WO2023019690A1 - 一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法 - Google Patents

一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法 Download PDF

Info

Publication number
WO2023019690A1
WO2023019690A1 PCT/CN2021/121054 CN2021121054W WO2023019690A1 WO 2023019690 A1 WO2023019690 A1 WO 2023019690A1 CN 2021121054 W CN2021121054 W CN 2021121054W WO 2023019690 A1 WO2023019690 A1 WO 2023019690A1
Authority
WO
WIPO (PCT)
Prior art keywords
q345qd
steel
rolling
stage
temperature
Prior art date
Application number
PCT/CN2021/121054
Other languages
English (en)
French (fr)
Inventor
丁叶
洪君
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2023019690A1 publication Critical patent/WO2023019690A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the invention relates to the technical field of iron and steel production, in particular to a ferritic pearlite Q345qD bridge steel extra-thick plate and a manufacturing method.
  • bridge steel plates with a thickness of no more than 68 mm are generally used in bridge engineering, and steel plates with a thickness of more than 100 mm are rarely used, and the research is insufficient.
  • some parts of bridge engineering still need to use bridge steel with super large cross-sections.
  • the previous practice was to use two steel plates superimposed to meet the super-thickness requirement, but this method is difficult to construct, the welding quality is difficult to guarantee, and the structural safety is not high when it is used in the main force-bearing position. It is particularly important to develop high-quality, easy-to-weld bridge steels with a thickness of ⁇ 100mm that meet the requirements of standard mechanical properties.
  • the present invention aims at the above technical problems, overcomes the shortcomings of the prior art, and provides a ferritic pearlite type Q345qD bridge steel extra-thick plate, whose chemical composition and mass percentage are as follows: C: 0.13%-0.16%, Si: 0.20%- 0.40%, Mn: 1.40%-1.70%, P ⁇ 0.015%, S ⁇ 0.005%, Nb: 0.020%-0.050%, V: 0.020%-0.050%, Al: 0.015%-0.045%, Ti: 0.008%- 0.025%, Ni: 0.15%-0.35%, the balance is Fe and unavoidable impurities; the normalized structure of the steel plate is mainly ferrite and pearlite.
  • the aforementioned ferritic pearlite type Q345qD bridge steel special thick plate has the following chemical composition and mass percentage: C: 0.136%-0.154%, Si: 0.27%-0.38%, Mn: 1.51%-1.69%, P ⁇ 0.013%, S ⁇ 0.004%, Nb: 0.022%-0.047%, V: 0.021%-0.045%, Al: 0.017%-0.042%, Ti: 0.009%-0.024%, Ni: 0.16%-0.31%, The balance is Fe and unavoidable impurities.
  • the aforementioned ferritic pearlite type Q345qD bridge steel special thick plate has the following chemical composition and mass percentage: C: 0.133%-0.157%, Si: 0.21%-0.36%, Mn: 1.42%-1.68%, P ⁇ 0.013%, S ⁇ 0.004%, Nb: 0.023%-0.045%, V: 0.022%-0.047%, Al: 0.017%-0.043%, Ti: 0.009%-0.022%, Ni: 0.17%-0.34%, The balance is Fe and unavoidable impurities.
  • Another object of the present invention is to provide a method for manufacturing ferritic pearlite type Q345qD bridge steel extra-thick plate, including smelting, composite billet welding, rolling process, heat treatment process,
  • Smelting process molten steel undergoes desulfurization pretreatment, converter smelting, LF refining, RH vacuum treatment, and then casts into continuous casting slabs through continuous casting;
  • Composite blank welding process use two blanks in the same furnace and the same size with a thickness of 320mm, mill one surface respectively, and use laser electron beam welding to seal and weld the two blanks in the vacuum chamber after superposition;
  • Rolling process including heating, rolling, and controlled cooling after rolling: the slab is heated by a three-stage heating method, and the first stage is heated to a lower temperature of 300-400°C for more than 2 hours to reduce the risk of cracking of the composite billet.
  • the second stage is heated to 860-900°C for intermediate temperature insulation to ensure temperature uniformity.
  • the third stage is heated to 1200-1260°C for heat preservation.
  • the soaking time is 5 ⁇ 0.2h, and the total time in the furnace is 18-25h ;
  • Two-stage controlled rolling is adopted in the austenite recrystallization zone + non-recrystallization zone.
  • the first stage rolling temperature is controlled at 1040-1120°C. High-temperature and large-reduction methods are used.
  • the pass reduction exceeds 40mm, and the total The reduction exceeds 400mm, so that a firm metallurgical bond is formed between the composite welded blanks and a large deformation energy storage;
  • the second stage finish rolling start temperature is 800-830°C;
  • the final rolling temperature is 790-825°C;
  • Heat treatment process after cooling, heat treatment is carried out. Specifically, the heat treatment is to heat the steel plate to 900-920° C. and perform normalizing heat treatment.
  • the normalizing time is controlled at (1.8-2.2) min/mm ⁇ steel plate thickness+15 min.
  • the present invention aims at the difficulty of controlling the strength and low-temperature toughness of extra-thick bridge steel with a thickness greater than 100mm, and needs to improve weldability, and proposes a kind of ferritic pearlite type Q345qD bridge steel extra-thick plate and its production method.
  • the method passes reasonable Composition design and heat treatment process to obtain Q345qD steel plate for bridge structure with suitable strength, high and low temperature toughness, and excellent performance indicators;
  • the present invention controls the smelting process by optimizing the composition design, the carbon equivalent (Ceq) is 0.42%-0.44%, and controls the grain size of the rolled steel plate through a reasonable controlled rolling and controlled cooling process, and then through a suitable normalizing temperature Obtain enough equiaxed grains of ferrite and pearlite, the final steel plate has high strength and excellent low temperature impact performance, and other performance indicators are good, yield strength ReL329-346MPa, tensile strength Rm ⁇ 500MPa, elongation A% ⁇ 20%, -20°C longitudinal impact energy single value ⁇ 120J, transverse bending without cracks;
  • the invention produces an extra-thick bridge steel plate with a steel plate thickness of 150 mm.
  • the steel plate has uniform structure, high strength and good performance indicators.
  • Fig. 1 is the microstructure of 1/2 place (composite billet junction) of 150mm thick steel plate thickness in the embodiment;
  • Fig. 2 is the structure morphology at 1/2 of the normalized thickness of the 150mm thick steel plate in the embodiment.
  • a ferritic pearlite type Q345qD bridge steel special thick plate provided in this example has a thickness of 150mm, and its chemical composition and mass percentage are as follows: C: 0.14%, Si: 0.27%, Mn: 1.47%, P: 0.011%, S: 0.002%, Nb: 0.024%, V: 0.035%, Al: 0.031%, Ti: 0.015%, Ni: 0.17%, and the balance is Fe and unavoidable impurities.
  • the production process is as follows:
  • the molten steel is subjected to desulfurization pretreatment, converter smelting, LF refining, RH vacuum treatment, and then cast into a 320mm thick continuous casting slab by continuous casting.
  • Composite billet welding process Two billets with the same furnace and the same size and 320 cross-section are used to mill one surface respectively, and the two billets are superimposed in a vacuum chamber and then sealed and welded with laser electron beams around them.
  • the slab is heated by a three-stage heating method.
  • the first stage is heated to a lower temperature of 350°C for 2.5 hours, and the second stage is heated to 890°C for 2 hours to ensure the uniformity of temperature.
  • the third stage is heated to Heat preservation at 1250°C, soaking time 5h, total furnace time 22h; after heating, two-stage controlled rolling is adopted in the austenite recrystallization zone + non-recrystallization zone, the first stage rolling temperature is 1100°C, using high temperature and high pressure
  • the second stage finish rolling start temperature is 830°C;
  • the final rolling temperature is 807°C; after rolling, DQ ultra-fast cooling (1-10°C/s ) to carry out a rapid cooling process to make the temperature of redness 638°C.
  • the steel plate is cooled to room temperature and then heat treated.
  • the heat treatment is to heat the steel plate to 915° C., perform normalizing heat treatment, keep warm for 15 minutes, and then air cool to room temperature.
  • the normalized structure of the steel plate is mainly ferrite and pearlite.
  • the mechanical properties of the steel plate obtained under this process are: yield strength 339MPa, tensile strength 521MPa, elongation 30%, Z-direction tensile reduction of area 59%, 1/4 plate thickness -20 °C longitudinal impact average value 244J.
  • the mechanical properties of the steel plates meet the performance requirements of Q345qD in the relevant technical conditions of the GB/T714-2015 "Structural Steel for Bridges" national standard, and the mechanical properties are excellent and have strong operability.
  • the present invention can also have other implementations. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法,涉及钢铁生产技术领域,其化学成分及质量百分比如下:C:0.13%-0.16%,Si:0.20%-0.40%,Mn:1.40%-1.70%,P≤0.015%,S≤0.005%,Nb:0.020%-0.050%,V:0.020%-0.050%,Al:0.015%-0.045%,Ti:0.008%-0.025%,Ni:0.15%-0.35%,余量为Fe和不可避免的杂质;钢板正火态组织主要为铁素体和珠光体。钢板正火交货状态的力学性能:屈服强度ReL329-346MPa、抗拉强度Rm≥500MPa、延伸率A%≥20%、-20℃纵向冲击功单值≥120J、横向弯曲无裂纹。

Description

一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法 技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法。
背景技术
目前,我国桥梁行业正向重载、高速、大跨度方向发展。为适应桥梁技术进步要求,集高强度、高韧性、低屈强比、易焊接等多项性能为一体的新一代高性能桥梁钢是大跨重载铁路钢桥关键构件的首选材料,需求明确而迫切。
随着现代桥梁钢结构向大型化、高参数、安全性、耐久性、全焊接节点钢结构方向发展,桥梁钢的需求量持续增加,对桥梁钢的质量要求越来越高。超大厚度钢板受冶金质量、轧钢设备、轧制压缩比影响,厚度大于100mm的特厚桥梁钢需要保证强度前提下,其-20℃低温冲击需要达到120J以上非常困难,同时还需要兼顾钢板的加工性能、焊接性能。目前,桥梁工程普遍使用厚度不大于68mm的桥梁钢板,厚度>100mm钢板使用量较少,研究不足,但桥梁工程中某些部位仍然需要使用超大断面桥梁钢。以往的做法是采用两块钢板叠加使用达到超大厚度要求,但此种方法施工难度大,焊接质量难以保证,使用在主要受力位置时结构安全性不高。开发出厚度≥100mm符合标准力学性能要求、高质量、易焊接的桥梁钢显得尤为重要。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种铁素体珠光体型Q345qD桥梁钢特厚板,其化学成分及质量百分比如下:C:0.13%-0.16%,Si:0.20%-0.40%,Mn:1.40%-1.70%,P≤0.015%,S≤0.005%,Nb:0.020%-0.050%,V:0.020%-0.050%,Al:0.015%-0.045%,Ti:0.008%-0.025%,Ni:0.15%-0.35%,余量为Fe和不可避免的杂质;钢板正火态组织主要为铁素体和珠光体。
本发明进一步限定的技术方案是:
前所述的一种铁素体珠光体型Q345qD桥梁钢特厚板,其化学成分及质量百分比如下:C:0.136%-0.154%,Si:0.27%-0.38%,Mn:1.51%-1.69%,P≤0.013%,S≤0.004%,Nb:0.022%-0.047%,V:0.021%-0.045%,Al:0.017%-0.042%,Ti:0.009%-0.024%,Ni:0.16%-0.31%,余量为Fe和不可避免的杂质。
前所述的一种铁素体珠光体型Q345qD桥梁钢特厚板,其化学成分及质量百分比如下:C:0.133%-0.157%,Si:0.21%-0.36%,Mn:1.42%-1.68%,P≤0.013%,S≤0.004%,Nb:0.023%-0.045%,V:0.022%-0.047%,Al:0.017%-0.043%,Ti:0.009%-0.022%,Ni:0.17%-0.34%,余量为Fe和不可避免的杂质。
前所述的一种铁素体珠光体型Q345qD桥梁钢特厚板,钢板厚度为150mm。
本发明的另一目的在于提供一种铁素体珠光体型Q345qD桥梁钢特厚板的制造方法,包括冶炼、复合坯焊接、轧制工序、热处理工序,
冶炼工序:钢水经脱硫预处理、转炉冶炼、LF精炼、RH真空处理、然后通过连铸浇铸成连铸坯;
复合坯焊接工序:采用两张同炉、同尺寸320mm厚度断面坯料,分别铣平一个表面,在真空室中将两块坯料叠加后四周采用激光电子束焊封焊;
轧制工序,包括加热、轧制、轧后控制冷却:采用三阶段加热法进行板坯加热,第一阶段加热至300-400℃较低的温度进行保温2h以上,降低复合坯开裂的风险,第二阶段加热至860-900℃之间进行中间温度的保温,保证温度的均匀性,第三阶段加热至1200-1260℃进行保温,均热时间5±0.2h,总在炉时间18-25h;加热后采用奥氏体再结晶区+未再结晶区两阶段控制轧制,第一阶段开轧温度控制为1040~1120℃,采用高温大压下手段,道次压下量超过40mm,总压下量超过400mm,使复合焊接坯之间形成牢固的冶金结合以及一个大的变形储能;第二阶段精轧开始温度在800-830℃;终轧温度在790-825℃;轧后采用DQ超快冷1-10℃/s的冷却速率进行快速冷却,使返红温度控制在610-670℃之间;
热处理工序:冷却后进行热处理,热处理具体为将钢板加热到900-920℃之间,进行正火热处理。
前所述的一种铁素体珠光体型Q345qD桥梁钢特厚板的制造方法,正火时间控制在(1.8-2.2)min/mm×钢板厚度+15min。
本发明的有益效果是:
(1)本发明针对厚度大于100mm的特厚桥梁钢强度和低温韧性控制困难,提高可焊性需要,提出一种铁素体珠光体型Q345qD桥梁钢特厚板及生产方法,该方法通过合理的成分设计、热处理工艺,获得合适的强度、高低温韧性、各项性能指标优良的Q345qD桥梁结构用钢板;
(2)本发明通过优化成分设计,碳当量(Ceq)为0.42%-0.44%,控制冶炼工序,并通过合理的控轧控冷工艺控制轧态钢板晶粒尺寸,再通过合适的正火温度获得足够多的铁素体、珠光体等轴晶,最终钢板具有高强度及优异的低温冲击性能,其它各项性能指标良好,屈服强度ReL329-346MPa、抗拉强度Rm≥500MPa、延伸率A%≥20%、-20℃纵向冲击功单值≥120J、横向弯曲无裂纹;
(3)本发明生产钢板厚度为150mm的特厚桥梁钢板,钢板组织均匀、强度高、各项性能指标良好。
附图说明
图1为实施例中150mm厚钢板厚度1/2处(复合坯结合处)组织形貌;
图2为实施例中150mm厚钢板正火态厚度1/2处组织形貌。
具体实施方式
本实施例提供的一种铁素体珠光体型Q345qD桥梁钢特厚板,厚度150mm,其化学成分及质量百分比如下:C:0.14%,Si:0.27%,Mn:1.47%,P:0.011%,S:0.002%,Nb:0.024%,V:0.035%,Al:0.031%,Ti:0.015%,Ni:0.17%,余量为Fe和不可避免的杂质。
生产工艺如下:
炼钢工序:钢水经脱硫预处理、转炉冶炼、LF精炼、RH真空处理、然后通过连铸浇铸成320mm厚的连铸坯。
复合坯焊接工序:采用两张同炉、同尺寸320断面坯料,分别铣平一个表面,在真空室中将两块坯料叠加后四周采用激光电子束焊封焊。
轧钢工序:采用三阶段加热法进行板坯加热,第一阶段加热至350℃较低的温度进行保温2.5h,第二阶段加热至890℃保温2h,保证温度的均匀性,第三阶段加热至1250℃进行保温,均热时间5h,总在炉时间22h;加热后采用奥氏体再结晶区+未再结晶区两阶段控制轧制,第一阶段开轧温度为1100℃,采用高温大压下手段,道次压下量超过40mm,总压下量424mm,;第二阶段精轧开始温度在830℃;终轧温度在807℃;轧后采用DQ超快冷(1-10℃/s)进行快速冷却工艺使返红温度638℃。
热处理工序,钢板冷却至室温后进行热处理,热处理具体为将钢板加热到915℃,进行正火热处理,保温15min之后空冷至室温。
如图1、2钢板正火态组织主要为铁素体和珠光体。此工艺下所得钢板的力学性能为:屈服强度339MPa,抗拉强度521MPa,延伸率30%,Z向拉伸断面收缩率59%,1/4板厚-20℃纵向冲击均值为244J。
钢板的力学性能均满足GB/T714-2015《桥梁用结构钢》国家标准相关技术条件中Q345qD的性能要求,力学性能结果优异且具有较强的可操作性。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

  1. 一种铁素体珠光体型Q345qD桥梁钢特厚板,其特征在于:其化学成分及质量百分比如下:C:0.13%-0.16%,Si:0.20%-0.40%,Mn:1.40%-1.70%,P≤0.015%,S≤0.005%,Nb:0.020%-0.050%,V:0.020%-0.050%,Al:0.015%-0.045%,Ti:0.008%-0.025%,Ni:0.15%-0.35%,余量为Fe和不可避免的杂质;钢板正火态组织主要为铁素体和珠光体。
  2. 根据权利要求1所述的一种铁素体珠光体型Q345qD桥梁钢特厚板,其特征在于:其化学成分及质量百分比如下:C:0.136%-0.154%,Si:0.27%-0.38%,Mn:1.51%-1.69%,P≤0.013%,S≤0.004%,Nb:0.022%-0.047%,V:0.021%-0.045%,Al:0.017%-0.042%,Ti:0.009%-0.024%,Ni:0.16%-0.31%,余量为Fe和不可避免的杂质。
  3. 根据权利要求1所述的一种铁素体珠光体型Q345qD桥梁钢特厚板,其特征在于:其化学成分及质量百分比如下:C:0.133%-0.157%,Si:0.21%-0.36%,Mn:1.42%-1.68%,P≤0.013%,S≤0.004%,Nb:0.023%-0.045%,V:0.022%-0.047%,Al:0.017%-0.043%,Ti:0.009%-0.022%,Ni:0.17%-0.34%,余量为Fe和不可避免的杂质。
  4. 根据权利要求1所述的一种铁素体珠光体型Q345qD桥梁钢特厚板,其特征在于:钢板厚度为150mm。
  5. 一种铁素体珠光体型Q345qD桥梁钢特厚板的制造方法,其特征在于:应用于权利要求1-4任意一项,包括冶炼、复合坯焊接、轧制工序、热处理工序,
    冶炼工序:钢水经脱硫预处理、转炉冶炼、LF精炼、RH真空处理、然后通过连铸浇铸成连铸坯;
    复合坯焊接工序:采用两张同炉、同尺寸320mm厚度断面坯料,分别铣平一个表面,在真空室中将两块坯料叠加后四周采用激光电子束焊封焊;
    轧制工序,包括加热、轧制、轧后控制冷却:采用三阶段加热法进行板坯加热,第一阶段加热至300-400℃较低的温度进行保温2h以上,降低复合坯开 裂的风险,第二阶段加热至860-900℃之间进行中间温度的保温,保证温度的均匀性,第三阶段加热至1200-1260℃进行保温,均热时间5±0.2h,总在炉时间18-25h;加热后采用奥氏体再结晶区+未再结晶区两阶段控制轧制,第一阶段开轧温度控制为1040~1120℃,采用高温大压下手段,道次压下量超过40mm,总压下量超过400mm,使复合焊接坯之间形成牢固的冶金结合以及一个大的变形储能;第二阶段精轧开始温度在800-830℃;终轧温度在790-825℃;轧后采用DQ超快冷1-10℃/s的冷却速率进行快速冷却,使返红温度控制在610-670℃之间;
    热处理工序:冷却后进行热处理,热处理具体为将钢板加热到900-920℃之间,进行正火热处理。
  6. 根据权利要求5所述的一种铁素体珠光体型Q345qD桥梁钢特厚板的制造方法,其特征在于:正火时间控制在(1.8-2.2)min/mm×钢板厚度+15min。
PCT/CN2021/121054 2021-08-20 2021-09-27 一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法 WO2023019690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110959399.6A CN113862557A (zh) 2021-08-20 2021-08-20 一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法
CN202110959399.6 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023019690A1 true WO2023019690A1 (zh) 2023-02-23

Family

ID=78987895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121054 WO2023019690A1 (zh) 2021-08-20 2021-09-27 一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法

Country Status (2)

Country Link
CN (1) CN113862557A (zh)
WO (1) WO2023019690A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004885A (zh) * 2023-07-24 2023-11-07 鞍钢股份有限公司 一种超低温高强度容器钢板及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525453A (zh) * 2022-02-16 2022-05-24 南京钢铁股份有限公司 一种薄规格桥梁用钢及其生产方法
CN115786806B (zh) * 2022-07-15 2024-04-23 江阴兴澄特种钢铁有限公司 一种具有良好低温韧性的高强度低碳当量特厚钢板及其制造方法
CN115323273B (zh) * 2022-08-15 2023-03-28 新余钢铁股份有限公司 一种保心部性能的正火q345e特厚钢板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003983A (ja) * 2000-04-21 2002-01-09 Nippon Steel Corp 溶接性と低温靭性に優れた低降伏比高張力鋼及びその製造方法
CN107177793A (zh) * 2017-04-07 2017-09-19 江阴兴澄特种钢铁有限公司 一种厚度400‑610mm的低合金特厚结构钢板及其制造方法
CN107385328A (zh) * 2017-06-30 2017-11-24 江阴兴澄特种钢铁有限公司 两坯复合生产的具有优良内部质量、低温冲击韧性和抗层状撕裂性能的低合金特厚钢板
CN108754321A (zh) * 2018-06-11 2018-11-06 鞍钢股份有限公司 一种特厚正火高强度压力容器钢板及其生产方法
CN110106441A (zh) * 2019-05-14 2019-08-09 南京钢铁股份有限公司 TMCP型屈服370MPa高性能桥梁钢板及生产方法
CN110565011A (zh) * 2019-06-17 2019-12-13 南阳汉冶特钢有限公司 一种厚度≤50mm的Q345qENH耐候桥梁钢板及其生产方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108179350B (zh) * 2017-12-25 2019-12-31 南京钢铁股份有限公司 一种耐磨钢低成本短生产周期制备方法
CN111172465B (zh) * 2020-02-28 2021-07-20 鞍钢股份有限公司 一种低碳当量大厚度q390gj建筑结构用钢板及其制造方法
CN111455271B (zh) * 2020-03-25 2021-10-26 南京钢铁股份有限公司 海洋结构用厚度s355g10+n钢板及其生产方法
CN112553529A (zh) * 2020-12-01 2021-03-26 南阳汉冶特钢有限公司 一种20~150mm厚核电旋塞部件碳钢钢板的生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003983A (ja) * 2000-04-21 2002-01-09 Nippon Steel Corp 溶接性と低温靭性に優れた低降伏比高張力鋼及びその製造方法
CN107177793A (zh) * 2017-04-07 2017-09-19 江阴兴澄特种钢铁有限公司 一种厚度400‑610mm的低合金特厚结构钢板及其制造方法
CN107385328A (zh) * 2017-06-30 2017-11-24 江阴兴澄特种钢铁有限公司 两坯复合生产的具有优良内部质量、低温冲击韧性和抗层状撕裂性能的低合金特厚钢板
CN108754321A (zh) * 2018-06-11 2018-11-06 鞍钢股份有限公司 一种特厚正火高强度压力容器钢板及其生产方法
CN110106441A (zh) * 2019-05-14 2019-08-09 南京钢铁股份有限公司 TMCP型屈服370MPa高性能桥梁钢板及生产方法
CN110565011A (zh) * 2019-06-17 2019-12-13 南阳汉冶特钢有限公司 一种厚度≤50mm的Q345qENH耐候桥梁钢板及其生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004885A (zh) * 2023-07-24 2023-11-07 鞍钢股份有限公司 一种超低温高强度容器钢板及其制造方法

Also Published As

Publication number Publication date
CN113862557A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
AU2020294457B2 (en) Large-thickness lamellar tearing-resistant high-strength steel plate with 960 MPa-level yield strength, and production method therefor
WO2023019690A1 (zh) 一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法
CN106282789B (zh) 一种低碳特厚TMCP型Q420qE桥梁钢及其制造方法
WO2022205939A1 (zh) 一种厚度>200~250mm抗氢致开裂压力容器钢板及其制造方法
CN112981235B (zh) 一种屈服强度420MPa级的调质型建筑结构用钢板及其生产方法
CN108914006B (zh) 一种厚度方向性能优良的超高强度调质钢板及其制造方法
AU2019373520A1 (en) 80 mm large-thickness high-toughness low-alloy wear-resistant steel plate and manufacturing method therefor
CN107385328B (zh) 两坯复合生产的具有优良内部质量、低温冲击韧性和抗层状撕裂性能的低合金特厚钢板
CN111748744B (zh) 一种热轧h型钢及其生产方法
CN105112806A (zh) 屈服强度460MPa级高止裂韧性钢板及其生产方法
WO2020228232A1 (zh) TMCP型屈服370MPa高性能桥梁钢板及生产方法
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
WO2022067962A1 (zh) 低成本高性能Q370qE-HPS桥梁钢及生产方法
CN106119713A (zh) 一种低碳特厚低屈强比卷筒用钢s355nl及其制造方法
WO2022183522A1 (zh) 一种热轧无缝钢管及其形变相变一体化组织调控方法
WO2021189621A1 (zh) 海洋结构用厚度s355g10+n钢板及其生产方法
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
WO2019218135A1 (zh) 屈服强度1000MPa级低屈强比超高强钢及其制备方法
CN110423946A (zh) 一种低压缩比超高强钢q960e特厚板的生产方法
WO2021115263A1 (zh) 一种基于异型坯轧制成型的热轧h型钢及其制备方法
CN114480806B (zh) 一种厚规格TiC粒子增强型马氏体耐磨钢板的制造方法
CN108624744A (zh) 一种Q500qE桥梁钢板及其生产方法
CN112048679A (zh) 一种低成本屈服强度490MPa桥梁钢板生产方法
US20240110255A1 (en) Extra thick hot rolled h section steel and production method therefor
WO2024016543A1 (zh) 一种高强韧建筑用热轧h型钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE