WO2023019702A1 - 一种废水、废气联合处理方法及装置 - Google Patents

一种废水、废气联合处理方法及装置 Download PDF

Info

Publication number
WO2023019702A1
WO2023019702A1 PCT/CN2021/122818 CN2021122818W WO2023019702A1 WO 2023019702 A1 WO2023019702 A1 WO 2023019702A1 CN 2021122818 W CN2021122818 W CN 2021122818W WO 2023019702 A1 WO2023019702 A1 WO 2023019702A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction zone
anoxic
liquid
waste water
waste gas
Prior art date
Application number
PCT/CN2021/122818
Other languages
English (en)
French (fr)
Inventor
包芳芳
倪丰颖
蒋正海
陈跃明
向国军
Original Assignee
浙江海河环境科技有限公司
浙江科海检测有限公司
金华市海河环境工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江海河环境科技有限公司, 浙江科海检测有限公司, 金华市海河环境工程研究所 filed Critical 浙江海河环境科技有限公司
Publication of WO2023019702A1 publication Critical patent/WO2023019702A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to the technical field of biological treatment of waste water and waste gas, in particular to a combined treatment method and device for waste water and waste gas.
  • the biological method is widely used at home and abroad to treat volatile organic waste gas (VOCs).
  • VOCs volatile organic waste gas
  • the device is characterized by a built-in suspended biological filler, an aerobic microbial spray cycle, and waste gas containing oxygen and pollutants as an oxygen source.
  • Technology to degrade pollutants in exhaust gas There is following shortcoming in prior art:
  • the circulating microbial solution usually only contains pollutants in the waste gas, and the nutrients are single, and the easy-to-degrade required for aerobic microbial species is not added during operation Nutrients (such as organic matter, nitrogen, phosphorus and other trace components in domestic sewage), the removal efficiency of pollutants is low;
  • VOCs volatile organic waste gas
  • the object of the present invention is to provide a combined treatment method and device for waste water and waste gas to solve the above-mentioned problems in the prior art.
  • the present invention provides a method for combined treatment of waste water and waste gas, the method comprising: collecting waste gas and waste water into a biological treatment tower;
  • the wastewater is collected into the anoxic reaction zone in the biological treatment tower, and the nitrification liquid returned from the aerobic reaction zone at the top of the anoxic reaction zone is mixed with the wastewater to form a mixed solution.
  • There is no oxygen supply in the anoxic reaction zone so that the aerobic bacteria Transform into anoxic bacteria, and improve nitrogen removal efficiency under the synergistic effect of anoxic hydrolysis acidification and denitrification;
  • the mixed liquid and exhaust gas are lifted into the aerobic reaction zone, and the exhaust gas provides oxygen for the aerobic bacteria in the aerobic reaction zone.
  • the gas phase with high concentration of volatile organic compounds in the exhaust gas continuously transfers and dissolves to the water phase with low concentration, and the aerobic bacteria Carry out aerobic biological purification reaction on the mixed liquid to form nitrifying liquid.
  • Part of the nitrifying liquid flows back to the anoxic reaction zone and is mixed with the waste water for the second time.
  • the other part of the nitrifying liquid flows out of the biological treatment tower and detects the pollutant content. If the content does not meet the standard, it will be processed through a multi-stage biological treatment tower;
  • the nitrifying liquid whose pollutant content reaches the standard is subjected to oil-cement separation treatment, and part of the separated sludge is returned to the anoxic reaction zone.
  • the concentration of dissolved oxygen in the mixed liquid is 0.1-0.5 mg/l.
  • the gas generated during the anoxic hydrolysis and acidification process is mixed with exhaust gas, and flows up to the aerobic reaction zone.
  • the dissolved amount of volatile organic compounds in the exhaust gas is directly proportional to the concentration difference and solubility of the solute in the gas and liquid phases.
  • the nitrification liquid is separated into floating oil sludge, clear water and sludge.
  • a combined treatment device for waste water and waste gas comprising a solid-liquid separator, the liquid inlet end of the solid-liquid separator is connected with at least one level of biological treatment tower;
  • An aerobic reaction zone and anoxic reaction zone are sequentially arranged in the biological treatment tower from top to bottom, and an air distribution chamber is arranged between the aerobic reaction zone and the anoxic reaction zone.
  • the air inlet end is connected with a waste gas pollution source
  • the water inlet end of the anoxic reaction zone is connected with a waste water pollution source.
  • the anoxic reaction zone includes an anoxic pool, a stirrer is arranged in the anoxic pool, a nitrification liquid receiving tank is arranged between the anoxic pool and the air distribution chamber, and the nitrifying liquid receiving tank It is an annular groove, and an overflow plate is provided at the top of the nitrifying liquid receiving tank, and the nitrifying liquid receiving tank is connected with the drain end of the biological treatment tower;
  • the aerobic reaction zone includes an aerobic reactor, and the top of the aerobic reactor is provided with a number of spray distribution pipes, and the spray distribution pipes communicate with the anoxic pool through pipelines, and the biological treatment tower The exhaust end is set on the top of the spray distribution pipe.
  • the solid-liquid separator is provided with a mud bucket, the top of the mud bucket is provided with a central guide tube, and a tapered water baffle is provided between the mud bucket and the central guide tube, so that
  • the central guide cylinder is connected with the water outlet of the biological treatment tower, and the outer side of the central guide cylinder is sequentially provided with an annular oil overflow tank and an annular overflow weir from top to bottom, and the annular oil overflow tank and the annular overflow weir They are all located at the top of the bottom opening of the central guide cylinder, and an oil-water separation annular flow guide baffle is provided between the annular oil overflow tank and the annular overflow weir, and the oil-water separation annular flow guide baffle is used to prevent the floating oil sludge from entering The annular overflow weir;
  • the annular oil overflow tank communicates with the oil discharge end of the solid-liquid separator, the oil discharge end of the solid-liquid separator communicates with a sludge drying treatment system, and the annular overflow weir communicates with the drain end of the solid-liquid separator .
  • the bottom opening of the mud hopper communicates with the sludge discharge end of the solid-liquid separator, and the sludge discharge end of the solid-liquid separator communicates with the anoxic tank and the sludge drying treatment system respectively.
  • multiple stages of the biological treatment towers are connected in series.
  • the present invention discloses the following technical effects: the present invention aims at the disadvantages of the above-mentioned prior art, and provides a method and device for simultaneously treating organic waste water and volatile organic waste gases (VOCs), which have the advantages of low equipment investment, less equipment occupation,
  • VOCs volatile organic waste gases
  • the equipment has the advantages of low operating cost, good treatment effect, waste water discharge after treatment, and waste gas reaching the standard at the same time.
  • Fig. 1 is the schematic structural view of waste gas combined treatment device in embodiment 1;
  • Fig. 2 is the schematic flow sheet of waste gas joint treatment method in embodiment 1;
  • Fig. 3 is the schematic flow sheet of the combined treatment of amino acid production wastewater and waste gas in Example 2;
  • Fig. 4 is the structural representation of solid-liquid separator of the present invention.
  • 1 is the exhaust gas suction hood
  • 2 is the fan
  • 3 is the waste water collection tank
  • 4 is the sewage pump
  • 5 is the exhaust gas final discharge cylinder
  • 6 is the biological treatment tower
  • 6.1 is the mixed liquid lifting pump
  • 6.2 is the spray distribution pipe
  • 6.3 is the anoxic tank
  • 6.4 is the agitator
  • 6.5 is the nitrifying liquid receiving tank
  • 6.6 is the air distribution chamber
  • 6.7 is the overflow plate
  • 6.8 is the aerobic reactor
  • 8 is the solid-liquid separator
  • 8.1 is the mud bucket
  • 8.2 8.3 is a conical water baffle
  • 8.4 is an annular oil overflow tank
  • 8.5 is an annular overflow weir
  • 8.6 is an annular diversion baffle for oil-water separation
  • 11 is an excess sludge discharge valve
  • 12 is the front control of the pump Valve
  • 13 is a sludge return pump
  • 14 is a return flow control valve
  • 15 is
  • the present invention provides a method for combined treatment of waste water and waste gas, the method comprising: collecting waste gas and waste water into a biological treatment tower 6;
  • the collected waste water is input to the anoxic reaction zone in the biological treatment tower 6, and mixed with the nitrification liquid returned from the aerobic reaction zone on the upper part of the anoxic reaction zone to form a mixed solution.
  • No oxygen is supplied in the anoxic reaction zone, so that the reflux
  • the aerobic bacteria in the nitrification liquid are converted into anoxic bacteria, and the denitrification efficiency is improved under the synergistic effect of anoxic hydrolysis acidification and denitrification bacteria, and the treatment in the anoxic reaction zone is the first step of biological purification;
  • the mixed solution degraded by the first process is lifted to the uniform spray water distribution pipe 6.2 located in the upper part of the anoxic reaction zone, and the mixed solution enters the aerobic biological reaction zone uniformly from top to bottom through the water distribution pipe, and the collected organic waste gas (VOCs)
  • VOCs collected organic waste gas
  • the input in the lower part of the aerobic reaction zone flows through the aerobic reaction zone from bottom to top, the oxygen in the exhaust gas can provide oxygen for the aerobic bacteria in the aerobic reaction zone, and at the same time, the gas phase with a high concentration of volatile organic compounds in the exhaust gas continues to the concentration
  • the low water phase (mixed liquid) is dissolved by mass transfer, and the aerobic bacteria will perform aerobic biological purification reaction on the mixed liquid of dissolved volatile organic compounds to form a nitrifying liquid.
  • a matching Air pipe 15 and regulating valve 16 control the oxygen content of the mixed gas by controlling the air regulating valve.
  • a part of the nitrification liquid collected from the nitrification liquid receiving tank 6.5 at the bottom of the aerobic biological purification area is returned to the anoxic reaction area and mixed with the waste water for the second time, and the other part flows out of the biological treatment tower 6 and the pollutant content is detected. If the pollutant content in the nitrification liquid If it does not meet the standard, it will be processed through the multi-stage biological treatment tower 6; the treatment in the aerobic reaction zone is the second process of biological purification.
  • Oil, water and mud are separated from the nitrifying liquid whose pollutant content reaches the standard, and part of the separated sludge is returned to the anoxic reaction zone.
  • the concentration of dissolved oxygen in the mixed solution is 0.1-0.5mg/l.
  • the gas generated during the anoxic hydrolysis acidification process is mixed with the exhaust gas, and flows up to the aerobic reaction zone.
  • the oxygen content of the organic waste gas or the mixture of organic waste gas and air entering the aerobic reaction zone is >3%.
  • the dissolved amount of volatile organic compounds in the exhaust gas is directly proportional to the concentration difference and solubility of the solute in the gas and liquid phases.
  • the nitrification liquid is separated into floating oil sludge, clear water and sludge during the oil cement separation process.
  • a waste water and waste gas combined treatment device including multiple units such as waste water and waste gas collection, one-stage or multi-stage biological treatment tower 6, and solid-liquid separator 8;
  • the liquid inlet end of the solid-liquid separator 8 is connected with at least one level of biological treatment tower 6, and the biological treatment tower 6 is provided with an aerobic reaction zone and anoxic reaction zone successively from top to bottom, and the aerobic reaction zone and the anoxic reaction zone There is an air distribution chamber 6.6 between them, and the air inlet end of the air distribution chamber 6.6 is connected with a waste gas pollution source, and the connecting pipe between the waste gas pollution source and the air distribution chamber 6.6 is provided with a waste gas suction hood 1, a gas distribution pipe 15, a regulating valve 16, and a fan 2 , the water inlet end of the anoxic reaction zone is connected with a waste water pollution source.
  • the anoxic reaction zone includes the anoxic pool 6.3, specifically the anoxic microbial acidification hydrolysis pool
  • the waste water pollution source is the waste water sump 3
  • the sewage pump 4 is set on the pipeline between the waste water sump 3 and the anoxic pool 6.3
  • An agitator 6.4 is provided in the anoxic tank 6.3
  • a nitrifying liquid receiving tank 6.5 is provided between the anoxic tank 6.3 and the gas distribution chamber 6.6
  • the nitrifying liquid receiving tank 6.5 is an annular groove
  • the top port of the nitrifying liquid receiving tank 6.5 is provided with a
  • the nitrifying liquid receiving tank 6.5 is a facility arranged at the bottom of the aerobic reaction zone and positioned at the top of the anoxic pool 6.3.
  • the center of the nitrifying liquid receiving tank 6.5 is provided with a high 10-50cm overflow plate 6.7, and the bottom of the tank is provided with a drain plate 6.7.
  • the liquid port is communicated with the drain end of the biological treatment tower 6, and a mixed liquid lifting pump 6.1 is arranged on the pipe connecting the nitrifying liquid receiving tank 6.5 and the drain end of the biological treatment tower 6;
  • the aerobic reaction zone includes the aerobic reactor 6.8, in which a large number of fillers with high specific surface are suspended, and aerobic microorganisms adhere to the surface of the indicated fillers or in the state of small droplets, and continuously input the oxygen in the mixed waste gas
  • the pollutants in the waste water and mixed waste gas are the nutrients for microorganisms to carry out aerobic biological purification.
  • the top of the aerobic reactor 6.8 is provided with a number of spray distribution pipes 6.2, and the spray distribution pipes 6.2 are used to A spray mechanism with uniform water distribution per unit area within a set time period, the spray water distribution pipe 6.2 is connected to the anoxic pool 6.3 through pipes, and the exhaust end of the biological treatment tower 6 is set on the top of the spray water distribution pipe 6.2.
  • the exhaust end of the biological treatment tower 6 is the exhaust end of the waste gas containing air and pollutants at the top of the tower after being treated by one or more stages of biological treatment towers.
  • the final discharge cylinder 5 is connected. If multi-stage biological treatment is adopted, the discharge end is connected to the intake end of the next-stage biological treatment tower 6, and the exhaust gas final discharge cylinder 5 is arranged at the exhaust end of the last-stage biological treatment tower 6 tower top.
  • a mud bucket 8.1 is provided in the solid-liquid separator 8, and a central guide tube 8.2 is provided on the top of the mud bucket 8.1.
  • the guide tube 8.2 is connected with the water outlet of the biological treatment tower 6, and the outer side of the center guide tube 8.2 is provided with an annular oil overflow tank 8.4 and an annular overflow weir 8.5 sequentially from top to bottom, and the annular oil overflow tank 8.4 and the annular overflow weir 8.5 are both Located on the top of the bottom opening of the central diversion cylinder 8.2, there is an oil-water separation annular diversion baffle 8.6 between the annular oil overflow tank 8.4 and the annular overflow weir 8.5, and the oil-water separation annular diversion baffle 8.6 is used to prevent floating sludge from entering the annular overflow Weir 8.5;
  • the annular oil overflow tank 8.5 is connected with the oil discharge end of the solid-liquid separator 8, the oil discharge end of the solid-liquid separator 8 is connected with a sludge drying treatment system, and the annular overflow weir 8.5 is connected with the drain end of the solid-liquid separator 8,
  • the bottom port of the mud bucket 8.1 is connected with the sludge discharge end of the solid-liquid separator 8, and the sludge discharge end of the solid-liquid separator 8 is respectively connected with the anoxic tank 6.3 and the sludge drying treatment system, and the sludge is discharged through the solid-liquid separator 8.
  • the components involved in the sludge diversion include a sludge return pump 13 , a control valve 12 before the pump, a return flow control valve 14 , and an excess sludge discharge valve 11 .
  • the multi-stage biological treatment tower 6 refers to a second or higher biological treatment tower 6 that is connected in series after the first-level biological treatment tower 6 and whose functional principle is the same as that of the first-level biological treatment tower 6.
  • the concentration of waste water and waste gas pollutants has been reduced, but if it fails to meet the standard, it is necessary to install a second-level or higher biological treatment tower 6 .
  • the basic principle is: the first-level biological treatment tower 6 treats waste water and waste gas. With the gradual increase of operating time, the concentration of pollutants is gradually reduced, and the concentration of pollutants in the circulating spray liquid in the tower is gradually increased.
  • the phase concentration difference gradually decreases, the mass transfer rate and efficiency of pollutants in the gas phase to the liquid phase gradually decrease, and it is impossible to ensure that the exhaust gas and waste water meet the standards.
  • the biological treatment tower 6 of level two or above systematically reduces the concentration of pollutants in the circulating spray liquid in the tower, which can ensure that the concentration difference between the gas and liquid phases of pollutants remains relatively stable, and the residual pollutants in the gas phase flow to the liquid
  • the mass transfer speed and efficiency are basically stable, so that the pollutants in the waste gas and wastewater can be continuously and steadily reduced stepwise until they reach the standard.
  • Anoxic process the waste water is introduced into the first-stage anoxic pool 6.3, and the anoxic pool 6.3 is filled with the nitrifying liquid overflowing from the bottom of the aerobic reactor 6.8, the nitrifying liquid receiving tank 6.5, and the raw waste water mixed with the waste water, and passed through the agitator 6.4 Stirring, no oxygen supply, dissolved oxygen concentration controlled at 0.1-0.5mg/l, the aerobic waste is transformed into anoxic waste, and the biochemical groups C, N, and P in organic wastewater under the action of anoxic organisms It can promote the hydrolysis and acidification of waste gas dissolved in water and refractory pollutants (such as benzene series, high molecular compounds), and convert them into easily degradable low molecular compounds.
  • refractory pollutants such as benzene series, high molecular compounds
  • the total nitrogen in wastewater is converted into nitrogen gas through anoxic denitrification.
  • Hydrogen sulfide, carbon dioxide and other malodorous gases are simultaneously produced during anoxic hydrolysis and acidification.
  • the raw wastewater and returning nitrifying liquid are treated in the anoxic process, they are lifted by the mixed liquid lifting pump 6.1 to the spray distribution pipe 6.2, and the generated malodorous gases such as nitrogen, hydrogen sulfide, and carbon dioxide flow upward from the center hole of the upper nitrifying liquid receiving tank 6.5 to the aerobic reactor 6.8.
  • Aerobic process the mixed liquid is sprayed through a group of spray distribution pipes 6.2 composed of multiple spray pipes or spray heads, and the mixed liquid is evenly sprayed from top to bottom on the well covered with biological fillers.
  • the waste gas containing oxygen and volatile organic compounds (VOCs) to be treated at the same time enters the air distribution chamber 6.6 through the air inlet at the bottom of the aerobic reactor 6.8.
  • the gas chamber 6.6 mixes and homogenizes gases containing oxygen, volatile organic compounds (VOCs), oily pollutants, and nitrogen, hydrogen sulfide, carbon dioxide and other gases produced in the anoxic process, and flows through the aerobic reactor 6.8 uniformly from bottom to top.
  • the microorganisms attached to the filler and the microorganisms in the spray droplet sludge are transformed into aerobic microorganisms under the condition of sufficient oxygen and organic oxygen;
  • the volatile organic compounds (VOCs) in the waste gas are based on the principle of gas and water mass transfer ,
  • the gas phase with high concentration of volatile organic compounds (VOCs) continuously transfers and dissolves to the water phase with low concentration, and the dissolved amount is proportional to the concentration difference and solubility of the solute in the gas and liquid phases;
  • Aerobic biological purification is to convert COD and VOCs in wastewater and waste gas into carbon dioxide, water, ammonia nitrogen and nitrate nitrogen through aerobic biological reaction.
  • Spray nitrifying liquid drops to the nitrifying liquid receiving tank 6.5 at the bottom, part of the nitrifying liquid flows back to the anoxic pool 6.3 at the bottom through the annular overflow plate 6.7 in the nitrifying liquid receiving tank 6.5, and the other part flows into the nitrifying liquid receiving tank 6.5 It is discharged into the anoxic tank 6.3 of the secondary biological treatment tower 6 through the drain pipe at the bottom of the tank, and enters the solid-liquid separator 8 without the secondary biological treatment tower 6.
  • the tail gas is discharged from the final waste gas discharge tube 5 at the top of the tower, and the waste gas that does not meet the standard is connected to the air inlet of the next-level biological treatment tower 6, and the exhaust gas that meets the standard is connected to the final waste gas discharge tube 5 and discharged into the environment.
  • the "oil” of the solid-liquid separator 8 is animal and vegetable oil, mineral oil, and aging dead species in the biological treatment tower.
  • the nitrifying liquid is a mixture of mud and water, and there will be a small amount of floating oil in the raw water and exhaust gas with a density lighter than water.
  • the nitrifying liquid enters the central guide tube 8.2, flows downward, and is dispersed by the conical water retaining plate 8.3 to the Surrounding upwards, a mud-water separation area is formed.
  • the sludge sinks to the bottom mud bucket 8.1 and is discharged from the mud discharge port.
  • the clear water enters the annular overflow weir 8.5 in the middle layer, and then Discharged from the clean water discharge port, the oil sludge floats up.
  • an oil-water separation annular diversion baffle 8.6 is set at the bottom of the overflow weir and the upper part of the mud-water separation area to make The floating sludge is diverted away from the overflow weir to ensure that the floating sludge is not carried out from the overflow weir.
  • Sludge diversion is based on the fact that the nitrification liquid discharged from the biological treatment tower 6 is a mud-water mixture, which contains a large number of microbial species. It is necessary to reflux some microbial species to ensure that the microbial species in the biological treatment tower 6 To maintain a reasonable concentration range, the removal of total phosphorus in the biological treatment tower 6 mainly relies on the anaerobic state of polyphosphate for purification, and the anaerobic state of the sludge produced by the solid-liquid separator 8 meets the conditions for polyphosphate polyphosphate.
  • the sludge discharged from the solid-liquid separator 8 flows back to the anoxic pool 6.3 of the biological treatment tower 6 through the sludge return pump 13 and the control valve of the sludge diversion system to adjust the amount of the returned sludge. After entering the sludge return pump 13, it is mixed with excess sludge and then discharged into the sludge drying treatment system.
  • Wastewater sources amino acid production workshop cleaning fluid, ground flushing water, domestic sewage in the factory area;
  • Sources of waste gas Ammonium water configuration and storage in amino acid production workshops, product concentrated waste gas, unorganized waste gas emissions from workshops, waste gas from sewage treatment systems, etc.
  • the main technical parameters of the processing technology device are as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种废水、废气联合处理方法及装置,包括:废气、废水经收集进入生物处理塔(6);废水收集至生物处理塔内的缺氧反应区,且缺氧反应区顶部的好氧反应区回流的硝化液和废水混合,并形成混合液,在缺氧水解酸化和反硝化的协同作用下提高脱氮效率;混合液和废气提升至好氧反应区内,好氧菌对混合液进行好氧生物净化反应,形成硝化液,一部分硝化液回流至缺氧反应区并与废水二次混合,另一部分硝化液流出生物处理塔(6)并检测污染物含量,若硝化液中污染物含量不达标则通过多级生物处理塔(6)处理;具有设备投资省、设备占地少、设备运行成本低、处理效果好、处理后排放废水、废气同时达标等优点。

Description

一种废水、废气联合处理方法及装置 技术领域
本发明涉及废水、废气生物处理技术领域,特别是涉及一种废水、废气联合处理方法及装置。
背景技术
目前国内外广泛采用生物法处理工业、城镇、农村有机废水,由于现有处理工艺处理系统的缺氧、好氧工序全部为水浸式生物处理系统、好氧工序生物箘需用增压风机将空气或氧气输送到池底供氧。一方面由于供气设备投资大、能耗高,导致不可能将大气量的含有氧气及挥发性有机污染物的废气输送到池底供氧和处理污染物,另一方面由于废气在水中溶解度很低,废气中的污染物与好氧微生物箘接触效率很低,导致污染物处理效率很低,气体输入池底需高能耗、气体中的氧及待去除的污染物在水中的溶解度低,需溶解于水后才能与好氧微生物接触,接触效率低,所以现有废水处理技术方法不可能同时有效处理废气。
目前国内外广泛采用的生物法处理挥发性有机废气(VOCs)工艺技术,其装置特征为一种内置悬挂生物填料,好氧微生物箘内喷淋循环,含有氧气及污染物的废气作为氧源。降解废气中污染物的技术。现有技术存在以下缺点:
1)由于装置内的循环槽不具备降解污染物功能的条件,加上容积小,随着好氧微生物箘液内循环次数增多、时间延长,溶解进入微生物箘液的污染物浓度逐渐增高。当污染物、特别是有毒污染物达到一定浓度后会导致微生物箘种活性抑制或箘种死亡,;
2)溶解进入微生物箘液的污染物浓度逐渐增高,根据化工传质原理,废气中污染物浓度与微生物箘液中污染物浓度差逐渐减少,不能及时去除溶解在箘液中污染物将会逐渐降低去除效果,原有方法只能定期更换或连续进入新鲜水并连续排出吸收饱和污染水,保持足够的吸收效率的方法;
3)好氧微生物箘种吸收污染物作为养份繁殖代谢后微生物箘种数量逐渐增多,将产生多余微生物污泥,鉴于处理装置系统配置及操作管理等原因多余微生物污泥不能及时排除,将降低好氧微生物箘种活性,从而降低废气处理效果。严重时会使系统不能正常运行;
4)现有生物法处理挥发性有机废气(VOCs)工艺技术装置,循环微生物箘液 中通常只含有废气中的污染物,养份单一,运行时不添加好氧微生物箘种所需的易降解养份(如生活污水中的有机物、氮、磷等微量成分),污染物去除效率较低;
5)鉴于以上原因,现有生物法处理挥发性有降机废气(VOCs)工艺技术装置未能设置同时处理废水的进出口、内部功能,所以不可能同时有效处理有机废水和挥发性有机废气。
发明内容
本发明的目的是提供一种废水、废气联合处理方法及装置,以解决上述现有技术存在的问题。
为实现上述目的,本发明提供一种废水、废气联合处理方法,该方法包括:废气、废水经收集进入生物处理塔;
废水收集至生物处理塔内的缺氧反应区,且缺氧反应区顶部的好氧反应区回流的硝化液和废水混合,并形成混合液,缺氧反应区内不供氧,使好氧菌转化为缺氧菌,并在缺氧水解酸化和反硝化的协同作用下提高脱氮效率;
混合液和废气提升至好氧反应区内,废气为好氧反应区内的好氧菌提供氧气,同时废气中的挥发性有机物浓度高的气相不断向浓度低的水相传质溶解,好氧菌对混合液进行好氧生物净化反应,形成硝化液,一部分硝化液回流至缺氧反应区并与废水二次混合,另一部分硝化液流出生物处理塔并检测污染物含量,若硝化液中污染物含量不达标则通过多级生物处理塔处理;
将污染物含量达标的硝化液进行油水泥分离处理,分离的部分污泥回流至缺氧反应区。
优选的,所述混合液中溶解氧的浓度为0.1-0.5mg/l。
优选的,所述缺氧水解酸化的过程中生成的气体与废气混合,并升流至所述好氧反应区。
优选的,废气中的挥发性有机物的溶解量与溶质在气、液两相浓度差、溶解度成正比。
优选的,所述油水泥分离处理的过程中将硝化液分离为上浮油泥、清水和污泥。
一种废水、废气联合处理装置,包括固液分离器,所述固液分离器的进液端 连通有至少一级生物处理塔;
所述生物处理塔内由上而下依次设有好氧反应区和缺氧反应区,所述好氧反应区与所述缺氧反应区之间设有布气室,所述布气室的进气端连通有废气污染源,所述缺氧反应区的进水端连通有废水污染源。
优选的,所述缺氧反应区包括缺氧池,所述缺氧池内设有搅拌器,所述缺氧池与所述布气室之间设有硝化液接收槽,所述硝化液接收槽为环形槽,且所述硝化液接收槽的顶口处设有溢水板,所述硝化液接收槽与所述生物处理塔的排水端连通;
所述好氧反应区包括好氧反应器,所述好氧反应器的顶部设有若干喷淋布水管,所述喷淋布水管与所述缺氧池通过管道连通,且所述生物处理塔的排气端设置在所述喷淋布水管的顶部。
优选的,所述固液分离器内设有泥斗,所述泥斗的顶部设有中心导流筒,所述泥斗与所述中心导流筒之间设有锥形挡水板,所述中心导流筒与所述生物处理塔的出水端连通,所述中心导流筒的外侧由上而下依次设有环形溢油槽和环形溢水堰,所述环形溢油槽和环形溢水堰均位于所述中心导流筒底口的顶部,所述环形溢油槽和环形溢水堰之间设有油水分离环形导流挡板,所述油水分离环形导流挡板用于阻挡上浮油泥进入所述环形溢水堰;
所述环形溢油槽与固液分离器的排油端连通,所述固液分离器的排油端连通有污泥干化处理系统,所述环形溢水堰与固液分离器的排水端连通。
优选的,所述泥斗的底口与所述固液分离器的排泥端连通,所述固液分离器的排泥端分别连通所述缺氧池和污泥干化处理系统。
优选的,多级所述生物处理塔之间串联。
本发明公开了以下技术效果:本发明是针对上述现有技术的弊病,提供一种具有同时处理有机废水及挥发性有机废气(VOCs)的方法及装置,具有设备投资省、设备占地少、设备运行成本低、处理效果好、处理后排放废水、废气同时达标等优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发 明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中废气联合处理装置的结构示意图;
图2为实施例1中废气联合处理方法的流程示意图;
图3为实施例2中对氨基酸生产废水、废气进行联合处理的流程示意图;
图4为本发明固液分离器的结构示意图;
其中,1为废气吸风罩,2为风机,3为废水集水池,4为污水泵,5为废气终排筒,6为生物处理塔,6.1为混合液提升泵,6.2为喷淋布水管,6.3为缺氧池,6.4为搅拌器,6.5为硝化液接收槽,6.6为布气室,6.7为溢水板,6.8为好氧反应器,8为固液分离器,8.1为泥斗,8.2为中心导流筒,8.3为锥形挡水板,8.4为环形溢油槽,8.5为环形溢水堰,8.6为油水分离环形导流挡板,11为多余污泥排放阀,12为泵前控制阀,13为污泥回流泵,14为回流量控制阀,15为配气管,16为调节阀。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明提供一种废水、废气联合处理方法,该方法包括:废气、废水经收集进入生物处理塔6;
收集的废水输入至生物处理塔6内的缺氧反应区,且与缺氧反应区上部的好氧反应区回流的硝化液进行混合,形成混合液,缺氧反应区内不供氧,使回流硝化液中的好氧菌转化为缺氧菌,并在缺氧水解酸化和反硝化菌的协同作用下提高脱氮效率,缺氧反应区内的处理为生物净化第一工序;
经第一工序降解的混合液提升到位于缺氧反应区上部的均匀喷淋布水管6.2,混合液通过布水管均匀的自上而下进入好氧生物反应区内,收集的有机废气(VOCs)在好氧反应区低部输入自下而上流经好氧反应区,废气中的氧气可为 好氧反应区内的好氧菌提供氧气,同时废气中的挥发性有机物浓度高的气相不断向浓度低的水相(混合液)传质溶解,好氧菌对溶解有挥发性有机物混合液进行好氧生物净化反应,形成硝化液,如挥发性有机物中氧气含量不足,在进气口设置有配气管15和调节阀16,通过控制空气调节阀控制混合气氧含量。从好氧生物净化区底部硝化液接收槽6.5收集硝化液的一部分回流至缺氧反应区并与废水二次混合,另一部分流出生物处理塔6并检测污染物含量,若硝化液中污染物含量不达标则通过多级生物处理塔6处理;好氧反应区内的处理为生物净化第二工序,
将污染物含量达标的硝化液进行油、水、泥分离处理,分离出的部分污泥回流至缺氧反应区。
进一步优化方案,混合液中溶解氧的浓度为0.1-0.5mg/l。
进一步优化方案,缺氧水解酸化的过程中生成的气体与废气混合,并升流至好氧反应区。
进一步优化方案,进入好氧反应区的有机废气或有机废气与空气的混合气体氧含量>3%.
进一步优化方案,废气中的挥发性有机物的溶解量与溶质在气、液两相浓度差、溶解度成正比。
进一步优化方案,油水泥分离处理的过程中将硝化液分离为上浮油泥、清水和污泥。
一种废水、废气联合处理装置,包括废水、废气收集、一级或多级生物处理塔6、固液分离器8等多个单元;
固液分离器8的进液端连通有至少一级生物处理塔6,生物处理塔6内由上而下依次设有好氧反应区和缺氧反应区,好氧反应区与缺氧反应区之间设有布气室6.6,布气室6.6的进气端连通有废气污染源,废气污染源与布气室6.6的连接管道上设置废气吸风罩1、配气管15、调节阀16、风机2,缺氧反应区的进水端连通有废水污染源。
进一步优化方案,缺氧反应区包括缺氧池6.3,具体为缺氧微生物酸化水解池,废水污染源为废水集水池3,废水集水池3与缺氧池6.3之间的管道上设置污水泵4,缺氧池6.3内设有搅拌器6.4,缺氧池6.3与布气室6.6之间设有硝 化液接收槽6.5,硝化液接收槽6.5为环形槽,且硝化液接收槽6.5的顶口处设有溢水板6.7,硝化液接收槽6.5为设置在好氧反应区底部且位于缺氧池6.3上部的设施,硝化液接收槽6.5中心设有高10-50cm的溢水板6.7,槽底设有排液口与生物处理塔6的排水端连通,硝化液接收槽6.5与生物处理塔6的排水端连通的管道上设置混合液提升泵6.1;
好氧反应区包括好氧反应器6.8,好氧反应器6.8内悬挂有大量高比表面的填料,好氧微生物附着在所指填料表面或以小液滴状态,连续输入的混合废气中的氧为微生物呼吸所需的氧,废水和混合废气中的污染物为微生物的养份进行好氧生物净化,好氧反应器6.8的顶部设有若干喷淋布水管6.2,喷淋布水管6.2为按单位面积在设定时间周期内布水量均等的喷淋机构,喷淋布水管6.2与缺氧池6.3通过管道连通,且生物处理塔6的排气端设置在喷淋布水管6.2的顶部。
生物处理塔6的排气端为位与塔顶处的含有空气及污染物的废气经一级或多级生物处理塔处理后的排出端,如采用一级生物处理,其排出端直接与废气终排筒5相连,如采用多级生物处理,排出端与后一级生物处理塔6进气端相连,在最后一级生物处理塔6塔顶的排气端设置废气终排筒5。
进一步优化方案,固液分离器8内设有泥斗8.1,泥斗8.1的顶部设有中心导流筒8.2,泥斗8.1与中心导流筒8.2之间设有锥形挡水板8.3,中心导流筒8.2与生物处理塔6的出水端连通,中心导流筒8.2的外侧由上而下依次设有环形溢油槽8.4和环形溢水堰8.5,环形溢油槽8.4和环形溢水堰8.5均位于中心导流筒8.2底口的顶部,环形溢油槽8.4和环形溢水堰8.5之间设有油水分离环形导流挡板8.6,油水分离环形导流挡板8.6用于阻挡上浮油泥进入环形溢水堰8.5;
环形溢油槽8.5与固液分离器8的排油端连通,固液分离器8的排油端连通有污泥干化处理系统,环形溢水堰8.5与固液分离器8的排水端连通,泥斗8.1的底口与固液分离器8的排泥端连通,固液分离器8的排泥端分别连通缺氧池6.3和污泥干化处理系统,通过固液分离器8对污泥进行分流,污泥分流涉及部件包括污泥回流泵13、泵前控制阀12、回流量控制阀14、多余污泥排放阀11。
进一步优化方案,一级或多级生物处理塔6之间串联组合。多级生物处理塔6指以串联方式连接在一级生物处理塔6后,功能原理与一级生物处理塔6相同 的二级或二级以上的生物处理塔6,经一级生物处理塔6处理,废水、废气污染物浓度得到下降,但未能达标的需要设置二级或二级以上的生物处理塔6。基本原理为:一级生物处理塔6处理废水、废气,随运行时间的逐步增加,污染物浓度得到逐步下降,塔内循环喷淋液中污染物浓度逐步升高,污染物在气、液两相浓度差逐步减少,气相中的污染物向液相传质速度,效率逐步降低,不能确保排出废气、废水达标。二级或二级以上生物处理塔6,系统性降低了塔内循环喷淋液中污染物浓度,可以确保污染物在气、液两相浓度差保持相对稳定,气相中残留的污染物向液相传质速度,效率基本稳定,从而使废气、废水中污染物得到连续稳定的阶梯式下降,直到达标。
实施例1
参照图1-2,以二级串联生物塔为例,详细说明本装置工艺流程及技术原理:
1)缺氧工序:废水引入第一级缺氧池6.3,在缺氧池6.3中蓄满来自好氧反应器6.8底部喷硝化液接收槽6.5顶溢出的硝化液和废水原水混合,通过搅拌器6.4搅拌、不供氧,溶解氧浓度控制在0.1-0.5mg/l的条件下,好氧箘转化为缺氧箘,在缺氧生物箘作用下有机废水中的易生化C、N、P组份,可促进废气溶解在水中难降解污染物(如苯系物、高分子化合物)的水解酸化,转化成易降解的低分子化合物,废水中的总氮经缺氧反硝化箘作用转化成氮气,在缺氧水解酸化过程中同时产生硫化氢、二氧化碳等恶臭气体。原废水和回流硝化液经缺氧工序处理后,由混合液提升泵6.1提升到喷淋布水管6.2,产生的氮气、硫化氢、二氧化碳等恶臭气体从上部的硝化液接收槽6.5中心孔升流到好氧反应器6.8。
2)好氧工序:混合液通过一组由多个喷淋管或喷淋头组成的喷淋布水管6.2的喷淋,将混合液均匀的自上而下喷淋在挂满生物填料的好氧反应器6.8内,同时待处理含有氧气及挥发性有机物(VOCs)的废气(废气中氧浓度>3%),通过位于好氧反应器6.8底部的进气口进入布气室6.6,在布气室6.6将含有氧气、挥发性有机物(VOCs)、油状污染物及缺氧工序产生的氮气、硫化氢、二氧化碳等气体进行混合均化,均匀的自下而上流经好氧反应器6.8内,附着在填料上的微生物及喷淋液滴状污泥中的微生物在具有充足氧气、有机氧份的条件下转化为好氧微生物;废气中的挥发性有机物(VOCs)根据气、水传质原理、挥发性有机物(VOCs)浓度高的气相不断向浓度低水相传质溶解,其溶解量与溶质在气、液两相浓度差、 溶解度成正比;好氧微生物通过吸收、吸附、降解等过程进行好氧生物净化,通过好氧生物反应废水及废气中的COD、VOCs等转化成二氧化碳、水、氨氮转化硝酸盐氮。喷淋硝化液滴落到底部的硝化液接收槽6.5,部分硝化液在硝化液接收槽6.5通过环形的溢水板6.7上口溢回流到底部的缺氧池6.3,另一部分在硝化液接收槽6.5通过位于槽底的排液管排入二级生物处理塔6的缺氧池6.3,不设置二级生物处理塔6则进入固液分离器8。处理后尾气从塔顶废气终排筒5排出,废气未达标接入下一级生物处理塔6的进气口,达标废气接入废气终排筒5排入环境。
3)油、水、泥分离:固液分离器8的“油”为动植物油、矿物油及生物处理塔内老化死亡箘种腐烂上浮的密度低于水的密度(<1.0g/cm 3)的上浮物总称;“水”为密度约为1.0g/cm 3,位于分离器中间层的清净水;所述的“泥”为泥状的存在有大量生物活性的缺氧、好氧生物箘污泥,密度>1.0g/cm 3
硝化液为泥水混合物,并且会带有原水、废气中的少量密度比水轻的上浮性油类物,硝化液进入中心导流筒8.2,向下流动,由锥形挡水板8.3分散流向到四周向上,形成泥水分离区,在泥水分离区根据泥、水、油密度不同,分别为污泥下沉到底层泥斗8.1后由排泥口排出,清水在中间层进入环形溢水堰8.5,而后从清水排放口排出,油泥上浮,针对在溢水堰周边形成的油泥上浮过程靠近溢水堰易随水流带出的问题,在溢水堰底部,泥水分离区上部设置油水分离环形导流挡板8.6,使上浮油泥导流的远离溢水堰,确保上浮油泥不从溢水堰带出。
4)污泥分流:污泥分流为根据生物处理塔6排出的硝化液为泥水混合液,内含大量微生物箘种,需要对部分微生物箘种进行回流,才能确保生物处理塔6内微生物箘种保持合理的浓度范围,生物处理塔6的总磷去除主要依靠厌氧状态的聚磷箘进行净化,固液分离器8产生的沉泥厌氧状态符合的聚磷箘聚磷条件。固液分离器8排出的污泥通过污泥分流系统的污泥回流泵13及控制阀调节回流污泥量,回流到生物处理塔6的缺氧池6.3,固液分离器8排出上浮油泥接入污泥回流泵13后与多余污泥混合后排入污泥干化处理系统。
实施例2
参照图3,与上述实施例1的不同之处在于,本实施例属于对上述实施例1的具体应用情况做进一步说明,以对氨基酸生产废水、废气进行联合处理为例, 整体采取二级生物处理。
氨基酸生产的废水、废气特征如下:
1)废水来源:氨基酸生产车间清洗液、地面冲洗水、厂区生活污水;
2)废气来源:氨基酸生产车间氨水配置、储存、产品浓缩废气、车间无组织排放废气、污水处理系统等废气等。
处理技术装置主要技术参数如下:
表1主要技术参数表
Figure PCTCN2021122818-appb-000001
Figure PCTCN2021122818-appb-000002
处理技术装置处理效果如下:
表2处理效果表
Figure PCTCN2021122818-appb-000003
Figure PCTCN2021122818-appb-000004
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示 的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

  1. 一种废水、废气联合处理方法,其特征在于,该方法包括:
    废气、废水经收集进入生物处理塔(6);
    废水收集至生物处理塔(6)内的缺氧反应区,且缺氧反应区上部的好氧反应区回流的硝化液和废水混合,并形成混合液,缺氧反应区内不供氧,使好氧菌转化为缺氧菌,并在缺氧水解酸化和反硝化的协同作用下提高脱氮效率;
    混合液和废气提升至好氧反应区内,废气为好氧反应区内的好氧菌提供氧气,同时废气中的挥发性有机物浓度高的气相不断向浓度低的水相传质溶解,好氧菌对混合液进行好氧生物净化反应,形成硝化液,一部分硝化液回流至缺氧反应区并与废水二次混合,另一部分硝化液流出生物处理塔(6)并检测污染物含量,若硝化液中污染物含量不达标则通过多级生物处理塔(6)处理;
    将污染物含量达标的硝化液进行油水泥分离处理,分离的部分污泥回流至缺氧反应区。
  2. 根据权利要求1所述的废水、废气联合处理方法,其特征在于:所述混合液中溶解氧的浓度为0.1-0.5mg/l。
  3. 根据权利要求1所述的废水、废气联合处理方法,其特征在于:所述缺氧水解酸化的过程中生成的气体与废气混合,并升流至所述好氧反应区。
  4. 根据权利要求1所述的废水、废气联合处理方法,其特征在于:废气中的挥发性有机物的溶解量与溶质在气、液两相浓度差、溶解度成正比。
  5. 根据权利要求1所述的废水、废气联合处理方法,其特征在于:所述油水泥分离处理的过程中将硝化液分离为上浮油泥、清水和污泥。
  6. 一种废水、废气联合处理装置,基于权利要求1-5任一项所述的废水、废气联合处理方法,其特征在于:包括固液分离器(8),所述固液分离器(8)的进液端连通有至少一级生物处理塔(6);
    所述生物处理塔(6)内由上而下依次设有好氧反应区和缺氧反应区,所述好氧反应区与所述缺氧反应区之间设有布气室(6.6),所述布气室(6.6)的进气端连通有废气污染源,所述缺氧反应区的进水端连通有废水污染源。
  7. 根据权利要求6所述的废水、废气联合处理装置,其特征在于:所述缺氧反应区包括缺氧池(6.3),所述缺氧池(6.3)内设有搅拌器(6.4),所述缺氧池(6.3)与所述布气室(6.6)之间设有硝化液接收槽(6.5),所述硝化液接 收槽(6.5)为环形槽,且所述硝化液接收槽(6.5)的顶口处设有溢水板(6.7),所述硝化液接收槽(6.5)与所述生物处理塔(6)的排水端连通;
    所述好氧反应区包括好氧反应器(6.8),所述好氧反应器(6.8)的顶部设有若干喷淋布水管(6.2),所述喷淋布水管(6.2)与所述缺氧池(6.3)通过管道连通,且所述生物处理塔(6)的排气端设置在所述喷淋布水管(6.2)的顶部。
  8. 根据权利要求7所述的废水、废气联合处理装置,其特征在于:所述固液分离器(8)内设有泥斗(8.1),所述泥斗(8.1)的顶部设有中心导流筒(8.2),所述泥斗(8.1)与所述中心导流筒(8.2)之间设有锥形挡水板(8.3),所述中心导流筒(8.2)与所述生物处理塔(6)的出水端连通,所述中心导流筒(8.2)的外侧由上而下依次设有环形溢油槽(8.4)和环形溢水堰(8.5),所述环形溢油槽(8.4)和环形溢水堰(8.5)均位于所述中心导流筒(8.2)底口的顶部,所述环形溢油槽(8.4)和环形溢水堰(8.5)之间设有油水分离环形导流挡板(8.6),所述油水分离环形导流挡板(8.6)用于阻挡上浮油泥进入所述环形溢水堰(8.5);
    所述环形溢油槽(8.4)与固液分离器(8)的排油端连通,所述固液分离器(8)的排油端连通有污泥干化处理系统,所述环形溢水堰(8.5)与固液分离器(8)的排水端连通。
  9. 根据权利要求8所述的废水、废气联合处理装置,其特征在于:所述泥斗(8.1)的底口与所述固液分离器(8)的排泥端连通,所述固液分离器(8)的排泥端分别连通所述缺氧池(6.3)和污泥干化处理系统。
  10. 根据权利要求6所述的废水、废气联合处理装置,其特征在于:多级所述生物处理塔(6)之间串联。
PCT/CN2021/122818 2021-08-16 2021-10-09 一种废水、废气联合处理方法及装置 WO2023019702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110938426.1A CN113636646A (zh) 2021-08-16 2021-08-16 一种废水、废气联合处理方法及装置
CN202110938426.1 2021-08-16

Publications (1)

Publication Number Publication Date
WO2023019702A1 true WO2023019702A1 (zh) 2023-02-23

Family

ID=78422106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122818 WO2023019702A1 (zh) 2021-08-16 2021-10-09 一种废水、废气联合处理方法及装置

Country Status (2)

Country Link
CN (1) CN113636646A (zh)
WO (1) WO2023019702A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11905194B1 (en) * 2022-09-28 2024-02-20 Zhejiang Haihe Environmental Technology Co., Ltd. Deep denitrification treatment system for wastewater by anaerobic-anoxic-oxic based on high-oxygen three-phase contact

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2247406C (en) * 1996-03-14 2004-04-06 Deep Shaft Technology Inc. Biodegradable effluent nutrient removal
CN101732975A (zh) * 2009-12-15 2010-06-16 中国环境科学研究院 一种新型的处理有毒挥发性有机物的好氧颗粒污泥反应器的工艺和装置
CA2752457A1 (en) * 2010-09-21 2012-03-21 Environ International Corporation A core column simulator for a wastewater biotreatment system and methods of use
CN108751395A (zh) * 2018-06-01 2018-11-06 北京工业大学 两级除硫化氢和挥发性有机物耦合好氧反硝化深度脱氮的方法
CN111825285A (zh) * 2020-08-18 2020-10-27 浙江海河环境科技有限公司 一种a/o塔生物处理含cod、氮有机污水的一体化装置和方法
CN112221343A (zh) * 2020-09-28 2021-01-15 成都达源环保工程有限公司 医药化工废水及有机废气脱附冷却联合生物净化处理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253823B (zh) * 2013-05-02 2014-04-09 中国农业大学 人工湿地高效污水处理协同甲烷废气氧化的方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2247406C (en) * 1996-03-14 2004-04-06 Deep Shaft Technology Inc. Biodegradable effluent nutrient removal
CN101732975A (zh) * 2009-12-15 2010-06-16 中国环境科学研究院 一种新型的处理有毒挥发性有机物的好氧颗粒污泥反应器的工艺和装置
CA2752457A1 (en) * 2010-09-21 2012-03-21 Environ International Corporation A core column simulator for a wastewater biotreatment system and methods of use
CN108751395A (zh) * 2018-06-01 2018-11-06 北京工业大学 两级除硫化氢和挥发性有机物耦合好氧反硝化深度脱氮的方法
CN111825285A (zh) * 2020-08-18 2020-10-27 浙江海河环境科技有限公司 一种a/o塔生物处理含cod、氮有机污水的一体化装置和方法
CN112221343A (zh) * 2020-09-28 2021-01-15 成都达源环保工程有限公司 医药化工废水及有机废气脱附冷却联合生物净化处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11905194B1 (en) * 2022-09-28 2024-02-20 Zhejiang Haihe Environmental Technology Co., Ltd. Deep denitrification treatment system for wastewater by anaerobic-anoxic-oxic based on high-oxygen three-phase contact

Also Published As

Publication number Publication date
CN113636646A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
US20220112112A1 (en) A/o tower integrated device for biological treatment of organic sewage containing cod and nitrogen and method by using the same
CN102107988A (zh) 一种酚胺废水处理及回用的方法和装置
CN114291964B (zh) 一种脱氮回收磷的污水处理系统及其方法
CN105948381A (zh) 环保型污水处理设备
CN210001741U (zh) 污水处理装置
CN105668947A (zh) 一种污水净化过滤系统
WO2023019702A1 (zh) 一种废水、废气联合处理方法及装置
CN107324511A (zh) 一种利用氨水作为补水的冷却循环系统
CN108455730B (zh) 一种短程硝化、反硝化一体化生物脱氮装置
KR100217893B1 (ko) 고정생물막 공법과 우회흐름을 이용한 폐수의 유기물, 질소, 인 동시 제거장치
CN117105462A (zh) 一种食品加工废水处理系统及方法
CN109485151B (zh) 合成气制乙二醇生产废水处理的装置及其处理工艺
CN202011812U (zh) 一种处理高浓度有机废水一体化设备
CN205442795U (zh) 一种用于火炸药废水处理的高效曝气生物滤池装置
CN210012704U (zh) 一种经济型印染废水脱氮处理系统
CN104355493B (zh) 一种一体化好氧深度处理装置
CN210393887U (zh) 一种小型污水处理一体化设备
CN107010796A (zh) 一种利用剩余氨水作为冷却循环补水的系统
CN210176666U (zh) 一种生活垃圾渗滤液高效处理一体机
CN208933075U (zh) 一种垃圾渗滤液处理装置
CN207158922U (zh) 一种利用氨水作为补水的冷却循环系统
CN205953641U (zh) 一种炼油轻度污染废水处理系统
CN205398376U (zh) 一种稳定高效的农村生活污水处理装置
CN108911439A (zh) 新型tft-lcd有机废水处理装置
CN212864467U (zh) 污水处理系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE