WO2023020104A1 - 一种熔融碳酸盐燃料电池密封结构及其制备方法和应用 - Google Patents

一种熔融碳酸盐燃料电池密封结构及其制备方法和应用 Download PDF

Info

Publication number
WO2023020104A1
WO2023020104A1 PCT/CN2022/099561 CN2022099561W WO2023020104A1 WO 2023020104 A1 WO2023020104 A1 WO 2023020104A1 CN 2022099561 W CN2022099561 W CN 2022099561W WO 2023020104 A1 WO2023020104 A1 WO 2023020104A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
sealing structure
fuel cell
molten carbonate
carbonate fuel
Prior art date
Application number
PCT/CN2022/099561
Other languages
English (en)
French (fr)
Inventor
王菊
卢成壮
张瑞云
程健
杨冠军
黄华
白发琪
Original Assignee
华能国际电力股份有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能国际电力股份有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 华能国际电力股份有限公司
Publication of WO2023020104A1 publication Critical patent/WO2023020104A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the application belongs to the technical field of fuel cell preparation, and specifically relates to a sealing structure of a molten carbonate fuel cell and its preparation method and application; more specifically, it relates to a sealing structure of a molten carbonate fuel cell and a preparation method thereof, a A bipolar plate including the sealing structure of the molten carbonate fuel cell, a molten carbonate fuel cell including the bipolar plate.
  • Molten carbonate fuel cell is a high-temperature fuel cell that works at 650°C. It does not require noble metals as catalysts, has a wide range of fuel sources, low noise, basically achieves zero emissions of pollutants, high power generation efficiency, and can realize thermoelectricity. Combined power supply and other advantages are suitable for hundreds of kilowatts to megawatts distributed power stations or fixed power stations, and have good development prospects.
  • Molten carbonate battery is a power generation device that directly converts fuel chemical energy into electrical energy. It is composed of porous ceramic cathode, porous ceramic electrolyte diaphragm, porous metal anode, metal bipolar plate, carbonate electrolyte and other components.
  • the pole plate is the device for the introduction and discharge of cathode and anode gases and cooling medium, as well as the conductor for battery series connection and electric energy output, and is one of the key components of all fuel cells.
  • the bipolar plate of the fuel cell should have good electrical conductivity and flatness as much as possible, reasonable air distribution, and its own weight should be as light as possible. At the same time, it is required to have anti-oxidation and Reducing and electrolyte corrosion resistance. Since the molten fuel cell is in operation, there are gaseous media hydrogen, air and carbon dioxide inside, which prevents the reactant gases from crossing each other and prevents the reactant gases from leaking out.
  • the Chinese patent document CN110380074A discloses a preparation method of a light bipolar plate for a molten carbonate fuel cell.
  • the bipolar plate includes an anode flow field plate, an anode frame plate, a center plate, a cathode frame plate and a cathode flow field plate.
  • the field plate, the anode frame plate, the center plate and the cathode frame plate are connected by laser welding technology. After the welding is completed, the sealing material layer is painted on the welding position, and finally the anode flow field plate and the cathode flow field plate are put into the through holes respectively. , to obtain a lightweight bipolar plate for a molten carbonate fuel cell.
  • the structure is assembled in one piece, and a sealing material is placed to ensure airtightness, resulting in a high stack height, affecting power density, inconvenient assembly, and prone to gas leakage.
  • a sealing form that is compressed after placing the sealing material. This kind of sealing material is thicker, and there will also be problems such as high stack height, affecting power density, and causing gas leakage.
  • the technical problem to be solved in this application is to overcome defects such as high stack density and poor sealing performance caused by placing sealing materials in the bipolar structure of molten carbonate batteries in the prior art, thereby providing a molten carbonate battery Salt fuel cell sealing structure and its preparation method and application.
  • the present application provides a sealing structure for a molten carbonate fuel cell, which includes electrodes, punching plates and flow field plates that are sequentially stacked in descending order of diagonal size.
  • the size ratio of the electrode, the punching plate and the flow field plate is 1:(0.95-0.85):(0.85-0.75).
  • the perforated plate is provided with several round holes for filling electrolyte
  • a flow channel is provided on the flow field plate, and the flow channel is a serpentine flow channel
  • the electrode includes a cathode and/or an anode; the cathode has a porosity not exceeding 75%; and the anode has a porosity not lower than 55%.
  • the thickness of the punching plate is 0.6-1mm; the thickness of the flow field plate is 1.5-2mm;
  • the punching plate is made of stainless steel; the flow field plate is made of stainless steel; the electrodes are nickel electrodes and/or nickel oxide electrodes.
  • the sealing structure of the molten carbonate fuel cell does not add seals or sealing materials; the electrodes, perforated plates and flow field plates can be but not limited to rectangles or squares; the electrodes, perforated plates and flow field plates have the same profile.
  • the present application provides a method for preparing the sealing structure of the above-mentioned molten carbonate fuel cell, comprising the following steps,
  • the electrode, the perforated plate and the flow field plate are stacked in sequence, assembled, and pressed together under a pressure not exceeding 2.0 MPa to obtain a sealed structure of the molten carbonate fuel cell.
  • the pressing time is 5-10min.
  • the present application provides a bipolar plate, including the sealing structure of the above-mentioned molten carbonate fuel cell or the sealing structure of the molten carbonate fuel cell prepared by the above-mentioned method, and also includes a central frame plate;
  • the thickness of the central frame plate is 3-4mm;
  • At least one groove is provided in the center frame
  • the sealing structure of the molten carbonate fuel cell is embedded in the groove, and the thickness of the sealing structure of the molten carbonate fuel cell matches the depth of the groove.
  • the size ratio of the central frame plate to the electrode is (1.1-1.2):1.
  • the bipolar plate is also provided with an air inlet and an air outlet, the air inlet is arranged at the junction of the flow field plate and the central frame plate, communicates with the flow channel of the flow field plate, and is embedded in the central frame plate;
  • the air outlet and the air inlet are oppositely arranged at both ends of the same side of the bipolar plate and are symmetrical about the center, and the air outlet is arranged at the junction of the flow field plate and the central frame plate, communicates with the flow channel of the flow field plate, and is inlaid on the center frame.
  • the center frame plate is provided with a first groove and a second groove; the first groove and the second groove are relatively arranged on both sides of the center frame plate;
  • a sealing structure of a first molten carbonate fuel cell is embedded in the first groove, and an electrode in the sealing structure of the first molten carbonate fuel cell is a cathode;
  • a second molten carbonate fuel cell sealing structure is embedded in the second groove, and an electrode in the second molten carbonate fuel cell sealing structure is an anode.
  • the present application provides a molten carbonate fuel cell, comprising at least one sealing structure of the above-mentioned molten carbonate fuel cell and/or at least one of the above-mentioned bipolar plates.
  • molten carbonate fuel cell when the molten carbonate fuel cell is a single cell, including a bipolar plate;
  • the molten carbonate fuel cell also includes a diaphragm, an air side end plate, and a fuel gas side end plate.
  • the sealing structure of the molten carbonate fuel cell provided by the present application includes electrodes, punching plates and flow field plates which are sequentially stacked in descending order of diagonal size.
  • the sealing structure of the molten carbonate fuel cell can have better sealing performance without additional seals, which reduces the risk of leakage, and at the same time, the sealing structure of the molten carbonate fuel cell can also reduce the The small electrode spacing increases the volume power density of the battery; in addition, the weight of the sealing structure can be reduced without additional seals, further increasing the power density.
  • the sealing structure of the molten carbonate fuel cell includes electrodes, perforated plates and flow field plates in sequence.
  • the electrodes, perforated plates and flow field plates are laminated layer by layer. It can not only ensure the flatness, but also reduce the risk of leakage and improve the sealing performance of the sealing structure. By adopting the method of stepwise decreasing size, it can avoid the poor sealing performance at the boundary caused by the electrodes and flow field plates in the prior art due to the same size and contour.
  • the perforated plate is arranged between the flow field plate and the electrode to support the electrode and collect current.
  • the sealing structure of the molten carbonate fuel cell provided by this application, the application can improve the flatness of the stepped structure by limiting the size ratio of the electrodes, punching plates and flow field plates, thereby improving the sealing effect of the sealing structure and the fuel Battery efficiency, if the size ratio between adjacent ones is too large, the perforated plate cannot support the flow field plate, the gas flow channel in the flow field plate is too short, the pressure of the gas passing through is high and the energy loss is large, resulting in low efficiency of the fuel cell. If the proportion of the interproximal size is too small, similar to the aligned one-piece structure, the sealing effect will be reduced.
  • the preparation method of the molten carbonate fuel cell sealing structure provided by this application can reduce the assembly pressure to 2.0 MPa when preparing the stepwise decreasing sealing structure of this application, compared with the pressing pressure of 3-5 MPa in the prior art .
  • the stepwise decreasing sealing structure of this application can reduce the assembly pressure; compared with the traditional aligned structure, this application has no constraints of seals, which is more convenient for placement and assembly alignment.
  • the bipolar plate provided by the application includes the sealing structure of the molten carbonate fuel cell of the application and a central frame plate, at least one groove is arranged in the central frame plate; the sealing structure of the molten carbonate fuel cell The sealing structure is embedded in the groove and the thickness of the molten carbonate fuel cell sealing structure matches the depth of the groove.
  • the bipolar plate has good sealing performance without additional seals or sealing materials, which reduces the risk of leakage.
  • the use of the bipolar plate in the preparation of molten carbonate fuel cells can also shorten the distance between the anode and the cathode. Increase the distance and increase the volume power density of the battery, and the battery performance can reach 100mA/cm 2 @0.7V.
  • the molten carbonate fuel cell provided by this application can make the battery have better sealing performance and no gas leakage will occur. At the same time, it also has a good volume power density, which avoids the problem of poor boundary sealing due to the same size of electrodes, flow field plates, and center frame plates in the prior art, and can also overcome the problem of sealing or sealing in the prior art.
  • the material causes the problem of reducing the volumetric power density of the battery.
  • Fig. 1 is the schematic diagram of the sealing structure of the molten carbonate fuel cell in the embodiment 1 of the present application;
  • Fig. 2 is a schematic structural view of a bipolar plate in Example 5 of the present application.
  • Fig. 3 is the setting method of the air inlet and the air outlet on the bipolar plate in Example 1 of the present application;
  • Fig. 4 is the schematic diagram of the assembly of the molten carbonate fuel cell in Experimental Example 1 of the present application;
  • This embodiment provides a sealing structure for a molten carbonate fuel cell.
  • the sealing structure is marked as A, as shown in FIG.
  • the size of the electrode is 819mm, the size of the punching plate is 778mm, and the size of the flow field plate is 696mm; the thickness of the electrode is 0.8mm, the thickness of the punching plate is 0.6mm, and the thickness of the flow field plate is 2mm.
  • the perforated plate is made of stainless steel, with a number of round holes for filling electrolyte.
  • the porosity of the perforated plate is 60%;
  • the flow field plate is made of stainless steel, and there are flow channels in the flow field plate, and the flow channel is a serpentine flow.
  • the channel is used to fill the electrolyte and transport the gas;
  • the electrode is the cathode, and the cathode is a nickel oxide electrode with a porosity of 75%.
  • This embodiment also provides a method for preparing the above-mentioned sealing structure, including the following steps,
  • this embodiment also provides a bipolar plate, marked as bipolar plate A, including a sealing structure A and a central frame plate, a groove is arranged in the central frame plate, the sealing structure A is embedded in the groove, and the concave The depth of the groove matches the thickness of the sealing structure A.
  • the size of the center frame plate is 900mm; the material is stainless steel, and the depth of the groove of the center frame plate is 3.4mm.
  • the bipolar plate is also provided with an air inlet and an air outlet.
  • the air inlet is set at the junction of the flow field plate and the center frame plate, communicates with the flow channel of the flow field plate, and is embedded in the center frame plate;
  • the air outlet and the air inlet are arranged opposite to the two ends of the same side of the bipolar plate and are symmetrical about the center, and the air outlet is arranged at the junction of the flow field plate and the center frame plate, communicates with the flow channel of the flow field plate, and is embedded in the center frame board.
  • This embodiment provides a sealing structure for a molten carbonate fuel cell, which is denoted as B, and includes an electrode 1, a punching plate 2 and a flow field plate 3 that are stacked in sequence; the punching plate 2 is arranged on the flow field plate
  • the space between 3 and electrode 1 can support the electrode and collect current; the electrode 1, punching plate 2 and flow field plate 3 are rectangular.
  • the size of the electrode is 819mm, the size of the punching plate is 778mm, and the size of the flow field plate is 696mm; the thickness of the electrode is 0.8mm, the thickness of the punching plate is 0.6mm, and the thickness of the flow field plate is 2mm.
  • the perforated plate is made of stainless steel, with a number of round holes for filling electrolyte.
  • the porosity of the perforated plate is 60%;
  • the flow field plate is made of stainless steel, and there are flow channels in the flow field plate, and the flow channel is a serpentine flow.
  • the channel is used to fill the electrolyte and transport the gas;
  • the electrode is the anode, and the anode is a nickel electrode with a porosity of 55%.
  • This embodiment also provides a method for preparing the above-mentioned sealing structure, including the following steps,
  • this embodiment also provides a bipolar plate, denoted as a bipolar plate B, including a sealing structure B and a central frame plate, a groove is provided in the central frame plate, and the sealing structure B is embedded in the groove.
  • the depth of the groove matches the thickness of the sealing structure B.
  • the size of the center frame plate is 900mm; the material is stainless steel, and the depth of the groove of the center frame plate is 3.4mm.
  • the bipolar plate is also provided with an air inlet and an air outlet.
  • the air inlet is set at the junction of the flow field plate and the central frame plate, communicates with the flow channel of the flow field plate, and is embedded in the central frame plate;
  • the air outlet and the air inlet They are oppositely arranged at both ends of the same side of the bipolar plate and are symmetrical about the center, and the air outlet is arranged at the junction of the flow field plate and the center frame plate, communicates with the flow channel of the flow field plate, and is embedded in the center frame plate.
  • This embodiment provides a sealing structure for a molten carbonate fuel cell, the sealing structure is denoted as C, and includes an electrode 1, a punching plate 2 and a flow field plate 3 that are stacked in sequence; the punching plate 2 is arranged on the flow field plate
  • the space between 3 and electrode 1 can support the electrode and collect current; the electrode 1, punching plate 2 and flow field plate 3 are rectangular.
  • the size of the electrode is 820mm, the size of the punching plate is 697mm, and the size of the flow field plate is 615mm; the thickness of the electrode is 1mm, the thickness of the punching plate is 1mm, and the thickness of the flow field plate is 2mm .
  • the perforated plate is made of stainless steel, with a number of round holes for filling electrolyte.
  • the porosity of the perforated plate is 60%;
  • the flow field plate is made of stainless steel, and there are flow channels in the flow field plate, and the flow channel is a serpentine flow.
  • the channel is used to fill the electrolyte and transport the gas;
  • the electrode is the cathode, and the cathode is a nickel oxide electrode with a porosity of 75%.
  • This embodiment also provides a method for preparing the above-mentioned sealing structure, including the following steps,
  • this embodiment also provides a bipolar plate, marked as a bipolar plate C, including a sealing structure C and a central frame plate.
  • a groove is arranged in the central frame plate, and the sealing structure C is embedded in the groove.
  • the depth of the groove matches the thickness of the sealing structure C.
  • the size of the center frame plate is 984m; the material is stainless steel, and the depth of the groove of the center frame plate is 4mm.
  • the bipolar plate is also provided with an air inlet and an air outlet.
  • the air inlet is set at the junction of the flow field plate and the central frame plate, communicates with the flow channel of the flow field plate, and is embedded in the central frame plate;
  • the air outlet and the air inlet They are oppositely arranged at both ends of the same side of the bipolar plate and are symmetrical about the center, and the air outlet is arranged at the junction of the flow field plate and the center frame plate, communicates with the flow channel of the flow field plate, and is embedded in the center frame plate.
  • This embodiment provides a sealing structure for a molten carbonate fuel cell, which is denoted as D, and includes an electrode 1, a perforated plate 2 and a flow field plate 3 that are stacked in sequence; the perforated plate 2 is arranged on the flow field plate
  • the space between 3 and electrode 1 can support the electrode and collect current; the electrode 1, punching plate 2 and flow field plate 3 are rectangular.
  • the size of the electrode is 820mm, the size of the punching plate is 697mm, and the size of the flow field plate is 615mm; the thickness of the electrode is 1mm, the thickness of the punching plate is 1mm, and the thickness of the flow field plate is 2mm .
  • the perforated plate is made of stainless steel, with a number of round holes for filling electrolyte.
  • the porosity of the perforated plate is 60%;
  • the flow field plate is made of stainless steel, and there are flow channels in the flow field plate, and the flow channel is a serpentine flow.
  • the channel is used to fill the electrolyte and transport the gas;
  • the electrode is the anode, and the anode is a nickel electrode with a porosity of 55%.
  • This embodiment also provides a method for preparing the above-mentioned sealing structure, including the following steps,
  • This embodiment also provides a bipolar plate, marked as a bipolar plate D, including a sealing structure D and a central frame plate, a groove is arranged in the central frame plate, and a sealing structure D is embedded in the groove.
  • the depth matches the thickness of the sealing structure D.
  • the size of the center frame plate is 984mm; the material is stainless steel, and the depth of the groove of the center frame plate is 4mm.
  • the bipolar plate is also provided with an air inlet and an air outlet.
  • the air inlet is set at the junction of the flow field plate and the central frame plate, communicates with the flow channel of the flow field plate, and is embedded in the central frame plate;
  • the air outlet and the air inlet They are oppositely arranged at both ends of the same side of the bipolar plate and are symmetrical about the center, and the air outlet is arranged at the junction of the flow field plate and the center frame plate, communicates with the flow channel of the flow field plate, and is embedded in the center frame plate.
  • bipolar plate E including a sealing structure A, a sealing structure B and a central frame plate, as shown in Figure 2,
  • the central frame plate 4 is provided with a first groove and a second Two grooves, the first groove and the second groove are relatively arranged on both sides of the center frame plate;
  • the first groove is embedded with a sealing structure A, and the thickness of the sealing structure A is adapted to the depth of the first groove;
  • the bipolar plate is also provided with an air inlet and an air outlet.
  • the air inlet is set at the junction of the flow field plate and the center frame plate, communicates with the flow channel of the flow field plate, and is embedded in the center frame plate;
  • the air outlet and the air inlet are arranged opposite to the two ends of the same side of the bipolar plate and are symmetrical about the center, and the air outlet is arranged at the junction of the flow field plate and the center frame plate, communicates with the flow channel of the flow field plate, and is embedded in the center frame board.
  • bipolar plate F including a sealing structure C, a sealing structure D and a central frame plate
  • the central frame plate 4 is provided with a first groove and a second groove, the first The groove and the second groove are relatively arranged on both sides of the center frame plate;
  • the first groove is embedded with a sealing structure C, and the thickness of the sealing structure C is adapted to the depth of the first groove;
  • the second groove is embedded with a Sealing structure D, the thickness of sealing structure D matches the depth of the second groove; taking the diagonal as the reference, the size of the center frame plate is 943mm; the material is stainless steel, and the depth of the center frame plate groove is 4mm.
  • the bipolar plate is also provided with an air inlet and an air outlet.
  • the air inlet is set at the junction of the flow field plate and the central frame plate, communicates with the flow channel of the flow field plate, and is embedded in the central frame plate;
  • the air outlet and the air inlet They are oppositely arranged at both ends of the same side of the bipolar plate and are symmetrical about the center, and the air outlet is arranged at the junction of the flow field plate and the center frame plate, communicates with the flow channel of the flow field plate, and is embedded in the center frame plate.
  • This embodiment provides a sealing structure for a molten carbonate fuel cell, which is marked as E, and includes electrodes 1, punching plates 2 and flow fields that are stacked in sequence according to the order of diagonal size from large to small The plate 3; the punching plate 2 is arranged between the flow field plate 3 and the electrode 1 to support the electrode and collect current; the electrode 1, the punching plate 2 and the flow field plate 3 are rectangular.
  • the size of the electrode is 819mm, the size of the punching plate is 573mm, and the size of the flow field plate is 491mm; the thickness of the electrode is 0.8mm, the thickness of the punching plate is 0.6mm, and the thickness of the flow field plate is 2mm.
  • the perforated plate is made of stainless steel, with a number of round holes for filling electrolyte.
  • the porosity of the perforated plate is 60%;
  • the flow field plate is made of stainless steel, and there are flow channels in the flow field plate, and the flow channel is a serpentine flow.
  • the channel is used to fill the electrolyte and transport the gas;
  • the electrode is the cathode, and the cathode is a nickel oxide electrode with a porosity of 75%.
  • This embodiment also provides a method for preparing the above-mentioned sealing structure, including the following steps,
  • This comparative example provides a sealing structure, which is recorded as sealing structure F.
  • the difference from Example 1 is that the electrodes, punching plates and flow field plates have the same size, and the size is 819mm based on the diagonal line. Others With embodiment 1.
  • This comparative example provides a sealing structure, which is recorded as sealing structure G.
  • the difference from Example 1 is that the size of the electrode and the punching plate are the same, the size is 819mm, the size of the flow field plate is the same as that of Example 1, and other parameters With embodiment 1.
  • This experimental example provides a molten carbonate fuel cell, as shown in Figure 4, comprising a bipolar plate E, a first diaphragm 6 and a second diaphragm 9, an electrolyte salt, an air side end plate 5 and a fuel gas side end plate 10; wherein the separator is LiAlO 2 , and the electrolyte salt is Li/K carbonate composed of 62% lithium carbonate and 38% potassium carbonate by mass fraction; the bipolar plate includes a first sealing structure 7 and a second sealing structure 8;
  • the bipolar plate with electrolyte salt, then assemble it in sequence according to Figure 4, and press it under the condition of 2MPa for 5 minutes.
  • the assembly process pay attention to alignment and horizontal placement, and there should be no inclination or protrusion, that is, the molten carbonate fuel is obtained single battery.
  • the first sealing structure is sealing structure A
  • the second sealing structure is sealing structure B.
  • This experimental example provides a molten carbonate fuel cell.
  • the difference from Experimental Example 1 is that the bipolar plate F replaces the bipolar plate E, the sealing structure C replaces the sealing structure A, the sealing structure D replaces the sealing structure B, and the others are the same Experimental example 1.
  • This experimental example provides a molten carbonate fuel cell, the difference from Experimental Example 1 is that the sealing structure E replaces the sealing structure A, and the other is the same as Experimental Example 1.
  • This experimental example provides a molten carbonate fuel cell.
  • the difference from Experimental Example 1 is that the sealing structure F in Comparative Example 1 is used instead of sealing structure A, and the others are the same as Experimental Example 1.
  • This experimental example provides a molten carbonate fuel cell.
  • the difference from Experimental Example 1 is that the sealing structure G in Comparative Example 2 is used instead of sealing structure A, and the other is the same as Experimental Example 1.
  • This test example provides the performance test and test results of the molten carbonate battery.
  • the test method is as follows, and the test results are shown in Table 1.
  • the test method for the volumetric power density of molten carbonate batteries is as follows: the specific operation is to start the heating program, reach thermal equilibrium at the highest operating temperature, run the fuel cell test program, pass hydrogen at the anode, pass air and carbon dioxide at the cathode, and open the fuel cell test program Faish, no load is added to monitor the open circuit voltage to 1.2V, and a load is applied to test with a constant voltage of 0.7V.
  • the corresponding test power results are shown in Table 1.
  • the test method for the sealing of the molten carbonate battery is: test according to the gas leakage test method in GB/T 29838-2013 "Fuel Cell Module"; the specific operation is to run the fuel cell module to the full load current and reach the maximum operating temperature
  • anode gas is introduced into the anode chamber pipeline, and the pressure is maintained for 1 minute, and the pressure change is recorded; a specified pressure is applied to the cathode chamber, which is similar to the anode, and the pressure change is recorded.
  • the pressure change value is shown in Table 1.
  • the sealing structure of the molten carbonate fuel cell obtained can further improve the sealing effect and volume power density when used in the battery.
  • the sealing structure in Experimental Example 3 is provided by Example 7. After the sealing structure in Experimental Example 1 optimizes the ratio of electrodes, flow field plates and punching plates, the sealing effect and volume can be improved. power density.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本申请属于燃料电池制备技术领域,具体涉及一种熔融碳酸盐燃料电池密封结构及其制备方法和应用。按照对角线尺寸由大到小的顺序,该熔融碳酸盐燃料电池密封结构包括依次叠加设置的电极、冲孔板和流场板。该熔融碳酸盐燃料电池密封结构在不外加密封件的情况下可以具有较好的密封性,降低了泄露风险,同时将该熔融碳酸盐燃料电池密封结构用于电池制备中,还可以减小电极的间距,增大电池体积功率密度;另外由于不外加密封件还可以减轻熔融碳酸盐燃料电池密封结构的重量,进一步提高功率密度。

Description

一种熔融碳酸盐燃料电池密封结构及其制备方法和应用
交叉引用
本申请要求在2021年8月18日提交中国国家知识产权局、申请号为202110948320.X、发明名称为“一种熔融碳酸盐燃料电池密封结构及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于燃料电池制备技术领域,具体涉及一种熔融碳酸盐燃料电池密封结构及其制备方法和应用;更具体地,涉及一种熔融碳酸盐燃料电池密封结构及其制备方法,一种包括该熔融碳酸盐燃料电池密封结构的双极板,一种包括该双极板的熔融碳酸盐燃料电池。
背景技术
熔融碳酸盐燃料电池(MCFC)是一种在650℃下工作的高温燃料电池,具有不需要贵金属作催化剂、燃料来源广、噪声低、污染物基本达到零排放、发电效率高、可实现热电联供等优点,适合于百千瓦级至兆瓦级分布式电站或固定电站,具有良好的发展前景。
熔融碳酸盐电池是一种直接将燃料化学能转化为电能的发电装置,由多孔陶瓷阴极、多孔陶瓷电解质隔膜、多孔金属阳极、金属双极板、碳酸盐电解质等组分构成,其中双极板是阴阳极气体和冷却介质导入、排出的装置,也是电池串联和电能输出的导体,是所有燃料电池的关键部件之一。
燃料电池的双极板要尽可能具备很好的导电性和平整度,合理的气流分配,而且自身重量也要尽可能轻,同时在熔融盐腐蚀条件下运行,要求双极板具有抗氧化和还原以及抗电解质腐蚀性。由于熔融态燃料电池工作时内部既有气体 介质氢气、空气和二氧化碳,防止反应气互窜,也防止反应气外漏。
现有技术中,中国专利文献CN110380074A公开了一种熔融碳酸盐燃料电池轻型双极板的制备方法,该双极板包括阳极流场板、阳极框板、中心板、阴极框板及阴极流场板,阳极框板、中心板和阴极框板通过激光焊接技术相连接,焊接完成后,在焊接位置涂刷密封材料层,最后将阳极流场板和阴极流场板分别放入通孔中,得到熔融碳酸盐燃料电池轻型双极板。但是该结构由一体式组装而成,为了保证密封性会放置密封材料,导致电堆高度偏高,影响功率密度,并且装配不便,易发生气体泄漏。另外,现有技术中还存在放置密封材料后采用压缩的密封形式,这种密封件厚度较厚,也会出现电堆高度偏高、影响功率密度、导致气体泄漏等问题。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的熔融碳酸盐电池双极结构中因放置密封材料导致电堆密度高、密封性变差等缺陷,从而提供了一种熔融碳酸盐燃料电池密封结构及其制备方法和应用。
为此,本申请提供了以下技术方案。
本申请提供了一种熔融碳酸盐燃料电池密封结构,按照对角线尺寸由大到小的顺序,包括依次叠加设置的电极、冲孔板和流场板。
以对角线为基准,所述电极、冲孔板和流场板的尺寸比为1:(0.95-0.85):(0.85-0.75)。
所述冲孔板上设有若干圆孔,用于填充电解质;
所述流场板上设有流道,所述流道为蛇形流道;
所述电极包括阴极和/或阳极;所述阴极的孔隙率不超过75%;所述阳极的孔隙率不低于55%。
所述冲孔板的厚度为0.6-1mm;所述流场板的厚度为1.5-2mm;
所述冲孔板为不锈钢材质;所述流场板为不锈钢材质;所述电极为镍电极和/或氧化镍电极。
该熔融碳酸盐燃料电池密封结构不外加密封件或密封材料;电极、冲孔板和流场板可以是但不限于矩形或正方形;电极、冲孔板和流场板具有相同的轮廓。
本申请提供了一种上述熔融碳酸盐燃料电池密封结构的制备方法,包括以下步骤,
依次将电极、冲孔板和流场板叠加,组装,在不超过2.0MPa的压力下压合,得到熔融碳酸盐燃料电池密封结构。
压合时间为5-10min。
此外,本申请提供了一种双极板,包括上述熔融碳酸盐燃料电池密封结构或上述方法制备得到的熔融碳酸盐燃料电池密封结构,还包括中心框板;
所述中心框板的厚度为3-4mm;
所述中心框板内设有至少一个凹槽;
所述凹槽内嵌有所述熔融碳酸盐燃料电池密封结构且所述熔融碳酸盐燃料电池密封结构的厚度与所述凹槽的深度相适配。
以对角线为基准,所述中心框板与所述电极的尺寸比为(1.1-1.2):1。
所述双极板还设置有进气孔和出气孔,所述进气孔设置在流场板和中心框板的交界位置,与流场板流道连通,且镶嵌在中心框板上;
所述出气孔与进气孔相对设置在双极板同侧两端且关于中心对称,且所述 出气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上。
所述中心框板内设有第一凹槽和第二凹槽;所述第一凹槽和所述第二凹槽相对设置在中心框板的两侧;
所述第一凹槽内嵌有第一熔融碳酸盐燃料电池密封结构,所述第一熔融碳酸盐燃料电池密封结构中的电极为阴极;
所述第二凹槽内嵌有第二熔融碳酸盐燃料电池密封结构,所述第二熔融碳酸盐燃料电池密封结构中的电极为阳极。
进一步地,本申请提供了一种熔融碳酸盐燃料电池,包括至少一个上述熔融碳酸盐燃料电池密封结构和/或至少一个上述双极板。
当熔融碳酸盐燃料电池为单电池时,包括一个双极板;
当熔融碳酸盐燃料电池为组装电池堆时,包括若干个双极板;
熔融碳酸盐燃料电池还包括隔膜、空气侧端板、燃料气侧端板。
本申请技术方案,具有如下优点:
1.本申请提供的熔融碳酸盐燃料电池密封结构,按照对角线尺寸由大到小的顺序,包括依次叠加设置的电极、冲孔板和流场板。该熔融碳酸盐燃料电池密封结构在不外加密封件的情况下可以具有较好的密封性,降低了泄露风险,同时将该熔融碳酸盐燃料电池密封结构用于电池制备中,还可以减小电极的间距,增大电池体积功率密度;另外由于不外加密封件还可以减轻密封结构的重量,进一步提高功率密度。
按照对角线尺寸由大到小顺序,熔融碳酸盐燃料电池密封结构依次包括电极、冲孔板和流场板,本申请电极、冲孔板和流场板间一层一层压合,既可以 保证平整度,又可以降低泄露风险,提高密封结构的密封性,通过采用尺寸阶梯式递减的方式,可以避免现有技术中电极、流场板等由于尺寸、轮廓相同导致边界处密封性差的问题。本申请中,冲孔板设置在流场板和电极间可以起到支撑电极和收集电流的作用。
2.本申请提供的熔融碳酸盐燃料电池密封结构,本申请通过限定电极、冲孔板和流场板的尺寸比例,可以提高阶梯式结构的平整度,进而提升密封结构的密封效果和燃料电池效率,如果相邻间的尺寸比例过大,冲孔板无法支撑流场板,流场板中气体流道过短,通过的气体压力大以及能量损失多,造成燃料电池效率低,如果相邻间的尺寸比例过小,与对齐一体式结构相似,密封效果会下降。
3.本申请提供的熔融碳酸盐燃料电池密封结构的制备方法,在制备本申请阶梯式递减的密封结构时,组装压力可以降低至2.0MPa,与现有技术压合压力3-5MPa相比,在保证结构密封性的前提下,本申请阶梯式递减的密封结构可以降低组装压力;与传统对齐一体的结构相比,本申请没有密封件的约束,更方便放置与组装对齐。
4.本申请提供的双极板,该双极板包括本申请的熔融碳酸盐燃料电池密封结构和中心框板,中心框板内设有至少一个凹槽;熔融碳酸盐燃料电池密封结构内嵌于所述凹槽且所述熔融碳酸盐燃料电池密封结构的厚度与所述凹槽的深度相匹配。该双极板在不外加密封件或密封材料的情况下具有较好的密封性,降低了泄露风险,同时将该双极板用于熔融碳酸盐燃料电池制备中还可以缩短阳极和阴极的距离,提高增大电池体积功率密度,电池性能可以达到100mA/cm 2@0.7V。
5.本申请提供的熔融碳酸盐燃料电池,包括本申请提供的熔融碳酸盐燃料电池密封结构和/或双极板,可以使该电池具有较好的密封性,不会出现气体泄 漏,同时还具有较好的体积功率密度,避免了现有技术中因电极、流场板、中心框板等尺寸相同导致边界密封性差的问题,同时还可以克服现有技术中因加密封件或密封材料导致电池体积功率密度降低的问题。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中熔融碳酸盐燃料电池密封结构的示意图;
图2是本申请实施例5中双极板的结构示意图;
图3是本申请实施例1中双极板上进气孔和出气孔的设置方式;
图4是本申请实验例1中熔融碳酸盐燃料电池的组装示意图;
1-电极;2-冲孔板;3-流场板;4-中心框板;5-空气侧端板;6-第一隔膜,7-第一密封结构,8-第二密封结构,9-第二隔膜,10-燃料气侧端板。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之 间未构成冲突就可以相互结合。
实施例1
本实施例提供了一种熔融碳酸盐燃料电池密封结构,该密封结构记为A,具体如图1所示,按照对角线尺寸由大到小的顺序,包括依次叠加设置的电极1、冲孔板2和流场板3;冲孔板2设置在流场板3和电极1间可以起到支撑电极和收集电流的作用;电极1、冲孔板2和流场板3为矩形。
以对角线为基准,电极的尺寸为819mm,冲孔板的尺寸为778mm,流场板的尺寸为696mm;电极的厚度为0.8mm,冲孔板的厚度为0.6mm,流场板的厚度为2mm。
冲孔板为不锈钢材质,设置有若干圆孔,用于填充电解质,冲孔板的孔隙率为60%;流场板为不锈钢材质,流场板内设置有流道,流道为蛇形流道,用于填充电解质和输送气体;电极为阴极,阴极为氧化镍电极,孔隙率为75%。
本实施例还提供了一种上述密封结构的制备方法,包括以下步骤,
电极、冲孔板和流场板依次叠加组装后,在2MPa的条件下压合5min,得到密封结构A。
此外,本实施例还提供了一种双极板,记为双极板A,包括密封结构A和中心框板,中心框板内设有一个凹槽,凹槽内嵌有密封结构A,凹槽的深度与密封结构A的厚度相适配,以对角线为基准,中心框板的尺寸为900mm;材质为不锈钢材料,中心框板凹槽的深度为3.4mm。
双极板还设置有进气孔和出气孔,如图3所示,进气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上;出气孔与进气孔相对设置在双极板同侧两端且关于中心对称,且所述出气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上。
实施例2
本实施例提供了一种熔融碳酸盐燃料电池密封结构,该密封结构记为B,包括依次叠加设置的电极1、冲孔板2和流场板3;冲孔板2设置在流场板3和电极1间可以起到支撑电极和收集电流的作用;电极1、冲孔板2和流场板3为矩形。
以对角线为基准,电极的尺寸为819mm,冲孔板的尺寸为778mm,流场板的尺寸为696mm;电极的厚度为0.8mm,冲孔板的厚度为0.6mm,流场板的厚度为2mm。
冲孔板为不锈钢材质,设置有若干圆孔,用于填充电解质,冲孔板的孔隙率为60%;流场板为不锈钢材质,流场板内设置有流道,流道为蛇形流道,用于填充电解质和输送气体;电极为阳极,阳极为镍电极,孔隙率为55%。
本实施例还提供了一种上述密封结构的制备方法,包括以下步骤,
电极、冲孔板和流场板依次叠加组装后,在2MPa的条件下压合5min,得到密封结构B。
此外,本实施例还提供了一种双极板,记为双极板B,包括密封结构B和中心框板,中心框板内设有一个凹槽,凹槽内嵌有密封结构B,凹槽的深度与密封结构B的厚度相适配,以对角线为基准,中心框板的尺寸为900mm;材质为不锈钢材质,中心框板凹槽的深度为3.4mmmm。
双极板还设置有进气孔和出气孔,进气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上;出气孔与进气孔相对设置在双极板同侧两端且关于中心对称,且所述出气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上。
实施例3
本实施例提供了一种熔融碳酸盐燃料电池密封结构,该密封结构记为C,包括依次叠加设置的电极1、冲孔板2和流场板3;冲孔板2设置在流场板3和电极1间可以起到支撑电极和收集电流的作用;电极1、冲孔板2和流场板3为矩形。
以对角线为基准,电极的尺寸为820mm,冲孔板的尺寸为697mm,流场板的尺寸为615mm;电极的厚度为1mm,冲孔板的厚度为1mm,流场板的厚度为2mm。
冲孔板为不锈钢材质,设置有若干圆孔,用于填充电解质,冲孔板的孔隙率为60%;流场板为不锈钢材质,流场板内设置有流道,流道为蛇形流道,用于填充电解质和输送气体;电极为阴极,阴极为氧化镍电极,孔隙率为75%。
本实施例还提供了一种上述密封结构的制备方法,包括以下步骤,
电极、冲孔板和流场板依次叠加组装后,在2MPa的条件下压合10min,得到密封结构C。
此外,本实施例还提供了一种双极板,记为双极板C,包括密封结构C和中心框板,中心框板内设有一个凹槽,凹槽内嵌有密封结构C,凹槽的深度与密封结构C的厚度相适配,以对角线为基准,中心框板的尺寸为984m;材质为不锈钢材料,中心框板凹槽的深度为4mm。
双极板还设置有进气孔和出气孔,进气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上;出气孔与进气孔相对设置在双极板同侧两端且关于中心对称,且所述出气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上。
实施例4
本实施例提供了一种熔融碳酸盐燃料电池密封结构,该密封结构记为D, 包括依次叠加设置的电极1、冲孔板2和流场板3;冲孔板2设置在流场板3和电极1间可以起到支撑电极和收集电流的作用;电极1、冲孔板2和流场板3为矩形。
以对角线为基准,电极的尺寸为820mm,冲孔板的尺寸为697mm,流场板的尺寸为615mm;电极的厚度为1mm,冲孔板的厚度为1mm,流场板的厚度为2mm。
冲孔板为不锈钢材质,设置有若干圆孔,用于填充电解质,冲孔板的孔隙率为60%;流场板为不锈钢材质,流场板内设置有流道,流道为蛇形流道,用于填充电解质和输送气体;电极为阳极,阳极为镍电极,孔隙率为55%。
本实施例还提供了一种上述密封结构的制备方法,包括以下步骤,
电极、冲孔板和流场板依次叠加组装后,在2MPa的条件下压合10min,得到密封结构D。
本实施例还提供了一种双极板,记为双极板D,包括密封结构D和中心框板,中心框板内设有一个凹槽,凹槽内嵌有密封结构D,凹槽的深度与密封结构D的厚度相适配,以对角线为基准,中心框板的尺寸为984mm;材质为不锈钢材质,中心框板凹槽的深度为4mm。
双极板还设置有进气孔和出气孔,进气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上;出气孔与进气孔相对设置在双极板同侧两端且关于中心对称,且所述出气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上。
实施例5
本实施例提供了一种双极板,记为双极板E,包括密封结构A、密封结构B和中心框板,如图2所示,中心框板4内设有第一凹槽和第二凹槽,第一凹 槽和第二凹槽相对设置在中心框板两侧;第一凹槽内嵌有密封结构A,密封结构A的厚度与第一凹槽的深度相适配;第二凹槽内嵌有密封结构B,密封结构B的厚度与第二凹槽的深度相适配;以对角线为基准,中心框板的尺寸为910mm;材质为不锈钢材质,中心框板两个凹槽的深度均为3.4mm。
双极板还设置有进气孔和出气孔,如图3所示,进气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上;出气孔与进气孔相对设置在双极板同侧两端且关于中心对称,且所述出气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上。
实施例6
本实施例提供了一种双极板,记为双极板F,包括密封结构C、密封结构D和中心框板,中心框板4内设有第一凹槽和第二凹槽,第一凹槽和第二凹槽相对设置在中心框板两侧;第一凹槽内嵌有密封结构C,密封结构C的厚度与第一凹槽的深度相适配;第二凹槽内嵌有密封结构D,密封结构D的厚度与第二凹槽的深度相适配;以对角线为基准,中心框板的尺寸为943mm;材质为不锈钢材质,中心框板凹槽的深度为4mm。
双极板还设置有进气孔和出气孔,进气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上;出气孔与进气孔相对设置在双极板同侧两端且关于中心对称,且所述出气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上。
实施例7
本实施例提供了一种熔融碳酸盐燃料电池密封结构,该密封结构记为E,按照对角线尺寸由大到小的顺序,包括依次叠加设置的电极1、冲孔板2和流场板3;冲孔板2设置在流场板3和电极1间可以起到支撑电极和收集电流的作用;电极1、冲孔板2和流场板3为矩形。
以对角线为基准,电极的尺寸为819mm,冲孔板的尺寸为573mm,流场板的尺寸为491mm;电极的厚度为0.8mm,冲孔板的厚度为0.6mm,流场板的厚度为2mm。
冲孔板为不锈钢材质,设置有若干圆孔,用于填充电解质,冲孔板的孔隙率为60%;流场板为不锈钢材质,流场板内设置有流道,流道为蛇形流道,用于填充电解质和输送气体;电极为阴极,阴极为氧化镍电极,孔隙率为75%。
本实施例还提供了一种上述密封结构的制备方法,包括以下步骤,
电极、冲孔板和流场板依次叠加组装后,在2MPa的条件下压合5min,得到密封结构E。
对比例1
本对比例提供了一种密封结构,记为密封结构F,与实施例1的区别在于,电极、冲孔板和流场板的尺寸大小相同,以对角线为基准,尺寸为819mm,其它同实施例1。
对比例2
本对比例提供了一种密封结构,记为密封结构G,与实施例1的区别在于,电极和冲孔板尺寸大小相同,尺寸为819mm,流场板的尺寸同实施例1,且其它参数同实施例1。
实验例1
本实验例提供了一种熔融碳酸盐燃料电池,如图4所示,包括双极板E、第一隔膜6和第二隔膜9、电解质盐、空气侧端板5和燃料气侧端板10;其中隔膜为LiAlO 2,电解质盐为质量分数为62%的碳酸锂和38%碳酸钾组成的Li/K碳酸盐;双极板包括第一密封结构7和第二密封结构8;
电解质盐填充到双极板中,然后按照图4依次组装,在2MPa的条件下下压合5min,在组装过程中要注意对齐和水平放置,不可出现倾斜和突起,即得到熔融碳酸盐燃料单电池。其中,4-中心框板,5-空气侧端板,6-第一隔膜,7-第一密封结构,8-第二密封结构,9-第二隔膜,10-燃料气侧端板,在本实验例中,第一密封结构为密封结构A,第二密封结构为密封结构B。
实验例2
本实验例提供了一种熔融碳酸盐燃料电池,与实验例1的区别在于,双极板F代替双极板E,密封结构C代替密封结构A,密封结构D代替密封结构B,其它同实验例1。
实验例3
本实验例提供了一种熔融碳酸盐燃料电池,与实验例1的区别在于,密封结构E代替密封结构A,其它同实验例1。
实验例4
本实验例提供了一种熔融碳酸盐燃料电池,与实验例1的区别在于,用对比例1中的密封结构F代替密封结构A,其它同实验例1。
实验例5
本实验例提供了一种熔融碳酸盐燃料电池,与实验例1的区别在于,用对比例2中的密封结构G代替密封结构A,其它同实验例1。
试验例
本试验例提供了熔融碳酸盐电池性能测试及测试结果,测试方法如下,测试结果见表1。
熔融碳酸盐电池体积功率密度的测试方法为:具体操作是开启升温程序,在最高运行温度下达到热平衡,运行燃料电池测试程序,在阳极通氢气,阴极通空气和二氧化碳,打开燃料电池测试程序Faish,不加负载监测开路电压到1.2V,外加负载,恒电压0.7V测试,对应测试功率结果见表1。
熔融碳酸盐电池密封性的测试方法为:按照GB/T 29838—2013《燃料电池模块》中气体泄露实验方法测试;具体操作是运行燃料电池模块到满负荷电流,并在最高运行温度下达到热平衡,向阳极腔管路通入阳极气体,保持稳定压力1min,记录压力变化;向阴极腔施加规定压力,与阳极相似,记录压力变化,压力变化值见表1。
表1 熔融碳酸盐电池性能测试结果
示例 阴极压降值 阳极压降值 体积功率密度
实验例1 30Pa 40Pa 0.77kw/m 3
实验例2 40Pa 50Pa 0.84kw/m 3
实验例3 70Pa 90Pa 0.71kw/m 3
实验例4 2KPa 2.5KPa 0.68kw/m 3
实验例5 1KPa 3KPa 0.7kw/m 3
通过表1的试验结果,可以知道的是,将本申请的熔融碳酸盐燃料电池密封结构用于熔融碳酸盐电池制备中可以提高电池的密封性和体积功率密度。与现有技术中电极、冲孔板和流场板采用相同的尺寸的方案相比,本申请会显著提高密封效果和功率密度。
本申请通过对电极、冲孔板和流场板的比例进行优化,得到的熔融碳酸盐燃料电池密封结构用于电池时,可以进一步提高密封效果和体积功率密度。如, 与实验例3相比,实验例3中密封结构由实施例7提供,实验例1中的密封结构对电极、流场板和冲孔板的比例进行优化后,可以提高密封效果和体积功率密度。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (10)

  1. 一种熔融碳酸盐燃料电池密封结构,其特征在于,按照对角线尺寸由大到小的顺序,包括依次叠加设置的电极、冲孔板和流场板。
  2. 根据权利要求1所述的熔融碳酸盐燃料电池密封结构,其特征在于,以对角线为基准,所述电极、冲孔板和流场板的尺寸比为1:(0.95-0.85):(0.85-0.75)。
  3. 根据权利要求1或2所述的熔融碳酸盐燃料电池密封结构,其特征在于,所述冲孔板上设有若干圆孔,用于填充电解质;
    所述流场板上设有流道,所述流道为蛇形流道;
    所述电极包括阴极和/或阳极;所述阴极的孔隙率不超过75%;所述阳极的孔隙率不低于55%。
  4. 根据权利要求1-3任一项所述的熔融碳酸盐燃料电池密封结构,其特征在于,所述冲孔板的厚度为0.6-1mm;所述流场板的厚度为1.5-2mm;
    所述冲孔板为不锈钢材质;所述流场板为不锈钢材质;所述电极为镍电极和/或氧化镍电极。
  5. 一种权利要求1-4任一项所述的熔融碳酸盐燃料电池密封结构的制备方法,其特征在于,包括以下步骤,
    依次将电极、冲孔板和流场板叠加,组装,在不超过2.0MPa的压力下压合,得到熔融碳酸盐燃料电池密封结构。
  6. 一种双极板,其特征在于,包括权利要求1-4任一项所述的熔融碳酸盐燃料电池密封结构或权利要求5所述制备方法制备得到的熔融碳酸盐燃料电池密封结构,还包括中心框板;
    所述中心框板的厚度为3-4mm;
    所述中心框板内设有至少一个凹槽;
    所述凹槽内嵌有所述熔融碳酸盐燃料电池密封结构且所述熔融碳酸盐燃料电池密封结构的厚度与所述凹槽的深度相适配。
  7. 根据权利要求6所述的双极板,其特征在于,以对角线为基准,所述中心框板与所述电极的尺寸比为(1.1-1.2):1。
  8. 根据权利要求6或7所述的双极板,其特征在于,所述双极板还设置有进气孔和出气孔,所述进气孔设置在流场板和中心框板的交界位置,与流场板流道连通,且镶嵌在中心框板上;
    所述出气孔与所述进气孔相对设置在双极板同侧两端且关于中心对称,且所述出气孔设置在流场板和中心框板交界位置,与流场板流道连通,且镶嵌在中心框板上。
  9. 根据权利要求6-8任一项所述的双极板,其特征在于,所述中心框板内设有第一凹槽和第二凹槽;所述第一凹槽和所述第二凹槽相对设置在中心框板的两侧;
    所述第一凹槽内嵌有第一熔融碳酸盐燃料电池密封结构,所述第一熔融碳酸盐燃料电池密封结构中的电极为阴极;
    所述第二凹槽内嵌有第二熔融碳酸盐燃料电池密封结构,所述第二熔融碳酸盐燃料电池密封结构中的电极为阳极。
  10. 一种熔融碳酸盐燃料电池,其特征在于,包括至少一个权利要求1-4任一项所述的熔融碳酸盐燃料电池密封结构和/或至少一个权利要求6-9任一项所述的双极板。
PCT/CN2022/099561 2021-08-18 2022-06-17 一种熔融碳酸盐燃料电池密封结构及其制备方法和应用 WO2023020104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110948320.XA CN113540497A (zh) 2021-08-18 2021-08-18 一种熔融碳酸盐燃料电池密封结构及其制备方法和应用
CN202110948320.X 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023020104A1 true WO2023020104A1 (zh) 2023-02-23

Family

ID=78122574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099561 WO2023020104A1 (zh) 2021-08-18 2022-06-17 一种熔融碳酸盐燃料电池密封结构及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113540497A (zh)
WO (1) WO2023020104A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540497A (zh) * 2021-08-18 2021-10-22 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池密封结构及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241674A (ja) * 1984-05-15 1985-11-30 Toshiba Corp 溶融炭酸塩型燃料電池
JPS6353858A (ja) * 1986-08-21 1988-03-08 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池用セパレ−タ
JP2005019035A (ja) * 2003-06-24 2005-01-20 Mitsubishi Materials Corp 燃料電池
CN108206289A (zh) * 2016-12-19 2018-06-26 中氢新能技术有限公司 一种基于甲醇和水重整制备燃料电池
CN113540497A (zh) * 2021-08-18 2021-10-22 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池密封结构及其制备方法和应用
CN216054813U (zh) * 2021-08-18 2022-03-15 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池密封结构、双极板及燃料电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241674A (ja) * 1984-05-15 1985-11-30 Toshiba Corp 溶融炭酸塩型燃料電池
JPS6353858A (ja) * 1986-08-21 1988-03-08 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池用セパレ−タ
JP2005019035A (ja) * 2003-06-24 2005-01-20 Mitsubishi Materials Corp 燃料電池
CN108206289A (zh) * 2016-12-19 2018-06-26 中氢新能技术有限公司 一种基于甲醇和水重整制备燃料电池
CN113540497A (zh) * 2021-08-18 2021-10-22 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池密封结构及其制备方法和应用
CN216054813U (zh) * 2021-08-18 2022-03-15 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池密封结构、双极板及燃料电池

Also Published As

Publication number Publication date
CN113540497A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CA2192871C (en) Molten carbonate fuel cell and power generation system including the same
KR101184486B1 (ko) 고체산화물 연료전지용 밀봉부재 및 이를 채용한 고체산화물 연료전지
CN105895938A (zh) 一种质子交换膜燃料电池电堆的活化方法
US20070104992A1 (en) Solid oxide fuel cell stack of modularized design
JP6263638B2 (ja) セルシステムに関する組立方法及び配置
US20070281194A1 (en) Portable fuel cell assembly
CN103490087B (zh) 便携式电源用管式固体氧化物燃料电池堆及其组装方法
CN111613825A (zh) 一种固体氧化物燃料电池电堆
CN111564644A (zh) 一种小功率的高温质子交换膜燃料电池电堆
WO2023020104A1 (zh) 一种熔融碳酸盐燃料电池密封结构及其制备方法和应用
CN111224124A (zh) 一种燃料电池单体及其制备方法
CN114361505A (zh) 三流道固体氧化物燃料电池单元结构及电池堆
JPH03219563A (ja) 固体電解質型燃料電池
CN216054813U (zh) 一种熔融碳酸盐燃料电池密封结构、双极板及燃料电池
CN210866380U (zh) 一种质子交换膜燃料电池单体和质子交换膜燃料电池电堆
JP5307376B2 (ja) 燃料改質形燃料電池
CN107611464A (zh) 一种可插拔式固体氧化物燃料电池堆结构
CN114695910A (zh) 一种燃料电池片、燃料电池单元及燃料电池组件
JP6407069B2 (ja) 燃料電池スタック
CN207542330U (zh) 一种片式固体氧化物燃料电池堆结构
CN113097519A (zh) 固体氧化物燃料电池的高温热管肋连接板
CN111628189A (zh) 一种甲醇重整制氢高温燃料电池电堆的结构
KR101081100B1 (ko) 고온용 연료전지 분리판
CN111326763A (zh) 一种类蜂巢形流场的金属双极板
CN113972382B (zh) 一种燃料电池电堆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE