WO2023019855A1 - 一种大表面检测作业机器人系统 - Google Patents

一种大表面检测作业机器人系统 Download PDF

Info

Publication number
WO2023019855A1
WO2023019855A1 PCT/CN2021/141908 CN2021141908W WO2023019855A1 WO 2023019855 A1 WO2023019855 A1 WO 2023019855A1 CN 2021141908 W CN2021141908 W CN 2021141908W WO 2023019855 A1 WO2023019855 A1 WO 2023019855A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide rail
robot system
primary
passive mechanical
rotating
Prior art date
Application number
PCT/CN2021/141908
Other languages
English (en)
French (fr)
Inventor
丁宁
郝万鈞
李德程
张爱东
Original Assignee
香港中文大学(深圳)
深圳市人工智能与机器人研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港中文大学(深圳), 深圳市人工智能与机器人研究院 filed Critical 香港中文大学(深圳)
Publication of WO2023019855A1 publication Critical patent/WO2023019855A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0019End effectors other than grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements

Definitions

  • the invention relates to the technical field of civil engineering, in particular to a large surface detection operation robot system.
  • part of the improved detection operation method uses unmanned aerial vehicle to detect the working surface such as the bridge bottom. It also lacks rigid support, so it is still difficult to overcome difficulties such as positioning difficulties, poor image stability, and low precision.
  • UAVs usually can only move according to the trajectory predetermined by the program, the operating radius is small, the flexibility is poor, it is difficult to adapt to the complex shape of the working surface, and there may be some missing operating areas.
  • due to the limited load capacity of the UAV it is usually only used for shooting and other operations, and it is powerless for maintenance operations and other operations, which has great limitations.
  • the purpose of the present invention is to provide a large-surface detection operation robot system, which can safely and efficiently realize the surface detection operation of large-surface facilities, improve the adaptability to different shapes of working surfaces, and avoid missing operation areas.
  • the present invention provides a large-surface detection operation robot system, which includes several passive mechanical arms laid on the working surface and connected in sequence, and connected between the ends of two adjacent passive mechanical arms.
  • the rotating pair mechanism includes a primary rotating wheel disposed at the end of the adjacent primary passive mechanical arm, and a secondary rotating wheel disposed at the adjacent secondary end of the passive mechanical arm, the The rim of the secondary rotating wheel can be connected to the rim surface of the primary rotating wheel in a circumferentially engaging manner.
  • the end faces of the first transition section and the corresponding end faces of the fixed slide rails are arc surfaces that match each other, and the end faces of the second transition section and the corresponding end faces of the fixed slide rails are both in the shape of Arcs that match each other.
  • the end surface of the primary rotating wheel is also provided with a primary rotating shaft, a primary rotating disk sleeved on the primary rotating shaft, standing on the surface of the primary rotating disk and used for installing the first transition section primary mounting bracket.
  • the end surface of the secondary rotating wheel is also provided with a secondary rotating shaft, a secondary rotating disk sleeved on the secondary rotating shaft, erected on the surface of the secondary rotating disk and used to install the Secondary mounting brackets for the second transition section described above.
  • the fixed sliding rails are distributed on each side surface of each passive mechanical arm in parallel; it also includes a rotary joint arm connected in series on the end surface of each passive mechanical arm that can rotate circumferentially, and is arranged on the
  • the reversing slide rails on each side surface of the swivel articulated arm are used to dock with the corresponding fixed slide rails.
  • both the rotating joint arm and the passive mechanical arm are rectangular bodies with the same cross-sectional shape.
  • the mobile working platform includes a vehicle frame and a sliding wheel train that is arranged on the vehicle frame and cooperates with the fixed slide rail, the transition slide rail, and the reversing slide rail, and is arranged on the When sliding to the corresponding position on the vehicle frame, it is used to respectively drive the rotation of the rotary pair mechanism, drive the deflection of the transition slide rail, and drive the rotation of the rotary joint arm.
  • the detection module includes a telescopic connecting rod connected to the vehicle frame, and several detection sensors arranged at the end of the connecting rod.
  • the large-surface detection operation robot system mainly includes several passive mechanical arms, rotating pair mechanisms, fixed slide rails, transition slide rails, mobile operation platforms and detection modules.
  • passive robotic arms which are laid on the working surface according to a certain extension direction.
  • the specific laying range covers the entire working surface, and each passive robotic arm is connected in sequence according to the extension direction, thereby splicing to form a large-length robotic arm.
  • the rotating pair mechanism is arranged between the ends of two adjacent passive mechanical arms, and is respectively connected with the two adjacent passive mechanical arms. It is mainly used to realize the relative rotation of the two adjacent passive mechanical arms and realize the The direction of extension (within the working surface) is deflected.
  • the fixed slide rails are arranged on each passive mechanical arm, and are distributed along the length direction (that is, the extending direction) of the passive mechanical arm.
  • the transition slide rail is arranged on the rotating pair mechanism, and can perform deflection movement (inside the working surface) on the rotating pair mechanism, and is mainly used to transfer the fixed slide rails on two adjacent passive mechanical arms after the rotating pair mechanism deflects Butt with each other so that two adjacent sections of fixed slide rails remain continuous.
  • the mobile work platform is set on the passive mechanical arm and slides along the fixed slide rail and the transition slide rail. At the same time, the mobile work platform is equipped with a detection module, which is mainly used for tracking the work surface along the track during the sliding process, so that Gradually complete the detection work on the full range of the working surface.
  • the large-surface inspection robot system provided by the present invention is laid on the working surface through a plurality of sequentially connected passive manipulators.
  • the transition slide rails are used to connect the fixed slide rails to form a complete sliding track, so that the detection module mounted on the mobile work platform can perform detection operations along the sliding track, ensuring that the detection range of the detection module covers the entire working surface.
  • the present invention can safely and efficiently realize the surface detection operation of large-surface facilities, improve the adaptability to different shapes of working surfaces, and avoid missing operation areas.
  • Fig. 1 is a schematic diagram of the overall structure of a specific embodiment provided by the present invention.
  • FIG. 2 is a schematic diagram of the specific structure of the passive mechanical arm.
  • Figure 3 is a schematic diagram of the specific structure of the revolving pair mechanism.
  • Fig. 4 is a cross-sectional view of the primary rotating wheel or the secondary rotating wheel.
  • Fig. 5 is a schematic diagram of the specific structure of the rotary joint arm.
  • Fig. 6 is a schematic diagram of the installation structure of the rotating pair mechanism and the rotating joint arm on the passive mechanical arm.
  • Fig. 7 is a schematic diagram of the specific structure of the mobile work platform.
  • FIG. 1 is a schematic diagram of the overall structure of a specific embodiment provided by the present invention.
  • the large surface detection operation robot system mainly includes several passive mechanical arms 1, rotating pair mechanism 2, fixed slide rail 3, transition slide rail 4, mobile operation platform 5 and detection mold Group 6.
  • a large-length robotic arm formed by connecting multiple passive robotic arms 1 usually has redundant multi-dimensional motion degrees of freedom.
  • the rotating pair mechanism 2 is arranged between the ends of two adjacent passive manipulators 1, and is respectively connected with two adjacent passive manipulators 1, and is mainly used to realize the relative rotation of two adjacent passive manipulators 1, realize The direction of extension of the passive robotic arm 1 (within the working surface) is deflected.
  • the fixed sliding rails 3 are arranged on each passive mechanical arm 1 and distributed along the length direction (ie, the extending direction) of the passive mechanical arm 1 .
  • the transition slide rail 4 is arranged on the rotating sub-mechanism 2, and can perform a deflection movement (in the working surface) on the rotating sub-mechanism 2, and is mainly used to deflect two adjacent passive mechanical arms 1 after passing through the rotating sub-mechanism 2.
  • the fixed slide rails 3 on the top are docked with each other, so that two adjacent sections of the fixed slide rails 3 remain continuous.
  • the mobile work platform 5 is set on the passive mechanical arm 1, and slides along the fixed slide rail 3 and the transition slide rail 4. At the same time, the mobile work platform 5 is equipped with a detection module 6, which is mainly used to monitor the working surface along the line during the sliding process. Track detection operation, so as to gradually complete the detection operation in the whole range of the working surface.
  • the large-surface detection operation robot system provided in this embodiment is laid on the working surface through a plurality of sequentially connected passive manipulators 1, during which the rotating pair mechanism 2 is used to flexibly adjust the position of the passive manipulator 1 according to the specific shape of the working surface.
  • Extending direction at the same time, use the transition slide rail 4 to connect the fixed slide rails 3 to form a complete slide track, so that the detection module 6 carried on the mobile work platform 5 can perform detection operations along the slide track, ensuring the detection of the detection module 6.
  • the detection range covers the entire working surface.
  • this embodiment can safely and efficiently realize the surface detection operation of large-surface facilities, improve the adaptability to different shapes of working surfaces, and avoid missing operation areas.
  • FIG. 2 is a schematic diagram of the specific structure of the passive mechanical arm 1 .
  • the passive robotic arm 1 is specifically a cuboid structure, including a plurality of long horizontal bars, short vertical bars and diagonal bars, forming a truss structure as a whole.
  • each passive manipulator 1 is of modular design, but the length of the long crossbar in different passive manipulators 1 can be different according to needs, so as to be laid flexibly on the working surface.
  • FIG. 3 is a schematic structural view of the rotary pair mechanism 2 .
  • the rotating pair mechanism 2 mainly includes a primary rotating wheel 21 and a secondary rotating wheel 22 .
  • the primary rotating wheel 21 is arranged on the end of the primary passive mechanical arm 1 (according to the extension direction) of the adjacent two stages (or two) passive mechanical arms 1
  • the secondary rotating wheel 22 is arranged on the adjacent
  • the secondary rotating wheel 22 and the primary rotating wheel 21 face each other.
  • the wheel rim of the secondary rotating wheel 22 and the wheel rim of the primary rotating wheel 21 form a meshing rotation connection, wherein the primary rotating wheel 21 remains stationary, and the secondary rotating wheel 22 can move along the primary rotating wheel 21 through meshing transmission.
  • the rim of the wheel rotates in a circumferential direction.
  • the primary rotating wheel 21 is specifically semicircular, and the secondary transmission wheel is also semicircular, and the arcs of the two are meshed with each other.
  • the secondary transmission wheel can theoretically follow the diameter of one end of the primary transmission wheel. Gradually engage and rotate to the other end of the diameter, and the maximum rotation angle can reach 180°, which is equivalent to realizing the change from turning left to turning right of the upper-level passive mechanical arm 1 .
  • the transition slide rail 4 is also a split structure, It specifically includes a first transition section 41 and a second transition section 42 .
  • the first transition section 41 is arranged on the end surface (or surface) of the primary rotating wheel 21 , and can rotate on the end surface of the primary rotating wheel 21 so as to adjust the orientation.
  • the second transition section 42 is arranged on the end surface (or surface) of the secondary transmission wheel, and can perform rotational movement on the end surface of the secondary transmission wheel, so as to adjust the orientation.
  • the first transition section 41 and the second transition section 42 can also independently adjust their respective orientations so that the first transition section 41 docks with the fixed slide rail 3 , or the first transition section 41 and the second transition section 42 are butted against each other, or the second transition section 42 is butted with the fixed slide rail 3 .
