WO2023019951A1 - 一种轮胎自定位系统及其定位方法 - Google Patents

一种轮胎自定位系统及其定位方法 Download PDF

Info

Publication number
WO2023019951A1
WO2023019951A1 PCT/CN2022/083068 CN2022083068W WO2023019951A1 WO 2023019951 A1 WO2023019951 A1 WO 2023019951A1 CN 2022083068 W CN2022083068 W CN 2022083068W WO 2023019951 A1 WO2023019951 A1 WO 2023019951A1
Authority
WO
WIPO (PCT)
Prior art keywords
abs
tire
signal
value
teeth
Prior art date
Application number
PCT/CN2022/083068
Other languages
English (en)
French (fr)
Inventor
王旭
史卫华
任之伟
Original Assignee
保隆霍富(上海)电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保隆霍富(上海)电子有限公司 filed Critical 保隆霍富(上海)电子有限公司
Publication of WO2023019951A1 publication Critical patent/WO2023019951A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0471System initialisation, e.g. upload or calibration of operating parameters

Definitions

  • the invention relates to the technical field of vehicle tire positioning, in particular to a tire self-positioning system and a positioning method thereof.
  • the tire condition monitoring system is a safety system to ensure the good operation of the vehicle.
  • the tire condition monitoring system has developed rapidly in the automobile market in recent years. Because it can monitor the running status of automobile tires in real time, when the tires have abnormal conditions such as air leakage or ultra-high temperature, it can send warnings to the driver in time, so that tire damage can be avoided to the greatest extent, and a good environment for safe operation of vehicles can be provided. Assure.
  • the tire condition monitoring system can not only prevent the vehicle from blowing out, but also avoid accidents.
  • inflating the tires to the recommended standard pressure value can also reduce the fuel consumption of the vehicle, so that the tires can be used for a longer period of time.
  • the present invention proposes a tire self-positioning system and its positioning method, which are used to solve the problem of reverse motion of the tire and improve the success rate of active learning.
  • the present invention proposes a tire self-positioning method, comprising steps:
  • the wireless signal can be indexed to the time corresponding to when the first signal reaches the reference point, the first signal includes at least the acceleration information of the tire, the The wired signal includes a second signal and corresponding position information of the tire, and the second signal includes at least rotation angle information of the tire;
  • the tire rotation angle information includes the number of ABS teeth that the tire rotates.
  • step S1 the wired signal is acquired, the ABS teeth number is saved, and a coded value is generated.
  • a plurality of coded values form queue of encoded values;
  • step S2 calculate the reference rotation angle information of the tire corresponding to when the first signal reaches the reference point according to the currently received wireless signal and wired signal, and record it as a reference code value;
  • step S3 if there is a reverse rotation of the tire, the reference code value acquired after the tire reverse rotation is compensated.
  • step S3 if the tire has multiple reverse rotations, after each reverse rotation, the reference code value obtained after the reverse rotation should be compensated.
  • the step of compensating the reference encoding value in step S3 includes:
  • n is a natural number, adjust n to make AbsEnd+n*ABS_CODE_MAXVAL greater than AbsStart, and ABS_CODE_MAXVAL is the number of teeth added by the ABS for one rotation of the tire;
  • step S31 includes:
  • the step of compensating the reference encoding value in step S3 includes:
  • ABS_CODE_MAXVAL is the number of teeth added by the ABS for one revolution of the tire, n is a natural number, and n is adjusted so that the reference code value ABS_ref+(ABS_CODE_MAXVAL*n) is greater than 2*AbsTotalDelta.
  • step S3 in step S3, if there are n reverse rotations of the tire, it is necessary to compensate the reference code value obtained after n reverse rotations, including steps:
  • AbsTotalStart Record the total number of ABS teeth at the beginning of the first reverse movement, denoted as AbsTotalStart 1, record the total number of ABS teeth at the end of the first reverse movement, denoted as AbsTotalEnd 1, and calculate the number of ABS teeth increased during the first reverse movement
  • AbsTotalDelta 1 AbsTotalEnd 1-AbsTotalStart 1;
  • ABS modified ABS total tooth number AbsTotalAdjusted% ABS_CODE_MAXVAL take remainder;
  • the reference coded value ABS_ref is compensated by compensating the reference coded value ABS.
  • step S2 includes:
  • index time T3 backtracking time T2 - time interval T1;
  • the backtracking time T2 is a set fixed value, or a specific value calculated by a specific algorithm.
  • the present invention also provides a tire self-positioning system, which is used to implement the aforementioned tire self-positioning method, and the tire self-positioning system includes:
  • a tire condition detection device arranged on the tire, used to collect the first signal and the pressure, temperature and identification code of the tire, and generate the wireless signal;
  • a second signal sensor arranged on the tire, for collecting the second signal
  • the second signal controller is electrically connected to the second signal sensor, the second signal controller receives the second signal and generates a wired signal, and the wired signal includes the coded value corresponding to the second signal and the The position information of the tire where the second signal sensor is located;
  • a communication bus and a signal receiving processor receives the wired signal through the communication bus, the signal receiving processor receives the wireless signal, and the signal receiving processor receives the wired signal according to the wireless signal and the wired signal signal to perform the steps of data conversion, data compensation and data statistics.
  • the first signal acquisition sensor is an acceleration sensor
  • the second signal sensor is an ABS gear tooth pulse sensor
  • the tire self-positioning system and its positioning method provided by the present invention can improve the success rate of active learning and mainly solve the problem of data deviation caused by reverse motion of tires.
  • Fig. 1 shows a block flow diagram of a tire self-positioning method according to an embodiment of the present invention.
  • Fig. 2 shows a block diagram 1 of step S3 in the tire self-alignment method according to an embodiment of the present invention.
  • Fig. 3 shows the second flow chart of step S3 in the tire self-positioning method according to an embodiment of the present invention.
  • Fig. 4 shows a flow chart of step S2 in the tire self-positioning method according to an embodiment of the present invention.
  • Fig. 5 shows a schematic structural diagram of a tire self-positioning system according to an embodiment of the present invention.
  • Fig. 6 shows a schematic diagram of ABS tooth numbers according to an embodiment of the present invention.
  • Fig. 7 shows characteristic curves of the first signal and the second signal of an embodiment of the present invention.
  • FIG. 8 shows characteristic curves of ABS coding and ABS variables according to an embodiment of the present invention.
  • FIG. 9 shows a characteristic curve of the acceleration of the first signal and the number of ABS teeth of the second signal according to an embodiment of the present invention.
  • Fig. 10 shows a schematic diagram of obtaining a reference coded value by indexing the coded value of the second signal according to an embodiment of the present invention.
  • Fig. 11 shows a comparison table before and after ABS tooth number compensation according to an embodiment of the present invention.
  • FIG. 12 shows a first schematic diagram of calculating the compensation value ABS according to an embodiment of the present invention.
  • FIG. 13 shows a second schematic diagram of calculating the compensation value ABS according to an embodiment of the present invention.
  • FIG. 14 shows a schematic diagram 1 of compensating reference coded values according to an embodiment of the present invention.
  • FIG. 15 shows a second schematic diagram of compensating reference coded values according to an embodiment of the present invention.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” etc. indicate the orientation Or positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description. In the absence of a contrary statement, these orientation words do not indicate or imply the device or element referred to It must have a specific orientation or be constructed and operated in a specific orientation, so it should not be construed as limiting the protection scope of the present application; the orientation words “inner and outer” refer to the inner and outer relative to the outline of each component itself.
  • spatially relative terms may be used here, such as “on !, “over !, “on the surface of !, “above”, etc., to describe the The spatial positional relationship between one device or feature shown and other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, devices described as “above” or “above” other devices or configurations would then be oriented “beneath” or “above” the other devices or configurations. under other devices or configurations”. Thus, the exemplary term “above” can encompass both an orientation of “above” and “beneath”. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.
  • the wired signal of the tire (RL) on the left side of the front can form a queue of four sets of tooth number information.
  • the set of teeth information with the smallest degree of deviation assuming that the wired signal of the front left tire (FL) corresponds to the smallest degree of deviation, the corresponding tire condition monitoring system is determined to be installed on the front left tire (FL) FL).
  • Fig. 1 shows a block flow diagram of a tire self-positioning method according to an embodiment of the present invention. As shown in the figure, a tire self-positioning method provided by the present invention includes steps:
  • the wireless signal can be indexed to the time corresponding to when the first signal reaches the reference point, the first signal includes at least the acceleration information of the tire, the The wired signal includes a second signal and corresponding position information of the tire, and the second signal includes at least rotation angle information of the tire;
  • the tire rotation angle information includes the number of ABS teeth rotated by the tire.
  • step S1 the wired signal is obtained, the number of ABS teeth is saved, and an encoded value is generated.
  • a plurality of encoded values form an encoded value queue;
  • step S2 calculate the reference rotation angle information of the tire corresponding to when the first signal reaches the reference point according to the currently received wireless signal and wired signal, and record it as a reference code value;
  • step S3 if there is reverse rotation of the tire, the reference code value obtained after the tire reverse rotation is compensated.
  • step S3 if the tire has multiple reverse rotations, after each reverse rotation, the reference code value obtained after the reverse rotation should be compensated.
  • the encoding value includes the number of ABS teeth or the ABS angle corresponding to the number of ABS teeth, and the conversion formula between the number of ABS teeth and the ABS angle is as follows:
  • AbsAngle (AbsPhyCurrent/ABS_CODE_MAXVAL)*360
  • AbsAngle is the angle of ABS
  • AbsPhyCurrent is the number of ABS teeth
  • ABS_CODE_MAXVAL is the number of teeth that the ABS increases by one rotation of the tire.
  • Fig. 2 shows a block diagram 1 of step S3 in the tire self-alignment method according to an embodiment of the present invention.
  • step S3 includes:
  • ABS_CODE_MAXVAL is the number of teeth added by ABS for one rotation of the tire
  • step S31 includes:
  • step S3 includes:
  • ABS_CODE_MAXVAL is the number of teeth added by the ABS for one revolution of the tire, n is an integer, and n is adjusted so that the reference code value ABS_ref+(ABS_CODE_MAXVAL*n) is greater than 2*AbsTotalDelta.
  • step S3 if there are n times of reverse rotation of the tire, it is necessary to compensate the reference code value obtained after n times of reverse rotation, including the steps of:
  • AbsTotalStart Record the total number of ABS teeth at the beginning of the first reverse movement, denoted as AbsTotalStart 1, record the total number of ABS teeth at the end of the first reverse movement, denoted as AbsTotalEnd 1, and calculate the number of ABS teeth increased during the first reverse movement
  • AbsTotalDelta 1 AbsTotalEnd 1-AbsTotalStart 1;
  • ABS modified ABS total tooth number AbsTotalAdjusted% ABS_CODE_MAXVAL take remainder;
  • the reference coded value ABS_ref is compensated by compensating the reference coded value ABS.
  • step S2 includes:
  • index time T3 backtracking time T2 - time interval T1;
  • step S26 includes:
  • the backtracking time T2 is a fixed value set, or a specific value calculated by a specific algorithm.
  • the characteristic curve of the first signal is a sinusoidal curve, and a specific angle of the first signal is selected as a reference point.
  • the position of the reference point is determined.
  • the reference point may be the highest point or the lowest point of the first signal characteristic curve, or the position where the tire contacts the ground, or any other angular position. More preferably, the highest point of the sinusoidal curve of the first signal is selected as a reference point for data conversion.
  • Fig. 5 shows a schematic structural diagram of a tire self-positioning system according to an embodiment of the present invention.
  • the present invention also provides a tire self-alignment system 400 for implementing the aforementioned tire self-alignment method.
  • the tire self-positioning system 400 mainly includes a tire 401 , a tire condition detection device 402 , a second signal sensor 403 , a second signal controller 404 , a communication bus 405 and a signal receiving processor 406 .
  • the tire condition detecting device 402 and the second signal sensor 403 are arranged on the tire 401 .
  • the tire condition detection device 402 is used to collect the first signal and the pressure, temperature and identification code of the tire, and generate a wireless signal.
  • the second signal sensor 403 is used to collect the second signal.
  • the second signal controller 404 is electrically connected to the second signal sensor 403 .
  • the second signal controller 404 receives the second signal and generates a wired signal.
  • the wired signal includes a coded value corresponding to the second signal and position information of the tire where the second signal sensor is located.
  • Signal receive processor 406 receives wired signals via communication bus 405 .
  • the signal receiving processor 406 simultaneously receives wireless signals.
  • the signal receiving processor 406 executes steps S2 to S4 in the tire self-positioning method according to the wireless signal and the wired signal, and finally determines the specific position of the tire corresponding to the first signal of the reference point.
  • the communication bus 405 may be a CAN communication bus.
  • the tire condition detection device 402 includes a first signal collecting sensor and a wireless transmitting circuit, the first signal collecting sensor is used to collect the first signal, and the generated wireless signal is sent to the signal receiving processor 406 through the wireless transmitting circuit.
  • the tire condition detection device 402 is installed in the tire.
  • the tire condition detecting device 402 also includes a tire air pressure sensor, a temperature sensor and the like.
  • the tire condition detection device 402 can process the tire condition information collected by each sensor through the micro control unit integrated on its chip, and at the same time combine the collected tire pressure value, temperature value, etc. The signal is sent out.
  • the first signal acquisition sensor is an acceleration sensor
  • the second signal sensor 403 is an ABS tooth pulse sensor of an anti-lock braking system.
  • the first signal exhibits a sinusoidal characteristic.
  • the vehicle is equipped with multiple tires 401.
  • the vehicle has four tires 401, namely the left front tire (FL), the right front tire (FR), the right rear tire (RR), and the left rear tire (RL).
  • Each tire is provided with a tire condition detection device 402 , and each tire condition detection device 402 has a unique identifier, which is called the ID of the tire condition detection device 402 .
  • the wireless signal sent by the tire condition detection device 402 includes an identifier, pressure, sending time and so on.
  • Fig. 6 shows a schematic diagram of ABS tooth numbers according to an embodiment of the present invention. As shown in the figure, starting from the positive X axis, it is recorded as the minimum code ABS_CODE_MIN. In the counterclockwise direction, the code increases by 1 tooth every time the tire rotates, until the code reaches the maximum value ABS_CODE_MAX after the tire rotates for one cycle, and then the code changes from Minimal coding to start with.
  • Fig. 7 shows characteristic curves of the first signal and the second signal of an embodiment of the present invention. As shown in the figure, the characteristic curve of the first signal (acceleration signal) is at the top, and the characteristic curve of the second signal (ABS gear tooth coding signal) is at the bottom, and the two are synchronized.
  • the second signal controller 404 receives the ABS tooth number data output by the second signal sensor 403, and stores the ABS tooth number data in an accumulated form in an internal variable. After the internal variable is accumulated to the maximum value ABS_MAX of the ABS variable, it will start from the minimum The value ABS_MIN restarts counting.
  • the second signal controller 404 processes the ABS variable into a data format conforming to the bus protocol, and roughly periodically sends it to the bus.
  • the value range of the ABS code value can be 0-47; the value range of the ABS variable can be 0-47.
  • the signal receiving processor 406 is arranged on the vehicle body side and is configured to receive wireless signals from each tire condition detection device 402 at any random time.
  • the signal receiving processor 406 receives the wired signal from the second signal controller 404.
  • the wired signal includes the second signal.
  • the wired signal is roughly periodic. In this embodiment, the wired signal includes FL/FR/RR/RL four The second signal of position.
  • the backtracking time T2 is a fixed value and included in the wireless signal.
  • the backtracking time T2 can also be calculated by the tire condition detecting device 402 and the signal receiving processor 406 to obtain a specific value through the same specific algorithm. Specifically, any angle of the first signal is selected as a reference point for data conversion, and there is a traceback time T2 between the moment of sending and the moment of receiving the wireless signal.
  • the backtracking time T2 can be generated by a specific algorithm, that is, the agreed backtracking time. The same algorithm is executed on the side of the tire condition detection device 402 and the signal receiving processor 406 , and finally a synchronous backtracking time T2 is obtained on the side of the tire condition detecting device 402 and the signal receiving processor 406 .
  • the specific value can be calculated according to the pressure, temperature or identification code of the tire.
  • Fig. 9 is a characteristic graph showing the acceleration of the first signal and the number of ABS teeth of the second signal according to an embodiment of the present invention.
  • the acceleration characteristic curve of the first signal from the tire condition detection device 402 in Fig. 11 and the second signal located in the bottom The characteristic curve presents a synchronous law.
  • the selected reference point is at the same angle of the characteristic curve of the first signal
  • the encoding values of the second signal corresponding to the coaxial axis are aggregated at a specific value.
  • the dotted line position in the figure is the highest point of the sinusoidal curve of the first signal selected as a reference point.
  • the wired signal contains the rotation angle information of the second signal, that is, the ABS tooth number information, it is possible to use the known rotation angle information of the second signal and the synchronous relationship between the first signal characteristic curve and the second signal characteristic curve to realize tire rotation.
  • Position identification of the condition detection device 402 is possible to use the known rotation angle information of the second signal and the synchronous relationship between the first signal characteristic curve and the second signal characteristic curve to realize tire rotation.
  • Fig. 10 shows a schematic diagram of obtaining a reference coded value by indexing the coded value of the second signal according to an embodiment of the present invention.
  • Receive_RF is the current wireless signal received by the signal receiving processor 406, and ABS_ref is the reference code value when the first signal reaches the reference point.
  • T2 is the backtracking time, which refers to the time interval between the currently received wireless signal Receive_RF and the first signal reaching the reference point, which can be included in the wireless signal or obtained by calculation in the form of a time stamp.
  • the coded value of the second signal of the cable signal currently obtained is denoted as ABS[n], as a starting point, indexed back, and the reference coded value ABS_Ref at the reference point is calculated. The acquisition of the reference code value will be described in detail in conjunction with what is shown in FIG. 6 .
  • index time T3 transmission time T2 - time interval T1, which is the time from the reference point to ABS[n].
  • step S26 includes:
  • ABS_ref ABS tooth number difference between the two
  • ABS_search ABS tooth number difference between the two
  • each tire corresponds to four sets of reference code value ABS_ref data.
  • the 4 tires correspond to 16 sets of reference code value ABS_ref data.
  • the degree of data deviation is analyzed for the 4 sets of reference code values ABS_ref corresponding to each tire, and the minimum value of the variance is judged as the minimum degree of deviation.
  • Fig. 11 shows a comparison table before and after ABS tooth number compensation according to an embodiment of the present invention.
  • the upper part shows that when the vehicle is running normally, the ABS converges around 14, and when the vehicle travels in the reverse direction, when driving forward again, the ABS converges around 32. It can be calculated that the relative offset of the ABS during reverse driving is 18 teeth, and the offset is compensated. The compensated ABS in the figure below converges around 14 again. Specifically, offset compensation is performed on the reference encoding values during reverse driving, so that the alignment of the reference encoding values remains convergent.
  • FIG. 14 shows a schematic diagram 1 of compensating reference coded values according to an embodiment of the present invention.
  • FIG. 15 shows a second schematic diagram of compensating reference coded values according to an embodiment of the present invention.
  • the current reference code value ABS_ref ⁇ compensation value ABS, then the compensation reference code value ABS reference code value ABS_ref+ABS_CODE_MAXVAL ⁇ compensation value ABS.
  • AbsAngle (AbsPhyCurrent/ABS_CODE_MAXVAL)*360
  • AbsAngle is the angle of ABS
  • AbsPhyCurrent is the number of ABS teeth
  • ABS_CODE_MAXVAL is the number of teeth that the ABS increases by one rotation of the tire.
  • AngleStart (AbsStart/ABS_CODE_MAXVAL)*360.
  • AngleEnd (AbsEnd/ABS_CODE_MAXVAL)*360.
  • the reference coding value can also be compensated by using the ABS angle, which will not be repeated here.
  • the time for the signal receiving processor 406 to execute the tire condition ID learning process should be controlled within 10 minutes.
  • the tire condition detection device sends a total of 40 packets of wireless signals, each packet of wireless signal contains 3 frames of data, and each frame of data can be indexed to the position of the reference point.
  • the interval between packets is 15s, and the frame interval in each packet is a random time of 60-200ms.
  • the mechanism of random frame interval is adopted, so that the position of sending wireless signals is changed randomly, which can improve the probability of receiving wireless signals.

Abstract

一种轮胎自定位系统及其定位方法。该轮胎自定位方法包括步骤:S1,数据采集;S2,数据转换;S3,数据补偿;S4,数据统计;S5,根据统计结果判定第一信号对应的轮胎的具体位置。该轮胎自定位系统及其定位方法,用于解决轮胎发生反向运动问题,提升主动学习的成功率。

Description

一种轮胎自定位系统及其定位方法 技术领域
本发明涉及车辆轮胎定位技术领域,尤其涉及一种轮胎自定位系统及其定位方法。
背景技术
轮胎状况监测系统是保障车辆良好运转的安全系统,作为法规要求项目,近年来关于轮胎状况监测系统在汽车市场上迅猛发展。由于它能够实时监测汽车轮胎的运行状况,当轮胎出现漏气或者超高温等异常状况时,能及时发出警告给驾驶员,因而可以最大限度地避免轮胎受损,为车辆安全运行提供一个良好的保障。作为汽车的一项主动安全系统,轮胎状况监测系统不仅可以防止车辆爆胎,避免事故的发生。另外,将轮胎充气至推荐的标准压力值也能降低车辆的油耗,使轮胎可以使用更长的时间。
通常为了能够准确的监视各个轮胎的状况,当某个轮胎气压或者温度不正常时,可以正确的显示出其具体位置【前部左边FL、前部右边FR、后部右边RR、后部左边RL】。人们在安装了轮胎状况监测系统之后,都会先确定轮胎气压检测装置的安装位置,这类识别轮胎状况检测装置位置的过程通常称为“轮胎状况监测系统轮胎位置学习”。轮胎状况监测系统轮胎位置学习又分为被动学习和主动学习,其中通过专用诊断仪器等工具实现的轮胎位置学习称为被动学习,由轮胎状况监测系统利用整车上已近存在的装置无须借助额外的辅助设备完成的轮胎位置学习,称为“轮胎状况监测系统主动学习”。相对于被动学习需要由专业的人员通过专用的诊断工具学习ID,主动学习可以节省安装工时,不需要专业的售后人员和专用诊断仪器即可完成轮胎位置的自主学习
轮胎位置自主学习的过程中如果车辆发生反向运动,会导致轮胎状况检测装置定位失败。
发明内容
针对现有技术的上述问题,本发明提出了一种轮胎自定位系统及其定位方法,用于解决轮胎发生反向运动问题,提升主动学习的成功率。
具体地,本发明提出了一种轮胎自定位方法,包括步骤:
S1,数据采集,获取所述轮胎的无线信号和有线信号,所述无线信号能索引到第一信号达到参考点时对应的时间,所述第一信号至少包含所述轮胎的加速度信息,所述有线信号包含第二信号及对应的所述轮胎的位置信息,所述第二信号至少包含所述轮胎的转动角度信息;
S2,数据转换,根据当前接收到的所述无线信号和有线信号来计算所述第一信号达到参考点时对应的所述轮胎的参考转动角度信息;
S3,数据补偿,若所述轮胎存在反向转动,对在所述轮胎反向转动之后所获取的参考转动角度信息进行补偿;
S4,数据统计,重复执行步骤S1至S3,对获取的所述参考转动角度信息的队列进行偏离程度统计;
S5,根据统计结果判定所述第一信号对应的所述轮胎的具体位置。
根据本发明的一个实施例,所述轮胎转动角度信息包含所述轮胎转动的ABS齿数,在步骤S1中获取所述有线信号,保存所述ABS齿数,生成编码值,多个所述编码值形成编码值队列;
在步骤S2,根据当前接收到的所述无线信号和有线信号来计算第一信号达到参考点时对应的所述轮胎的参考转动角度信息,记为参考编码值;
在步骤S3,若所述轮胎存在反向转动,对在所述轮胎反向转动之后所获取的参考编码值进行补偿。
根据本发明的一个实施例,在步骤S3中,若所述轮胎存在多次反向转动,在每一次反向转动后要对在该反向转动之后所获取的参考编码值进行补偿。
根据本发明的一个实施例,在步骤S3中对所述参考编码值进行补偿的步骤包括:
S31,记录反向运动开始时的ABS齿数,记作AbsStart,记录反向运动结束时的ABS齿数,记作AbsEnd;
S32,计算补偿值ABS,补偿值ABS=[2*(AbsEnd+n*ABS_CODE_MAXVAL- AbsStart)]%ABS_CODE_MAXVAL取余;
n为自然数,调整n使AbsEnd+n*ABS_CODE_MAXVAL大于AbsStart,ABS_CODE_MAXVAL为所述轮胎旋转一圈ABS增加的齿数;
S33,对在所述轮胎反向转动之后所获取的参考编码值进行补偿,若当前参考编码值ABS_ref≥补偿值ABS,则补偿参考编码值ABS=参考编码值ABS_ref-补偿值ABS;若当前参考编码值ABS_ref<补偿值ABS,则补偿参考编码值ABS=参考编码值ABS_ref+ABS_CODE_MAXVAL-补偿值ABS。
根据本发明的一个实施例,步骤S31包括:
S311,记录反向运动开始时的ABS总齿数,记作AbsTotalStart,记录反向运动结束时的ABS总齿数,记作AbsTotalEnd;
S312,计算反向运动开始时的ABS齿数,AbsStart=AbsTotalStart%ABS_CODE_MAXVAL取余,计算反向运动结束时的ABS齿数,AbsEnd=AbsTotalEnd%ABS_CODE_MAXVAL取余。
根据本发明的一个实施例,在步骤S3中对所述参考编码值进行补偿的步骤包括:
S31’,记录反向运动开始时的ABS总齿数,记作AbsTotalStart,记录反向运动结束时的ABS总齿数,记作AbsTotalEnd;
S32’,计算反向运动期间累计增加的ABS齿数AbsTotalDelta=AbsTotalEnd-AbsTotalStart;
S33’,对在所述轮胎反向转动之后所获取的参考编码值进行补偿,补偿参考编码值ABS=〔参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)–(2*AbsTotalDelta)〕%/ABS_CODE_MAXVAL取余;
其中,ABS_CODE_MAXVAL为所述轮胎旋转一圈ABS增加的齿数,n为自然数,调整n使参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)大于2*AbsTotalDelta。
根据本发明的一个实施例,在步骤S3中,在步骤S3中,若所述轮胎存在n次反向转动,需对n次反向转动之后所获取的参考编码值进行补偿,包括步骤:
记录第一次反向运动开始时的ABS总齿数,记作AbsTotalStart 1,记录第一次反向运动结束时的ABS总齿数,记作AbsTotalEnd 1,计算第一次反向运动期间 增加的ABS齿数AbsTotalDelta 1=AbsTotalEnd 1-AbsTotalStart 1;
依据上述步骤,记录第二次反向运动直至第n次反向运动增加的ABS齿数,累计从第一反向运动至第n次反向运动增加的ABS齿数,累计增加的ABS齿数AbsTotalDelta=AbsTotalDelta 1+AbsTotalDelta 2+……+AbsTotalDelta n;
修正ABS总齿数AbsTotalAdjusted=(参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)–2*AbsTotalDelta)%ABS_CODE_MAXVAL取余,n为自然数,调整n的值使得参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)大于2*AbsTotalDelta;
补偿参考编码值ABS=修正ABS总齿数AbsTotalAdjusted%ABS_CODE_MAXVAL取余;
通过补偿参考编码值ABS对参考编码值ABS_ref进行补偿。
根据本发明的一个实施例,步骤S2包括:
S21,记录当前接收的所述无线信号和有线信号的时间间隔T1;
S22,获取所述第一信号达到参考点至接收所述无线信号的回溯时间T2;
S23,索引时间T3=回溯时间T2-时间间隔T1;
S24,计算需要往回索引的编码值的个数,该个数为索引时间T3/第二信号的周期ABS_period取整;
S25,根据往回索引的个数,记录在所述编码值的队列中索引到的编码值ABS_search;
S26,修正编码值ABS_search,获取所述参考编码值ABS_ref。
根据本发明的一个实施例,所述回溯时间T2是设定的一个固定值,或是由特定算法计算获得的一个特定值。
本发明还提供了一种轮胎自定位系统,用于执行前述的轮胎自定位方法,所述轮胎自定位系统包括:
轮胎;
轮胎状况检测装置,设置于所述轮胎上,用于采集所述第一信号以及所述轮胎的压力、温度和识别码,并生成所述无线信号;
第二信号传感器,设置于所述轮胎上,用于采集所述第二信号;
第二信号控制器,与所述第二信号传感器电连接,所述第二信号控制器接收所述第二信号并生成有线信号,所述有线信号包含所述第二信号对应的编码值及所述第二信号传感器所在轮胎的位置信息;
通信总线和信号接收处理器,所述信号接收处理器通过所述通信总线接收所述有线信号,所述信号接收处理器接收所述无线信号,所述信号接收处理器根据所述无线信号和有线信号来执行所述数据转换、数据补偿和数据统计的步骤。
根据本发明的一个实施例,所述第一信号采集传感器为加速度传感器,所述第二信号传感器为ABS轮齿脉冲传感器。
本发明提供的一种轮胎自定位系统及其定位方法,能提升主动学习的成功率,主要解决轮胎发生反向运动所产生的数据偏离问题。
应当理解,本发明以上的一般性描述和以下的详细描述都是示例性和说明性的,并且旨在为如权利要求所述的本发明提供进一步的解释。
附图说明
包括附图是为提供对本发明进一步的理解,它们被收录并构成本申请的一部分,附图示出了本发明的实施例,并与本说明书一起起到解释本发明原理的作用。附图中:
图1示出了本发明的一个实施例的轮胎自定位方法的流程框图。
图2示出了本发明的一个实施例的轮胎自定位方法中步骤S3的流程框图一。
图3示出了本发明的一个实施例的轮胎自定位方法中步骤S3的流程框图二。
图4示出了本发明的一个实施例的轮胎自定位方法中步骤S2的流程框图。
图5示出了本发明的一个实施例的轮胎自定位系统的结构示意图。
图6示出了本发明的一个实施例的ABS齿数示意图。
图7示出了本发明的一个实施例的第一信号和第二信号的特性曲线图。
图8示出了本发明的一个实施例的ABS编码和ABS变量的特性曲线图。
图9示出了本发明的一个实施例的第一信号的加速度和第二信号的ABS齿数的特性曲线图。
图10示出了本发明的一个实施例的通过索引第二信号编码值来获得参考编码 值的示意图。
图11示出了本发明的一个实施例的ABS齿数补偿前后对照表。
图12示出了本发明的一个实施例的计算补偿值ABS的示意图一。
图13示出了本发明的一个实施例的计算补偿值ABS的示意图二。
图14示出了本发明的一个实施例的对参考编码值进行补偿的示意图一。
图15示出了本发明的一个实施例的对参考编码值进行补偿的示意图二。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在 下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。此外,尽管本申请中所使用的术语是从公知公用的术语中选择的,但是本申请说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本申请。
首先,简要说明本发明提供的一种轮胎自定位方法的设计思路。常规的,以小型汽车为例,包含四个轮胎,分别是前部左边(FL)、前部右边(FR)、后部右边(RR)、后部左边(RL)。在各个轮胎上安装了轮胎状况监测系统之后,需要确定轮胎气压检测装置的安装位置。在轮胎行驶过程中,在任意一个转动周期的同 一个参考点(同一转动角度)获取一个无线信号和有线信号。该无线信号与加速度信号的参考点关联,该有线信号包含轮胎的轮齿脉冲传感器的ABS信号及已知的轮齿脉冲传感器所在的轮胎位置(例如FL)。根据有线信号和无线信号来计算参考点对应的实际齿数信息,生成一组齿数信息的队列。举例来说,一个轮胎的无线信号与前部左边的轮胎(FL)的有线信号、与前部右边的轮胎(FR)的有线信号、与后部右边的轮胎(RR)的有线信号、与后部左边的轮胎(RL)的有线信号可以形成四组齿数信息的队列。根据数据统计,偏离程度最小的那一组齿数信息,假设前部左边的轮胎(FL)的有线信号对应的偏离程度最小,则对应的轮胎状况监测系统被确定是安装在前部左边的轮胎(FL)。以此类推,可以确认每个轮胎状况监测系统所在的实际位置,从而实现轮胎状况监测系统轮胎位置的自主学习。
图1示出了本发明的一个实施例的轮胎自定位方法的流程框图。如图所示,本发明提供的一种轮胎自定位方法包括步骤:
S1,数据采集,获取所述轮胎的无线信号和有线信号,所述无线信号能索引到第一信号达到参考点时对应的时间,所述第一信号至少包含所述轮胎的加速度信息,所述有线信号包含第二信号及对应的所述轮胎的位置信息,所述第二信号至少包含所述轮胎的转动角度信息;
S2,数据转换,根据当前接收到的所述无线信号和有线信号来计算所述第一信号达到参考点时对应的所述轮胎的参考转动角度信息;
S3,数据补偿,若轮胎存在反向转动,对在轮胎反向转动之后所获取的参考转动角度信息进行补偿;
S4,数据统计,重复执行步骤S1至S3,对获取的参考转动角度信息的队列进行偏离程度统计;
S5,根据统计结果判定第一信号对应的轮胎的具体位置。
较佳地,轮胎转动角度信息包含轮胎转动的ABS齿数,在步骤S1中获取有线信号,保存ABS齿数,生成编码值,多个编码值形成编码值队列;
在步骤S2,根据当前接收到的无线信号和有线信号来计算第一信号达到参考点时对应的轮胎的参考转动角度信息,记为参考编码值;
在步骤S3,若轮胎存在反向转动,对在轮胎反向转动之后所获取的参考编码值进行补偿。
较佳地,在步骤S3中,若轮胎存在多次反向转动,在每一次反向转动后要对在该反向转动之后所获取的参考编码值进行补偿。
较佳地,编码值包含ABS齿数或ABS齿数所对应的ABS角度,ABS齿数与ABS角度的转换公式如下:
AbsAngle=(AbsPhyCurrent/ABS_CODE_MAXVAL)*360,AbsAngle为ABS角度,AbsPhyCurrent为ABS齿数,ABS_CODE_MAXVAL为所述轮胎旋转一圈ABS增加的齿数。
图2示出了本发明的一个实施例的轮胎自定位方法中步骤S3的流程框图一。较佳地,如图所示,步骤S3包括:
S31,记录反向运动开始时的ABS齿数,记作AbsStart,记录反向运动结束时的ABS齿数,记作AbsEnd;
S32,计算补偿值ABS,若AbsStart≤AbsEnd,补偿值ABS=[2*(AbsEnd–AbsStart)]%ABS_CODE_MAXVAL取余;若AbsStart>AbsEnd,补偿值ABS=ABS_CODE_MAXVAL-([2*(AbsStart–AbsEnd)])%ABS_CODE_MAXVAL取余;
ABS_CODE_MAXVAL为轮胎旋转一圈ABS增加的齿数;
S33,对在轮胎反向转动之后所获取的参考编码值进行补偿,若当前参考编码值ABS_ref≥补偿值ABS,则补偿参考编码值ABS=参考编码值ABS_ref-补偿值ABS;若当前参考编码值ABS_ref<补偿值ABS,则补偿参考编码值ABS=参考编码值ABS_ref+ABS_CODE_MAXVAL-补偿值ABS。
更佳地,步骤S31包括:
S311,记录反向运动开始时的ABS总齿数,记作AbsTotalStart,记录反向运动结束时的ABS总齿数,记作AbsTotalEnd;
S312,计算反向运动开始时的ABS齿数,AbsStart=AbsTotalStart%ABS_CODE_MAXVAL取余,计算反向运动结束时的ABS齿数,AbsEnd=AbsTotalEnd%ABS_CODE_MAXVAL取余。
图3示出了本发明的一个实施例的轮胎自定位方法中步骤S3的流程框图二。 可选的,步骤S3包括:
S31’,记录反向运动开始时的ABS总齿数,记作AbsTotalStart,记录反向运动结束时的ABS总齿数,记作AbsTotalEnd;
S32’,计算反向运动期间累计增加的ABS齿数AbsTotalDelta=AbsTotalEnd-AbsTotalStart;
S33’,对在所述轮胎反向转动之后所获取的参考编码值进行补偿,补偿参考编码值ABS=〔参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)–(2*AbsTotalDelta)〕%ABS_CODE_MAXVAL取余;
其中,ABS_CODE_MAXVAL为所述轮胎旋转一圈ABS增加的齿数,n为整数,调整n使参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)大于2*AbsTotalDelta。
较佳地,在步骤S3中,若所述轮胎存在n次反向转动,需对n次反向转动之后所获取的参考编码值进行补偿,包括步骤:
记录第一次反向运动开始时的ABS总齿数,记作AbsTotalStart 1,记录第一次反向运动结束时的ABS总齿数,记作AbsTotalEnd 1,计算第一次反向运动期间增加的ABS齿数AbsTotalDelta 1=AbsTotalEnd 1-AbsTotalStart 1;
依据上述步骤,记录第二次反向运动直至第n次反向运动增加的ABS齿数,累计从第一反向运动至第n次反向运动增加的ABS齿数,累计增加的ABS齿数AbsTotalDelta=AbsTotalDelta 1+AbsTotalDelta 2+……+AbsTotalDelta n;
修正ABS总齿数AbsTotalAdjusted=(参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)–2*AbsTotalDelta)%ABS_CODE_MAXVAL取余,n为自然数,调整n的值使得参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)大于2*AbsTotalDelta;
补偿参考编码值ABS=修正ABS总齿数AbsTotalAdjusted%ABS_CODE_MAXVAL取余;
通过补偿参考编码值ABS对参考编码值ABS_ref进行补偿。
图4示出了本发明的一个实施例的轮胎自定位方法中步骤S2的流程框图。较佳地,步骤S2包括:
S21,记录当前接收的无线信号和有线信号的时间间隔T1;
S22,获取第一信号达到参考点至接收无线信号的回溯时间T2;
S23,索引时间T3=回溯时间T2-时间间隔T1;
S24,计算需要往回索引的编码值的个数,该个数为索引时间T3/第二信号的周期ABS_period取整;
S25,根据往回索引的个数,记录在编码值的队列中索引到的编码值ABS_search;
S26,修正编码值ABS_search,获取参考编码值ABS_ref。
较佳地,步骤S26包括:
S261,计算编码值ABS_search和ABS_ref之间时间间隔△T=修正索引时间T3%第二信号的周期ABS_period取余;
S262,计算参考编码值ABS_ref和编码值ABS_search之间的差值:差值△ABS=(△T/ABS_period)*(ABS[n-往回索引个数]-ABS[n-往回索引个数-1]);
S263,计算第一信号达到参考点处的轮胎的参考编码值ABS_ref=ABS[n-往回索引个数]-△ABS。
较佳地,回溯时间T2是设定的一个固定值,或是由特定算法计算获得的一个特定值。
较佳地,第一信号的特性曲线为正弦曲线,选定第一信号的特定角度作为参考点。根据第一信号的特性曲线,确定参考点的位置,该参考点可以是第一信号特性曲线的最高点、最低点,也可以是轮胎与地面接触的位置,或者其他任意角度位置。更佳地,选定第一信号的正弦曲线的最高点作为数据转换的参考点。
图5示出了本发明的一个实施例的轮胎自定位系统的结构示意图。如图所示,本发明还提供了一种轮胎自定位系统400,用于执行前述的轮胎自定位方法。该轮胎自定位系统400主要包括轮胎401、轮胎状况检测装置402、第二信号传感器403、第二信号控制器404、通信总线405和信号接收处理器406。
其中,轮胎状况检测装置402和第二信号传感器403设置于轮胎401上。轮胎状况检测装置402用于采集第一信号以及轮胎的压力、温度和识别码,并生成无线信号。
第二信号传感器403用于采集第二信号。
第二信号控制器404与第二信号传感器403电连接。第二信号控制器404接收第二信号并生成有线信号,有线信号包含第二信号对应的编码值及第二信号传感器所在轮胎的位置信息。
信号接收处理器406通过通信总线405接收有线信号。信号接收处理器406同时接收无线信号。信号接收处理器406根据无线信号和有线信号来执行轮胎自定位方法中的步骤S2至S4,最终判定参考点的第一信号对应的轮胎的具体位置。在一实施例中,通信总线405可以是CAN通信总线。
较佳地,轮胎状况检测装置402包括第一信号采集传感器和无线发射电路,第一信号采集传感器用于采集第一信号,所生成的无线信号通过无线发射电路发送到信号接收处理器406。通常,轮胎状况检测装置402安装在轮胎里。轮胎状况检测装置402还包括轮胎空气压力传感器,温度传感器等。轮胎状况检测装置402可以通过其芯片上集成的微控制单元处理各传感器采集的轮胎状况信息,同时对采集到的轮胎气压值、温度值等合并入无线信号,并同时配合无线发射电路,将无线信号发送出去。
较佳地,第一信号采集传感器为加速度传感器,第二信号传感器403为制动防抱死系统的ABS轮齿脉冲传感器。随着轮胎401的旋转,第一信号呈现为正弦曲线特性。常规的,车辆具备多个轮胎401,在本实施例中,车辆有4个轮胎401,分别是左前轮胎(FL),右前轮胎(FR),右后轮胎(RR),左后轮胎(RL)。每个轮胎都设有轮胎状况检测装置402,每个轮胎状况检测装置402都具有一个唯一的标识符,称为轮胎状况检测装置402的ID。作为举例而非限制,轮胎状况检测装置402发送的无线信号包括标识符、压力、发送时间等。进一步的,在轮胎401做滚动运动时,防抱死刹车系统的齿轮会跟随轮胎401一起做滚动运动,ABS轮齿脉冲传感器会采集转过的ABS齿数,并将ABS齿数信息发送出来。对ABS齿数信息进行编码,形成编码值。图6示出了本发明的一个实施例的ABS齿数示意图。如图所示,以正向X轴为起点,记为最小编码ABS_CODE_MIN,逆时针方向,轮胎每旋转1齿编码增加1齿,直到轮胎旋转一个周期后,编码达到最大值ABS_CODE_MAX,之后编码又从最小编码开始。本实施例中轮齿的齿数为48个,即ABS_CODE_MIN=0; ABS_CODE_MAX=47,轮胎401每旋转一齿产生一个脉冲,所以轮胎401旋转一圈产生48个脉冲,旋转2圈产生96个脉冲。由于同一个位置的轮胎状况检测装置402和齿轮一起随轮胎做滚动运动,并且他们同轴,所以第一信号和第二信号的特性曲线始终保持同步。图7示出了本发明的一个实施例的第一信号和第二信号的特性曲线图。如图所示,上方的第一信号(加速度信号)特性曲线,下方为第二信号(ABS轮齿编码信号)特性曲线,两者同步。
第二信号控制器404接收第二信号传感器403输出的ABS齿数数据,并将ABS齿数数据以累加的形式存储到内部变量,内部变量累加到ABS变量的最大值ABS_MAX之后,会从ABS变量的最小值ABS_MIN重新开始计数。第二信号控制器404把ABS变量处理成符合总线协议的数据格式,大致呈周期性的发送到总线上。图8示出了本发明的一个实施例的ABS编码值和ABS变量的特性曲线图。ABS编码值和ABS变量的对应关系为:ABS编码值=(ABS变量)%ABS_CODE_MAX。例如:ABS编码值的取值范围可以是0-47;ABS变量的取值范围可以是0-47。
信号接收处理器406布置在车体侧,配置为在任意随机时刻从每个轮胎状况检测装置402接收无线信号。信号接收处理器406从第二信号控制器404接收有线信号,该有线信号包含有第二信号,有线信号大致呈周期性的,在该实施例中有线信号包含FL/FR/RR/RL四个位置的第二信号。
较佳地,回溯时间T2是一个固定值,包含在无线信号中。回溯时间T2还可以由轮胎状况检测装置402和信号接收处理器406通过同一特定算法计算获得一个特定值。具体来说,选定第一信号的任意角度作为数据转换的参考点,在该无线信号的发送时刻与接收时刻之间有一段回溯时间T2。该回溯时间T2可以通过特定算法产生,即约定的回溯时间。在轮胎状况检测装置402和信号接收处理器406侧执行同一算法,最终在轮胎状况检测装置402侧和信号接收处理器406侧得到同步的回溯时间T2。该特定值可以根据轮胎的压力、温度或识别码来计算特定值。例如,无线信号中包含有胎压信息包括压力P、温度T以及轮胎状况监测装置的ID,回溯时间T2=sum(P+T+ID0+ID1+ID2+ID3),从而形成一约定的回溯时间。
图9示出了本发明的一个实施例的第一信号的加速度和第二信号的ABS齿 数的特性曲线图。如图所示,由于同一个位置的轮胎状况检测装置402和轮胎401轮齿同轴,所以来自轮胎状况检测装置402的位于图11中上方的第一信号加速度特性曲线和位于下方的第二信号特性曲线呈现出同步的规律。利用该特性,如果选取参考点在第一信号特性曲线的同一个角度,则对应同轴的第二信号编码值聚合在一个特定的值。图中虚线位置是选定第一信号的正弦曲线的最高点作为参考点。由于有线信号中包含有第二信号的转动角度信息,即ABS齿数信息,所以就可以利用已知的第二信号的转动角度信息以及第一信号特性曲线和第二信号特性曲线同步的关系实现轮胎状况检测装置402的位置识别。
图10示出了本发明的一个实施例的通过索引第二信号编码值来获得参考编码值的示意图。如图所示,Receive_RF为信号接收处理器406接收到当前无线信号,ABS_ref为第一信号达到参考点的参考编码值。T2为回溯时间,是指当前接收到的无线信号Receive_RF到第一信号达到参考点之间的时间间隔,它可以被包含在无线信号中,或以时间戳的形式通过计算获得。如图所示,以当前获得的有线信号的的第二信号的编码值记为ABS[n],作为起点,往回索引,并计算参考点处的参考编码值ABS_Ref。结合图6所示对于获取参考编码值做详细说明。
可以通过以下步骤索引到参考点处对应的参考编码值:
S21,记录当前无线信号和有线信号接收的时间间隔T1。
S22,获取第一信号达到参考点至接收无线信号的回溯时间T2;。
S23,索引时间T3=传输时间T2-时间间隔T1,是从参考点至ABS[n]的时间。
S24,计算需要往回索引的编码值的个数,该个数为索引时间T3/有线信号的周期ABS_period取整,及需要计算索引到的编码值队列的下标值。
S25,根据往回索引的个数,记录在编码值的队列中索引到的编码值ABS_search,在本示例中,该第二信号的编码值ABS_search=ABS[n-2]
S26,修正编码值ABS_search,获取参考编码值ABS_ref。
具体的,步骤S26包括:
S261,计算ABS_search和ABS_ref之间时间间隔△T=修正索引时间T3%第二信号的周期ABS_period(取余)
S262,计算ABS_ref和ABS_search之间的差值(两者之间的ABS齿数差):△ABS=(△T/ABS_period)*(ABS[n-2]-ABS[n-3])
S263,修正对应参考点处的参考编码值,获取参考编码值ABS_ref=ABS[n-2]-△ABS。
容易理解的,信号接收处理器406每次接收到一个轮胎状况检测装置402的无线信号,就执行一次以上步骤S21到步骤S26,可以得到每个轮胎状况检测装置402累积的参考编码值ABS_ref的队列。以4个轮胎安装4个轮胎状况检测装置402为例,每个轮胎对应4组参考编码值ABS_ref数据。4个轮胎共对应16组参考编码值ABS_ref数据。对每个轮胎对应的4组参考编码值ABS_ref进行数据偏离程度的分析,方差的最小值判定为偏离程度最小。
在轮胎自定位系统的主动学习过程中,无论车辆正向行驶还是反向行驶,都会使得ABS的脉冲数增加,从而导致ABS齿数增加。没有发生反向动作的时候和轮胎自定位系统对应的ABS收敛在n齿附近,但是,当车辆发生了一段距离的反向行驶,之后又正向行驶的话,该组ABS的齿数将会收敛在(n齿±补偿ABS),其中补偿ABS为倒车引起的ABS相对偏移量。
图11示出了本发明的一个实施例的ABS齿数补偿前后对照表。如图所示,上方为车辆正常行驶时,ABS收敛在14附近,当发生了反向行驶后,再次正向行驶时,ABS收敛在32附近。可以计算出在反向行驶期间ABS的相对偏移量为18齿,对偏移量进行补偿,下图经过补偿的ABS重新收敛在14附近。具体来说,就是对反向行驶期间的参考编码值进行偏移量的补偿,使参考编码值的队列保持收敛。
图12示出了本发明的一个实施例的计算补偿值ABS的示意图一。如图所示,若AbsStart≤AbsEnd,补偿值ABS=[2*(AbsEnd–AbsStart)]%ABS_CODE_MAXVAL取余。图13示出了本发明的一个实施例的计算补偿值ABS的示意图二。若AbsStart>AbsEnd,补偿值ABS=ABS_CODE_MAXVAL-([2*(AbsStart–AbsEnd)])%ABS_CODE_MAXVAL。
基于补偿值ABS,对在轮胎反向转动之后所获取的参考编码值进行补偿。图14示出了本发明的一个实施例的对参考编码值进行补偿的示意图一。当前 参考编码值ABS_ref≥补偿值ABS,则补偿参考编码值ABS=参考编码值ABS_ref-补偿值ABS。图15示出了本发明的一个实施例的对参考编码值进行补偿的示意图二。当前参考编码值ABS_ref<补偿值ABS,则补偿参考编码值ABS=参考编码值ABS_ref+ABS_CODE_MAXVAL-补偿值ABS。
容易理解的,ABS齿数与ABS角度可以相互转换,补偿值ABS也可以通过ABS角度进行计算,ABS齿数与ABS角度的转换公式如下:
AbsAngle=(AbsPhyCurrent/ABS_CODE_MAXVAL)*360,AbsAngle为ABS角度,AbsPhyCurrent为ABS齿数,ABS_CODE_MAXVAL为所述轮胎旋转一圈ABS增加的齿数。
参照ABS齿数的补偿步骤,在计算反向运动开始时角度AngleStart,AngleStart=(AbsStart/ABS_CODE_MAXVAL)*360。计算反向运动结束时角度AngleEnd,AngleEnd=(AbsEnd/ABS_CODE_MAXVAL)*360。依次类推,采用ABS角度同样能对参考编码值进行补偿,此处不再赘述。
需要强调的是,若轮胎存在多次反向转动,则在每一次反向转动后要对在该反向转动之后所获取的参考编码值进行补偿,以保证数据统计的准确性。
为了节省电量消耗,信号接收处理器406执行轮胎状况ID学习过程的时间要控制在10min以内。在学习模式中,轮胎状况检测装置共发送40包无线信号,每包无线信号包含3帧数据,每一帧数据都可以索引到参考点的位置。包与包之间间隔15s,每一包中的帧间隔为60~200ms的随机时间。采用随机帧间隔的机制,使得发送无线信号的位置被随机的改变,可以提高无线信号被接收到的概率。
需要说明的是,信号接收处理器406可以记录反向运动开始时ABS的总齿数AbsTotalStart,从车辆反向启动开始累计。记录反向运动结束时ABS的总齿数AbsTotalEnd,从车辆结束反向运动开始累计。计算反向运动开始时相对的ABS齿数编号AbsStart=AbsTotalStart%ABS_CODE_MAXVAL。计算反向运动结束时相对的ABS齿数编号AbsEnd=AbsTotalEnd%ABS_CODE_MAXVAL。
本领域技术人员可显见,可对本发明的上述示例性实施例进行各种修改和变型而不偏离本发明的精神和范围。因此,旨在使本发明覆盖落在所附权利要 求书及其等效技术方案范围内的对本发明的修改和变型。

Claims (10)

  1. 一种轮胎自定位方法,包括步骤:
    S1,数据采集,获取所述轮胎的无线信号和有线信号,所述无线信号能索引到第一信号达到参考点时对应的时间,所述第一信号至少包含所述轮胎的加速度信息,所述有线信号包含第二信号及对应的所述轮胎的位置信息,所述第二信号至少包含所述轮胎的转动角度信息;
    S2,数据转换,根据当前接收到的所述无线信号和有线信号来计算所述第一信号达到参考点时对应的所述轮胎的参考转动角度信息;
    S3,数据补偿,若所述轮胎存在反向转动,对在所述轮胎反向转动之后所获取的参考转动角度信息进行补偿;
    S4,数据统计,重复执行步骤S1至S3,对获取的所述参考转动角度信息的队列进行偏离程度统计;
    S5,根据统计结果判定所述第一信号对应的所述轮胎的具体位置。
  2. 如权利要求1所述的轮胎自定位方法,其特征在于,所述轮胎转动角度信息包含所述轮胎转动的ABS齿数,在步骤S1中获取所述有线信号,保存所述ABS齿数,生成编码值,多个所述编码值形成编码值队列;
    在步骤S2,根据当前接收到的所述无线信号和有线信号来计算第一信号达到参考点时对应的所述轮胎的参考转动角度信息,记为参考编码值;
    在步骤S3,若所述轮胎存在反向转动,对在所述轮胎反向转动之后所获取的参考编码值进行补偿。
  3. 如权利要求2所述的轮胎自定位方法,其特征在于,在步骤S3中对所述参考编码值进行补偿的步骤包括:
    S31,记录反向运动开始时的ABS齿数,记作AbsStart,记录反向运动结束时的ABS齿数,记作AbsEnd;
    S32,计算补偿值ABS,补偿值ABS=[2*(AbsEnd+n*ABS_CODE_MAXVAL- AbsStart)]%ABS_CODE_MAXVAL取余;
    n为自然数,调整n使AbsEnd+n*ABS_CODE_MAXVAL大于AbsStart,ABS_CODE_MAXVAL为所述轮胎旋转一圈ABS增加的齿数;
    S33,对在所述轮胎反向转动之后所获取的参考编码值进行补偿,若当前参考编码值ABS_ref≥补偿值ABS,则补偿参考编码值ABS=参考编码值ABS_ref-补偿值ABS;若当前参考编码值ABS_ref<补偿值ABS,则补偿参考编码值ABS=参考编码值ABS_ref+ABS_CODE_MAXVAL-补偿值ABS。
  4. 如权利要求3所述的轮胎自定位方法,其特征在于,步骤S31包括:
    S311,记录反向运动开始时的ABS总齿数,记作AbsTotalStart,记录反向运动结束时的ABS总齿数,记作AbsTotalEnd;
    S312,计算反向运动开始时的ABS齿数,AbsStart=AbsTotalStart%ABS_CODE_MAXVAL取余,计算反向运动结束时的ABS齿数,AbsEnd=AbsTotalEnd%ABS_CODE_MAXVAL取余。
  5. 如权利要求2所述的轮胎自定位方法,其特征在于,在步骤S3中对所述参考编码值进行补偿的步骤包括:
    S31’,记录反向运动开始时的ABS总齿数,记作AbsTotalStart,记录反向运动结束时的ABS总齿数,记作AbsTotalEnd;
    S32’,计算反向运动期间累计增加的ABS齿数AbsTotalDelta=AbsTotalEnd-AbsTotalStart;
    S33’,对在所述轮胎反向转动之后所获取的参考编码值进行补偿,补偿参考编码值ABS=〔参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)–(2*AbsTotalDelta)〕%ABS_CODE_MAXVAL取余;
    其中,ABS_CODE_MAXVAL为所述轮胎旋转一圈ABS增加的齿数,n为自然数,调整n使参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)大于2*AbsTotalDelta。
  6. 如权利要求2所述的轮胎自定位方法,其特征在于,在步骤S3中,若所 述轮胎存在n次反向转动,需对n次反向转动之后所获取的参考编码值进行补偿,包括步骤:
    记录第一次反向运动开始时的ABS总齿数,记作AbsTotalStart 1,记录第一次反向运动结束时的ABS总齿数,记作AbsTotalEnd 1,计算第一次反向运动期间增加的ABS齿数AbsTotalDelta 1=AbsTotalEnd 1-AbsTotalStart 1;
    依据上述步骤,记录第二次反向运动直至第n次反向运动增加的ABS齿数,累计从第一反向运动至第n次反向运动增加的ABS齿数,累计增加的ABS齿数AbsTotalDelta=AbsTotalDelta 1+AbsTotalDelta 2+……+AbsTotalDelta n;
    修正ABS总齿数AbsTotalAdjusted=(参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)–2*AbsTotalDelta)%ABS_CODE_MAXVAL取余,n为自然数,调整n的值使得参考编码值ABS_ref+(ABS_CODE_MAXVAL*n)大于2*AbsTotalDelta;
    补偿参考编码值ABS=修正ABS总齿数AbsTotalAdjusted%ABS_CODE_MAXVAL取余;
    通过补偿参考编码值ABS对参考编码值ABS_ref进行补偿。
  7. 如权利要求2所述的轮胎自定位方法,其特征在于,步骤S2包括:
    S21,记录当前接收的所述无线信号和有线信号的时间间隔T1;
    S22,获取所述第一信号达到参考点至接收所述无线信号的回溯时间T2;
    S23,索引时间T3=回溯时间T2-时间间隔T1;
    S24,计算需要往回索引的编码值的个数,该个数为索引时间T3/第二信号的周期ABS_period取整;
    S25,根据往回索引的个数,记录在所述编码值的队列中索引到的编码值ABS_search;
    S26,修正编码值ABS_search,获取所述参考编码值ABS_ref。
  8. 如权利要求7所述的轮胎自定位方法,其特征在于,所述回溯时间T2是设定的一个固定值,或是由特定算法计算获得的一个特定值。
  9. 一种轮胎自定位系统,执行权利要求1所述的轮胎自定位方法,其特征在于,所述轮胎自定位系统包括:
    轮胎;
    轮胎状况检测装置,设置于所述轮胎上,用于采集所述第一信号以及所述轮胎的压力、温度和识别码,并生成所述无线信号;
    第二信号传感器,设置于所述轮胎上,用于采集所述第二信号;
    第二信号控制器,与所述第二信号传感器电连接,所述第二信号控制器接收所述第二信号并生成有线信号,所述有线信号包含所述第二信号对应的编码值及所述第二信号传感器所在轮胎的位置信息;
    通信总线和信号接收处理器,所述信号接收处理器通过所述通信总线接收所述有线信号,所述信号接收处理器接收所述无线信号,所述信号接收处理器根据所述无线信号和有线信号来执行所述数据转换、数据补偿和数据统计的步骤。
  10. 如权利要求9所述的轮胎自定位系统,其特征在于,所述第一信号采集传感器为加速度传感器,所述第二信号传感器为ABS轮齿脉冲传感器。
PCT/CN2022/083068 2021-08-16 2022-03-25 一种轮胎自定位系统及其定位方法 WO2023019951A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110937937.1 2021-08-16
CN202110937937.1A CN113459731B (zh) 2021-08-16 2021-08-16 一种轮胎自定位系统及其定位方法

Publications (1)

Publication Number Publication Date
WO2023019951A1 true WO2023019951A1 (zh) 2023-02-23

Family

ID=77866881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083068 WO2023019951A1 (zh) 2021-08-16 2022-03-25 一种轮胎自定位系统及其定位方法

Country Status (2)

Country Link
CN (1) CN113459731B (zh)
WO (1) WO2023019951A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113459731B (zh) * 2021-08-16 2022-10-18 保隆霍富(上海)电子有限公司 一种轮胎自定位系统及其定位方法
CN115352227B (zh) * 2022-08-23 2023-07-04 保隆霍富(上海)电子有限公司 一种本车轮胎识别方法及其识别装置、基于天线的本车轮胎识别方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012453A1 (en) * 1999-08-16 2001-02-22 The Goodyear Tire & Rubber Company Monitoring a dynamic condition of a rotary element, particularly a pneumatic tire
CN102896984A (zh) * 2011-07-29 2013-01-30 上海保隆汽车科技股份有限公司 轮胎压力发射机的定位方法和装置
CN103492200A (zh) * 2011-04-15 2014-01-01 日产自动车株式会社 轮胎空气压力监视装置
CN108909378A (zh) * 2018-07-26 2018-11-30 宁波琻捷电子科技有限公司 车辆轮胎定位方法及系统
CN113147279A (zh) * 2021-04-16 2021-07-23 重庆长安汽车股份有限公司 汽车胎压监测自动定位方法、系统、车辆及存储介质
CN113459731A (zh) * 2021-08-16 2021-10-01 保隆霍富(上海)电子有限公司 一种轮胎自定位系统及其定位方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9917461A (pt) * 1999-08-16 2002-04-23 Goodyear Tire & Rubber Monitoramento de uma condição dinâmica de um elemento rotativo, particularmente um pneumático
DE102009059789A1 (de) * 2009-12-21 2011-06-22 Continental Automotive GmbH, 30165 Radelektronik, Fahrzeugrad und Fahrzeug
FR3052709B1 (fr) * 2016-06-17 2018-07-06 Continental Automotive France Procede de detection et d'estimation d'un angle de rotation sur elle-meme d'une unite roue avec capteur d'acceleration radiale integre
CN108237849A (zh) * 2016-12-23 2018-07-03 上海保隆汽车科技股份有限公司 轮胎位置定位方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012453A1 (en) * 1999-08-16 2001-02-22 The Goodyear Tire & Rubber Company Monitoring a dynamic condition of a rotary element, particularly a pneumatic tire
CN103492200A (zh) * 2011-04-15 2014-01-01 日产自动车株式会社 轮胎空气压力监视装置
US20140172241A1 (en) * 2011-04-15 2014-06-19 Nissan Motor Co., Ltd. Tire air pressure monitoring device
CN102896984A (zh) * 2011-07-29 2013-01-30 上海保隆汽车科技股份有限公司 轮胎压力发射机的定位方法和装置
CN108909378A (zh) * 2018-07-26 2018-11-30 宁波琻捷电子科技有限公司 车辆轮胎定位方法及系统
CN113147279A (zh) * 2021-04-16 2021-07-23 重庆长安汽车股份有限公司 汽车胎压监测自动定位方法、系统、车辆及存储介质
CN113459731A (zh) * 2021-08-16 2021-10-01 保隆霍富(上海)电子有限公司 一种轮胎自定位系统及其定位方法

Also Published As

Publication number Publication date
CN113459731A (zh) 2021-10-01
CN113459731B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2023019951A1 (zh) 一种轮胎自定位系统及其定位方法
US20170158202A1 (en) Driver biometric information signal measurement system and method
US9322744B2 (en) Tire air pressure monitor device
RU2536001C1 (ru) Устройство передачи давления воздуха в шине и система наблюдения за давлением воздуха в шинах
CN104669955B (zh) 胎压监测装置及其方法
US20130079977A1 (en) System and method for performing auto-location of a tire pressure monitoring sensor arranged with a vehicle wheel
US20190064813A1 (en) Systems and Methods of Controlling an Autonomous Vehicle Using an Enhanced Trajectory Following Configuration
GB2525079A (en) Vehicle operator monitoring and operations adjustments
CN109050397A (zh) 一种驾驶员脱手警示的装置及方法
CN105480029B (zh) 轮胎压力监测系统及其轮胎压力发射机定位方法
US20160214620A1 (en) Device For Performing A Camera-Based Estimation Of Load On A Vehicle And Method Of Estimating Load On A Vehicle
CN111798651A (zh) 用于车辆远程停车辅助的钥匙扣利用
US10994630B2 (en) Method and apparatus for controlling power consumption of vehicle and vehicle
CN104584101A (zh) 用于补偿时间偏差的方法和系统
WO2023019952A1 (zh) 一种轮胎自定位系统及其定位方法
CN106340081A (zh) 车辆保养提示方法及云服务器
CN111688419A (zh) 一种直接式及间接式混合胎压监测与调节系统及其控制方法
CN113561711B (zh) 一种轮胎自定位系统及其定位方法
CN111369786A (zh) 乘车出行的监控方法、车辆、服务器、系统和设备
WO2020146947A1 (en) Dynamic data collection for vehicle tracking
KR101458322B1 (ko) Tpms의 적응적 신호 제어 방법 및 장치
CN113022700B (zh) 一种车辆爆胎的安全控制方法及系统、车辆
TWM515178U (zh) 行車式生理偵測系統
CN107680338B (zh) 一种疲劳驾驶检测方法及装置
CN206381291U (zh) 一种基于互联网的智能化救护车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857270

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18684131

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022857270

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022857270

Country of ref document: EP

Effective date: 20240318