guard, elbow pad, glove , knee pads, shoes, etc.)
  • the sensor on the vehicle directly receives the measurement signal sent by the distance measuring device on the vehicle, and sends a detection signal to the distance measuring device.
  • the distance measuring device can obtain the force of each limb by identifying the direction and arrival time of the detection signal.
  • the position of the fulcrum is used as the first pose information.
  • the category information corresponding to the operator is determined according to the first pose information, and then the first adjustment parameter is determined according to the category information and the characteristic curve of the brake operator by using the preset adjustment model.
  • the brake operator is a decoupled electronic brake operating device, which is different from the traditional mechanical structure in that it is mainly used to collect the operator's operation instructions through sensors, and convert the operation instructions into electronic
  • the form of the signal is transmitted to the control device or the control module, and the brake control device or the control module controls the braking system of the vehicle to perform braking.
  • the brake operator feeds back the vehicle braking situation to the operator by receiving the feedback control parameters sent by the control device or the control module, so that the operator can adjust its operation in time.
  • the traditional mechanical brake operator amplifies and transmits the braking force through the mechanical structure, and then simultaneously transmits the feedback braking effect on the wheel through the mechanical structure, so that the operator can feel the feedback force.
  • each operator corresponds to a set of operation curves or operation curves.
  • the parameter set, or the classification category corresponding to the identified operator.
  • FIG. 3 is a schematic diagram of a brake pedal force characteristic curve provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a brake pedal stroke characteristic curve provided by an embodiment of the present application.
  • the operators can be divided into at least three categories, namely, A-type driving groups, B-type driving groups and C-type driving groups.
  • classification basis includes: at least one of age, gender and body shape.
  • age can be divided into three categories: old age, middle age, and youth;
  • Gender can be divided into: male and female;
  • Body type can be divided into: thin, medium, fat.
  • the current control parameter of the brake operator is modified to the first control parameter according to the regional adjustment parameter.
  • the first control parameter includes: a first braking parameter and a first feedback parameter, the first feedback parameter is used to control the magnitude and/or direction of the feedback force, and the feedback force is the force exerted by the brake operator on the operator .
  • the first control parameters include: the output hydraulic pressure corresponding to the braking force corresponding to the brake pedal force characteristic curve in FIG. 3 , and/or the output hydraulic pressure corresponding to the brake pedal stroke corresponding to the brake pedal stroke characteristic curve in FIG. output hydraulic pressure.
  • the first feedback parameter is the brake pedal force and/or brake pedal stroke corresponding to FIG. 3 .
  • the characteristic curve calibrated through a large number of tests in advance it can automatically adjust the electric decoupling according to different operators or different states of the operator according to the characteristic curve customized for different types of people or for the operator himself. type brake operator.
  • the operator of the brake operator is not necessarily the driver of the vehicle.
  • the coach on the co-pilot seat can also be used as a brake operator. operator of the device.
  • the brake operator control method of the present application can also be used, that is, during simulated driving or remote driving, since the driver is not on the vehicle, the brake operator must truly simulate the operating feeling of the remote vehicle, so that The remote driver or simulated driver can feel more realistically the actual feedback given by the remote vehicle during braking operation.
  • This embodiment provides a method for controlling a brake operator.
  • the first pose information is used to represent the fulcrum of the operator's limb force, the action distance, and the direction of the force; adjust the model according to the preset And the first pose information determines the first adjustment parameter of the brake operator; and determines the first control parameter of the brake operator according to the first adjustment parameter.
  • Fig. 5 is a schematic flowchart of another method for controlling a brake operator provided by the implementation of the present application. As shown in Figure 5, the specific steps of the brake operator control method include:
  • the facial image of the operator is collected through the camera.
  • the identity information includes: identification mark, age, gender and so on.
  • the second pose information is used to represent the operator's head position.
  • the pose information of the rearview mirror is acquired through the vehicle controller or the rearview mirror control module, and the second pose information is determined according to the pose information of the rearview mirror.
  • the pose information of the rearview mirror includes: the position and left/right/up/down rotation angle of the interior rearview mirror, and/or the position and left/right/up/down rotation angle of at least one exterior rearview mirror.
  • S505. Determine category information corresponding to the operator according to the identity information, the first pose information, and the second pose information.
  • the identity information is used to determine the age and gender of the operator, the first
  • category information may also be determined according to the second pose information and the first pose information, and the identity information is used to determine whether the current operator is a legal operator.
  • step S503 while step S503 is executed, the weight information collected by the weight sensor on the seat is obtained. At this time, in this step, according to the identity information, the first pose information, the second pose information information and weight information to determine the category information corresponding to the operator.
  • category information can be obtained by:
  • Age old, middle-aged, young
  • the first adjustment parameter is determined according to the characteristic curve corresponding to the category of the operator and the current control parameter of the brake operator.
  • the first preset condition includes: after the attribute parameter of the brake operator is adjusted to the second braking parameter and the second feedback parameter, the driving mileage of the vehicle is greater than the first mileage and less than the second mileage.
  • the first mileage is greater than or equal to 0 meters
  • the second mileage is greater than or equal to the first mileage
  • a prompt message is output on the control interface, asking the operator whether to manually adjust or correct the brake operator If so, the operator will use the current brake operator characteristic curve displayed on the control interface as a reference, input the adjustment value, which is the second adjustment parameter, and display the adjusted characteristic curve in real time, so that the operator can perceive it in real time Adjusted characteristic curve result.
  • FIG. 6 is a schematic diagram of a user-defined adjustment brake pedal force characteristic curve provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a user-defined adjustable brake pedal travel characteristic curve provided by an embodiment of the present application.
  • Pa is the brake pedal force characteristic curve corresponding to the first control parameter
  • Pb is the brake pedal force characteristic curve after manual adjustment by the user
  • Ta is the brake pedal stroke characteristic curve corresponding to the first control parameter
  • Tb is the brake pedal stroke characteristic curve after manual adjustment by the user.
  • the second control parameter can be obtained by adjusting the first control parameter with the second adjustment parameter.
  • the controller or the control module may send the second control parameter to the cloud server.
  • the cloud server determines the third control parameter according to the trained neural network optimization model and the second control parameter. In this way, optimal adjustments can be made to certain defects in the manually inputted second control parameters, such as settings that make the characteristic curve not smooth.
  • the application prompt information is used to apply to the operator for application of the third control parameter.
  • the second control parameter is correspondingly updated to the third control parameter, and if the operator chooses not to accept the update, the second control parameter remains unchanged.
  • the controller or control module of the brake operator receives the third control parameter sent by the cloud server, and updates it to the control module or control module of the brake operator device.
  • a trial prompt message to the operator through the operation interface or display interface, such as "I will automatically optimize the control parameters for you. If you do not accept it, please input the cancel command before the end of the trial time, and start timing now.” And within the preset experience time, the second control parameter is correspondingly updated to the third control parameter.
  • the third control parameter is restored to the second control parameter. Conversely, if an application command is received or no command is input at the end of the experience time, the update is accepted by default.
  • This embodiment provides a method for controlling a brake operator.
  • the first pose information is used to represent the fulcrum of the operator's limb force, the action distance, and the direction of the force; adjust the model according to the preset And the first pose information determines the first adjustment parameter of the brake operator; and determines the first control parameter of the brake operator according to the first adjustment parameter.
  • Fig. 8 is a schematic structural diagram of a control device for a brake operator provided by an embodiment of the present application.
  • the brake operator control device 800 can be realized by software, hardware or a combination of both.
  • the brake operator control device 800 includes:
  • An acquisition module 801 configured to acquire first pose information, where the first pose information is used to indicate the fulcrum of force exerted by the operator's limbs, the working distance, and the direction of force application;
  • the processing module 802 is configured to determine a first adjustment parameter of the brake operator according to a preset adjustment model and first pose information; and determine a first control parameter of the brake operator according to the first adjustment parameter.
  • the first control parameter includes: a first braking parameter and a first feedback parameter, and the first feedback parameter is used to control the magnitude and/or direction of the feedback force.
  • the processing module 802 is configured to:
  • the first regulation parameter is determined according to the category information and the characteristic curve of the brake operator.
  • acquisition module 801 is used to:
  • the first pose information is determined according to the seat pose information.
  • the obtaining module 801 is also used to obtain the facial image of the operator;
  • the processing module 802 is further configured to determine the identity information of the operator according to the facial image by using a preset recognition model; determine the category information corresponding to the operator according to the identity information and the first pose information.
  • the identity information includes: identification mark, age and gender.
  • the obtaining module 801 is also used to obtain second pose information, where the second pose information is used to represent the operator's head position;
  • the processing module 802 is further configured to determine category information according to the second pose information and the first pose information by using a preset geometric model.
  • the obtaining module 801 is used to obtain the pose information of the rearview mirror
  • the processing module 802 is configured to determine the second pose information according to the pose information of the rearview mirror.
  • the processing module 802 is configured to determine the category information corresponding to the operator according to the identity information, the first pose information, and the second pose information.
  • the obtaining module 801 is also used to obtain the weight information collected by the weight sensor on the seat;
  • the processing module 802 is configured to determine the category information corresponding to the operator according to the identity information, the first pose information, the second pose information and the weight information.
  • the acquiring module 801 is further configured to acquire a second adjustment parameter input by the operator when the first preset condition is satisfied;
  • the processing module 802 is further configured to determine a second control parameter according to the second adjustment parameter and the first control parameter.
  • the first preset condition includes: after the attribute parameter of the brake operator is adjusted to the second braking parameter and the second feedback parameter, the driving mileage of the vehicle is greater than the first mileage and less than the second mileage.
  • the first mileage is greater than or equal to 0 meters
  • the second mileage is greater than or equal to the first mileage
  • the processing module 802 is further configured to use a preset optimization model to determine a third control parameter according to the second control parameter.
  • the processing module 802 is further configured to send the second control parameter to the cloud server; the cloud server determines the third control parameter according to the trained neural network optimization model and the second control parameter.
  • processing module 802 is also configured to output application prompt information, and the application prompt information is used to apply to the operator for applying the third control parameter;
  • the obtaining module 801 is also used to obtain the feedback instruction input by the operator;
  • the processing module 802 is further configured to determine whether to update the second control parameter to the third control parameter according to the feedback instruction; if the operator chooses to accept the update, update the second control parameter to the third control parameter.
  • the third control parameter after determining the third control parameter, it further includes:
  • the obtaining module 801 is also used to receive the third control parameter sent by the cloud server;
  • the processing module 802 is also used to update it into the control parameters of the brake operator.
  • the processing module 802 is also configured to output trial prompt information, and correspondingly update the second control parameter to the third control parameter within the preset experience time;
  • the obtaining module 801 is also used to receive the restoration instruction input by the user within the experience time, then
  • the processing module 802 is further configured to restore the third control parameter back to the second control parameter.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 9 , the electronic device 900 may include: at least one processor 901 and a memory 902 . FIG. 9 shows an electronic device with a processor as an example.
  • the memory 902 is used to store programs.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory 902 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 901 is configured to execute the computer-executed instructions stored in the memory 902 to implement the methods described in the above method embodiments.
  • the processor 901 may be a central processing unit (central processing unit, referred to as CPU), or a specific integrated circuit (application specific integrated circuit, referred to as ASIC), or configured to implement one or more of the embodiments of the present application. multiple integrated circuits.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 902 can be independent or integrated with the processor 901 .
  • the electronic device 900 may further include:
  • the bus 903 is used to connect the processor 901 and the memory 902 .
  • the bus may be an industry standard architecture (ISA) bus, a peripheral component interconnect (PCI) bus, or an extended industry standard architecture (EISA) bus, etc.
  • ISA industry standard architecture
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc., but it does not mean that there is only one bus or one type of bus.
  • the memory 902 and the processor 901 may communicate through an internal interface.
  • the embodiment of the present application also provides a vehicle, including: a decoupled brake operator and any possible electronic device in the embodiment shown in FIG. 9 .
  • the decoupling brake operator is electrically connected with the brake system of the vehicle to control the brake system to achieve vehicle braking, and feeds back the feedback force of the braking process to the brake operator.
  • the embodiment of the present application also provides a computer-readable storage medium
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory) , RAM), a magnetic disk or an optical disk, and other media that can store program codes.
  • the computer-readable storage medium stores program instructions, and the program instructions are used in the methods in the above-mentioned method embodiments.
  • An embodiment of the present application further provides a computer program product, including a computer program, and when the computer program is executed by a processor, the methods in the foregoing method embodiments are implemented.
  • the embodiment of the present application also provides a computer program, including program code.
  • program code executes the methods in the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Braking Elements And Transmission Devices (AREA)

Abstract

一种制动操作器控制方法,通过获取第一位姿信息,第一位姿信息用于表示操作者的肢体发力支点、作用距离以及施力方向;根据预设调节模型以及第一位姿信息确定制动操作器的第一调节参数;根据第一调节参数确定制动操作器的第一控制参数。还公开了使用/包含上述方法的装置、设备、介质及程序产品。解决了现有技术存在的无法针对制动操作者的自身特性充分调整制动操作器的控制参数的技术问题,实现了根据不同操作者的个性化特征来自动调节制动操作器的操作控制参数,提高操作者的使用体验的技术效果。

Description

制动操作器控制方法、装置、设备、介质及程序产品
本申请要求于2021年8月19日提交中国专利局、申请号为202110955618.3、申请名称为“制动操作器控制方法、装置、设备、介质及程序产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,尤其涉及一种制动操作器控制方法、装置、设备、介质及程序产品。
背景技术
随着电动汽车的普及,线控技术也在逐渐替代传统的机械结构。近几年各大汽车及零部件厂商相继推出了解耦式电子助力制动装置来替代传统的机械式制动踏板。
目前,现有的解耦式电子助力制动装置通过踏板传感器感知驾驶员的制动意图,从而控制四个制动轮缸的管路压力来实现控制车辆减速的效果。但是现有的电子助力制动装置的控制策略还是主要围绕着车辆为核心进行功能设计,忽略了驾驶员的个性化控制需求,仅能够在有限地几组控制参数中进行切换,而无法针对驾驶员自身进行更有针对性地调整。
因此,现有技术中存在无法针对制动操作者的自身特性充分调整制动操作器的控制参数的技术问题。
发明内容
本申请提供一种制动操作器控制方法、装置、设备、介质及程序产品,以解决现有技术存在无法针对制动操作者的自身特性充分调整制动操作器的控制参数的技术问题。
第一个方面,本申请提供一种制动操作器控制方法,包括:
获取第一位姿信息,第一位姿信息用于表示操作者的肢体发力支点、作用距离以及施力方向;
根据预设调节模型以及第一位姿信息确定制动操作器的第一调节参数;
根据第一调节参数确定制动操作器的第一控制参数。
可选的,第一控制参数包括第一制动参数以及第一回馈参数,第一回馈参数用于控制回馈力的大小和/或方向。
在一种可能的设计中,根据预设调节模型以及第一位姿信息确定制动操作器的第一调节参数,包括:
根据第一位姿信息确定操作者对应的类别信息;
利用预设调节模型,根据类别信息以及制动操作器的特性曲线,确定第一调节参数。
在一种可能的设计中,获取第一位姿信息,包括:
获取座椅位姿信息;
根据座椅位姿信息确定第一位姿信息。
在一种可能的设计中,在获取第一位姿信息之前,还包括:
获取操作者的面部图像;
利用预设识别模型,根据面部图像,确定操作者的身份信息;
对应的,根据身份信息以及第一位姿信息确定操作者对应的类别信息。
可选的,该身份信息包括:身份识别标识、年龄以及性别。
可选的,在获取第一位姿信息之后,还包括:
获取第二位姿信息,第二位姿信息用于表示操作者的头部位置;
根据第一位姿信息确定操作者对应的类别信息,包括:
利用预设几何模型,根据第二位姿信息以及第一位姿信息,确定类别信息。
在一种可能的设计中,获取第二位姿信息,包括:
获取后视镜位姿信息;
根据后视镜位姿信息确定第二位姿信息。
在一种可能的设计中,根据第二位姿信息以及第一位姿信息,确定类别信息,包括:
根据身份信息、第一位姿信息以及第二位姿信息,确定操作者对应的类别信息。
在一种可能的设计中,在所述获取座椅位姿信息时,还包括:
获取座椅上重量传感器所采集到的重量信息;
对应的,根据身份信息、第一位姿信息以及第二位姿信息,确定操作者对应的类别信息,包括:
根据身份信息、第一位姿信息、第二位姿信息以及重量信息,确定操作者对应的类别信息。
在一种可能的设计中,在根据第一调节参数调整制动操作器的制动参数以及回馈参数之后,还包括:
在满足第一预设条件时,获取操作者输入的第二调节参数;
根据第二调节参数、第一控制参数,确定第二控制参数。
可选的,第一预设条件包括:在将制动操作器的属性参数调整为第二制动参数以及第二回馈参数后,车辆的行驶里程大于第一里程且小于第二里程。
可选的,第一里程大于或等于0米,第二里程大于或等于第一里程。
在一种可能的设计中,在根据第二调节参数、第一控制参数,确定第二控制参数之后,还包括:
利用预设优化模型,根据第二控制参数,确定第三控制参数。
在一种可能的设计中,在根据第二调节参数、第一控制参数,确定第二控制之后,还包括:
将第二控制参数发送给云端服务器;
对应的,利用预设优化模型,根据第二控制参数,确定第三控制参数,包括:
云端服务器根据训练好的神经网络优化模型,根据第二控制参数,确定第三控制参数。
可选的,在确定第三控制参数之后,还包括:
输出应用提示信息,应用提示信息用于向操作者申请应用第三控制参数;
获取操作者输入的反馈指令;
根据反馈指令确定是否将第二控制参数对应更新为第三控制参数;
若操作者选择接受更新,则将第二控制参数对应更新为第三控制参数。
在一种可能的设计中,在确定第三控制参数之后,还包括:
接收云端服务器发送的第三控制参数,并将其更新到制动操作器的控制模块或装置中。
在一种可能的设计中,在确定第三控制参数之后,还包括:
输出试用提示信息,并在预设的体验时间内,将第二控制参数对应更新为第三控制参数;
在体验时间内,若接收到使用者输入的还原指令,则将第三控制参数还原回第二控制参数。
第二方面,本申请提供一种制动操作器控制装置,包括:
获取模块,用于获取第一位姿信息,第一位姿信息用于表示操作者的肢体发力支点、作用距离以及施力方向;
处理模块,用于根据预设调节模型以及第一位姿信息确定制动操作器的第一调节参数;根据第一调节参数确定制动操作器的第一控制参数。
可选的,第一控制参数包括:第一制动参数以及第一回馈参数,第一回馈参数用于控制回馈力的大小和/或方向。
在一种可能的设计中,处理模块,用于:
根据第一位姿信息确定操作者对应的类别信息;
利用预设调节模型,根据类别信息以及制动操作器的特性曲线,确定第一调节参数。
在一种可能的设计中,获取模块,用于:
获取座椅位姿信息;
根据座椅位姿信息确定第一位姿信息。
在一种可能的设计中,获取模块,还用于获取操作者的面部图像;
处理模块,还用于利用预设识别模型,根据面部图像,确定操作者的身份信息;根据身份信息以及第一位姿信息确定操作者对应的类别信息。
可选的,该身份信息包括:身份识别标识、年龄以及性别。
可选的,获取模块,还用于获取第二位姿信息,第二位姿信息用于表示操作者的头部位置;
处理模块,还用于利用预设几何模型,根据第二位姿信息以及第一位姿信息,确定类别信息。
在一种可能的设计中,获取模块,用于获取后视镜位姿信息;
处理模块,用于根据后视镜位姿信息确定第二位姿信息。
在一种可能的设计中,处理模块,用于根据身份信息、第一位姿信息以及第二位姿信息,确定操作者对应的类别信息。
在一种可能的设计中,获取模块,还用于获取座椅上重量传感器所采集到的重量信息;
对应的,处理模块,用于根据身份信息、第一位姿信息、第二位姿信息以及重量信息,确定操作者对应的类别信息。
在一种可能的设计中,获取模块,还用于在满足第一预设条件时,获取操作者输入的第二调节参数;
处理模块,还用于根据第二调节参数、第一控制参数,确定第二控制参数。
可选的,第一预设条件包括:在将制动操作器的属性参数调整为第二制动参数以及第二回馈参数后,车辆的行驶里程大于第一里程且小于第二里程。
可选的,第一里程大于或等于0米,第二里程大于或等于第一里程。
在一种可能的设计中,处理模块,还用于利用预设优化模型,根据第二控制参数,确定第三控制参数。
在一种可能的设计中,处理模块,还用于将第二控制参数发送给云端服务器;云端服务器根据训练好的神经网络优化模型,根据第二控制参数,确定第三控制参数。
可选的,处理模块,还用于输出应用提示信息,应用提示信息用于向操作者申请应用第三控制参数;
获取模块,还用于获取操作者输入的反馈指令;
处理模块,还用于根据反馈指令确定是否将第二控制参数对应更新为第三控制参数;若操作者选择接受更新,则将第二控制参数对应更新为第三控制参数。
在一种可能的设计中,在确定第三控制参数之后,还包括:
获取模块,还用于接收云端服务器发送的第三控制参数;
处理模块,还用于将其更新到制动操作器的控制参数中。
在一种可能的设计中,处理模块,还用于输出试用提示信息,并在预设的体验时间内,将第二控制参数对应更新为第三控制参数;
获取模块,还用于在体验时间内,接收使用者输入的还原指令,则
处理模块,还用于将第三控制参数还原回第二控制参数。
第三个方面,本申请提供一种电子设备,包括:
存储器,用于存储程序指令;
处理器,用于调用并执行所述存储器中的程序指令,执行第一方面所提供的任意一种可能的制动操作器控制方法。
第四方面,本申请提供一种车辆,包括:解耦式制动操作器以及第三方面所提供的电子设备;
其中,解耦式制动操作器与车辆的制动系统电连接,以控制制动系统实现车辆制动,并将制动过程的回馈力反馈给制动操作者。
第五个方面,本申请提供一种存储介质,所述可读存储介质中存储有计算机程序,所述计算机程序用于执行第一方面所提供的任意一种可能的制动操作器控制方法。
第六方面,本申请还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现第一方面所提供的任意一种可能的制动操作器控制系统方法。
本申请提供了一种制动操作器控制方法、装置、设备、介质及程序产品,通过获取第一位姿信息,第一位姿信息用于表示操作者的肢体发力支点、作用距离以及施力方向;根据预设调节模型以及第一位姿信息确定制动操作器的第一调节参数;根据第一调节参数确定制动操作器的第一控制参数。解决了现有技术存在的无法针对制动操作者的自身特性充分调整制动操作器的控制参数的技术问题。实现了根据不同操作者的个性化特征来自动调节制动操作器的操作控制参数,提高了操作者的使用体验的技术效果。
附图说明
图1a-1b为本申请实施例提供的一种制动操作器控制的应用场景示意图;
图2为本申请实施例提供的一种制动操作器控制方法的流程示意图;
图3为本申请实施例提供的一种制动踏板力特性曲线的示意图;
图4为本申请实施例提供的一种制动踏板行程特性曲线的示意图;
图5为本申请实施例提供的另一种制动操作器控制方法的流程示意图;
图6为本申请实施例提供的一种用户自定义调节制动踏板力特性曲线的示意图;
图7为本申请实施例提供的一种用户自定义调节制动踏板行程特性曲线的示意图;
图8为本申请实施例提供的一种制动操作器控制装置的结构示意图;
图9为本申请提供的一种电子设备的结构示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,包括但不限于对多个实施例的组合,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请的发明构思是:
对于制动操作器的不同操作者的生理特性和操作习惯,进行预设的分类或者是针对于个人的个性化定制,让操作者能够在操作时既能感受到操作的舒适,又能够准确感知到车辆回馈的情况。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图1a-1b为本申请实施例提供的一种制动操作器控制的应用场景示意图。如图1a所示,制动操作器为制动脚踏板200,通过安装在车辆上的传感器获取到操作者100上各个肢体发力支点的位置,包括:头部支点101、颈部支点102、肩部支点103、臀部支点104,、膝盖支点105、脚腕支点106、手肘支点107以及手腕支点108等等。
如图1b所示,制动操作器包括:手刹501以及脚刹踏板502,同样的操作者身体上的各个肢体发力支点的位置包括:头部/颈部支点401、肩部支点402、臀部支点403,、膝盖支点404、脚腕支点405、手肘支点406以及手腕支点407等等。上述肢体发力支点的位置可以通过设置在操作者所穿着的可穿戴传感器,如内置在衣物上的传感器,或者是设置在护具(如头盔、护脖、护肘、手套、护膝、鞋子等)上的传感器检测到后,通过无线的形式传递给制动操作器的控制器。
需要说明的是,各个肢体发力支点对于不同操作者100来说都是不同的,可以通过摄像头、红外线传感器来直接得到,也可以通过座椅000上设置的对座椅姿态和位置的电子传感器所采集到的座椅姿态来得到,例如,座椅靠背升降的角度、头枕上下滑动的位置、头枕前后摆动的角度、座椅前后滑动的距离、坐垫升降的角度等通过换算而得到各个肢体发力支点的位置信息。
可选的,还可以结合方向盘俯仰角度、方向盘伸缩角度来进行获取更多的肢体发力点的位置。
可选的,还可以结合左外后视镜301、右外后视镜302以及内后视镜303中的至少一个的位置和姿态信息,通过预设的映射关系换算得到操作者眼部的位置,进而可以根据眼部位置计算出头顶位置,以得到操作者的身高信息。
可选的,还可以通过在座以上设置至少一个重量传感器来检测操作者的重量信息,以便于区分在相同身高时,不同体重的操作者的不同操作需求。
下面对如何实现本申请所提供的制动操作器控制方法进行详细介绍。
图2为本申请实施例提供的一种制动操作器控制方法的流程示意图。如图2所示,该制动操作器控制方法的具体步骤,包括:
S201、获取第一位姿信息。
在本步骤中,第一位姿信息用于表示操作者的肢体发力支点、作用距离以及施力方向。
在本实施例中,获取座椅位姿信息,并根据座椅位姿信息确定第一位姿信息。
需要说明的是,制动操作器用于控制车辆上的制动系统对车辆进行制动,车辆包括:乘用车、载货车、助动车、电动轮椅、摩托车、电动车、四轮全地形越野车、三轮车等等。制动操作器可以是用手和/或脚进行操作的,也可以是通过其他接触方式进行操作的,还可以与人工假肢结合以实现残疾人也能够正常操纵车辆的制动系统。
具体的,如图1a所示,座椅位姿信息包括:座椅高度、靠背角度、纵向位置(正方向为车头所在方向)、横向位置(座椅在车辆内左右方向的位置)、坐垫俯仰角度、头枕上下伸缩位置、头枕前后俯仰角度等等。通过接收座椅控制器发送的座椅位姿信息,该座椅位姿信息是座椅上的各个位置传感器所采集到的,然后利用预设的几何换算模型,将座椅位姿信息进行对应的转换,就可以得到头部支点101、颈部支点102、肩部支点103、臀部支点104,、膝盖支点105、脚腕支点106等肢体发力支点的空间位置坐标,以此构成了第一位姿信息。
可选的,为了得到更多的肢体发力支点的准确位置,可以借助方向盘的位姿信息以及内外后视镜的位姿信息来得到头部支点101、手肘支点107以及手腕支点108的具体位置。
对于图1b所示的情况,在本步骤中,通过设置在操作者所穿着的可穿戴传感器,如内置在衣物上的传感器,或者是设置在护具(如头盔、护脖、护肘、手套、护膝、鞋子等)上的传感器直接接收车辆上的测距设备发送的测量信号,并向测距设备发送检测信号,测距设备通过识别检测信号的方向和到达时间即可得到各个肢体发力支点的位置,以作为第一位姿信息。
需要说明的是,即使是同一个操作者,由于其在操作制动操作器时的位置和姿态不同,也会产生不同的操作需求,比如,操作者将座椅往后滑动一段距离,其施力方向与地板的夹角将会减小,这样就会导致其需要的回馈力和制动的操作行程发生相应的变化,比如回 馈力增加、行程减小。因此,通过获取不同的第一位姿信息,那么就能够个性化地精准识别操作者的类型或者其对应的操作习惯,从而进入到下一步去调节制动操作器对应的控制参数。
S202、根据预设调节模型以及第一位姿信息确定制动操作器的第一调节参数。
在本步骤中,根据第一位姿信息确定操作者对应的类别信息,然后利用预设调节模型,根据类别信息以及制动操作器的特性曲线,确定第一调节参数。
需要说明的是,制动操作器是解耦式的电子制动操作装置,其与传统的机械式的结构的不同在于,其主要用于通过传感器采集操作者的操作指令,将操作指令以电信号的形式传递给控制装置或控制模块,由制动控制装置或控制模块控制车辆的制动系统进行制动。同时制动操作器通过接收控制装置或控制模块发送的回馈感控制参数来向操作者反馈车辆制动时的情况,以使得操作者能够及时调整其操作。传统的机械式制动操作器,是通过机械结构来放大和传递制动力,然后通过机械结构同时传递车轮上反馈的制动效果,从而使得操作者感知到回馈力。
具体的,得到各个肢体发力支点的位置后,通过预先采集的或者是预先设置的分类别的操作曲线,比如操作力曲线、操作行程曲线等,即每个操作者对应一套操作曲线或操作参数集,或者是识别出操作者对应的分类类别。
图3为本申请实施例提供的一种制动踏板力特性曲线的示意图。
图4为本申请实施例提供的一种制动踏板行程特性曲线的示意图。
如图3和图4所示,可以将操作者分为至少三类,即A类驾驶人群、B类驾驶人群和C类驾驶人群。
需要说明的是,分类的依据包括:年龄、性别和身材体格中的至少一项。
进一步地,年龄可以划分为:老年、中年、青年三类;
性别可以分为:男性和女性;
身材体格可以分为:偏瘦、中等、偏胖。
首先确认当前制动操作器,即电动制动踏板当前的控制参数是否符合操作者所属类别对应的特征曲线,若否,则根据图3和/或图4的特征曲线以及操作者所属类别确定第一调节参数。
S203、根据第一调节参数确定制动操作器的第一控制参数。
在本步骤中,将制动操作器的当前控制参数根据地域调节参数修改为第一控制参数。
可选的,第一控制参数包括:第一制动参数以及第一回馈参数,第一回馈参数用于控制回馈力的大小和/或方向,回馈力为制动操作器对操作者的作用力。
例如,第一控制参数包括:图3的制动踏板力特性曲线所对应的制动力对应的输出液压,和/或图4中的制动踏板行程特性曲线所对应的制动踏板行程所对应的输出液压。第一回馈参数即为图3对应的制动踏板力和/或制动踏板行程。
通过预先经过大量试验所标定的特性曲线,针对不同类型的人群或者是针对操作者本人所定制的特性曲线,即可实现自动根据不同的操作者或者是操作者的不同状态,自动调整电动解耦式制动操作器。
需要说明的是,制动操作器的操作者不一定是车辆的驾驶者,对于多人协作操作的车辆,或者是学习驾驶时的教练车上,副驾驶位上的教练也可以作为制动操作器的操作者。
还有一种场景也可以运用本申请的制动操作器控制方法,即模拟驾驶或者是远程驾驶的时候,由于驾驶者不在车辆上,那么制动操作器必须要真实模拟远程车辆的操作感,使得远程驾驶者或者模拟驾驶者能够更为真实地感受到制动操作时远程车辆上给出的实际反馈情况。
本实施例提供了一种制动操作器控制方法,通过获取第一位姿信息,第一位姿信息用于表示操作者的肢体发力支点、作用距离以及施力方向;根据预设调节模型以及第一位姿信息确定制动操作器的第一调节参数;根据第一调节参数确定制动操作器的第一控制参数。解决了现有技术存在的无法针对制动操作者的自身特性充分调整制动操作器的控制参数的技术问题。实现了根据不同操作者的个性化特征来自动调节制动操作器的操作控制参数,提高了操作者的使用体验的技术效果。
图5为本申请实施提供的另一种制动操作器控制方法的流程示意图。如图5所示,该制动操作器控制方法的具体步骤包括:
S501、获取操作者的面部图像。
在本步骤中,通过摄像头采集操作者的面部图像。
S502、利用预设识别模型,根据面部图像,确定操作者的身份信息。
在本步骤中,该身份信息包括:身份识别标识、年龄以及性别等。
S503、获取座椅位姿信息,并根据座椅位姿信息确定第一位姿信息。
本步骤的具体原理以及名词解释可以参考S201,在此不再赘述。
S504、获取第二位姿信息。
在本步骤中,第二位姿信息用于表示操作者的头部位置。
在本实施例中,通过车辆控制器或者是后视镜控制模块,获取后视镜位姿信息,并根据后视镜位姿信息确定第二位姿信息。
后视镜位姿信息包括:内后视镜的位置和左右/上下转角,和/或至少一个外后视镜中的位置和左右/上下转角。
S505、根据身份信息、第一位姿信息以及第二位姿信息,确定操作者对应的类别信息。
在本实施例中,身份信息用于确定操作者的年龄和性别、第一
在一种可能的设计中,也可以根据第二位姿信息以及第一位姿信息,确定类别信息,而身份信息用于判断当前操作者是否为合法操作者。
在一种可能的设计中,在S503步骤执行的同时,获取座椅上重量传感器所采集到的重量信息,此时,在本步骤中,根据身份信息、第一位姿信息、第二位姿信息以及重量信息,确定操作者对应的类别信息。
即类别信息可以由:
(1)年龄:老年、中年、青年;
(2)性别:男性和女性;
(3)身材体格:偏瘦、中等、偏胖。
进行任意的排列组合而得到。根据不同的类别,可以通过大量的实验标定出类似于图3和图4所示的特性曲线。
S506、利用预设调节模型,根据类别信息以及制动操作器的特性曲线,确定第一调节参数。
在本步骤中,根据操作者所属类别对应的特性曲线以及制动操作器的当前控制参数,确定第一调节参数。
S507、根据第一调节参数确定制动操作器的第一控制参数。
S508、在满足第一预设条件时,获取操作者输入的第二调节参数。
在本步骤中,第一预设条件包括:在将制动操作器的属性参数调整为第二制动参数以及第二回馈参数后,车辆的行驶里程大于第一里程且小于第二里程。
可选的,第一里程大于或等于0米,第二里程大于或等于第一里程。
具体的,在自动更新了制动操作器的控制参数为第一控制参数后,车辆行驶里程达到预设里程时,在控制界面输出提示信息,询问操作者是否需要手动调整或矫正制动操作器的控制参数,若是,则操作者在控制界面显示的当前制动操作器的特性曲线为参考,输入调整值即第二调节参数,并将调整后的特性曲线实时显示,以便于操作者实时感知调整后的特性曲线结果。
图6为本申请实施例提供的一种用户自定义调节制动踏板力特性曲线的示意图。
图7为本申请实施例提供的一种用户自定义调节制动踏板行程特性曲线的示意图。
如图6所示,Pa为第一控制参数对应的制动踏板力特征曲线,Pb为用户手动调节后的制动踏板力特征曲线。如图7所示,Ta为第一控制参数对应的制动踏板行程特性曲线,Tb为用户手动调节后的制动踏板行程特性曲线。
S509、根据第二调节参数、第一控制参数,确定第二控制参数。
在本步骤中,利用第二调节参数调整第一控制参数即可得到第二控制参数。
在本实施例中,第二控制参数确定之后,控制器或者控制模块可以将第二控制参数发送给云端服务器。
S510、利用预设优化模型,根据第二控制参数,确定第三控制参数。
在本步骤中,云端服务器根据训练好的神经网络优化模型,根据第二控制参数,确定第三控制参数。这样就可以对人工输入的第二控制参数中某些缺陷如使得特性曲线不平顺的设置,进行优化调整。
S511、输出应用提示信息。
在本步骤中,应用提示信息用于向操作者申请应用第三控制参数。
S512、获取操作者输入的反馈指令,并根据反馈指令确定是否将第二控制参数对应更新为第三控制参数。
在本步骤中,若操作者选择接受更新,则将第二控制参数对应更新为第三控制参数,若操作者选择不接受更新,则维持第二控制参数不变。
在一种可能的设计中,在S510确定第三控制参数之后,制动操作器的控制器或控制模块接收云端服务器发送的第三控制参数,并将其更新到制动操作器的控制模块或装置中。
然后通过操作界面或显示界面向操作者输出试用提示信息,如“以为您自动优化控制参数,如不接受请在试用时间结束前输入取消指令,现在开始计时”。并在预设的体验时间内,将第二控制参数对应更新为第三控制参数。
在体验时间内,若接收到使用者输入的还原指令,则将第三控制参数还原回第二控制参数。反之,若接收到应用指令或者是在体验时间结束时仍没有输入任何指令,则默认接受了更新。
本实施例提供了一种制动操作器控制方法,通过获取第一位姿信息,第一位姿信息用于表示操作者的肢体发力支点、作用距离以及施力方向;根据预设调节模型以及第一位姿信息确定制动操作器的第一调节参数;根据第一调节参数确定制动操作器的第一控制参数。解决了现有技术存在的无法针对制动操作者的自身特性充分调整制动操作器的控制参数的技术问题。实现了根据不同操作者的个性化特征来自动调节制动操作器的操作控制参数,提高了操作者的使用体验的技术效果。
图8为本申请实施例提供的一种制动操作器控制装置的结构示意图。该制动操作器控制装置800可以通过软件、硬件或者两者的结合实现。
如图8所示,该制动操作器控制装置800包括:
获取模块801,用于获取第一位姿信息,第一位姿信息用于表示操作者的肢体发力支点、作用距离以及施力方向;
处理模块802,用于根据预设调节模型以及第一位姿信息确定制动操作器的第一调节参数;根据第一调节参数确定制动操作器的第一控制参数。
可选的,第一控制参数包括:第一制动参数以及第一回馈参数,第一回馈参数用于控制回馈力的大小和/或方向。
在一种可能的设计中,处理模块802,用于:
根据第一位姿信息确定操作者对应的类别信息;
利用预设调节模型,根据类别信息以及制动操作器的特性曲线,确定第一调节参数。
在一种可能的设计中,获取模块801,用于:
获取座椅位姿信息;
根据座椅位姿信息确定第一位姿信息。
在一种可能的设计中,获取模块801,还用于获取操作者的面部图像;
处理模块802,还用于利用预设识别模型,根据面部图像,确定操作者的身份信息;根据身份信息以及第一位姿信息确定操作者对应的类别信息。
可选的,该身份信息包括:身份识别标识、年龄以及性别。
可选的,获取模块801,还用于获取第二位姿信息,第二位姿信息用于表示操作者的头部位置;
处理模块802,还用于利用预设几何模型,根据第二位姿信息以及第一位姿信息,确定类别信息。
在一种可能的设计中,获取模块801,用于获取后视镜位姿信息;
处理模块802,用于根据后视镜位姿信息确定第二位姿信息。
在一种可能的设计中,处理模块802,用于根据身份信息、第一位姿信息以及第二位姿信息,确定操作者对应的类别信息。
在一种可能的设计中,获取模块801,还用于获取座椅上重量传感器所采集到的重量信息;
对应的,处理模块802,用于根据身份信息、第一位姿信息、第二位姿信息以及重量信息,确定操作者对应的类别信息。
在一种可能的设计中,获取模块801,还用于在满足第一预设条件时,获取操作者输入的第二调节参数;
处理模块802,还用于根据第二调节参数、第一控制参数,确定第二控制参数。
可选的,第一预设条件包括:在将制动操作器的属性参数调整为第二制动参数以及第二回馈参数后,车辆的行驶里程大于第一里程且小于第二里程。
可选的,第一里程大于或等于0米,第二里程大于或等于第一里程。
在一种可能的设计中,处理模块802,还用于利用预设优化模型,根据第二控制参数,确定第三控制参数。
在一种可能的设计中,处理模块802,还用于将第二控制参数发送给云端服务器;云端服务器根据训练好的神经网络优化模型,根据第二控制参数,确定第三控制参数。
可选的,处理模块802,还用于输出应用提示信息,应用提示信息用于向操作者申请应用第三控制参数;
获取模块801,还用于获取操作者输入的反馈指令;
处理模块802,还用于根据反馈指令确定是否将第二控制参数对应更新为第三控制参数;若操作者选择接受更新,则将第二控制参数对应更新为第三控制参数。
在一种可能的设计中,在确定第三控制参数之后,还包括:
获取模块801,还用于接收云端服务器发送的第三控制参数;
处理模块802,还用于将其更新到制动操作器的控制参数中。
在一种可能的设计中,处理模块802,还用于输出试用提示信息,并在预设的体验时间内,将第二控制参数对应更新为第三控制参数;
获取模块801,还用于在体验时间内,接收使用者输入的还原指令,则
处理模块802,还用于将第三控制参数还原回第二控制参数。
值得说明的是,图8所示实施例提供的装置,可以执行上述任一方法实施例中所提供的方法,其具体实现原理、技术特征、专业名词解释以及技术效果类似,在此不再赘述。
图9为本申请实施例提供的一种电子设备的结构示意图。如图9所示,该电子设备900,可以包括:至少一个处理器901和存储器902。图9示出的是以一个处理器为例的电子设备。
存储器902,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。
存储器902可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
处理器901用于执行存储器902存储的计算机执行指令,以实现以上各方法实施例所述的方法。
其中,处理器901可能是一个中央处理器(central processing unit,简称为CPU),或者是特定集成电路(application specific integrated circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
可选地,存储器902既可以是独立的,也可以跟处理器901集成在一起。当所述存储器902是独立于处理器901之外的器件时,所述电子设备900,还可以包括:
总线903,用于连接所述处理器901以及所述存储器902。总线可以是工业标准体系结构(industry standard architecture,简称为ISA)总线、外部设备互连(peripheral component,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线 等。总线可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器902和处理器901集成在一块芯片上实现,则存储器902和处理器901可以通过内部接口完成通信。
本申请实施例还提供一种车辆,包括:解耦式制动操作器以及图9所示的实施例中任意一种可能的电子设备。
其中,解耦式制动操作器与车辆的制动系统电连接,以控制制动系统实现车辆制动,并将制动过程的回馈力反馈给制动操作者。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁盘或者光盘等各种可以存储程序代码的介质,具体的,该计算机可读存储介质中存储有程序指令,程序指令用于上述各方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的方法。
本申请实施例还提供一种计算机程序,包括程序代码,当计算机运行所述计算机程序时,所述程序代码执行如上述各方法实施例中的方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由本申请的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种制动操作器控制方法,其特征在于,包括:
    获取第一位姿信息,所述第一位姿信息用于表示操作者的肢体发力支点、作用距离以及施力方向;
    根据预设调节模型以及所述第一位姿信息确定制动操作器的第一调节参数;
    根据所述第一调节参数确定所述制动操作器的第一控制参数。
  2. 根据权利要求1所述的制动操作器控制方法,其特征在于,所述根据预设调节模型以及所述第一位姿信息确定制动操作器的第一调节参数,包括:
    根据所述第一位姿信息确定所述操作者对应的类别信息;
    利用所述预设调节模型,根据所述类别信息以及所述制动操作器的特性曲线,确定所述第一调节参数。
  3. 根据权利要求1或2所述的制动操作器控制方法,其特征在于,所述获取第一位姿信息,包括:
    获取座椅位姿信息;
    根据所述座椅位姿信息确定所述第一位姿信息。
  4. 根据权利要求1-3中任意一项所述的制动操作器控制方法,其特征在于,在所述获取第一位姿信息之后,还包括:
    获取第二位姿信息,所述第二位姿信息用于表示所述操作者的头部位置;
    所述根据所述第一位姿信息确定所述操作者对应的类别信息,包括:
    利用预设几何模型,根据所述第二位姿信息以及所述第一位姿信息,确定所述类别信息。
  5. 根据权利要求4所述的制动操作器控制方法,其特征在于,所述获取第二位姿信息,包括:
    获取后视镜位姿信息;
    根据所述后视镜位姿信息确定所述第二位姿信息。
  6. 根据权利要求1-5中任意一项所述的制动操作器控制方法,其特征在于,在所述根据所述第一调节参数调整所述制动操作器的制动参数以及回馈参数之后,还包括:
    在满足第一预设条件时,获取所述操作者输入的第二调节参数;
    根据所述第二调节参数、所述第一控制参数,确定第二控制参数。
  7. 根据权利要求6所述的制动操作器控制方法,其特征在于,在所述根据所述第二调节参数、所述第一控制参数,确定第二制动参数以及第二回馈参数之后,还包括:
    利用预设优化模型,根据所述第二控制参数,确定第三控制参数。
  8. 根据权利要求6所述的制动操作器控制方法,其特征在于,在所述确定第三控制参数之后,还包括:
    输出应用提示信息,所述应用提示信息用于向所述操作者申请应用所述第三控制参数;
    获取所述操作者输入的反馈指令;
    根据所述反馈指令确定是否将所述第二控制参数对应更新为所述第三控制参数。
  9. 一种制动操作器控制装置,其特征在于,包括:
    获取模块,用于获取第一位姿信息,所述第一位姿信息用于表示操作者的肢体发力支点、作用距离以及施力方向;
    处理模块,用于根据预设调节模型以及所述第一位姿信息确定制动操作器的第一调节参数;根据所述第一调节参数确定所述制动操作器的第一制动参数以及第一控制 参数。
  10. 一种电子设备,其特征在于,包括:处理器以及存储器;
    所述存储器,用于存储所述处理器的计算机程序;
    所述处理器配置为经由执行所述计算机程序来执行权利要求1至8任一项所述的制动操作器控制方法。
  11. 一种车辆,其特征在于,包括:解耦式制动操作器以及权利要求10所述的电子设备;
    其中,所述解耦式制动操作器与车辆的制动系统电连接,以控制所述制动系统实现车辆制动,并将制动过程的回馈力反馈给制动操作者。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至8任一项所述的制动操作器控制方法。
  13. 一种计算机程序产品,包括计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至8任一项所述的制动操作器控制方法。
  14. 一种计算机程序,其特征在于,包括程序代码,当计算机运行所述计算机程序时,所述程序代码执行如权利要求1至8任一项所述的制动操作器控制方法。
PCT/CN2022/103597 2021-08-19 2022-07-04 制动操作器控制方法、装置、设备、介质及程序产品 WO2023020139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110955618.3 2021-08-19
CN202110955618.3A CN113442885B (zh) 2021-08-19 2021-08-19 制动操作器控制方法、装置、设备、介质及程序产品

Publications (1)

Publication Number Publication Date
WO2023020139A1 true WO2023020139A1 (zh) 2023-02-23

Family

ID=77818704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103597 WO2023020139A1 (zh) 2021-08-19 2022-07-04 制动操作器控制方法、装置、设备、介质及程序产品

Country Status (2)

Country Link
CN (1) CN113442885B (zh)
WO (1) WO2023020139A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442885B (zh) * 2021-08-19 2022-08-12 浙江吉利控股集团有限公司 制动操作器控制方法、装置、设备、介质及程序产品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172785A (en) * 1990-06-19 1992-12-22 Nissan Motor Co., Ltd. Vehicle control system adjustable in accordance with driver's age and characteristic
US6309031B1 (en) * 1999-12-14 2001-10-30 Ford Global Technology, Inc. Vehicle brake system with variable brake pedal feel
CN101535101A (zh) * 2006-11-15 2009-09-16 罗伯特.博世有限公司 在机动车中用于调整制动系统特征量的方法
CN102099235A (zh) * 2008-07-17 2011-06-15 丰田自动车株式会社 利用肌骨骼信息的操作支援装置和操作支援方法
CN102271982A (zh) * 2009-09-09 2011-12-07 松下电器产业株式会社 车辆控制装置及车辆控制方法
JP2021116037A (ja) * 2020-01-29 2021-08-10 株式会社アドヴィックス 車両の制動制御装置
CN113442885A (zh) * 2021-08-19 2021-09-28 浙江吉利控股集团有限公司 制动操作器控制方法、装置、设备、介质及程序产品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19959576A1 (de) * 1999-12-10 2001-07-05 Kostal Leopold Gmbh & Co Kg Überwachungseinrichtung
US8872640B2 (en) * 2011-07-05 2014-10-28 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring health and ergonomic status of drivers of vehicles
DE102012219283A1 (de) * 2012-10-23 2014-04-24 Robert Bosch Gmbh Verfahren zum Betreiben mindestens eines Fahrerassistenzsystems und Betriebseinrichtung für mindestens ein Fahrerassistenzsystem
CN110758363B (zh) * 2019-11-19 2021-11-26 上汽通用汽车有限公司 制动踏板感觉调节系统、方法、装置和汽车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172785A (en) * 1990-06-19 1992-12-22 Nissan Motor Co., Ltd. Vehicle control system adjustable in accordance with driver's age and characteristic
US6309031B1 (en) * 1999-12-14 2001-10-30 Ford Global Technology, Inc. Vehicle brake system with variable brake pedal feel
CN101535101A (zh) * 2006-11-15 2009-09-16 罗伯特.博世有限公司 在机动车中用于调整制动系统特征量的方法
CN102099235A (zh) * 2008-07-17 2011-06-15 丰田自动车株式会社 利用肌骨骼信息的操作支援装置和操作支援方法
CN102271982A (zh) * 2009-09-09 2011-12-07 松下电器产业株式会社 车辆控制装置及车辆控制方法
JP2021116037A (ja) * 2020-01-29 2021-08-10 株式会社アドヴィックス 車両の制動制御装置
CN113442885A (zh) * 2021-08-19 2021-09-28 浙江吉利控股集团有限公司 制动操作器控制方法、装置、设备、介质及程序产品

Also Published As

Publication number Publication date
CN113442885A (zh) 2021-09-28
CN113442885B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
US11820383B2 (en) Apparatus detecting driving incapability state of driver
US11155184B1 (en) Apparatus and method for automatic adjustment of driver sitting posture
CN112070823A (zh) 一种基于视频识别的汽车智能座舱调节方法、装置和系统
WO2023020139A1 (zh) 制动操作器控制方法、装置、设备、介质及程序产品
JP2020185378A (ja) 乗り物酔いを軽減するためのシステムおよび方法
CN109017602B (zh) 一种基于人体姿态识别的自适应中控台及其控制方法
CN108473143A (zh) 用于至少部分自动化驾驶的方法和装置
CN112060986A (zh) 座椅调整方法及相关装置
WO2023020140A1 (zh) 电子制动踏板调节方法、装置、设备、介质及程序产品
CN113335146A (zh) 自动调节驾驶员相关车载设备的调节方法、装置和系统
CN104176063A (zh) 根据人体生物特征设置汽车系统
US10882478B2 (en) Movement-based comfort adjustment
CN110271506A (zh) 用于自动调节车辆座椅的方法和装置
US10426370B2 (en) Electromyographic controlled vehicles and chairs
US20180334055A1 (en) Alternating seat setting
CN110843613A (zh) 一种基于人因工程学的座椅自动调节方法
CN112308012A (zh) 一种基于云端的智能驾驶坐姿预测系统
JP2015194798A (ja) 運転支援制御装置
US20230322129A1 (en) Ecu device, vehicle seat, system for estimating lower limb length of seated person, and attachment structure for sitting height detection sensor
CN114103840A (zh) 用于自动调节道路车辆内的驾驶舱的方法及相关道路车辆
US20200231166A1 (en) Vehicle, judgment method, and non-transitory computer-readable medium
JP2019055759A (ja) 車載機器の制御システム
CN206664342U (zh) 步态识别系统式记忆功能座椅
DE102021202295A1 (de) Computerimplementiertes Verfahren, Vorrichtung und Computerprogramm zum Unterstützen einer Person bei einem Positionieren von Komponenten einer Innenausstattung eines automatisiert betreibbaren Fahrsystems
KR20200069585A (ko) 지능형 차량 편의 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE