WO2023020060A1 - Heat-pump air conditioner having dehumidification function - Google Patents

Heat-pump air conditioner having dehumidification function Download PDF

Info

Publication number
WO2023020060A1
WO2023020060A1 PCT/CN2022/095413 CN2022095413W WO2023020060A1 WO 2023020060 A1 WO2023020060 A1 WO 2023020060A1 CN 2022095413 W CN2022095413 W CN 2022095413W WO 2023020060 A1 WO2023020060 A1 WO 2023020060A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
heat exchanger
temperature
cooling
dehumidification
Prior art date
Application number
PCT/CN2022/095413
Other languages
French (fr)
Chinese (zh)
Inventor
童风喜
郑双名
童凌鹏
Original Assignee
中山市爱美泰电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山市爱美泰电器有限公司 filed Critical 中山市爱美泰电器有限公司
Priority to EP22857374.7A priority Critical patent/EP4379268A1/en
Priority to CA3229119A priority patent/CA3229119A1/en
Publication of WO2023020060A1 publication Critical patent/WO2023020060A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/18Details or features not otherwise provided for combined with domestic apparatus
    • F24F2221/183Details or features not otherwise provided for combined with domestic apparatus combined with a hot-water boiler

Definitions

  • the invention relates to a heat pump air conditioner, more specifically, the invention relates to a heat pump air conditioner with dehumidification function.
  • Chinese patent 200910301711.1 discloses an air conditioner that can be used for continuous heating and constant temperature dehumidification.
  • the air conditioner includes a circulation loop formed by sequentially connecting a compressor, an electromagnetic four-way valve, an evaporator, a throttling device, and a condenser.
  • At least two compressors, electromagnetic four-way valves, evaporators, throttling devices and condensers are respectively provided to form at least two independent circulation loops.
  • part of the circulation loop can be used for heating operation, while part of the circulation loop can be used for cooling operation, so that heat can be continuously provided to the room during the defrosting and dehumidification process , which meets the comfort requirements of defrosting and dehumidification, and can effectively prevent large fluctuations in indoor temperature.
  • Cid patent 201010149776.1 discloses a heat pump air conditioner water heater, which includes a compressor, a four-way reversing valve, an outdoor heat exchanger, an indoor heat exchanger, a first hot water heat exchanger and a hot water tank; the four-way reversing valve The D end communicates with the compressor, the C end of the four-way reversing valve, the first hot water heat exchanger, the first one-way valve, the first solenoid valve, the first expansion valve, the indoor heat exchanger and the intake air of the compressor end constitutes a hot water-cooling circuit, and the first hot water heat exchanger communicates with the hot water tank through the first water pump to form a water circulation circuit; the C end of the four-way reversing valve, the first hot water heat exchanger, and the first one-way valve , the second solenoid valve, the second expansion valve, the outdoor heat exchanger, the E-S end of the four-way reversing valve and the intake end of the compressor form a hot water circuit, and the
  • circuit also includes a high-temperature water heat exchanger and a second water pump; the high-temperature water heat exchanger is connected between the compressor and the D end of the four-way reversing valve, and there is a pipeline between the high-temperature water heat exchanger and the hot water tank Second water pump.
  • Chinese patent 201410058935.5 discloses a ground source heat pump air conditioning system based on independent control of temperature and humidity, which includes a heat pump host (1), a temperature processing subsystem (4) connected to the heat pump host (1) and a temperature processing subsystem The humidity processing subsystem (5) on (4); wherein, the heat pump host (1) is connected with the cooling water circulation heat exchange subsystem (2) and the chilled water circulation heat exchange subsystem (3), and the temperature treatment subsystem (4) Connected to the chilled water circulation heat exchange subsystem (3), the cooling water circulation heat exchange subsystem (2) and the chilled water circulation heat exchange subsystem (3) are connected, and the cooling water circulation heat exchange subsystem (2) and the chilled water circulation heat exchange subsystem A heat exchange mechanism (6) is provided between the thermal subsystems (3).
  • Chinese utility model 201520085369.7 discloses a water source heat pump air-conditioning system, including a source water intake subsystem, a water source heat pump unit, a heat exchanger, a fresh air unit, and an air conditioner unit; the source water outlet pipe of the source water intake subsystem is gated through the first valve
  • the structure is selected to be connected to the heat pump source water delivery pipeline or the water inlet of the first heat exchange end in the heat exchanger, and the water outlet of the first heat exchange end in the heat exchanger is connected to the heat pump source water delivery pipeline;
  • the outlet pipe is connected to the air conditioner return water delivery pipe through the first circulating water pump, and is connected to the water inlet of the second heat exchange end in the heat exchanger through the air conditioner return water delivery pipe through the first switch valve, and the outlet of the second heat exchange end in the heat exchanger
  • the water port is connected to the air-conditioning water supply pipeline through the second on-off valve, and then connected to the water inlet pipe at the heat exchange end of the air-conditioning unit through the
  • the through structure is selectively connected to the source water drainage pipeline or the heat pump unit water supply pipeline; the water inlet of the condenser in the water source heat pump unit is selectively connected to the heat pump source water delivery pipeline or the heat pump unit return water delivery pipeline through the fourth valve gating structure, and the water source heat pump unit
  • the water outlet of the condenser in the unit is selectively connected to the source water drainage pipeline or the water supply pipeline of the heat pump unit through the fifth valve gating structure.
  • Chinese patent 201610042160.1 discloses a multi-functional heat pump air conditioner, which includes a compressor, a four-way reversing valve, an outdoor unit and a water-fluorine heat exchanger, wherein: the indoor heat exchanger is divided into indoor heat supply and dehumidification heat return terminal and Indoor refrigeration and dehumidification terminal; the water fluorine heat exchanger is divided into the first water fluorine heat exchanger and the second water fluorine heat exchanger; the first mode is cooling mode, the first heat exchanger of the compressor and the first water fluorine heat exchanger Hot side, four-way valve D-E end, outdoor unit, expansion valve, third heat exchange side of the second water-fluorine heat exchanger, four-way valve C-S end and compressor; refrigeration water pump, second water-fluorine heat exchanger Four heat exchange sides, indoor cooling and dehumidification terminals conduction; the second mode is heating mode, the compressor, the first heat exchange side of the first water-fluorine heat exchanger, the D-C end of the four-way
  • Cida utility model 201320343174.9 discloses a heat pump air conditioning system with independent temperature and humidity control, including a heat pump external unit, a heat pump internal unit, and a heat exchanger connected in series, that is, the heat pump external unit is connected to the heat pump internal unit, and the heat pump internal unit is connected to the heat exchanger. Connections also include water separator, water collector, radiant end, fresh air unit, heat exchanger connected to water separator and water collector respectively, water separator connected to water collector through radiant end, water separator, water collector The fresh air unit is connected in parallel between the heat exchanger and the air distributor, and the replacement air supply port is connected.
  • the problem in the prior art is that the structure is relatively complicated, and the energy consumption can be further reduced.
  • the object of the present invention is to provide a heat pump air conditioner with dehumidification function.
  • the dehumidification temperature regulator and the heat pump body cooperate to regulate temperature and dehumidification, which has the characteristics of energy saving and simple structure.
  • the present invention provides a heat pump air conditioner with dehumidification function, which includes a heat pump main unit, a cooling/heating cycle system, an indoor heat exchanger, and a dehumidification and temperature regulator installed indoors;
  • the heat pump host includes a compressor, a first heat exchanger, a fan, a second heat exchanger, a four-way valve and an expansion valve;
  • the cooling/heating cycle system includes a cooling/heating pipeline, a return cooling/heating pipeline, and a third heat exchange water sub-collector and circulating water pump; among them, the second heat exchanger and the third heat exchanger are coupled into a double-channel heat exchanger; the indoor heat exchanger and the dehumidification temperature controller are connected in series to the sub-collector, or the indoor heat exchanger
  • the heater and the dehumidifier and temperature regulator are connected to the sub-collector respectively; the dehumidifier and temperature regulator follow the cooling/heating cycle system to work.
  • the dehumidifier and temperature regulator may include a cabinet, and the cabinet may be provided with an indoor double-channel heat exchanger, an indoor compressor, and an indoor evaporator formed by coupling the fourth heat exchanger and the indoor condenser. , indoor fan, indoor expansion valve and water tray, wherein the water tray is set under the indoor evaporator; the fourth heat exchanger is connected to the sub-collector, or the indoor heat exchanger and the fourth heat exchanger are connected in series; the indoor The compressor communicates with the indoor evaporator and the indoor condenser through the refrigerant pipeline arranged in the cabinet.
  • an air inlet and an air outlet may be formed on the cabinet of the dehumidifier and temperature regulator, and the air inlet and the air outlet are connected to form a circulation loop; the air outlet corresponds to the air outlet of the indoor fan,
  • the indoor evaporator is arranged at the air inlet of the indoor fan, and the air outlet is arranged at the air outlet of the indoor fan.
  • the dehumidifier and temperature regulator may further include an indoor four-way valve arranged on the refrigerant pipeline.
  • the dehumidification temperature regulator can communicate with the pipeline between the indoor heat exchanger and the sub-collector.
  • heat pump air conditioner of the present invention there may be several dehumidifiers and temperature regulators, and they are respectively installed in the same or different rooms; multiple dehumidifiers and temperature regulators can be connected to the manifold respectively.
  • the heat pump host can also include a main controller, a cooling/heating temperature sensor is arranged on the cooling/heating pipeline, an indoor temperature and humidity controller is arranged indoors, and the main controller communicates with the compressor and the water supply respectively.
  • the temperature sensor is connected to the indoor temperature and humidity controller;
  • the indoor temperature and humidity controller is used to obtain the indoor temperature and humidity signal or dew point temperature, and send the temperature and humidity signal to the main controller, and the main controller is used to obtain the indoor dew point temperature according to the temperature and humidity signal;
  • the water supply temperature sensor is used to obtain the cooling/heating temperature on the cooling/heating pipeline, and send the cooling/heating temperature to the main controller;
  • the main controller is used to control the operating parameters of the compressor so that the cooling/heating temperature is higher than the dew point temperature.
  • the indoor heat exchanger can be arranged in the cabinet of the dehumidifier and temperature regulator.
  • stop valves may be provided on the cooling/heating pipeline and the cooling/heating pipeline respectively.
  • refrigerant or water is provided in the cooling/heating cycle system to transfer energy.
  • the dehumidification temperature regulator and the cooling function of the heat pump main unit cooperate to adjust the temperature and dehumidify, play a synergistic effect, save energy, and have a simple structure and easy installation; at the same time, it can also be controlled during cooling in summer.
  • the indoor heat exchanger only handles the sensible heat load, and the dehumidification load is handled by the dehumidifier and thermostat, so that the indoor heat exchanger has the advantage of no condensation;
  • the heat plus the electric power of the compressor of the dehumidifier and thermostat releases the heat into the cooling/heating circulation system through the condenser of the dehumidifier and thermostat, and then converges with the heating operation of the heat pump host to provide hot water to the indoor heat exchanger.
  • the indoor radiator can provide sufficient heat supplement to the room, so as to ensure that the temperature of the room will not drop due to continuous dehumidification. It has a good effect on ensuring indoor comfort in low-temperature and high-humidity climates such as returning to the south and rainy days.
  • the structure is simple and easy to use, avoiding the disadvantages that the user needs to move repeatedly when using the independent dehumidifier, or the dehumidification room is getting colder and colder when using the independent air conditioner.
  • Fig. 1 is a schematic diagram of the work of the present invention
  • Fig. 2 is a structural principle diagram of the dehumidification and temperature regulating machine of the present invention.
  • a heat pump air conditioner with dehumidification function includes a heat pump host 1, a cooling/heating cycle system 2, indoor heat exchangers 3 arranged in several rooms, and a dehumidification conditioner installed indoors.
  • warm machine 4 As shown in Figures 1 and 2, a heat pump air conditioner with dehumidification function includes a heat pump host 1, a cooling/heating cycle system 2, indoor heat exchangers 3 arranged in several rooms, and a dehumidification conditioner installed indoors.
  • warm machine 4 As shown in Figures 1 and 2, a heat pump air conditioner with dehumidification function includes a heat pump host 1, a cooling/heating cycle system 2, indoor heat exchangers 3 arranged in several rooms, and a dehumidification conditioner installed indoors.
  • warm machine 4 As shown in Figures 1 and 2, a heat pump air conditioner with dehumidification function includes a heat pump host 1, a cooling/heating cycle system 2, indoor heat exchangers 3 arranged in several rooms, and a dehumidification conditioner installed indoors
  • the heat pump host 1 includes a compressor 11, a first heat exchanger 12, a fan 13, a second heat exchanger, a four-way valve 14, and an expansion valve 15, and the cooling/heating cycle system 2 includes a cooling/heating pipeline 21, a back cooling / heat pipeline 22, the third heat exchanger, sub-catchment 23 and circulating water pump 24, a pair of interlinked cooling/hot branch pipes and return cooling/hot branch pipes behind the sub-collector 23 form a branch line pair 27;
  • the heat exchanger and the third heat exchanger are coupled into a double-channel heat exchanger 5;
  • the indoor heat exchanger 3 communicates with the water supply and return branch pipe of the sub-collector 23;
  • the return water branch pipeline between the devices 23 is connected, or the dehumidification and temperature regulating machine 4 is directly connected with the sub-catchment 23; the dehumidification and temperature regulating machine 4 works with the cooling/heating cycle system 2, or in other words: the dehumidification and temperature regulating machine follows the heat pump host 1 job;
  • the indoor heat exchanger 3 may be a radiant heat exchanger, such as a cooling/radiating radiator, a floor heating pipe, etc.; it may also be a convective heat exchanger.
  • the dehumidification and temperature regulating machine 4 can also be consistent with the indoor heat exchanger 3, and both are directly connected with the water supply and return branch pipes of the sub-catchment, or the indoor heat exchanger 3 and the dehumidification and temperature regulating machine 43 It is communicated with the water supply branch pipeline or the return water branch pipeline between the sub-collectors 23.
  • the dehumidification and temperature regulating machine 4 includes a cabinet body 49, which is provided with an indoor double-channel heat exchanger 6 formed by coupling a fourth heat exchanger and an indoor condenser.
  • the water inlet port 50 and the water outlet port 51 of the device, the cabinet body 49 is also provided with a dehumidification and temperature control machine indoor compressor 41, an indoor four-way valve 46, an indoor evaporator 42, an indoor fan 43, an indoor expansion valve 44 and a water receiving plate 45, the fourth heat exchanger communicates with the sub-collector through the water inlet interface 50 and the water outlet interface 51; the indoor compressor communicates with the indoor evaporator and the indoor compressor through the refrigerant pipeline arranged in the cabinet The indoor condenser is connected.
  • the water receiving tray 45 is arranged below the indoor evaporator 42 .
  • the dehumidification and temperature regulating machine 4 can have cooling or heating functions.
  • the indoor four-way valve 46 can also be absent. or dehumidification function;
  • the indoor heat exchanger 3 and the indoor condenser of the dehumidification and temperature control machine 4 are connected in series on a branch line pair 27, and the indoor heat exchanger 3 and the indoor condenser of the dehumidification and temperature control machine 4 are connected in sequence, or the indoor condenser and the indoor heat exchange
  • the devices 3 are sequentially connected; when there are two indoor heat exchangers 3 and one indoor condenser on a branch line pair 27 behind the water collector, the indoor heat exchanger 3, the indoor condensing heat exchanger and the indoor heat exchanger 3 are sequentially connected. in series. It can also be that there are several indoor heat exchangers 3 and dehumidification temperature regulators 4 respectively, and a series connection mode can be selected according to needs.
  • the indoor heat exchanger 3 and the dehumidification temperature regulator 4 can also be connected in parallel, and are respectively connected to different branch pipeline pairs 27 behind the manifold.
  • an air inlet 47 and an air outlet 48 are formed on the cabinet body 49, the air outlet 48 corresponds to the air outlet of the indoor fan 43, and the indoor evaporator 42 is arranged on the indoor fan 43
  • the air inlet, the air outlet 48 is arranged at the air outlet of the indoor fan 43 .
  • the air inlet 47 and the air outlet 48 are connected in the cabinet body 49 to form a circulation loop. After the indoor air enters the cabinet body 49 through the air inlet 47, it passes through the indoor evaporator 42 along this circulation loop, and then passes through the indoor evaporator 42.
  • the indoor fan 43 is blown out from the air outlet 48, and after the indoor air self-circulation is realized, the indoor cooling or heating work is performed.
  • the indoor heat exchanger 3 may also be arranged inside the cabinet body 49 .
  • dehumidifiers and temperature regulators 4 there are multiple dehumidifiers and temperature regulators 4 , which are installed in different rooms, and the multiple dehumidifiers and temperature regulators 4 are connected to the sub-collectors 23 respectively. In other examples, a plurality of dehumidification and temperature regulators 4 may also be installed in the same room.
  • the heat pump host 1 also includes a main controller 16, a cooling/heating temperature sensor 26 is set on the cooling/heating pipeline, and an indoor temperature and humidity control is set in the room where the dehumidification temperature regulator is installed. 7, the main controller 16 is respectively connected with the compressor 11, the water supply temperature sensor 26 and the indoor temperature and humidity controller 7.
  • the main controller 16 can be the control unit of the heat pump host 1 itself, that is, the control unit that realizes the start-stop and frequency control of the heat pump host, and the main controller 16 can also be a separate control module, which can be a control chip with a CPU, Or FPGA chips, embedded chips, etc.
  • the cooling/heating temperature sensor 26 is used to detect the cooling/heating temperature of the brine in the cooling/heating pipeline, which may send the cooling/heating temperature to the main controller 16 through wired transmission.
  • the indoor temperature and humidity controller 7 can be an integrated module integrated with a temperature sensor and a humidity sensor. The indoor temperature and humidity controller 7 is used to detect the indoor temperature and humidity, which can be directly calculated according to the detected indoor temperature and humidity. Get a dew point temperature and send the dew point temperature to the main controller 16, or get the temperature and humidity and send the temperature and humidity to the main controller 16, and the main controller 16 can calculate the indoor dew point temperature.
  • the indoor temperature and humidity controller 7 can communicate with the main controller 16 in a wired manner.
  • the indoor temperature and humidity controller 7 communicates with the main controller 16 through the wireless transmission module 8 .
  • the main controller 16 is used to control the operating parameters (such as frequency) of the compressor so that the cooling/heating temperature is higher than the dew point temperature.
  • the heat pump host 1 is working, and the second heat exchanger of the heat pump host 1 is used as an evaporator to provide cold energy for the indoor heat exchanger 3 through the double-channel heat exchanger 5 and the water collector 23 to cool down the room; at the same time , the work of the dehumidification and temperature control machine 4, the indoor evaporator 42 absorbs heat and cools the indoor high-humidity air into condensed water and drops it in the water receiving tray 45; the indoor double-channel heat exchanger 6 absorbs the heat absorbed by the indoor evaporator 42 And the work of the compressor 41 is returned to the dual-channel heat exchanger 5 through the return cooling/heating pipeline 22 of the cooling/heating cycle system 2; the heat pump host 1, the cooling/heating cycle system 2 and the dehumidification temperature regulator 4 work synchronously;
  • the dehumidifier and temperature regulator undertakes the dehumidification function of the indoor air conditioner during cooling, and the indoor heat exchanger 3 only needs to bear the sensible heat load during indoor cooling without generating con
  • the refrigeration work thus greatly improves the energy efficiency ratio of the heat pump main unit 1, and thus improves the energy efficiency ratio of the entire cooling system; at the same time, the heat pump main unit 1 provides high-temperature chilled water so that the indoor cooling/heating pipes do not need to be insulated to prevent condensation, greatly
  • the workload of system installation and maintenance is simplified, and the installation cost of the whole system is reduced.
  • the heat pump host 1 provides thermal energy for the cooling/heating cycle system 2, and the indoor heat exchanger 3 provides thermal energy for the room; at this time, the dehumidification and temperature regulator 4 can work selectively, and the indoor evaporator 42 works as a condenser.
  • the dual-channel heat exchanger 6 returns the cold energy to the dual-channel heat exchanger 5 through the cooling/heating pipeline 22 of the cooling/heating cycle system 2, and exchanges heat with the external environment through the heat pump host 1, thus, the indoor On the basis of heat exchanger 3, the dehumidifier and thermostat can meet the needs of users to quickly increase the indoor temperature. When the room heat supply tends to be stable and the indoor heat exchanger 3 is sufficient to bear the indoor load, the compressor and fan of the dehumidifier and thermostat will stop. Work.
  • the dehumidification and temperature regulating machine 4 performs cooling and dehumidification of the room, and the heat absorbed from the indoor dehumidification adds the power of the dehumidification and temperature regulating machine compressor 41 The heat is released to the cooling/heating cycle system 2 through the condenser of the dehumidification and temperature regulating machine and the double-channel heat exchanger 6 coupled with the fourth heat exchanger.
  • the heat pump host 1 chooses whether to Heating operation and determining the operating parameters of the compressor, so as to provide hot water to the indoor heat exchanger 3, and the indoor radiator 3 can dissipate heat to the room and provide sufficient heat supplement to the room, so that the temperature of the room will not drop due to continuous dehumidification. It avoids the trouble of repeatedly moving and manually pouring water by using an independent dehumidifier, and also avoids the disadvantage of using an independent air conditioner to dehumidify and get colder as it dehumidifies.
  • the invention has simple structure, convenient installation, and user-friendly operation.
  • the cooling/heating pipeline 21 and the cooling/heating pipeline 22 are respectively provided with stop valves 25 .
  • the medium in the cooling/heating cycle system 2 is refrigerant or water to transfer energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A heat-pump air conditioner having a dehumidification function. The heat-pump air conditioner comprises a heat-pump host (1), a cooling/heating circulation system (2), an indoor heat exchanger (3) and an indoor dehumidification thermostat (4), wherein the heat-pump host (1) comprises a compressor (11), a first heat exchanger (12), a fan (13), a second heat exchanger, a four-way valve (14) and an expansion valve (15); the cooling/heating circulation system (2) comprises a cooling/heating pipeline (21), a backcooling/backheating pipeline (22), a third heat exchanger, a water distribution and collection device (23) and a circulating water pump (24), the second heat exchanger and the third heat exchanger being coupled to form a two-flow-channel heat exchanger (5); the indoor heat exchanger (3) and the dehumidification thermostat (4) are connected in series and are then in communication with the water distribution and collection device (23), or the indoor heat exchanger (3) and the dehumidification thermostat (4) are respectively in communication with the water distribution and collection device (23); and the dehumidification thermostat (4) works with the cooling/heating circulation system (2). A cooling function of the dehumidification thermostat (4) and the heat-pump host (1) works in conjunction with temperature adjustment and dehumidification, which achieves a synergetic effect; and the heat-pump air conditioner ensures a good level of comfort indoors in climates with low temperatures and high humidity, such as the rainy season weather in Southern China and plum rain season weather.

Description

一种具有除湿功能的热泵空调A heat pump air conditioner with dehumidification function 技术领域technical field
本发明涉及一种热泵空调,更具体地讲,本发明涉及一种具有除湿功能的热泵空调。The invention relates to a heat pump air conditioner, more specifically, the invention relates to a heat pump air conditioner with dehumidification function.
背景技术Background technique
在普通空调器的基础上,安装一个四通换向阀,改变阀的操作,可以使原来空调器的蒸发器和冷凝器的功能互相对换,从而把冷却室内空气的功能改变为加热室内空气的功能。通常把这种冬季可以从室外较低空气中抽取热量,用来加热室内空气,而夏季可把室内空气的热量除去,传送到室外的空气调节器叫做热泵式空调器。On the basis of ordinary air conditioners, installing a four-way reversing valve and changing the operation of the valve can make the functions of the evaporator and condenser of the original air conditioner interchangeable, thereby changing the function of cooling indoor air to heating indoor air function. Usually this kind of air conditioner that can extract heat from the lower outdoor air in winter to heat the indoor air, and remove the heat from the indoor air in summer and send it to the outside is called a heat pump air conditioner.
因为节能,热泵空调越来越收到人们的关注。Because of energy saving, heat pump air conditioners are getting more and more attention.
中国专利200910301711.1公开了一种可用于连续制热和恒温除湿的空调机,该空调机包括由压缩机、电磁四通阀、蒸发器、节流装置与冷凝器顺序连接形成的循环回路,其中,压缩机、电磁四通阀、蒸发器、节流装置与冷凝器分别设置有至少两个而形成至少两个独立的循环回路。通过设置的至少两个独立的循环回路,在除霜与除湿过程中,可以采用部分循环回路制热运行,而部分循环回路采用制冷运行,使得在除霜与除湿过程中可以向室内持续提供热量,满足了除霜与除湿的舒适性要求,并可有效防止室内温度发生较大波动。Chinese patent 200910301711.1 discloses an air conditioner that can be used for continuous heating and constant temperature dehumidification. The air conditioner includes a circulation loop formed by sequentially connecting a compressor, an electromagnetic four-way valve, an evaporator, a throttling device, and a condenser. At least two compressors, electromagnetic four-way valves, evaporators, throttling devices and condensers are respectively provided to form at least two independent circulation loops. By setting at least two independent circulation loops, during the defrosting and dehumidification process, part of the circulation loop can be used for heating operation, while part of the circulation loop can be used for cooling operation, so that heat can be continuously provided to the room during the defrosting and dehumidification process , which meets the comfort requirements of defrosting and dehumidification, and can effectively prevent large fluctuations in indoor temperature.
中国专利201010149776.1公开了一种热泵空调热水器,其包括压缩机、四通换向阀、室外换热器、室内换热器、第一热水换热器和热水水箱;四 通换向阀的D端与压缩机连通,四通换向阀的C端、第一热水换热器、第一单向阀、第一电磁阀、第一膨胀阀、室内换热器和压缩机的进气端构成热水-制冷回路,第一热水换热器通过第一水泵与热水水箱连通构成水循环回路;四通换向阀的C端、第一热水换热器、第一单向阀、第二电磁阀、第二膨胀阀、室外换热器、四通换向阀的E-S端和压缩机的进气端构成热水回路,第一热水换热器通过第一水泵与热水水箱连通构成水循环回路;四通换向阀的E端、室外换热器、第二单向阀、第二电磁阀、第一电磁阀、第一膨胀阀、室内换热器和压缩机构成制冷回路;还包括一个高温水换热器和一个第二水泵;高温水换热器接在压缩机和四通换向阀的D端之间,高温水换热器与热水水箱的管路上有第二水泵。Chinese patent 201010149776.1 discloses a heat pump air conditioner water heater, which includes a compressor, a four-way reversing valve, an outdoor heat exchanger, an indoor heat exchanger, a first hot water heat exchanger and a hot water tank; the four-way reversing valve The D end communicates with the compressor, the C end of the four-way reversing valve, the first hot water heat exchanger, the first one-way valve, the first solenoid valve, the first expansion valve, the indoor heat exchanger and the intake air of the compressor end constitutes a hot water-cooling circuit, and the first hot water heat exchanger communicates with the hot water tank through the first water pump to form a water circulation circuit; the C end of the four-way reversing valve, the first hot water heat exchanger, and the first one-way valve , the second solenoid valve, the second expansion valve, the outdoor heat exchanger, the E-S end of the four-way reversing valve and the intake end of the compressor form a hot water circuit, and the first hot water heat exchanger communicates with the hot water through the first water pump The water tank is connected to form a water circulation circuit; the E end of the four-way reversing valve, the outdoor heat exchanger, the second one-way valve, the second solenoid valve, the first solenoid valve, the first expansion valve, the indoor heat exchanger and the compressor constitute the refrigeration system. circuit; also includes a high-temperature water heat exchanger and a second water pump; the high-temperature water heat exchanger is connected between the compressor and the D end of the four-way reversing valve, and there is a pipeline between the high-temperature water heat exchanger and the hot water tank Second water pump.
中国专利201410058935.5公开了一种基于温湿度独立控制的地源热泵空调系统,其包括热泵主机(1),在热泵主机(1)上连接有温度处理子系统(4)和连接在温度处理子系统(4)上的湿度处理子系统(5);其中,热泵主机(1)上连接有冷却水循环换热子系统(2)和冷冻水循环换热子系统(3),温度处理子系统(4)连接在冷冻水循环换热子系统(3)上,冷却水循环换热子系统(2)和冷冻水循环换热子系统(3)之间相连且在冷却水循环换热子系统(2)与冷冻水循环换热子系统(3)之间设有换热机构(6)。Chinese patent 201410058935.5 discloses a ground source heat pump air conditioning system based on independent control of temperature and humidity, which includes a heat pump host (1), a temperature processing subsystem (4) connected to the heat pump host (1) and a temperature processing subsystem The humidity processing subsystem (5) on (4); wherein, the heat pump host (1) is connected with the cooling water circulation heat exchange subsystem (2) and the chilled water circulation heat exchange subsystem (3), and the temperature treatment subsystem (4) Connected to the chilled water circulation heat exchange subsystem (3), the cooling water circulation heat exchange subsystem (2) and the chilled water circulation heat exchange subsystem (3) are connected, and the cooling water circulation heat exchange subsystem (2) and the chilled water circulation heat exchange subsystem A heat exchange mechanism (6) is provided between the thermal subsystems (3).
中国实用新型201520085369.7公开了一种水源热泵空调系统,包括源水取水子系统、水源热泵机组、换热器、新风机组和空调机组;源水取水子系统的源水出水管道通过第一阀门选通结构选择连通至热泵源水输送管道或所述换热器中第一换热端的进水口,换热器中第一换热端的出水口连 通至热泵源水输送管道;空调机组中换热末端的出水管通过第一循环水泵连通至空调回水输送管道,经由空调回水输送管道通过第一开关阀连通至换热器中第二换热端的进水口,换热器中第二换热端的出水口通过第二开关阀连通至空调供水输送管道,再经由空调供水输送管道连通至空调机组中换热末端的进水管;新风机组的出水管通过第二循环水泵连通至热泵机组回水输送管道,热泵机组回水输送管道还通过空调回水开关阀与空调回水输送管道相连通;新风机组的进水管连通至热泵机组供水输送管道,热泵机组供水输送管道还通过空调供水开关阀与空调供水输送管道相连通;水源热泵机组中蒸发器的进水口通过第二阀门选通结构选择连通至热泵源水输送管道或热泵机组回水输送管道,水源热泵机组中蒸发器的出水口通过第三阀门选通结构选择连通至源水排水管道或热泵机组供水输送管道;水源热泵机组中冷凝器的进水口通过第四阀门选通结构选择连通至热泵源水输送管道或热泵机组回水输送管道,水源热泵机组中冷凝器的出水口通过第五阀门选通结构选择连通至源水排水管道或热泵机组供水输送管道。Chinese utility model 201520085369.7 discloses a water source heat pump air-conditioning system, including a source water intake subsystem, a water source heat pump unit, a heat exchanger, a fresh air unit, and an air conditioner unit; the source water outlet pipe of the source water intake subsystem is gated through the first valve The structure is selected to be connected to the heat pump source water delivery pipeline or the water inlet of the first heat exchange end in the heat exchanger, and the water outlet of the first heat exchange end in the heat exchanger is connected to the heat pump source water delivery pipeline; The outlet pipe is connected to the air conditioner return water delivery pipe through the first circulating water pump, and is connected to the water inlet of the second heat exchange end in the heat exchanger through the air conditioner return water delivery pipe through the first switch valve, and the outlet of the second heat exchange end in the heat exchanger The water port is connected to the air-conditioning water supply pipeline through the second on-off valve, and then connected to the water inlet pipe at the heat exchange end of the air-conditioning unit through the air-conditioning water supply pipeline; the outlet pipe of the fresh air unit is connected to the heat pump unit return water pipeline through the second circulating water pump, The return water pipeline of the heat pump unit is also connected to the air conditioner return water pipeline through the air conditioner return water switch valve; the water inlet pipe of the fresh air unit is connected to the water supply pipeline of the heat pump unit, and the water supply pipeline of the heat pump unit is also connected to the air conditioner water supply pipeline through the air conditioner water supply switch valve The pipelines are connected; the water inlet of the evaporator in the water source heat pump unit is selectively connected to the heat pump source water delivery pipeline or the return water delivery pipeline of the heat pump unit through the second valve gating structure, and the water outlet of the evaporator in the water source heat pump unit is selected through the third valve. The through structure is selectively connected to the source water drainage pipeline or the heat pump unit water supply pipeline; the water inlet of the condenser in the water source heat pump unit is selectively connected to the heat pump source water delivery pipeline or the heat pump unit return water delivery pipeline through the fourth valve gating structure, and the water source heat pump unit The water outlet of the condenser in the unit is selectively connected to the source water drainage pipeline or the water supply pipeline of the heat pump unit through the fifth valve gating structure.
中国专利201610042160.1公开了一种多功能热泵空调装置,其包括压缩机、四通换向阀、室外机和水氟换热器,其中:室内换热器分为室内供热及除湿回热末端和室内制冷及除湿末端;水氟换热器分为第一水氟换热器和第二水氟换热器;第一模式为制冷模式,压缩机、第一水氟换热器的第一换热侧、四通阀D-E端、室外机、膨胀阀、第二水氟换热器的第三换热侧、四通阀C-S端和压缩机;制冷水泵、第二水氟换热器的第四换热侧、室内制冷及除湿末端导通;第二模式为制热模式,压缩机、第一水氟换热器的第一换热侧、四通阀D-C端、第二水氟换热器的第三换热侧、膨胀阀、 室外机、四通阀E-S和和压缩机;第一水氟换热器的第二换热侧、室内供热及除湿回热末端和制热水泵和第二换热侧;第三模式为除湿回热模式,压缩机、第一水氟换热器的第一换热侧、四通阀D-E端、室外机、膨胀阀、第二水氟换热器的第三换热侧、四通阀C-S端和压缩机;第一水氟换热器的第二换热侧、室内供热及除湿回热末端和制热水泵构成制热循环管路;第二水氟换热器的第四换热侧、室内制冷及除湿末端和制冷水泵构成制冷管路。Chinese patent 201610042160.1 discloses a multi-functional heat pump air conditioner, which includes a compressor, a four-way reversing valve, an outdoor unit and a water-fluorine heat exchanger, wherein: the indoor heat exchanger is divided into indoor heat supply and dehumidification heat return terminal and Indoor refrigeration and dehumidification terminal; the water fluorine heat exchanger is divided into the first water fluorine heat exchanger and the second water fluorine heat exchanger; the first mode is cooling mode, the first heat exchanger of the compressor and the first water fluorine heat exchanger Hot side, four-way valve D-E end, outdoor unit, expansion valve, third heat exchange side of the second water-fluorine heat exchanger, four-way valve C-S end and compressor; refrigeration water pump, second water-fluorine heat exchanger Four heat exchange sides, indoor cooling and dehumidification terminals conduction; the second mode is heating mode, the compressor, the first heat exchange side of the first water-fluorine heat exchanger, the D-C end of the four-way valve, and the second water-fluorine heat exchange The third heat exchange side of the heat exchanger, the expansion valve, the outdoor unit, the four-way valve E-S and the compressor; the second heat exchange side of the first water-fluorine heat exchanger, the indoor heat supply and dehumidification return end, and the heating water pump and The second heat exchange side; the third mode is the dehumidification and heat recovery mode, the compressor, the first heat exchange side of the first water-fluorine heat exchanger, the D-E end of the four-way valve, the outdoor unit, the expansion valve, and the second water-fluorine heat exchange The third heat exchange side of the device, the C-S end of the four-way valve and the compressor; the second heat exchange side of the first water-fluorine heat exchanger, the indoor heat supply and dehumidification return terminal, and the heating water pump constitute the heating cycle pipeline; The fourth heat exchange side of the second water-fluorine heat exchanger, the indoor refrigeration and dehumidification terminal and the refrigeration water pump form a refrigeration pipeline.
中国实用新型201320343174.9公开了一种温湿度独立控制的热泵空调系统,包括依次串联的热泵外机、热泵内机、热交换器,即热泵外机与热泵内机连接,热泵内机与热交换器连接,还包括分水器、集水器、辐射末端、新风机组,热交换器分别与分水器和集水器连接,分水器通过辐射末端与集水器连接,分水器、集水器与热交换器之间并联新风机组,分风器、置换送风口,新风机组与分风器连接,分风器经由内置风阀连接到各个置换送风口。Chinese utility model 201320343174.9 discloses a heat pump air conditioning system with independent temperature and humidity control, including a heat pump external unit, a heat pump internal unit, and a heat exchanger connected in series, that is, the heat pump external unit is connected to the heat pump internal unit, and the heat pump internal unit is connected to the heat exchanger. Connections also include water separator, water collector, radiant end, fresh air unit, heat exchanger connected to water separator and water collector respectively, water separator connected to water collector through radiant end, water separator, water collector The fresh air unit is connected in parallel between the heat exchanger and the air distributor, and the replacement air supply port is connected.
然而,现有技术所存在的问题是结构较为复杂,能耗可以进一步降低。However, the problem in the prior art is that the structure is relatively complicated, and the energy consumption can be further reduced.
发明内容Contents of the invention
本发明的目的是提供一种具有除湿功能的热泵空调,该热泵空调中除湿调温机和热泵主体协同调温除湿,具有节能及结构简单的特点。The object of the present invention is to provide a heat pump air conditioner with dehumidification function. In the heat pump air conditioner, the dehumidification temperature regulator and the heat pump body cooperate to regulate temperature and dehumidification, which has the characteristics of energy saving and simple structure.
为了实现上述本发明的发明目的,本发明提供了一种具有除湿功能的热泵空调,其包括热泵主机、供冷/热循环系统、室内换热器和设在室内的除湿调温机;In order to achieve the purpose of the present invention above, the present invention provides a heat pump air conditioner with dehumidification function, which includes a heat pump main unit, a cooling/heating cycle system, an indoor heat exchanger, and a dehumidification and temperature regulator installed indoors;
热泵主机包括压缩机、第一换热器、风机、第二换热器、四通阀和膨 胀阀;供冷/热循环系统包括供冷/热管路、回冷/热管路、第三换热器、分集水器和循环水泵;其中,第二换热器和第三换热器耦合成双流道热交换器;室内换热器和除湿调温机串联后与分集水器连通、或室内换热器和除湿调温机分别与分集水器连通;除湿调温机跟随供冷/热循环系统工作。The heat pump host includes a compressor, a first heat exchanger, a fan, a second heat exchanger, a four-way valve and an expansion valve; the cooling/heating cycle system includes a cooling/heating pipeline, a return cooling/heating pipeline, and a third heat exchange water sub-collector and circulating water pump; among them, the second heat exchanger and the third heat exchanger are coupled into a double-channel heat exchanger; the indoor heat exchanger and the dehumidification temperature controller are connected in series to the sub-collector, or the indoor heat exchanger The heater and the dehumidifier and temperature regulator are connected to the sub-collector respectively; the dehumidifier and temperature regulator follow the cooling/heating cycle system to work.
在本发明的热泵空调中,除湿调温机可包括柜体,该柜体内可以设置有由第四换热器和室内冷凝器耦合形成的室内双流道热交换器、室内压缩机、室内蒸发器、室内风机、室内膨胀阀和接水盘,其中,接水盘设在室内蒸发器的下方;第四换热器与分集水器连通,或室内换热器和第四换热器串联;室内压缩机通过设置于柜体内的冷媒管道,与室内蒸发器和室内冷凝器连通。In the heat pump air conditioner of the present invention, the dehumidifier and temperature regulator may include a cabinet, and the cabinet may be provided with an indoor double-channel heat exchanger, an indoor compressor, and an indoor evaporator formed by coupling the fourth heat exchanger and the indoor condenser. , indoor fan, indoor expansion valve and water tray, wherein the water tray is set under the indoor evaporator; the fourth heat exchanger is connected to the sub-collector, or the indoor heat exchanger and the fourth heat exchanger are connected in series; the indoor The compressor communicates with the indoor evaporator and the indoor condenser through the refrigerant pipeline arranged in the cabinet.
在上述本发明的热泵空调中,除湿调温机的柜体上可形成有进风口和出风口,该进风口和出风口连通形成一循环回路;出风口与室内风机的排风口相对应,室内蒸发器设置于室内风机的入风口,出风口设置于室内风机的排风口。In the above-mentioned heat pump air conditioner of the present invention, an air inlet and an air outlet may be formed on the cabinet of the dehumidifier and temperature regulator, and the air inlet and the air outlet are connected to form a circulation loop; the air outlet corresponds to the air outlet of the indoor fan, The indoor evaporator is arranged at the air inlet of the indoor fan, and the air outlet is arranged at the air outlet of the indoor fan.
在上述本发明的热泵空调中,除湿调温机还可包括设置于冷媒管道上的室内四通阀。In the above-mentioned heat pump air conditioner of the present invention, the dehumidifier and temperature regulator may further include an indoor four-way valve arranged on the refrigerant pipeline.
在上述本发明的热泵空调中,除湿调温机可与室内换热器和分集水器之间的管路连通。In the above-mentioned heat pump air conditioner of the present invention, the dehumidification temperature regulator can communicate with the pipeline between the indoor heat exchanger and the sub-collector.
在上述本发明的热泵空调中,除湿调温机的数量可以为若干个,并分别设置于相同或不同的室内;多个除湿调温机可分别与分集水器连通。In the above-mentioned heat pump air conditioner of the present invention, there may be several dehumidifiers and temperature regulators, and they are respectively installed in the same or different rooms; multiple dehumidifiers and temperature regulators can be connected to the manifold respectively.
在上述本发明的热泵空调中,热泵主机还可包括主控制器,供冷/热管路上设置有供冷/热温度传感器,室内设置有室内温湿度控制器,主控制器 分别与压缩机、供水温度传感器和室内温湿度控制器连接;In the above-mentioned heat pump air conditioner of the present invention, the heat pump host can also include a main controller, a cooling/heating temperature sensor is arranged on the cooling/heating pipeline, an indoor temperature and humidity controller is arranged indoors, and the main controller communicates with the compressor and the water supply respectively. The temperature sensor is connected to the indoor temperature and humidity controller;
其中,室内温湿度控制器用于获取室内的温湿度信号或露点温度,并将温湿度信号发送给主控制器,主控制器用于根据温湿度信号,获得室内的露点温度;Wherein, the indoor temperature and humidity controller is used to obtain the indoor temperature and humidity signal or dew point temperature, and send the temperature and humidity signal to the main controller, and the main controller is used to obtain the indoor dew point temperature according to the temperature and humidity signal;
供水温度传感器用于获取供冷/热管路上的供冷/热温度,并将该供冷/热温度发送给主控制器;The water supply temperature sensor is used to obtain the cooling/heating temperature on the cooling/heating pipeline, and send the cooling/heating temperature to the main controller;
主控制器用于控制压缩机的运行参数,使得该供冷/热温度高于露点温度。The main controller is used to control the operating parameters of the compressor so that the cooling/heating temperature is higher than the dew point temperature.
在上述本发明的热泵空调中,室内换热器可设置于除湿调温机的柜体内。In the above-mentioned heat pump air conditioner of the present invention, the indoor heat exchanger can be arranged in the cabinet of the dehumidifier and temperature regulator.
在上述本发明的热泵空调中,供冷/热管路和回冷/热管路上可分别设有截止阀。In the above-mentioned heat pump air conditioner of the present invention, stop valves may be provided on the cooling/heating pipeline and the cooling/heating pipeline respectively.
在上述本发明的热泵空调中,供冷/热循环系统中设有冷媒或水来传递能量。In the above-mentioned heat pump air conditioner of the present invention, refrigerant or water is provided in the cooling/heating cycle system to transfer energy.
本发明的具有除湿功能的热泵空调,除湿调温机和热泵主机的制冷功能协同调温并除湿,起到协同增效作用,节能且结构简单安装方便;同时,还可以控制在夏天制冷时,室内换热器只处理显热负荷,由除湿调温机处理除湿负荷,使得室内换热器具有不结露的优点;或者,当除湿调温机对室内进行制冷除湿时,从室内除湿吸收的热量加上除湿调温机压缩机的电功,通过除湿调温机冷凝器将热量释放到供冷/热循环系统中,汇同热泵主机的制热运行,向室内换热器提供热水,使得室内散热器可以对室内提供充分的热量补充,从而保证室内不会因持续除湿而温度下降,对于在低 温高湿气候如回南天、梅雨天的情况下,确保室内舒适度有很好的作用,结构简单使用方便,避免了用户使用独立式抽湿机需要反复搬动、或者是使用独立空调除湿室内越来越冷的缺点。In the heat pump air conditioner with dehumidification function of the present invention, the dehumidification temperature regulator and the cooling function of the heat pump main unit cooperate to adjust the temperature and dehumidify, play a synergistic effect, save energy, and have a simple structure and easy installation; at the same time, it can also be controlled during cooling in summer. The indoor heat exchanger only handles the sensible heat load, and the dehumidification load is handled by the dehumidifier and thermostat, so that the indoor heat exchanger has the advantage of no condensation; The heat plus the electric power of the compressor of the dehumidifier and thermostat releases the heat into the cooling/heating circulation system through the condenser of the dehumidifier and thermostat, and then converges with the heating operation of the heat pump host to provide hot water to the indoor heat exchanger. The indoor radiator can provide sufficient heat supplement to the room, so as to ensure that the temperature of the room will not drop due to continuous dehumidification. It has a good effect on ensuring indoor comfort in low-temperature and high-humidity climates such as returning to the south and rainy days. , The structure is simple and easy to use, avoiding the disadvantages that the user needs to move repeatedly when using the independent dehumidifier, or the dehumidification room is getting colder and colder when using the independent air conditioner.
附图说明Description of drawings
图1是本发明工作的原理图;Fig. 1 is a schematic diagram of the work of the present invention;
图2是本发明的除湿调温机的结构原理图。Fig. 2 is a structural principle diagram of the dehumidification and temperature regulating machine of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.
如图1和图2所示,一种具有除湿功能的热泵空调,它包括热泵主机1、供冷/热循环系统2、分设在若干房间内的室内换热器3和设在室内的除湿调温机4,As shown in Figures 1 and 2, a heat pump air conditioner with dehumidification function includes a heat pump host 1, a cooling/heating cycle system 2, indoor heat exchangers 3 arranged in several rooms, and a dehumidification conditioner installed indoors. warm machine 4,
热泵主机1包括压缩机11、第一换热器12、风机13、第二换热器、四通阀14和膨胀阀15,供冷/热循环系统2包括供冷/热管路21、回冷/热管路22、第三换热器、分集水器23和循环水泵24,分集水器23后的一对相通的供冷/热支管和回冷/热支管组成一个支管路对27;第二换热器和第三换热器耦合成双流道热交换器5;室内换热器3与分集水器23的供回水支管道连通;除湿调温机4与室内换热器3和分集水器23之间的回水支管路连通,或除湿调温机4直接与分集水器23连通;除湿调温机4跟随供冷/热循环系统2工作,或者说:除湿调温机跟随热泵主机1工作;。The heat pump host 1 includes a compressor 11, a first heat exchanger 12, a fan 13, a second heat exchanger, a four-way valve 14, and an expansion valve 15, and the cooling/heating cycle system 2 includes a cooling/heating pipeline 21, a back cooling / heat pipeline 22, the third heat exchanger, sub-catchment 23 and circulating water pump 24, a pair of interlinked cooling/hot branch pipes and return cooling/hot branch pipes behind the sub-collector 23 form a branch line pair 27; The heat exchanger and the third heat exchanger are coupled into a double-channel heat exchanger 5; the indoor heat exchanger 3 communicates with the water supply and return branch pipe of the sub-collector 23; The return water branch pipeline between the devices 23 is connected, or the dehumidification and temperature regulating machine 4 is directly connected with the sub-catchment 23; the dehumidification and temperature regulating machine 4 works with the cooling/heating cycle system 2, or in other words: the dehumidification and temperature regulating machine follows the heat pump host 1 job; .
其中,室内换热器3可以是辐射式换热器,例如冷/暖气片、地暖管道等;也可以是对流式换热器。Wherein, the indoor heat exchanger 3 may be a radiant heat exchanger, such as a cooling/radiating radiator, a floor heating pipe, etc.; it may also be a convective heat exchanger.
在其他的例子中,除湿调温机4也可以是与室内换热器3一致,都直 接与分集水器的供回水支管道连通,或者是,室内换热器3与除湿调温机43和分集水器23之间的供水支管路或者回水支管路连通。In other examples, the dehumidification and temperature regulating machine 4 can also be consistent with the indoor heat exchanger 3, and both are directly connected with the water supply and return branch pipes of the sub-catchment, or the indoor heat exchanger 3 and the dehumidification and temperature regulating machine 43 It is communicated with the water supply branch pipeline or the return water branch pipeline between the sub-collectors 23.
如图2所示,所述除湿调温机4包括柜体49,该柜体49内设置有由第四换热器和室内冷凝器耦合形成的室内双流道热交换器6,第四换热器的进水接口50和出水接口51,该柜体49内还设置有除湿调温机室内压缩机41、室内四通阀46、室内蒸发器42、室内风机43、室内膨胀阀44和接水盘45,所述第四换热器通过进水接口50、出水接口51与所述分集水器连通;所述室内压缩机通过设置于所述柜体内的冷媒管道,与所述室内蒸发器和所述室内冷凝器连通。接水盘45设在室内蒸发器42的下方。在具有室内四通阀46时,所述除湿调温机4可以具有制冷或制暖功能,在一些例子中,也可以没有该室内四通阀46,这时,除湿调温机4仅具有制冷或除湿功能;As shown in Figure 2, the dehumidification and temperature regulating machine 4 includes a cabinet body 49, which is provided with an indoor double-channel heat exchanger 6 formed by coupling a fourth heat exchanger and an indoor condenser. The water inlet port 50 and the water outlet port 51 of the device, the cabinet body 49 is also provided with a dehumidification and temperature control machine indoor compressor 41, an indoor four-way valve 46, an indoor evaporator 42, an indoor fan 43, an indoor expansion valve 44 and a water receiving plate 45, the fourth heat exchanger communicates with the sub-collector through the water inlet interface 50 and the water outlet interface 51; the indoor compressor communicates with the indoor evaporator and the indoor compressor through the refrigerant pipeline arranged in the cabinet The indoor condenser is connected. The water receiving tray 45 is arranged below the indoor evaporator 42 . When there is an indoor four-way valve 46, the dehumidification and temperature regulating machine 4 can have cooling or heating functions. In some examples, the indoor four-way valve 46 can also be absent. or dehumidification function;
室内换热器3和除湿调温机4的室内冷凝器串联在一个支管路对27上,室内换热器3和除湿调温机4的室内冷凝器顺序连通,或室内冷凝器和室内换热器3顺序连通;当分集水器后的一个支管路对27上有二个室内换热器3及一个室内冷凝器时,按室内换热器3、室内冷凝热器和室内换热器3依次串联。还可以是室内换热器3和除湿调温机4分别有若干个,根据需要选择串联方式。The indoor heat exchanger 3 and the indoor condenser of the dehumidification and temperature control machine 4 are connected in series on a branch line pair 27, and the indoor heat exchanger 3 and the indoor condenser of the dehumidification and temperature control machine 4 are connected in sequence, or the indoor condenser and the indoor heat exchange The devices 3 are sequentially connected; when there are two indoor heat exchangers 3 and one indoor condenser on a branch line pair 27 behind the water collector, the indoor heat exchanger 3, the indoor condensing heat exchanger and the indoor heat exchanger 3 are sequentially connected. in series. It can also be that there are several indoor heat exchangers 3 and dehumidification temperature regulators 4 respectively, and a series connection mode can be selected according to needs.
室内换热器3和除湿调温机4也可以并联的方式,分别接在分集水器后的不同的支管路对27上。The indoor heat exchanger 3 and the dehumidification temperature regulator 4 can also be connected in parallel, and are respectively connected to different branch pipeline pairs 27 behind the manifold.
如图2所示,在柜体49上形成有进风口47和出风口48,出风口48与所述室内风机43的排风口相对应,所述室内蒸发器42设置于所述室内风机43的入风口,所述出风口48设置于所述室内风机43的排风口。所述进 风口47和所述出风口48在柜体49内连通形成一循环回路,室内的空气由进风口47进入柜体49内后,沿这一循环回路,通过室内蒸发器42后,经由室内风机43从出风口48吹出,实现室内空气自循环后,对室内的制冷或制热工作。As shown in Figure 2, an air inlet 47 and an air outlet 48 are formed on the cabinet body 49, the air outlet 48 corresponds to the air outlet of the indoor fan 43, and the indoor evaporator 42 is arranged on the indoor fan 43 The air inlet, the air outlet 48 is arranged at the air outlet of the indoor fan 43 . The air inlet 47 and the air outlet 48 are connected in the cabinet body 49 to form a circulation loop. After the indoor air enters the cabinet body 49 through the air inlet 47, it passes through the indoor evaporator 42 along this circulation loop, and then passes through the indoor evaporator 42. The indoor fan 43 is blown out from the air outlet 48, and after the indoor air self-circulation is realized, the indoor cooling or heating work is performed.
在一些例子中,为节省安装空间,室内换热器3也可以是设置于柜体49内。In some examples, in order to save installation space, the indoor heat exchanger 3 may also be arranged inside the cabinet body 49 .
在图1的例子中,除湿调温机4的数量为多个,并分别设置于不同的室内,多个除湿调温机4分别与分集水器23连通。在其他的例子中,多个除湿调温机4还可以设置于同一室内。In the example shown in FIG. 1 , there are multiple dehumidifiers and temperature regulators 4 , which are installed in different rooms, and the multiple dehumidifiers and temperature regulators 4 are connected to the sub-collectors 23 respectively. In other examples, a plurality of dehumidification and temperature regulators 4 may also be installed in the same room.
在图1的例子中,所述热泵主机1还包括主控制器16,所述供冷/热管路上设置有供冷/热温度传感器26,在设置除湿调温机的室内设置有室内温湿度控制器7,主控制器16分别与所述压缩机11、所述供水温度传感器26和所述室内温湿度控制器7连接。In the example of FIG. 1, the heat pump host 1 also includes a main controller 16, a cooling/heating temperature sensor 26 is set on the cooling/heating pipeline, and an indoor temperature and humidity control is set in the room where the dehumidification temperature regulator is installed. 7, the main controller 16 is respectively connected with the compressor 11, the water supply temperature sensor 26 and the indoor temperature and humidity controller 7.
其中,主控制器16可以是热泵主机1本身的控制单元,即实现热泵主机启停以及频率控制的控制单元,主控制器16还可以是单独的控制模块,其可以是具有CPU的控制芯片,或者FPGA芯片、嵌入式芯片等。供冷/热温度传感器26用于检测供冷/热管道内的载冷剂的供冷/热温度,其可以是通过有线传输的方式,将供冷/热温度发送给主控制器16。室内温湿度控制器7可以是集成有温度传感器和湿度传感器的集成模块,室内温湿度控制器7用于通过检测室内的温度和湿度,其可以是直接根据检测得到的室内的温度和湿度计算得出一露点温度,将露点温度发送给主控制器16,也可以是得到温度和湿度,将温度和湿度发送给主控制器16,由主控制器16来 计算得到室内的露点温度。Wherein, the main controller 16 can be the control unit of the heat pump host 1 itself, that is, the control unit that realizes the start-stop and frequency control of the heat pump host, and the main controller 16 can also be a separate control module, which can be a control chip with a CPU, Or FPGA chips, embedded chips, etc. The cooling/heating temperature sensor 26 is used to detect the cooling/heating temperature of the brine in the cooling/heating pipeline, which may send the cooling/heating temperature to the main controller 16 through wired transmission. The indoor temperature and humidity controller 7 can be an integrated module integrated with a temperature sensor and a humidity sensor. The indoor temperature and humidity controller 7 is used to detect the indoor temperature and humidity, which can be directly calculated according to the detected indoor temperature and humidity. Get a dew point temperature and send the dew point temperature to the main controller 16, or get the temperature and humidity and send the temperature and humidity to the main controller 16, and the main controller 16 can calculate the indoor dew point temperature.
室内温湿度控制器7可以是通过有线的方式与主控制器16进行通信,在图1的例子中,室内温湿度控制器7通过无线传输模块8与主控制器16进行通信。The indoor temperature and humidity controller 7 can communicate with the main controller 16 in a wired manner. In the example of FIG. 1 , the indoor temperature and humidity controller 7 communicates with the main controller 16 through the wireless transmission module 8 .
主控制器16用于控制所述压缩机的运行参数(例如频率),使得该供冷/热温度高于所述露点温度。本发明工作时,The main controller 16 is used to control the operating parameters (such as frequency) of the compressor so that the cooling/heating temperature is higher than the dew point temperature. When the present invention works,
(一)热泵主机1工作,热泵主机1的第二换热器作为蒸发器,经双流道热交换器5、分集水器23为室内换热器3提供冷能,使室内降温;与此同时,除湿调温机4的工作,室内蒸发器42吸热将室内高湿空气降温变成冷凝水并滴落在接水盘45内;室内双流道热交换器6将室内蒸发器42吸收的热量及压缩机41作功经供冷/热循环系统2的回冷/热管路22回到双流道热交换器5;热泵主机1、供冷/热循环系统2和除湿调温机4同步工作;由此,除湿调温机承担了室内空调制冷时的除湿功能,室内换热器3只需要承担室内制冷时的显热负荷而免于产生冷凝水,热泵主机1可以较高温度的冷冻水进行制冷工作从而大大提高了热泵主机1的能效比,并由此提高整个供冷系统的能效比;同时热泵主机1提供高温冷冻水使得室内的供冷/热管道无需保温来防管道结露,大大简化了系统的安装和维护的工作量,降低了整个系统的安装成本。(1) The heat pump host 1 is working, and the second heat exchanger of the heat pump host 1 is used as an evaporator to provide cold energy for the indoor heat exchanger 3 through the double-channel heat exchanger 5 and the water collector 23 to cool down the room; at the same time , the work of the dehumidification and temperature control machine 4, the indoor evaporator 42 absorbs heat and cools the indoor high-humidity air into condensed water and drops it in the water receiving tray 45; the indoor double-channel heat exchanger 6 absorbs the heat absorbed by the indoor evaporator 42 And the work of the compressor 41 is returned to the dual-channel heat exchanger 5 through the return cooling/heating pipeline 22 of the cooling/heating cycle system 2; the heat pump host 1, the cooling/heating cycle system 2 and the dehumidification temperature regulator 4 work synchronously; Thus, the dehumidifier and temperature regulator undertakes the dehumidification function of the indoor air conditioner during cooling, and the indoor heat exchanger 3 only needs to bear the sensible heat load during indoor cooling without generating condensed water. The refrigeration work thus greatly improves the energy efficiency ratio of the heat pump main unit 1, and thus improves the energy efficiency ratio of the entire cooling system; at the same time, the heat pump main unit 1 provides high-temperature chilled water so that the indoor cooling/heating pipes do not need to be insulated to prevent condensation, greatly The workload of system installation and maintenance is simplified, and the installation cost of the whole system is reduced.
(二)热泵主机1为供冷/热循环系统2提供热能,室内换热器3为室内提供热能;此时,除湿调温机4可选择地工作,室内蒸发器42作为冷凝器工作,室内双流道热交换器6将冷能经供冷/热循环系统2的回冷/热管路22回到双流道热交换器5,通过热泵主机1和外界环境进行热量的交换, 由此,在室内换热器3的基础上,除湿调温机可以满足用户快速升高室内温度的需求,当房间供热趋于稳定室内换热器3足以承担室内负荷时,除湿调温机压缩机、风机停止工作。(2) The heat pump host 1 provides thermal energy for the cooling/heating cycle system 2, and the indoor heat exchanger 3 provides thermal energy for the room; at this time, the dehumidification and temperature regulator 4 can work selectively, and the indoor evaporator 42 works as a condenser. The dual-channel heat exchanger 6 returns the cold energy to the dual-channel heat exchanger 5 through the cooling/heating pipeline 22 of the cooling/heating cycle system 2, and exchanges heat with the external environment through the heat pump host 1, thus, the indoor On the basis of heat exchanger 3, the dehumidifier and thermostat can meet the needs of users to quickly increase the indoor temperature. When the room heat supply tends to be stable and the indoor heat exchanger 3 is sufficient to bear the indoor load, the compressor and fan of the dehumidifier and thermostat will stop. Work.
(三)恒温除湿功能,在常见的低温高湿气候如梅雨天、回南天时,除湿调温机4对室内进行制冷除湿,从室内除湿吸收的热量加上除湿调温机压缩机41的电功,通过除湿调温机的冷凝器和第四换热器藕合的双流道换热器6将热量释放到供冷/热循环系统2中,热泵主机1根据检测到的水温变化,选择是否制热运行及决定压缩机的运行参数,从而向室内换热器3提供热水,室内散热器3可以向室内散热,对室内提供充分的热量补充,使得室内不会因持续除湿而温度下降,避免了使用独立式抽湿机反复搬动、人工倒水的麻烦、也避免了使用独立空调除湿越除越冷的缺点,本发明结构简单,安装方便,且用户使用方便。(3) constant temperature dehumidification function, in common low-temperature and high-humidity climates such as rainy days and when returning to the south, the dehumidification and temperature regulating machine 4 performs cooling and dehumidification of the room, and the heat absorbed from the indoor dehumidification adds the power of the dehumidification and temperature regulating machine compressor 41 The heat is released to the cooling/heating cycle system 2 through the condenser of the dehumidification and temperature regulating machine and the double-channel heat exchanger 6 coupled with the fourth heat exchanger. The heat pump host 1 chooses whether to Heating operation and determining the operating parameters of the compressor, so as to provide hot water to the indoor heat exchanger 3, and the indoor radiator 3 can dissipate heat to the room and provide sufficient heat supplement to the room, so that the temperature of the room will not drop due to continuous dehumidification. It avoids the trouble of repeatedly moving and manually pouring water by using an independent dehumidifier, and also avoids the disadvantage of using an independent air conditioner to dehumidify and get colder as it dehumidifies. The invention has simple structure, convenient installation, and user-friendly operation.
供冷/热管路21和回冷/热管路22上分别设有截止阀25。The cooling/heating pipeline 21 and the cooling/heating pipeline 22 are respectively provided with stop valves 25 .
供冷/热循环系统2中介质为冷媒或水传递能量。The medium in the cooling/heating cycle system 2 is refrigerant or water to transfer energy.
以上所述的仅是本发明的优先实施方式。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明原理的情况下,还可以作出若干改进和变型,这也视为本发明的保护范围。What has been described above are only preferred embodiments of the present invention. It should be noted that, for those skilled in the art, some improvements and modifications can be made without departing from the principle of the present invention, which are also regarded as the protection scope of the present invention.

Claims (10)

  1. 一种具有除湿功能的热泵空调,其包括热泵主机、供冷/热循环系统、室内换热器和设在室内的除湿调温机,A heat pump air conditioner with dehumidification function, which includes a heat pump host, a cooling/heating cycle system, an indoor heat exchanger, and a dehumidification and temperature regulator installed indoors,
    热泵主机包括压缩机、第一换热器、风机、第二换热器、四通阀和膨胀阀,供冷/热循环系统包括供冷/热管路、回冷/热管路、第三换热器、分集水器和循环水泵;第二换热器和第三换热器耦合成双流道热交换器;室内换热器和除湿调温机串联后与分集水器连通、或室内换热器和除湿调温机分别与分集水器连通;除湿调温机跟随供冷/热循环系统工作。The heat pump host includes a compressor, a first heat exchanger, a fan, a second heat exchanger, a four-way valve and an expansion valve, and the cooling/heating cycle system includes a cooling/heating pipeline, a return cooling/heating pipeline, and a third heat exchanger The second heat exchanger and the third heat exchanger are coupled into a double-channel heat exchanger; the indoor heat exchanger and the dehumidification temperature controller are connected in series to the water sub-collector, or the indoor heat exchanger The dehumidifier and temperature regulator are respectively connected to the sub-catchment; the dehumidifier and temperature regulator follow the cooling/heating cycle system to work.
  2. 如权利要求1所述的热泵空调,其中,所述的除湿调温机包括柜体,所述柜体内设置有由第四换热器和室内冷凝器耦合形成的室内双流道热交换器、室内压缩机、室内蒸发器、室内风机、室内膨胀阀和接水盘,接水盘设在室内蒸发器的下方;The heat pump air conditioner according to claim 1, wherein the dehumidification and temperature regulating machine comprises a cabinet, and the indoor double-channel heat exchanger formed by coupling the fourth heat exchanger and the indoor condenser is arranged in the cabinet, and the indoor Compressor, indoor evaporator, indoor fan, indoor expansion valve and water tray, the water tray is located under the indoor evaporator;
    所述第四换热器与所述分集水器连通,或所述室内换热器和第四换热器串联;所述室内压缩机通过设置于所述柜体内的冷媒管道,与所述室内蒸发器和所述室内冷凝器连通。The fourth heat exchanger communicates with the sub-collector, or the indoor heat exchanger and the fourth heat exchanger are connected in series; the indoor compressor is connected to the indoor The evaporator communicates with the indoor condenser.
  3. 如权利要求2所述的热泵空调,其中,所述柜体上形成有进风口和出风口,所述进风口和所述出风口连通形成一循环回路;The heat pump air conditioner according to claim 2, wherein an air inlet and an air outlet are formed on the cabinet, and the air inlet and the air outlet communicate to form a circulation loop;
    所述出风口与所述室内风机的排风口相对应,所述室内蒸发器设置于所述室内风机的入风口,所述出风口设置于所述室内风机的排风口。The air outlet corresponds to the air outlet of the indoor fan, the indoor evaporator is arranged at the air inlet of the indoor fan, and the air outlet is arranged at the air outlet of the indoor fan.
  4. 如权利要求2所述的热泵空调,其中,所述除湿调温机还包括设置于所述冷媒管道上的室内四通阀。The heat pump air conditioner according to claim 2, wherein the dehumidification and temperature regulator further comprises an indoor four-way valve arranged on the refrigerant pipeline.
  5. 如权利要求1所述的热泵空调,其中,所述除湿调温机与所述室内换热器和所述分集水器之间的管路连通。The heat pump air conditioner according to claim 1, wherein the dehumidification and temperature regulating machine communicates with the pipeline between the indoor heat exchanger and the water manifold.
  6. 如权利要求1所述的热泵空调,其中,所述除湿调温机的数量为多个,并分别设置于相同或不同的室内;The heat pump air conditioner according to claim 1, wherein there are multiple dehumidifiers and temperature regulators, which are respectively installed in the same or different rooms;
    多个所述除湿调温机分别与所述分集水器连通。A plurality of the dehumidification and temperature regulating machines are respectively communicated with the water sub-collectors.
  7. 如权利要求1所述的热泵空调,其中:The heat pump air conditioner as claimed in claim 1, wherein:
    所述热泵主机还包括主控制器,所述供冷/热管路上设置有供冷/热温度传感器,所述室内设置有室内温湿度控制器,所述主控制器分别与所述压缩机、所述供水温度传感器和所述室内温湿度控制器连接;The heat pump host also includes a main controller, a cooling/heating temperature sensor is set on the cooling/heating pipeline, an indoor temperature and humidity controller is set in the room, the main controller is connected with the compressor, the The water supply temperature sensor is connected to the indoor temperature and humidity controller;
    所述室内温湿度控制器用于获取室内的温湿度信号或露点温度,并将所述温湿度信号发送给所述主控制器,所述主控制器用于根据所述温湿度信号,获得室内的露点温度;The indoor temperature and humidity controller is used to obtain the indoor temperature and humidity signal or dew point temperature, and send the temperature and humidity signal to the main controller, and the main controller is used to obtain the indoor dew point according to the temperature and humidity signal temperature;
    所述供水温度传感器用于获取所述供冷/热管路上的供冷/热温度,并将该供冷/热温度发送给所述主控制器;The water supply temperature sensor is used to obtain the cooling/heating temperature on the cooling/heating pipeline, and send the cooling/heating temperature to the main controller;
    所述主控制器用于控制所述压缩机的运行参数,使得该供冷/热温度高于所述露点温度。The main controller is used to control the operating parameters of the compressor so that the cooling/heating temperature is higher than the dew point temperature.
  8. 根据权利要求2所述的热泵空调,其中,所述室内换热器设置于所述柜体内。The heat pump air conditioner according to claim 2, wherein the indoor heat exchanger is arranged in the cabinet.
  9. 如权利要求1所述的热泵空调,其中,所述供冷/热管路和回冷/热管路上分别设有截止阀。The heat pump air conditioner according to claim 1, wherein stop valves are respectively arranged on the cooling/heating pipeline and the cooling/heating pipeline.
  10. 如权利要求1-9之一所述的热泵空调,其中:所述供冷/热循环系 统中传递能量的介质为冷媒或水。The heat pump air conditioner according to any one of claims 1-9, wherein: the energy transfer medium in the cooling/heating cycle system is refrigerant or water.
PCT/CN2022/095413 2021-08-10 2022-05-27 Heat-pump air conditioner having dehumidification function WO2023020060A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22857374.7A EP4379268A1 (en) 2021-08-10 2022-05-27 Heat-pump air conditioner having dehumidification function
CA3229119A CA3229119A1 (en) 2021-08-10 2022-05-27 Heat-pump air conditioner having dehumidification function

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110914088 2021-08-10
CN2021109434561 2021-08-17
CN202110943456.1A CN113654113B (en) 2021-08-10 2021-08-17 Heat pump air conditioner with dehumidification function

Publications (1)

Publication Number Publication Date
WO2023020060A1 true WO2023020060A1 (en) 2023-02-23

Family

ID=78479984

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/127219 WO2023019733A1 (en) 2021-08-10 2021-10-29 Air blower that is pre-tightened using magnetic force
PCT/CN2022/095413 WO2023020060A1 (en) 2021-08-10 2022-05-27 Heat-pump air conditioner having dehumidification function

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127219 WO2023019733A1 (en) 2021-08-10 2021-10-29 Air blower that is pre-tightened using magnetic force

Country Status (4)

Country Link
EP (1) EP4379268A1 (en)
CN (2) CN113654113B (en)
CA (1) CA3229119A1 (en)
WO (2) WO2023019733A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654113B (en) * 2021-08-10 2022-11-15 中山市爱美泰电器有限公司 Heat pump air conditioner with dehumidification function
CN114294720A (en) * 2021-12-28 2022-04-08 中山市爱美泰电器有限公司 Water source dehumidifier
CN114294790B (en) * 2021-12-28 2024-01-02 中山市爱美泰电器有限公司 Control method of water source type dehumidifying temperature regulator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103629755A (en) * 2013-12-19 2014-03-12 广东省建筑科学研究院 Multi-function air-conditioning and dehumidifying unit with condensation heat recovery functions
CN105605708A (en) * 2016-01-21 2016-05-25 中山市爱美泰电器有限公司 Multifunctional heat pump air conditioning device
CN107062674A (en) * 2017-01-13 2017-08-18 中山市爱美泰电器有限公司 It is a kind of set within doors dehumidifying and domestic hot-water heat pump air conditioner
US20190049154A1 (en) * 2015-10-21 2019-02-14 Mitsubishi Electric Corporation Air-conditioning apparatus
US20190353401A1 (en) * 2017-02-10 2019-11-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN110657604A (en) * 2019-09-23 2020-01-07 珠海格力电器股份有限公司 Heat pump system and control method
CN110701691A (en) * 2019-10-14 2020-01-17 珠海格力电器股份有限公司 Fresh air handling unit and control method
CN113654113A (en) * 2021-08-10 2021-11-16 中山市爱美泰电器有限公司 Heat pump air conditioner with dehumidification function
CN215675573U (en) * 2021-08-10 2022-01-28 中山市爱美泰电器有限公司 Heat pump air conditioner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443826C (en) * 2007-03-30 2008-12-17 东南大学 Multifunction geothermal-energy heat pump radiation air-conditioner and water heating system
JP4367579B1 (en) * 2008-06-03 2009-11-18 ダイキン工業株式会社 Refrigeration equipment
DE102011080796B4 (en) * 2011-08-11 2023-05-25 Aktiebolaget Skf Axially load bearing arrangement
CN102720924B (en) * 2012-05-11 2014-07-09 哈尔滨工业大学 Magnetic force prefastening plane rolling supporting device
CN102679546A (en) * 2012-05-24 2012-09-19 广州市设计院 Efficient high-temperature hot-water heat pump unit
CA2883645A1 (en) * 2015-02-24 2016-08-24 Canada Yung Feng Technology Inc. Air conditioning device and method
CN105021402B (en) * 2015-07-23 2017-08-15 西安交通大学 A kind of controllable pre-tightening apparatus of the main shaft bearing of electromagnetic type
CN207247612U (en) * 2017-09-21 2018-04-17 无锡职业技术学院 A kind of water route coupling cascade formula low-temperature air-cooling heat pump system
CN109210651B (en) * 2018-08-30 2024-04-16 福建省建筑设计研究院有限公司 Two air-cooled heat pump heat recovery unit coupling water-cooled chiller units with different functions and application method thereof
CN112018937B (en) * 2020-08-07 2021-09-14 珠海格力电器股份有限公司 Adjusting mechanism for axial pretightening force of motor and motor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103629755A (en) * 2013-12-19 2014-03-12 广东省建筑科学研究院 Multi-function air-conditioning and dehumidifying unit with condensation heat recovery functions
US20190049154A1 (en) * 2015-10-21 2019-02-14 Mitsubishi Electric Corporation Air-conditioning apparatus
CN105605708A (en) * 2016-01-21 2016-05-25 中山市爱美泰电器有限公司 Multifunctional heat pump air conditioning device
CN107062674A (en) * 2017-01-13 2017-08-18 中山市爱美泰电器有限公司 It is a kind of set within doors dehumidifying and domestic hot-water heat pump air conditioner
US20190353401A1 (en) * 2017-02-10 2019-11-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN110657604A (en) * 2019-09-23 2020-01-07 珠海格力电器股份有限公司 Heat pump system and control method
CN110701691A (en) * 2019-10-14 2020-01-17 珠海格力电器股份有限公司 Fresh air handling unit and control method
CN113654113A (en) * 2021-08-10 2021-11-16 中山市爱美泰电器有限公司 Heat pump air conditioner with dehumidification function
CN215675573U (en) * 2021-08-10 2022-01-28 中山市爱美泰电器有限公司 Heat pump air conditioner

Also Published As

Publication number Publication date
CN113654113A (en) 2021-11-16
CN113790479A (en) 2021-12-14
CN113790479B (en) 2022-12-23
CA3229119A1 (en) 2023-02-23
EP4379268A1 (en) 2024-06-05
WO2023019733A1 (en) 2023-02-23
CN113654113B (en) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2023020060A1 (en) Heat-pump air conditioner having dehumidification function
WO2016179884A1 (en) Variable-refrigerant-flow radiant air-conditioning system
CN203177357U (en) Domestic fresh air dehumidifier
CN201652636U (en) Double-cold-source heat recovery constant temperature and humidity air conditioning unit
WO2017219650A1 (en) Air conditioning system, composite condenser, and operation control method and device for air conditioning system
CN204806546U (en) Warm system of air source heat pump roof radiation direct expansion cooling
CN103411278A (en) Fresh air handling unit suitable for air conditioning system allowing independent temperature and humidity control
CN203869369U (en) Cooling and heating combined unit
CN103629755A (en) Multi-function air-conditioning and dehumidifying unit with condensation heat recovery functions
CN101216225A (en) Double temperature cold water/cold air unit
CN102620477B (en) Double-cold-source full fresh air heat pump dehumidification unit
CN102628626B (en) Air conditioning dehumidification evaporative type condensation three-work-condition cold and hot water unit
CN105135739A (en) Multifunctional heat pump type evaporative condensing air-conditioning unit
CN110645730A (en) Refrigerant control system and method for double-end heat pump heating air conditioning unit
CN110749018A (en) Single-machine two-stage compression middle air exhaust heat recovery fresh air processing device
CN102022788A (en) Combined cooling air-conditioning system of indirect evaporation chiller and mechanical refrigeration chiller
CN109506311A (en) A kind of double cold source humiture independence control air conditioner systems of superposition type
CN209819742U (en) Variable-frequency multi-connected radiation heating and refrigerating air conditioning system
CN203785138U (en) Two temperature radiation room air conditioner capable of processing fresh air
CN105135552A (en) Air conditioning system
CN102829519B (en) Dehumidifying unit of double cold source all fresh air heat pump provided with cold carrying heat exchanger
CN202562130U (en) Air conditioner dehumidification evaporative condensation three-working-condition cold-and-hot water unit
CN202177172U (en) Novel humidity-constant fan unit capable of recovering heat for two times
CN209181265U (en) A kind of air energy water heater that double blast pipes and double discharge pipes are set
CN203785141U (en) Dual temperature radiation heat pump room air conditioner capable of disposing fresh air

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857374

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3229119

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022857374

Country of ref document: EP

Effective date: 20240301

NENP Non-entry into the national phase

Ref country code: DE