  • the first transition section 41 is distributed along a certain diameter direction on the end face of the primary transmission wheel
  • the second transition section 42 is distributed along a certain diameter direction on the end surface of the secondary transmission wheel
  • the first transition The rotation axis of the end is located at the axis of the primary transmission wheel
  • the rotation axis of the second transition section 42 is located at the axis of the secondary transmission wheel.
  • the end face of the first transition section 41 and the end face of the corresponding fixed slide rail 3 all form a matching circular arc surface.
  • the end surface of the second transition section 42 and the end face of the corresponding fixed slide rail 3 all form a matching circular arc surface.
  • the curved surface forms a complete and continuous sliding track when docking.
  • FIG. 4 is a cross-sectional view of the primary rotating wheel 21 or the secondary rotating wheel 22 .
  • a primary rotating shaft 211 In order to facilitate the rotational movement of the first transition section 41 on the end face of the primary rotating wheel 21 , a primary rotating shaft 211 , a primary rotating disk 212 and a primary mounting bracket 213 are added in this embodiment.
  • the primary rotating shaft 211 is erected on the end face of the primary rotating wheel 21 and has a certain height (or length).
  • a connection structure such as a shaft coupling, etc. is arranged on the top end face of the primary rotating shaft 211, and is mainly used for connection with the subsequent
  • the driver 53 on the mobile working platform 5 is connected so that after the mobile working platform 5 moves onto the first transition section 41 , the primary rotating shaft 211 is driven to rotate by the driver 53 .
  • the primary rotating disk 212 is sleeved on the primary rotating shaft 211 and rotates synchronously therewith.
  • the primary mounting bracket 213 is erected on the surface of the primary rotating disk 212 and is mainly used for mounting the first transition section 41 .
  • the primary installation bracket 213 can be specifically in a "Y" shape so as to simultaneously install two parallel distributed first slide rails. a transition section 41 .
  • the primary rotating disk 212 can drive the primary mounting bracket 213 and the first transition section 41 to rotate synchronously.
  • a secondary rotating shaft 221 in order to facilitate the rotational movement of the second transition section 42 on the end surface of the secondary rotating wheel 22 , a secondary rotating shaft 221 , a secondary rotating disk 222 and a secondary mounting bracket 223 are added in this embodiment.
  • the secondary rotating shaft 221 is erected on the end face of the secondary rotating wheel 22, has a certain height (or length), and a connection structure, such as a shaft coupling, etc., is arranged on the top end face of the secondary rotating shaft 221. It is connected with the driver 53 on the subsequent mobile working platform 5 , so that after the mobile working platform 5 moves onto the second transition section 42 , the secondary rotating shaft 221 is driven to rotate by the driver 53 .
  • the secondary rotating disk 222 is sleeved on the secondary rotating shaft 221 and rotates synchronously therewith.
  • the secondary mounting bracket 223 is erected on the surface of the secondary rotating disk 222 and is mainly used for mounting the second transition section 42 .
  • the secondary mounting bracket 223 is also in a "Y" shape, so as to install two parallel second transition sections 42 at the same time.
  • the secondary rotating disk 222 can drive the secondary mounting bracket 223 and the second transition section 42 to rotate synchronously.
  • FIG. 5 is a schematic diagram of the specific structure of the rotary joint arm 7
  • FIG. 6 is a schematic diagram of the installation structure of the rotary joint mechanism 2 and the rotary joint arm 7 on the passive mechanical arm 1 .
  • the large surface detection operation robot system includes several passive mechanical arms 1, rotating pair mechanism 2, fixed slide rail 3, transition slide rail 4, mobile operation platform 5 and detection
  • the module 6 it also includes a rotary joint arm 7 and a reversing slide rail 8.
  • the rotary joint arm 7 is serially connected to the end face of each passive mechanical arm 1, and is generally arranged with the rotating pair mechanism 2 at both ends of each passive mechanical arm 1, and the rotary joint arm 7 can perform circumferential rotation relative to the passive mechanical arm 1 (rotation) movement.
  • the reversing slide rails 8 are arranged on each side surface (four side walls) of the swivel joint arm 7 and are all distributed along the length direction thereof.
  • the fixed slide rails 3 are distributed on each side surface (four side walls) of the passive mechanical arm 1 at the same time.
  • the specific distribution positions of each reversing slide rail 8 on each side surface of the rotary joint arm 7 correspond to the specific distribution positions of each fixed slide rail 3 on each side surface of the passive mechanical arm 1, so that Make each reversing slide rail 8 form butt joint with each fixed slide rail 3 .
  • the drive 53 in the mobile work platform 5 can drive the swivel joint arm 7 to rotate , so that the mobile work platform 5 is rotated to the target orientation, and the cross-plane reversing operation of the mobile work platform 5 on the passive mechanical arm 1 is realized.
  • the overall structure of the rotary articulated arm 7 is similar to that of the passive mechanical arm 1, both of which are rectangular truss structures, and its cross-sectional shape is the same as that of the passive mechanical arm 1, but the length of the rotary articulated arm 7 is generally less than the length of passive mechanical arm 1.
  • FIG. 7 is a schematic structural diagram of the mobile working platform 5 .
  • the mobile working platform 5 mainly includes a vehicle frame 51 , a sliding wheel train 52 and a driver 53 .
  • the vehicle frame 51 is the main structure of the mobile work platform 5, and is mainly used for installing other components.
  • the sliding wheel train 52 is arranged on the vehicle frame 51 and is mainly used for cooperating with the complete and continuous sliding track formed by the fixed slide rail 3 , the transition slide rail 4 and the reversing slide rail 8 .
  • the driver 53 is arranged on the vehicle frame 51 and is the core component and power source of the robot system. It is mainly used to drive the secondary rotating wheel 22 in the rotating pair mechanism 2 to the primary rotating wheel 21 when the vehicle frame 51 slides to the corresponding position.
  • the detection module 6 mainly includes a connecting rod 61 and a detection sensor 62 .
  • the connecting rod 61 is arranged on the vehicle frame 51, and can be telescopically adjusted
  • the detection sensor 62 is arranged at the end of the connecting rod 61, and generally a plurality of them can be set at the same time, so as to perform multiple detection operations at the same time, such as a camera, a laser sensor, etc. wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种大表面检测作业机器人系统,包括铺设于工作表面并次序相连的若干个被动机械臂(1)、连接于相邻两个被动机械臂的端部之间的转动副机构(2)、设置于各被动机械臂上并沿其长度方向分布的固定滑轨(3)、可偏转地设置于转动副机构上并与相邻两段固定滑轨对接的过渡滑轨(4),以及可滑动地设置于固定滑轨及过渡滑轨上、用于对工作表面进行循轨检测作业的移动作业平台(5),移动作业平台上搭载有检测模组(6)。该大表面检测作业机器人系统利用转动副机构根据工作表面的具体形状灵活调整被动机械臂的延伸方向,可使移动作业平台搭载的检测模组沿着滑动轨道进行检测作业,确保检测模组的检测作业范围覆盖整个工作表面,从而提高对于不同形状工作表面的适应性,避免遗漏作业区域。

Description

一种大表面检测作业机器人系统
本申请要求于2021年8月17日提交中国专利局、申请号为202110943885.9、发明名称为“一种大表面检测作业机器人系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及土木工程技术领域,特别涉及一种大表面检测作业机器人系统。
背景技术
大型基础设施的检修对确保设备结构的安全性、稳定性具备有重要的意义。例如:大坝、火电厂冷却塔、大型建筑玻璃幕墙、大型隧道以及桥梁底面等一系列场景,在投入使用后往往需要定期的检测以及针对缺陷的维修作业,以保障其安全应用。这些大型基础设施通常具备覆盖面积广、环境条件恶劣、高度落差大等特点,导致其检修作业工作存在较大困难。
针对超大表面检测作业的场景,比如大坝坝面检测、冷却塔表面检测、大型玻璃幕墙检测、桥梁隧道内表面裂纹检测、表面修理等场景,传统的检测作业方式通常是在工作表面处通过搭建登高梯、脚手架、悬挂吊机等辅助结构,再通过人工站上这些辅助结构进行手动检测作业。然而,此种检测作业方式的工作量巨大、工作强度高,且工作周期长、人力成本高,工作表面较高时还存在高空坠落的安全隐患。并且,由于缺乏刚性结构支撑并且观测视野局限,可能导致排查不全面、检测结果遗漏等问题。
在现有技术中,部分改良的检测作业方式使用无人机对桥底等工作表面进行检测作业,此种检测作业方式虽然效率较高,但由于该方法基于无人机平台的远距离观测,同样缺乏刚性支撑,因此仍难以克服定位困难、图像稳定性差、精度低等困难。并且,无人机通常只能按照程序预定的轨迹进行运动,作业半径较小,灵活性较差,难以适应复杂形状的工作表面,可能存在部分遗漏的作业区域。另外,由于无人机的负载能力有限,导致其通常只能用于拍摄等作业项目,对于检修操作等作业项目无能为力,局限性较大。
因此,如何安全、高效地实现对大表面设施的表面检测作业,提高对于不同形状工作表面的适应性,避免遗漏作业区域,是本领域技术人员面临的技术问题。
发明内容
本发明的目的是提供一种大表面检测作业机器人系统,能够安全、高效地实现对大表面设施的表面检测作业,提高对于不同形状工作表面的适应性,避免遗漏作业区域。
为解决上述技术问题,本发明提供一种大表面检测作业机器人系统,包括铺设于工作表面并次序相连的若干个被动机械臂、连接于相邻两个所述被动机械臂的端部之间的转动副机构、设置于各所述被动机械臂上并沿其长度方向分布的固定滑轨、可偏转地设置于所述转动副机构上并与相邻两段所述固定滑轨对接的过渡滑轨,以及可滑动地设置于所述固定滑轨及所述过渡滑轨上、用于对所述工作表面进行循轨检测作业的移动作业平台,所述移动作业平台上搭载有检测模组。
优选地,所述转动副机构包括设置于相邻的初级所述被动机械臂端部的初级转动轮,以及设置于相邻的次级所述被动机械臂端部的次级转动轮,所述次级转动轮的轮缘可周向啮合地连接于所述初级转动轮的轮缘面内。
优选地,所述过渡滑轨包括可旋转地设置于所述初级转动轮的端面上的第一过渡段,以及可旋转地设置于所述次级转动轮的端面上的第二过渡段,所述第一过渡段与所述第二过渡段的正对端部在旋转至预设角度后互相对接。
优选地,所述第一过渡段的端面与对应的所述固定滑轨的端面均呈互相匹配的圆弧面,所述第二过渡段的端面与对应的所述固定滑轨的端面均呈互相匹配的圆弧面。
优选地,所述初级转动轮的端面上还设置有初级旋转轴、套设于所述初级旋转轴上的初级旋转盘、立设于所述初级旋转盘表面并用于安装所述第一过渡段的初级安装支架。
优选地,所述次级转动轮的端面上还设置有次级旋转轴、套设于所述次级旋转轴上的次级旋转盘、立设于所述次级旋转盘表面并用于安装所述 第二过渡段的次级安装支架。
优选地,所述固定滑轨平行分布于各所述被动机械臂的各个侧表面;还包括可周向旋转地串接于各所述被动机械臂的端面上的旋转关节臂、设置于所述旋转关节臂的各个侧表面上并用于与对应的所述固定滑轨对接的换向滑轨。
优选地,所述旋转关节臂与所述被动机械臂均呈横截面形状相同的矩形体。
优选地,所述移动作业平台包括车架和设置于所述车架上并与所述固定滑轨、所述过渡滑轨、所述换向滑轨配合滑动的滑动轮系,以及设置于所述车架上并用于在滑动至对应位置时分别驱动所述转动副机构转动、驱动所述过渡滑轨偏转、驱动所述旋转关节臂旋转的驱动器。
优选地,所述检测模组包括与所述车架相连且可伸缩的连接杆、设置于所述连接杆末端的若干个检测传感器。
本发明所提供的大表面检测作业机器人系统,主要包括若干个被动机械臂、转动副机构、固定滑轨、过渡滑轨、移动作业平台和检测模组。其中,被动机械臂设置有多个,并按照一定延伸方向铺设在工作表面上,其具体铺设范围覆盖整个工作表面,并且各个被动机械臂按照延伸方向次序相连,从而拼接形成大长度机械臂。转动副机构设置在相邻两个被动机械臂的端部之间,分别与相邻的两个被动机械臂相连,主要用于实现相邻两个被动机械臂的相对转动,实现被动机械臂的延伸方向(在工作表面内)偏转。固定滑轨设置在各个被动机械臂上,并沿被动机械臂的长度方向(即延伸方向)分布。过渡滑轨设置在转动副机构上,并且可在转动副机构上进行(工作表面内的)偏转运动,主要用于将经过转动副机构偏转之后的两个相邻被动机械臂上的固定滑轨互相对接,使得相邻两段固定滑轨保持连续。移动作业平台设置在被动机械臂上,并沿固定滑轨及过渡滑轨滑动,同时移动作业平台上搭载有检测模组,主要用于在滑动过程中对工作表面进行沿线循轨检测作业,从而逐渐完成工作表面的全范围内的检测作业。如此,本发明所提供的大表面检测作业机器人系统,通过多个次序相连的被动机械臂铺设在工作表面上,期间利用转动副机构根据工作表面的具体 形状灵活调整被动机械臂的延伸方向,同时利用过渡滑轨将各段固定滑轨相连形成完整的滑动轨道,从而可使移动作业平台搭载的检测模组沿着滑动轨道进行检测作业,确保检测模组的检测作业范围覆盖整个工作表面。相比于现有技术,本发明能够安全、高效地实现对大表面设施的表面检测作业,提高对于不同形状工作表面的适应性,避免遗漏作业区域。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明所提供的一种具体实施方式的整体结构示意图。
图2为被动机械臂的具体结构示意图。
图3为转动副机构的具体结构示意图。
图4为初级转动轮或次级转动轮的剖视图。
图5为旋转关节臂的具体结构示意图。
图6为转动副机构与旋转关节臂在被动机械臂上的安装结构示意图。
图7为移动作业平台的具体结构示意图。
其中,图1—图7中:
被动机械臂—1,转动副机构—2,固定滑轨—3,过渡滑轨—4,移动作业平台—5,检测模组—6,旋转关节臂—7,换向滑轨—8;
初级转动轮—21,次级转动轮—22,第一过渡段—41,第二过渡段—42,车架—51,滑动轮系—52,驱动器—53,连接杆—61,检测传感器—62;
初级旋转轴—211,初级旋转盘—212,初级安装支架—213,次级旋转轴—221,次级旋转盘—222,次级安装支架—223。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明所提供的一种具体实施方式的整体结构示意图。
在本发明所提供的一种具体实施方式中,大表面检测作业机器人系统主要包括若干个被动机械臂1、转动副机构2、固定滑轨3、过渡滑轨4、移动作业平台5和检测模组6。
其中,被动机械臂1设置有多个,并按照一定延伸方向铺设在工作表面上,其具体铺设范围覆盖整个工作表面,并且各个被动机械臂1按照延伸方向次序相连,从而拼接形成大长度机械臂。一般的,多个被动机械臂1连接形成的大长度机械臂通常具有冗余的多维运动自由度。
转动副机构2设置在相邻两个被动机械臂1的端部之间,分别与相邻的两个被动机械臂1相连,主要用于实现相邻两个被动机械臂1的相对转动,实现被动机械臂1的延伸方向(在工作表面内)偏转。
固定滑轨3设置在各个被动机械臂1上,并沿被动机械臂1的长度方向(即延伸方向)分布。
过渡滑轨4设置在转动副机构2上,并且可在转动副机构2上进行(工作表面内的)偏转运动,主要用于将经过转动副机构2偏转之后的两个相邻被动机械臂1上的固定滑轨3互相对接,使得相邻两段固定滑轨3保持连续。
移动作业平台5设置在被动机械臂1上,并沿固定滑轨3及过渡滑轨4滑动,同时移动作业平台5上搭载有检测模组6,主要用于在滑动过程中对工作表面进行沿线循轨检测作业,从而逐渐完成工作表面的全范围内的检测作业。
如此,本实施例所提供的大表面检测作业机器人系统,通过多个次序相连的被动机械臂1铺设在工作表面上,期间利用转动副机构2根据工作表面的具体形状灵活调整被动机械臂1的延伸方向,同时利用过渡滑轨4 将各段固定滑轨3相连形成完整的滑动轨道,从而可使移动作业平台5搭载的检测模组6沿着滑动轨道进行检测作业,确保检测模组6的检测作业范围覆盖整个工作表面。
相比于现有技术,本实施例能够安全、高效地实现对大表面设施的表面检测作业,提高对于不同形状工作表面的适应性,避免遗漏作业区域。
如图2所示,图2为被动机械臂1的具体结构示意图。
在关于被动机械臂1的一种优选实施例中,该被动机械臂1具体呈长方体结构,包括多根长横杆、短纵杆和斜杆,整体形成桁架结构。其中,各个被动机械臂1均为模块化设计,但不同的被动机械臂1中的长横杆的长度可根据需要而不同,以便灵活地铺设在工作表面上。
如图3所示,图3为转动副机构2的具体结构示意图。
在关于转动副机构2的一种优选实施例中,该转动副机构2主要包括初级转动轮21和次级转动轮22。其中,初级转动轮21设置在相邻两级(或两个)被动机械臂1的初级的被动机械臂1(以延伸方向为准)的端部上,而次级转动轮22设置在相邻两级被动机械臂1的次级的被动机械臂1的端部上,并且次级转动轮22与初级转动轮21互相正对。同时,次级转动轮22的轮缘与初级转动轮21的轮缘形成啮合式转动连接,其中,初级转动轮21保持静止不动,而次级转动轮22可通过啮合传动沿初级转动轮21的轮缘进行周向转动运动。
一般的,初级转动轮21具体呈半圆形,且次级传动轮也呈半圆形,两者的圆弧互相啮合,如此设置,次级传动轮理论上可沿着初级传动轮的直径一端逐渐啮合并转动至直径另一端,最大转动角度可达180°,相当于实现了上一级被动机械臂1的向左转弯延伸至向右转弯延伸变化。
在关于过渡滑轨4的一种优选实施例中,考虑到转动副机构2为包括初级转动轮21和次级转动轮22的分体式结构,相应的,过渡滑轨4也为分体式结构,具体包括第一过渡段41和第二过渡段42。其中,第一过渡段41设置在初级转动轮21的端面(或表面)上,并且可在初级转动轮21的端面上进行旋转运动,以便调节朝向。同理,第二过渡段42设置在次级传动轮的端面(或表面)上,并且可在次级传动轮的端面上进行旋转运动, 以便调节朝向。如此设置,当次级转动轮22相对初级转动轮21偏转后,第一过渡段41与第二过渡段42也可以各自独立地调节各自的朝向,以便第一过渡段41与固定滑轨3对接,或第一过渡段41与第二过渡段42互相对接,或第二过渡段42与固定滑轨3对接。
一般的,第一过渡段41在初级传动轮的端面上沿其某一直径方向分布,而第二过渡段42在次级传动轮的端面上沿其某一直径方向分布,并且,第一过渡端的旋转轴心位于初级传动轮的轴心,第二过渡段42的旋转轴心位于次级传动轮的轴心。
进一步的,为便于第一过渡段41旋转一定角度后与对应的固定滑轨3对接,以及为便于第二过渡段42旋转一定角度后与对应的固定滑轨3对接,在本实施例中,第一过渡段41的端面与对应的固定滑轨3的端面均呈互相匹配的圆弧面,同理,第二过渡段42的端面与对应的固定滑轨3的端面均呈互相匹配的圆弧面,从而在对接时形成完整、连续的滑动轨道。
如图4所示,图4为初级转动轮21或次级转动轮22的剖视图。
更进一步的,为便于实现第一过渡段41在初级转动轮21端面上的旋转运动,本实施例中增设了初级旋转轴211、初级旋转盘212和初级安装支架213。
其中,初级旋转轴211立设在初级转动轮21的端面上,具有一定高度(或长度),在初级旋转轴211的顶部端面上设置有连接结构,如联轴器等,主要用于与后续的移动作业平台5上的驱动器53相连,以便在移动作业平台5运动到第一过渡段41上后,通过驱动器53驱动初级旋转轴211进行旋转运动。初级旋转盘212套设在初级旋转轴211上,与其同步旋转。初级安装支架213立设在初级旋转盘212的表面上,主要用于安装第一过渡段41。一般的,由于固定滑轨3和过渡滑轨4均包括两根(或多根)平行分布的滑轨,因此初级安装支架213具体可呈“Y”型,以便同时安装两根平行分布的第一过渡段41。如此设置,当移动作业平台5驱动初级旋转轴211进行旋转运动时,即可通过初级旋转盘212带动初级安装支架213和第一过渡段41进行同步旋转。
同理,为便于实现第二过渡段42在次级转动轮22端面上的旋转运动, 本实施例中增设了次级旋转轴221、次级旋转盘222和次级安装支架223。
其中,次级旋转轴221立设在次级转动轮22的端面上,具有一定高度(或长度),在次级旋转轴221的顶部端面上设置有连接结构,如联轴器等,主要用于与后续的移动作业平台5上的驱动器53相连,以便在移动作业平台5运动到第二过渡段42上后,通过驱动器53驱动次级旋转轴221进行旋转运动。次级旋转盘222套设在次级旋转轴221上,与其同步旋转。次级安装支架223立设在次级旋转盘222的表面上,主要用于安装第二过渡段42。一般的,该次级安装支架223具体也呈“Y”型,以便同时安装两根平行分布的第二过渡段42。如此设置,当移动作业平台5驱动次级旋转轴221进行旋转运动时,即可通过次级旋转盘222带动次级安装支架223和第二过渡段42进行同步旋转。
如图5、图6所示,图5为旋转关节臂7的具体结构示意图,图6为转动副机构2与旋转关节臂7在被动机械臂1上的安装结构示意图。
在本发明所提供的另一种具体实施方式中,大表面检测作业机器人系统除了包括若干个被动机械臂1、转动副机构2、固定滑轨3、过渡滑轨4、移动作业平台5和检测模组6之外,还包括旋转关节臂7和换向滑轨8。
其中,旋转关节臂7串接在各个被动机械臂1的端面上,一般与转动副机构2分列各个被动机械臂1的两端,并且旋转关节臂7可以相对被动机械臂1进行周向旋转(自转)运动。换向滑轨8设置在旋转关节臂7的各个侧表面(4个侧壁)上,并均沿其长度方向分布。
相应的,在本实施例中,固定滑轨3同时分布在被动机械臂1的各个侧表面(4个侧壁)上。并且,各根换向滑轨8在旋转关节臂7的各个侧表面上的具体分布位置,与各根固定滑轨3在被动机械臂1的各个侧表面上的具体分布位置互相对应,从而可使各根换向滑轨8与各根固定滑轨3形成对接。
如此设置,当移动作业平台5移动至旋转关节臂7的换向滑轨8上后,若需要更换工作区域或工作方位,可通过移动作业平台5中的驱动器53驱动旋转关节臂7进行旋转运动,从而将移动作业平台5旋转至目标方位,实现移动作业平台5在被动机械臂1上的跨平面换向作业。
一般的,旋转关节臂7的整体结构与被动机械臂1的结构类似,均呈矩形体桁架结构,且其横截面形状与被动机械臂1的横截面形状相同,但旋转关节臂7的长度通常小于被动机械臂1的长度。
如图7所示,图7为移动作业平台5的具体结构示意图。
在关于移动作业平台5的一种优选实施例中,该移动作业平台5主要包括车架51、滑动轮系52和驱动器53。其中,车架51为移动作业平台5的主体结构,主要用于安装其余零部件。滑动轮系52设置在车架51上,主要用于与固定滑轨3、过渡滑轨4和换向滑轨8形成的完整连续的滑动轨道配合滑动。驱动器53设置在车架51上,为机器人系统的核心部件与动力源,主要用于在车架51滑动至对应位置时,分别驱动转动副机构2中的次级转动轮22相对初级转动轮21进行偏转、驱动过渡滑轨4中的第一过渡段41和第二过渡段42各自偏转、驱动旋转关节臂7相对被动机械臂1进行旋转,上述被驱动的部件仅在受到来自驱动器53的驱动时才产生对应动作,其余状态下均保持自锁状态或保持最新状态。
在关于检测模组6的一种优选实施例中,该检测模组6主要包括连接杆61和检测传感器62。其中,连接杆61设置在车架51上,并且可进行伸缩调节,而检测传感器62设置在连接杆61的末端,一般可同时设置多个,以同时进行多项检测作业,比如摄像头、激光传感器等。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种大表面检测作业机器人系统,其特征在于,包括铺设于工作表面并次序相连的若干个被动机械臂(1)、连接于相邻两个所述被动机械臂(1)的端部之间的转动副机构(2)、设置于各所述被动机械臂(1)上并沿其长度方向分布的固定滑轨(3)、可偏转地设置于所述转动副机构(2)上并与相邻两段所述固定滑轨(3)对接的过渡滑轨(4),以及可滑动地设置于所述固定滑轨(3)及所述过渡滑轨(4)上、用于对所述工作表面进行循轨检测作业的移动作业平台(5),所述移动作业平台(5)上搭载有检测模组(6)。
  2. 根据权利要求1所述的大表面检测作业机器人系统,其特征在于,所述转动副机构(2)包括设置于相邻的初级所述被动机械臂(1)端部的初级转动轮(21),以及设置于相邻的次级所述被动机械臂(1)端部的次级转动轮(22),所述次级转动轮(22)的轮缘可周向啮合地连接于所述初级转动轮(21)的轮缘面内。
  3. 根据权利要求2所述的大表面检测作业机器人系统,其特征在于,所述过渡滑轨(4)包括可旋转地设置于所述初级转动轮(21)的端面上的第一过渡段(41),以及可旋转地设置于所述次级转动轮(22)的端面上的第二过渡段(42),所述第一过渡段(41)与所述第二过渡段(42)的正对端部在旋转至预设角度后互相对接。
  4. 根据权利要求3所述的大表面检测作业机器人系统,其特征在于,所述第一过渡段(41)的端面与对应的所述固定滑轨(3)的端面均呈互相匹配的圆弧面,所述第二过渡段(42)的端面与对应的所述固定滑轨(3)的端面均呈互相匹配的圆弧面。
  5. 根据权利要求3所述的大表面检测作业机器人系统,其特征在于,所述初级转动轮(21)的端面上还设置有初级旋转轴(211)、套设于所述初级旋转轴(211)上的初级旋转盘(212)、立设于所述初级旋转盘(212)表面并用于安装所述第一过渡段(41)的初级安装支架(213)。
  6. 根据权利要求3所述的大表面检测作业机器人系统,其特征在于,所述次级转动轮(22)的端面上还设置有次级旋转轴(221)、套设于所述次级旋转轴(221)上的次级旋转盘(222)、立设于所述次级旋转盘(222)表面并用于安装所述第二过渡段(42)的次级安装支架(223)。
  7. 根据权利要求1-6任一项所述的大表面检测作业机器人系统,其特征在于,所述固定滑轨(3)平行分布于各所述被动机械臂(1)的各个侧表面;还包括可周向旋转地串接于各所述被动机械臂(1)的端面上的旋转关节臂(7)、设置于所述旋转关节臂(7)的各个侧表面上并用于与对应的所述固定滑轨(3)对接的换向滑轨(8)。
  8. 根据权利要求7所述的大表面检测作业机器人系统,其特征在于,所述旋转关节臂(7)与所述被动机械臂(1)均呈横截面形状相同的矩形体。
  9. 根据权利要求7所述的大表面检测作业机器人系统,其特征在于,所述移动作业平台(5)包括车架(51)和设置于所述车架(51)上并与所述固定滑轨(3)、所述过渡滑轨(4)、所述换向滑轨(8)配合滑动的滑动轮系(52),以及设置于所述车架(51)上并用于在滑动至对应位置时分别驱动所述转动副机构(2)转动、驱动所述过渡滑轨(4)偏转、驱动所述旋转关节臂(7)旋转的驱动器(53)。
  10. 根据权利要求9所述的大表面检测作业机器人系统,其特征在于,所述检测模组(6)包括与所述车架(51)相连且可伸缩的连接杆(61)、设置于所述连接杆(61)末端的若干个检测传感器(62)。
PCT/CN2021/141908 2021-08-17 2021-12-28 一种大表面检测作业机器人系统 WO2023019855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110943885.9A CN113442122A (zh) 2021-08-17 2021-08-17 一种大表面检测作业机器人系统
CN202110943885.9 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023019855A1 true WO2023019855A1 (zh) 2023-02-23

Family

ID=77818702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141908 WO2023019855A1 (zh) 2021-08-17 2021-12-28 一种大表面检测作业机器人系统

Country Status (2)

Country Link
CN (1) CN113442122A (zh)
WO (1) WO2023019855A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442122A (zh) * 2021-08-17 2021-09-28 香港中文大学(深圳) 一种大表面检测作业机器人系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160444A (ja) * 1996-11-26 1998-06-19 Tatsumo Kk 産業用ロボットアームの移動量検出装置
CN102071638A (zh) * 2009-11-23 2011-05-25 山东科技大学 一种用于桥梁桥板背面检测和施工的专用特种移动机器人
CN102922529A (zh) * 2012-12-05 2013-02-13 山东电力集团公司电力科学研究院 一种沿分裂导线的巡检作业机器人系统
CN103417229A (zh) * 2013-08-06 2013-12-04 中国科学院深圳先进技术研究院 一种x射线成像机器人及其机械臂
CN108942964A (zh) * 2018-08-15 2018-12-07 武汉科技大学 一种柱状结构表面检测的仿生机器人
WO2020187915A1 (en) * 2019-03-18 2020-09-24 Macgregor Norway As Multiaxial robotic arm
WO2021068846A1 (zh) * 2019-10-09 2021-04-15 山东大学 一种用于运营期隧道衬砌检测及病害诊断的多臂机器人
CN112916260A (zh) * 2021-01-20 2021-06-08 合肥工业大学 一种联动喷涂大型表面结构的混联机器人
CN113442122A (zh) * 2021-08-17 2021-09-28 香港中文大学(深圳) 一种大表面检测作业机器人系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015116808B3 (de) * 2015-10-02 2017-01-19 Beckhoff Automation Gmbh Roboter, XY-Tisch für einen solchen Roboter und lineares Transportsystem
CN110238145B (zh) * 2019-05-22 2020-10-27 西安交通大学 一种火箭贮箱表面智能清洗与检测机器人系统及方法
CN110666771A (zh) * 2019-09-17 2020-01-10 韶关市涵润信息科技有限公司 一种检测机器人
CN110904836A (zh) * 2019-12-12 2020-03-24 中国科学院沈阳自动化研究所 一种桥梁主梁表面检测长臂机器人
CN113134823B (zh) * 2021-04-26 2023-03-14 湖南大学 一种用于伸入辐射狭窄空间作业的移动机器人
CN215920455U (zh) * 2021-08-17 2022-03-01 香港中文大学(深圳) 一种大表面检测作业机器人系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160444A (ja) * 1996-11-26 1998-06-19 Tatsumo Kk 産業用ロボットアームの移動量検出装置
CN102071638A (zh) * 2009-11-23 2011-05-25 山东科技大学 一种用于桥梁桥板背面检测和施工的专用特种移动机器人
CN102922529A (zh) * 2012-12-05 2013-02-13 山东电力集团公司电力科学研究院 一种沿分裂导线的巡检作业机器人系统
CN103417229A (zh) * 2013-08-06 2013-12-04 中国科学院深圳先进技术研究院 一种x射线成像机器人及其机械臂
CN108942964A (zh) * 2018-08-15 2018-12-07 武汉科技大学 一种柱状结构表面检测的仿生机器人
WO2020187915A1 (en) * 2019-03-18 2020-09-24 Macgregor Norway As Multiaxial robotic arm
WO2021068846A1 (zh) * 2019-10-09 2021-04-15 山东大学 一种用于运营期隧道衬砌检测及病害诊断的多臂机器人
CN112916260A (zh) * 2021-01-20 2021-06-08 合肥工业大学 一种联动喷涂大型表面结构的混联机器人
CN113442122A (zh) * 2021-08-17 2021-09-28 香港中文大学(深圳) 一种大表面检测作业机器人系统

Also Published As

Publication number Publication date
CN113442122A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
Debenest et al. Expliner-Robot for inspection of transmission lines
EP3266571B1 (en) System and method for a robotic manipulator system
WO2023019855A1 (zh) 一种大表面检测作业机器人系统
Xu et al. Developing a climbing robot for repairing cables of cable-stayed bridges
US8096380B2 (en) Transfer robot
CN104440877A (zh) 一种大型立式储罐检修用索并联机器人
CN105945900A (zh) 一种变电站室内巡检机器人
CN105150241A (zh) 一种绳索驱动的两自由度机械臂关节
CN110587626A (zh) 一种砌墙机器人
CN104044924A (zh) 有关堆垛机械手的多轴桥架式玻璃在线堆垛机
CN108758272A (zh) 用于变电站带电检修作业的绝缘升降臂系统及方法
TW202218829A (zh) 機器人移動運動之系統及方法
CN215920455U (zh) 一种大表面检测作业机器人系统
WO2015099370A1 (ko) 곡면 패널 디스플레이 결함 리페어 장치
JP4094085B2 (ja) 原子炉燃料交換機
JP6418570B2 (ja) 移動ロボットおよび画像撮影システム
JPH06262553A (ja) ダブルアーム機構ロボット
CN217620690U (zh) 一种巡检机器人轨道变换装置
JP2633666B2 (ja) 歩行ロボット
CN209856616U (zh) 一种支撑自锁式管道探测机器人行走机构
CN112157383A (zh) 一种用于船舶总段对接的柔性顺应六自由度定位装置
CN111347392A (zh) 一种检测机器人
CN115323915B (zh) 一种桥梁索杆检测与修复机器人
JP4421357B2 (ja) 炉内点検作業装置
CN219364322U (zh) 一种轨道式桥梁智能巡检云台系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE