WO2021189621A1 - 海洋结构用厚度s355g10+n钢板及其生产方法 - Google Patents

海洋结构用厚度s355g10+n钢板及其生产方法 Download PDF

Info

Publication number
WO2021189621A1
WO2021189621A1 PCT/CN2020/090752 CN2020090752W WO2021189621A1 WO 2021189621 A1 WO2021189621 A1 WO 2021189621A1 CN 2020090752 W CN2020090752 W CN 2020090752W WO 2021189621 A1 WO2021189621 A1 WO 2021189621A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
steel plate
rolling
slab
heat treatment
Prior art date
Application number
PCT/CN2020/090752
Other languages
English (en)
French (fr)
Inventor
潘中德
吴俊平
靳星
王光磊
徐椿森
孙旭东
顾小阳
倪卫莹
李伟
车超
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2021189621A1 publication Critical patent/WO2021189621A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/02Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the invention relates to the technical field of iron and steel smelting, in particular to a steel plate with a thickness of S355G10+N for marine structures and a production method thereof.
  • S355G10 steel is a grade in the BSEN10225 standard "Weldable Structural Steel for Offshore Structures", which specifies the chemical composition, mechanical properties, and welding properties of offshore structural steel.
  • my country has not formulated special standards for marine engineering steel. Most of the country adopts low carbon equivalent, microalloying, and selects a reasonable heat treatment process (such as normalizing) after controlled rolling to develop S355G10+N and S355NL steel plates, which can meet part of the offshore requirements. Application of platform and structural parts.
  • the patent CN 104726769 discloses "S355G10+N steel plate for thickness offshore platform and its production method", and its steelmaking The ingot mold is used for casting, and the subsequent rolling is billet, and the steelmaking cost is high; due to the solidification of the ingot, the penetration force of extra-thick plate rolling is affected, and the impact technology at -40°C at 1/2 thickness is difficult, and the quality of flaw detection cannot be guaranteed.
  • Patent CN 109628853 discloses "a S355G10 extra-thick steel plate for marine engineering and its manufacturing method", which adopts low-carbon composition design, TMCP process, and tempering process. Limited by the compression ratio of continuous casting slabs, its maximum thickness is 120mm, can not fully meet the needs of ultra-thick steel plates above 120mm for marine engineering.
  • the EN10225 standard requires that the rolling compression ratio is not less than 4 times.
  • the thickness of S355G10+N steel plates for marine structures is used.
  • the impact technology at -40°C at 1/2 the thickness of the extra-thick plate is difficult.
  • the quality of flaw detection cannot be guaranteed.
  • the TMCP process and TMCP+tempering process produce only 100mm and 120mm thicknesses, which cannot fully meet the needs of ultra-thick plates above 120mm for marine engineering.
  • the present invention provides a thickness S355G10+N steel plate for marine structure.
  • the maximum thickness of the steel plate is 150mm.
  • the chemical composition and mass percentage are as follows: C: 0.08% ⁇ 0.14%, Mn: 1.30% ⁇ 1.65%, Si :0.10% ⁇ 0.50%, P ⁇ 0.015%, S ⁇ 0.005%, Nb: 0.015% ⁇ 0.030%, V ⁇ 0.03%, Ti: 0.10% ⁇ 0.020%, Alt: 0.020% ⁇ 0.055%, Ni: 0.10% ⁇ 0.50%, CEV ⁇ 0.43%, Pcm ⁇ 0.21%, the balance is Fe and unavoidable impurities.
  • the present invention adopts reasonable composition design, composite billet rolling, normalizing heat treatment process, etc., and develops the S355G10+N steel plate with the maximum thickness of 150mm specified in the BSEN10225 standard.
  • the surface of the steel plate and the 1/2 thickness of the steel plate are impacted at -40°C.
  • the toughness is not less than 100J, the thickness direction performance is up to Z35 level, the flaw detection is qualified according to the EN10160 standard S2E3 level, the comprehensive mechanical performance index reaches the foreign similar level, the low temperature toughness is excellent, and the welding performance is even better.
  • the aforementioned thickness S355G10+N steel sheet for marine structure, the chemical composition and mass percentage are as follows: C: 0.08% ⁇ 0.10%, Mn: 1.58% ⁇ 1.65%, Si: 0.34% ⁇ 0.50%, P ⁇ 0.010%, S ⁇ 0.002%, Nb: 0.015% ⁇ 0.021%, V ⁇ 0.028%, Ti: 0.10% ⁇ 0.020%, Alt: 0.020% ⁇ 0.031%, Ni: 0.10% ⁇ 0.31%, CEV ⁇ 0.40%, Pcm ⁇ 0.20% , The balance is Fe and unavoidable impurities.
  • the aforementioned thickness S355G10+N steel plate for marine structure, the chemical composition and mass percentage are as follows: C: 0.12% ⁇ 0.14%, Mn: 1.30% ⁇ 1.41%, Si: 0.10% ⁇ 0.21%, P ⁇ 0.011%, S ⁇ 0.001%, Nb: 0.027% ⁇ 0.030%, V ⁇ 0.03%, Ti: 0.10% ⁇ 0.020%, Alt: 0.036% ⁇ 0.055%, Ni: 0.43% ⁇ 0.50%, CEV ⁇ 0.40%, Pcm ⁇ 0.21% , The balance is Fe and unavoidable impurities.
  • Another object of the present invention is to provide a production method of S355G10+N steel sheet for marine structures, including a slab vacuum welding process, a composite billet heating process, a rolling process, and a normalizing heat treatment process.
  • Slab vacuum welding process use two or more continuous casting billets with the same heat number and the same composition to weld the slab under the condition of vacuum ⁇ 0.05Pa to obtain a welded composite billet with a thickness of 600mm or more;
  • Composite billet heating process heating the slab to 1200 ⁇ 1250°C for 5 ⁇ 10h;
  • the wide and heavy plate rolling mill is divided into two stages, the final rolling temperature of the rough rolling stage is ⁇ 950°C, the opening temperature of the finishing rolling stage is ⁇ 840°C, and the steel plate is air-cooled after rolling;
  • the steel plate is normalized in a heat treatment furnace, the normalizing temperature is 880-920°C, the holding time is (1.8-2.0) ⁇ H minutes, and H is the thickness of the steel plate in mm.
  • the thickness of the aforementioned marine structure S355G10+N steel plate is 150mm
  • the chemical composition and mass percentage are as follows: C: 0.10%, Mn: 1.58%, Si: 0.34%, P: 0.010%, S: 0.002%, Nb: 0.021%, V: 0.028%, Ti: 0.14%, Alt: 0.031%, Ni: 0.31%, CEV: 0.40%, Pcm: 0.20%
  • the balance is Fe and unavoidable impurities, including the following steps:
  • Slab vacuum welding process use two 310mm continuous cast billets with the same heat number and the same composition to weld the slab under the condition of a vacuum of 0.03Pa to obtain a welded composite billet with a thickness of 620mm;
  • Composite billet heating process heating the slab to 1243°C for 8h;
  • Rolling process The wide and heavy plate rolling mill is divided into two stages. The final rolling temperature of the rough rolling stage is 988°C, and the opening temperature of the finishing rolling stage is 832°C. After rolling, the steel plate is air-cooled;
  • Normalizing heat treatment process the steel plate is normalized in the heat treatment furnace, the normalizing temperature is 892°C, and the holding time is 279 minutes.
  • the aforementioned S355G10+N steel sheet for marine structure and its production method The thickness of the steel sheet is 150mm.
  • the chemical composition and mass percentage are as follows: C: 0.12%, Mn: 1.41%, Si: 0.21%, P: 0.011%, S : 0.001%, Nb: 0.027%, V: 0.03%, Ti: 0.020%, Alt: 0.036%, Ni: 0.43%, CEV: 0.40%, Pcm: 0.21%, the balance is Fe and unavoidable impurities, including The following steps:
  • Slab vacuum welding process use two 300mm continuous casting billets with the same heat number and the same composition, and perform slab welding under the condition of a vacuum degree of 0.04Pa to obtain a welded composite billet with a thickness of 600mm;
  • Composite billet heating process heating the slab to 1234°C for 7h;
  • Rolling process the wide and heavy plate rolling mill is divided into two stages, the final rolling temperature of the rough rolling stage is 997°C, the opening temperature of the finishing rolling stage is 836°C, and the steel plate is air-cooled after rolling;
  • Normalizing heat treatment process the steel plate is normalized in the heat treatment furnace, the normalizing temperature is 905°C, and the holding time is 293 minutes.
  • the present invention uses ordinary continuous casting billet welding composite technology to obtain thick cast billets, the cost is much lower than the ingot steelmaking production method, and the production efficiency is also high;
  • the present invention uses high-quality continuous casting slabs for welding and compounding. Since the impact at 1/2 of the thickness of the rolled steel plate corresponds to the welding compound and near the surface of the original casting slab, the -40°C low-temperature impact toughness is better, and the quality of flaw detection is better. Can also be guaranteed;
  • the steel plate produced by the present invention has a maximum thickness of 150mm, which exceeds the maximum thickness of 100 and 120mm for continuous casting billet production;
  • the 150mm extra-thick steel plate produced by the present invention has excellent low temperature toughness, especially where the thickness 1/2 is welded and compounded, avoiding the central segregation of the original cast slab, and effectively guarantees the thickness of the steel plate compared with the casting slab rolling production process.
  • low temperature impact toughness; metallographic structure is F+P structure, grain size 8.0-9.5, band structure ⁇ 1.0, impact at -40°C at 1/2 thickness is greater than 100J, good welding performance, better Meet the requirements for use and service of offshore structures.
  • This embodiment provides a S355G10+N steel sheet with a thickness of 150mm for marine structures, and the chemical composition and mass percentage are as follows: C: 0.10%, Mn: 1.58%, Si: 0.34%, P: 0.010%, S: 0.002 %, Nb: 0.021%, V: 0.028%, Ti: 0.14%, Alt: 0.031%, Ni: 0.31%, CEV: 0.40%, Pcm: 0.20%, the balance is Fe and unavoidable impurities.
  • the production method includes the following steps:
  • Composite billet heating process heating the slab to 1243°C for 8h;
  • Rolling process The wide and heavy plate rolling mill is divided into two stages. The final rolling temperature of the rough rolling stage is 988°C, and the opening temperature of the finishing rolling stage is 832°C. After rolling, the steel plate is air-cooled;
  • Normalizing heat treatment process the steel plate is normalized in the heat treatment furnace, the normalizing temperature is 892°C, and the holding time is 279 minutes.
  • the mechanical properties of the steel plate are: yield strength 347MPa, tensile strength 498MPa, elongation after fracture 30%, yield ratio 0.70, thickness near surface -40°C impact energy Akv: 134J, 180J, 152J, thickness 1/2 at -40°C
  • This embodiment provides a S355G10+N steel sheet with a thickness of 150mm for marine structures, and the chemical composition and mass percentage are as follows: C: 0.12%, Mn: 1.41%, Si: 0.21%, P: 0.011%, S: 0.001 %, Nb: 0.027%, V: 0.03%, Ti: 0.020%, Alt: 0.036%, Ni: 0.43%, CEV: 0.40%, Pcm: 0.21%, the balance is Fe and unavoidable impurities.
  • the production method includes the following steps:
  • Composite billet heating process heating the slab to 1234°C for 7h;
  • Rolling process the wide and heavy plate rolling mill is divided into two stages, the final rolling temperature of the rough rolling stage is 997°C, the opening temperature of the finishing rolling stage is 836°C, and the steel plate is air-cooled after rolling;
  • Normalizing heat treatment process the steel plate is normalized in the heat treatment furnace, the normalizing temperature is 905°C, and the holding time is 293 minutes.
  • the mechanical properties of the steel plate are: yield strength 342MPa, tensile strength 489MPa, elongation after fracture 28%, yield ratio 0.70, thickness near surface -40°C impact energy Akv: 163J, 192J, 185J, thickness 1/2 at -40°C
  • EN10225 standard S355G10 is a steel plate designed specifically for offshore structures, and the market demand is great.
  • the impact technology at -40°C at the thickness of 1/2 is difficult, and the quality of flaw detection cannot be guaranteed.
  • the invention adopts reasonable composition design, composite billet rolling, normalizing heat treatment process, etc., and develops the S355G10+N steel plate with the maximum thickness of 150mm specified in the EN10225 standard.
  • the near surface of the steel plate and the -40°C impact toughness at 1/2 of the thickness are not less than 100J ,
  • the thickness direction performance reaches the Z35 level, the flaw detection is qualified according to the EN10160 standard S2E3 level, and the comprehensive mechanical performance index reaches the foreign similar level.
  • the steel plate produced by the invention has a maximum thickness of 150mm, and the process is also suitable for producing related products with a thickness of no more than 150mm.
  • the steel plate grade is S355G10+N, and the quality meets the S355G7+N, S355G8+N, and S355G9+N series grades at the same time.
  • the steel plate has excellent low temperature toughness. Due to the low CEV and Pcm value of the composition design, the welding performance is better, which can better meet the applications of offshore wind power, offshore platform construction, and ultra-large container ships. The economic benefits are good.
  • the estimated gross profit per ton of steel is more than 1,000 yuan/ton. .
  • the present invention can also have other embodiments. All technical solutions formed by equivalent replacements or equivalent transformations fall within the protection scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种海洋结构用厚度S355G10+N钢板,涉及钢铁冶炼技术领域,钢板最大厚度为150mm,化学成分及质量百分比如下:C:0.08%~0.14%,Mn:1.30%~1.65%,Si:0.10%~0.50%,P≤0.015%,S≤0.005%,Nb:0.015%~0.030%,V≤0.03%,Ti:0.020%~0.10%,Alt:0.020%~0.055%,Ni:0.10%~0.50%,CEV≤0.43%,Pcm≤0.21%,余量为Fe和不可避免的杂质。150mm特厚钢板低温韧性优异,特别是厚度1/2处-40℃冲击大于100J,焊接性能好,更好地满足海上结构的使用和服役要求。

Description

海洋结构用厚度S355G10+N钢板及其生产方法 技术领域
本发明涉及钢铁冶炼技术领域,特别是涉及一种海洋结构用厚度S355G10+N钢板及其生产方法。
背景技术
S355G10钢属BSEN10225标准《海上结构之可焊接结构钢》中的牌号,规定了海上结构钢的化学成分、力学性能、焊接性能等。目前,我国尚未制定海洋工程用钢专用标准,国内多采用低碳当量、微合金化,控扎后选择合理的热处理工艺(如正火)开发出S355G10+N、S355NL钢板,均能满足部分海上平台及结构件的应用。
海洋工程用钢开发方面,已有正火工艺生产S355G10+N和TMCP工艺生产S355G10+M产品,如:专利CN 104726769公开了“厚度海洋平台用S355G10+N钢板及其生产方法”,其炼钢采用锭模浇注,后续轧制为钢坯,炼钢成本高;由于钢锭凝固原因,特厚板轧制渗透力影响,厚度1/2处-40℃冲击技术难度大,且探伤质量不能保证。专利CN 109628853公开了“一种海洋工程用S355G10特厚钢板及制造方法”,其采用低碳成分设计、TMCP工艺,并采用回火工艺生产,受连铸坯压缩比限制,其生产最厚度为120mm,不能完全满足海洋工程用120mm以上特厚钢板的需求。
受现有连铸坯压缩比限制,因EN10225标准要求不小于4倍轧制压缩比,一般海洋结构用厚度S355G10+N钢板,如厚度100mm以上S355G10+N特厚钢板多使用钢锭作为原材料进行轧制,以保证大的压缩比,以及采用正火热处理工艺进行生产,由于钢锭凝固原因、特厚板轧制渗透力限制等影响,此特厚板厚度1/2处-40℃冲击技术难度大,且探伤质量不能保证。而TMCP工艺、TMCP+回火工艺生产最厚度仅为100mm、120mm,不能完全满足海洋工程用120mm以上特厚板的需求。
发明内容
为了解决以上技术问题,本发明提供一种海洋结构用厚度S355G10+N钢板,钢板最厚度为150mm,化学成分及质量百分比如下:C:0.08%~0.14%,Mn:1.30%~1.65%,Si:0.10%~0.50%,P≤0.015%,S≤0.005%,Nb:0.015%~0.030%,V≤0.03%,Ti:0.10%~0.020%,Alt:0.020%~0.055%,Ni:0.10%~0.50%,CEV≤0.43%,Pcm≤0.21%,余量为Fe和不可避免的杂质。
技术效果:本发明采用合理的成分设计、复合坯轧制、正火热处理工艺等,开发出BSEN10225标准规定最厚度达150mm的S355G10+N钢板,钢板近表面及厚度1/2处-40℃冲击韧性都不小于100J,厚度方向性能达Z35级别,探伤按EN10160标准S2E3级别合格,综合力学性能指标达到国外同类水平,低温韧性优异,焊接性能更加优异。
本发明进一步限定的技术方案是:
前所述的海洋结构用厚度S355G10+N钢板,化学成分及质量百分比如下:C:0.08%~0.10%,Mn:1.58%~1.65%,Si:0.34%~0.50%,P≤0.010%,S≤0.002%,Nb:0.015%~0.021%,V≤0.028%,Ti:0.10%~0.020%,Alt:0.020%~0.031%,Ni:0.10%~0.31%,CEV≤0.40%,Pcm≤0.20%,余量为Fe和不可避免的杂质。
前所述的海洋结构用厚度S355G10+N钢板,化学成分及质量百分比如下:C:0.12%~0.14%,Mn:1.30%~1.41%,Si:0.10%~0.21%,P≤0.011%,S≤0.001%,Nb:0.027%~0.030%,V≤0.03%,Ti:0.10%~0.020%,Alt:0.036%~0.055%,Ni:0.43%~0.50%,CEV≤0.40%,Pcm≤0.21%,余量为Fe和不可避免的杂质。
本发明的另一目的在于提供一种海洋结构用厚度S355G10+N钢板的生产方法,包括板坯真空焊接工序、复合坯加热工序、轧制工序、正火热处理工序,
板坯真空焊接工序:采用两块以上同一炉号、同一成分的连铸坯,在真空度≤0.05Pa条件下进行板坯焊接,得到600mm以上厚度的焊接复合坯;
复合坯加热工序:将板坯加热到1200~1250℃,保温5~10h;
轧制工序:通过宽厚板轧机分为两阶段轧制,粗轧阶段终轧温度≥950℃,精轧阶段开轧温度≤840℃,轧后钢板在空冷;
正火热处理工序:钢板在热处理炉进行正火,正火温度880~920℃,保温时间为(1.8~2.0)×H分钟,H为钢板以mm计的厚度。
前所述的海洋结构用厚度S355G10+N钢板,钢板厚度为150mm,化学成分及质量百分比如下:C:0.10%,Mn:1.58%,Si:0.34%,P:0.010%,S:0.002%,Nb:0.021%,V:0.028%,Ti:0.14%,Alt:0.031%,Ni:0.31%,CEV:0.40%,Pcm:0.20%,余量为Fe和不可避免的杂质,包括如下步骤:
板坯真空焊接工序:采用两块同一炉号、同一成分的310mm连铸坯,在真空度0.03Pa条件下进行板坯焊接,得到620mm厚度的焊接复合坯;
复合坯加热工序:将板坯加热到1243℃,保温8h;
轧制工序:通过宽厚板轧机分为两阶段轧制,粗轧阶段终轧温度988℃,精轧阶段开轧温度832℃,轧后钢板在空冷;
正火热处理工序:钢板在热处理炉进行正火,正火温度892℃,保温时间为279分钟。
前所述的海洋结构用厚度S355G10+N钢板及其生产方法,钢板厚度为150mm,化学成分及质量百分比如下:C:0.12%,Mn:1.41%,Si:0.21%,P:0.011%,S:0.001%,Nb:0.027%,V:0.03%,Ti:0.020%,Alt:0.036%,Ni:0.43%,CEV:0.40%,Pcm:0.21%,余量为Fe和不可避免的杂质,包括如下步骤:
板坯真空焊接工序:采用两块同一炉号、同一成分的300mm连铸坯,在真空度0.04Pa条件下进行板坯焊接,得到600mm厚度的焊接复合坯;
复合坯加热工序:将板坯加热到1234℃,保温7h;
轧制工序:通过宽厚板轧机分为两阶段轧制,粗轧阶段终轧温度997℃,精轧阶段开轧温度836℃,轧后钢板在空冷;
正火热处理工序:钢板在热处理炉进行正火,正火温度905℃,保温时间为293分钟。
本发明的有益效果是:
(1)本发明使用普通连铸坯焊接复合技术即可以得到厚度铸坯,成本远低于铸锭炼钢生产方式,生产效率也高;
(2)本发明使用高质量连铸坯进行焊接复合,由于轧制钢板厚度1/2处冲击对应于焊接复合处、原始铸坯近表面处,-40℃低温冲击韧性更好,且探伤质量也能得到保障;
(3)本发明相比于TMCP工艺、TMCP+回火工艺,生产的钢板最厚度达150mm,超过连铸坯生产的最大100、120mm厚度;
(4)本发明生产的150mm特厚钢板低温韧性优异,特别是厚度1/2处为焊接复合处,避开原始铸坯的中心偏析处,较铸坯轧制生产工艺,有效保证钢板厚度1/2处低温冲击韧性;金相组织为F+P组织,晶粒度8.0-9.5级,带状组织≤1.0级,厚度1/2处-40℃冲击大于100J,焊接性能好,更好地满足海上结构的使用和服役要求。
具体实施方式
实施例1
本实施例提供的一种海洋结构用厚度S355G10+N钢板,厚度为150mm,化学成分及质量百分比如下:C:0.10%,Mn:1.58%,Si:0.34%,P:0.010%,S:0.002%,Nb:0.021%,V:0.028%,Ti:0.14%,Alt:0.031%,Ni:0.31%,CEV:0.40%,Pcm:0.20%,余量为Fe和不可避免的杂质。
生产方法包括如下步骤:
板坯真空焊接工序:通过对连铸坯的清理、组坯、焊接等处理,采用两块同一炉号、同一成分的310mm连铸坯,在真空度0.03Pa条件下进行板坯焊接,得到620mm厚度的焊接复合坯;
复合坯加热工序:将板坯加热到1243℃,保温8h;
轧制工序:通过宽厚板轧机分为两阶段轧制,粗轧阶段终轧温度988℃,精轧阶段开轧温度832℃,轧后钢板在空冷;
正火热处理工序:钢板在热处理炉进行正火,正火温度892℃,保温时间为279分钟。
钢板力学性能为:屈服强度347MPa,抗拉强度498MPa,断后伸长率30%,屈强比0.70,厚度近表面-40℃冲击功Akv:134J、180J、152J,厚度1/2处-40℃冲击功Akv:209J、207J、218J,厚度方向断面收缩率:61%、56%、55%,探伤按EN10160标准S2E3级别合格。
实施例2
本实施例提供的一种海洋结构用厚度S355G10+N钢板,厚度为150mm,化学成分及质量百分比如下:C:0.12%,Mn:1.41%,Si:0.21%,P:0.011%,S:0.001%,Nb:0.027%,V:0.03%,Ti:0.020%,Alt:0.036%,Ni:0.43%,CEV:0.40%,Pcm:0.21%,余量为Fe和不可避免的杂质。
生产方法包括如下步骤:
板坯真空焊接工序:通过对连铸坯的清理、组坯、焊接等处理,采用两块同一炉号、同一成分的300mm连铸坯,在真空度0.04Pa条件下进行板坯焊接,得到600mm厚度的焊接复合坯;
复合坯加热工序:将板坯加热到1234℃,保温7h;
轧制工序:通过宽厚板轧机分为两阶段轧制,粗轧阶段终轧温度997℃,精轧阶段开轧温度836℃,轧后钢板在空冷;
正火热处理工序:钢板在热处理炉进行正火,正火温度905℃,保温时间为293分钟。
钢板力学性能为:屈服强度342MPa,抗拉强度489MPa,断后伸长率28%,屈强比0.70,厚度近表面-40℃冲击功Akv:163J、192J、185J,厚度1/2处-40℃冲击功Akv:226J、196J、198J,厚度方向断面收缩率:57%、60%、64%,探伤按EN10160标准S2E3级别合格。
随着海洋资源开发不断向深海迈进,对海洋工程用钢的需求量不断扩大,特别是特厚钢板、大规格钢板,而EN10225标准S355G10为专为海上结构设计的钢板,市场需求量很大。相比于钢锭开坯轧制方式,由于钢锭凝固原因、特厚板轧制渗透力限制等影响,厚度1/2处-40℃冲击技术难度大,且探伤质量不能保证。本发明采用合理成分设计、复合坯轧制、正火热处理工艺等,开发出EN10225标准规定最厚度150mm的S355G10+N钢板,钢板近表面及厚度1/2处-40℃冲击韧性都不小于100J,厚度方向性能达Z35级别,探伤按EN10160标准S2E3级别合格,综合力学性能指标达到国外同类水平。
本发明生产钢板最厚度为150mm,工艺同样适合于生产厚度不超过150mm厚度规格的相关产品,钢板牌号S355G10+N,质量同时满足S355G7+N、S355G8+N、S355G9+N系列牌号。钢板低温韧性优异,因成分设计CEV、Pcm值低,焊接性能更加优异,更好地满足海上风电、海洋平台建设、超大型集装箱船的应用,经济效益好,预计吨钢毛利1000元/吨以上。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

  1. 一种海洋结构用厚度S355G10+N钢板,其特征在于:钢板最厚度为150mm,化学成分及质量百分比如下:C:0.08%~0.14%,Mn:1.30%~1.65%,Si:0.10%~0.50%,P≤0.015%,S≤0.005%,Nb:0.015%~0.030%,V≤0.03%,Ti:0.10%~0.020%,Alt:0.020%~0.055%,Ni:0.10%~0.50%,CEV≤0.43%,Pcm≤0.21%,余量为Fe和不可避免的杂质。
  2. 根据权利要求1所述的海洋结构用厚度S355G10+N钢板,其特征在于:化学成分及质量百分比如下:C:0.08%~0.10%,Mn:1.58%~1.65%,Si:0.34%~0.50%,P≤0.010%,S≤0.002%,Nb:0.015%~0.021%,V≤0.028%,Ti:0.10%~0.020%,Alt:0.020%~0.031%,Ni:0.10%~0.31%,CEV≤0.40%,Pcm≤0.20%,余量为Fe和不可避免的杂质。
  3. 根据权利要求1所述的海洋结构用厚度S355G10+N钢板,其特征在于:化学成分及质量百分比如下:C:0.12%~0.14%,Mn:1.30%~1.41%,Si:0.10%~0.21%,P≤0.011%,S≤0.001%,Nb:0.027%~0.030%,V≤0.03%,Ti:0.10%~0.020%,Alt:0.036%~0.055%,Ni:0.43%~0.50%,CEV≤0.40%,Pcm≤0.21%,余量为Fe和不可避免的杂质。
  4. 一种如权利要求1所述的海洋结构用厚度S355G10+N钢板的生产方法,包括板坯真空焊接工序、复合坯加热工序、轧制工序、正火热处理工序,其特征在于:
    板坯真空焊接工序:采用两块以上同一炉号、同一成分的连铸坯,在真空度≤0.05Pa条件下进行板坯焊接,得到600mm以上厚度的焊接复合坯;
    复合坯加热工序:将板坯加热到1200~1250℃,保温5~10h;
    轧制工序:通过宽厚板轧机分为两阶段轧制,粗轧阶段终轧温度≥950℃,精轧阶段开轧温度≤840℃,轧后钢板在空冷;
    正火热处理工序:钢板在热处理炉进行正火,正火温度880~920℃,保温时间为(1.8~2.0)×H分钟,H为钢板以mm计的厚度。
  5. 根据权利要求4所述的海洋结构用厚度S355G10+N钢板的生产方法,其特征在于:钢板厚度为150mm,化学成分及质量百分比如下:C:0.10%,Mn:1.58%,Si:0.34%,P:0.010%,S:0.002%,Nb:0.021%,V:0.028%,Ti:0.14%,Alt:0.031%,Ni:0.31%,CEV:0.40%,Pcm:0.20%,余量为Fe和不可避免的杂质,包括如下步骤:
    板坯真空焊接工序:采用两块同一炉号、同一成分的310mm连铸坯,在真空度0.03Pa条件下进行板坯焊接,得到620mm厚度的焊接复合坯;
    复合坯加热工序:将板坯加热到1243℃,保温8h;
    轧制工序:通过宽厚板轧机分为两阶段轧制,粗轧阶段终轧温度988℃,精轧阶段开轧温度832℃,轧后钢板在空冷;
    正火热处理工序:钢板在热处理炉进行正火,正火温度892℃,保温时间为279分钟。
  6. 根据权利要求4所述的海洋结构用厚度S355G10+N钢板及其生产方法,其特征在于:钢板厚度为150mm,化学成分及质量百分比如下:C:0.12%,Mn:1.41%,Si:0.21%,P:0.011%,S:0.001%,Nb:0.027%,V:0.03%,Ti:0.020%,Alt:0.036%,Ni:0.43%,CEV:0.40%,Pcm:0.21%,余量为Fe和不可避免的杂质,包括如下步骤:
    板坯真空焊接工序:采用两块同一炉号、同一成分的300mm连铸坯,在真空度0.04Pa条件下进行板坯焊接,得到600mm厚度的焊接复合坯;
    复合坯加热工序:将板坯加热到1234℃,保温7h;
    轧制工序:通过宽厚板轧机分为两阶段轧制,粗轧阶段终轧温度997℃,精轧阶段开轧温度836℃,轧后钢板在空冷;
    正火热处理工序:钢板在热处理炉进行正火,正火温度905℃,保温时间为293分钟。
PCT/CN2020/090752 2020-03-25 2020-05-18 海洋结构用厚度s355g10+n钢板及其生产方法 WO2021189621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010217169.8A CN111455271B (zh) 2020-03-25 2020-03-25 海洋结构用厚度s355g10+n钢板及其生产方法
CN202010217169.8 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021189621A1 true WO2021189621A1 (zh) 2021-09-30

Family

ID=71678909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090752 WO2021189621A1 (zh) 2020-03-25 2020-05-18 海洋结构用厚度s355g10+n钢板及其生产方法

Country Status (2)

Country Link
CN (1) CN111455271B (zh)
WO (1) WO2021189621A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410935A (zh) * 2021-12-30 2022-04-29 舞阳钢铁有限责任公司 一种低温冲击韧性良好的p265gh钢板的生产方法
CN115198074A (zh) * 2022-07-30 2022-10-18 日钢营口中板有限公司 一种提升低合金钢板探伤挽救合格率的热处理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112048665B (zh) * 2020-08-17 2022-03-22 莱芜钢铁集团银山型钢有限公司 一种极地海洋工程用钢板及其制备方法
CN113862557A (zh) * 2021-08-20 2021-12-31 南京钢铁股份有限公司 一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法
CN115679203B (zh) * 2022-09-15 2023-12-29 舞阳钢铁有限责任公司 海上储油船用超大厚度s355nlo钢板及其生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360047A (ja) * 2003-06-06 2004-12-24 Nippon Steel Corp 溶接部靭性の優れたフラッシュバット溶接用高張力鋼材およびその溶接構造物
CN101397626A (zh) * 2007-12-07 2009-04-01 江苏沙钢集团有限公司 高强度高韧性热轧钢板及其生产方法
JP2012122116A (ja) * 2010-12-10 2012-06-28 Jfe Steel Corp 塗膜耐久性に優れた塗装用鋼材
CN103436784A (zh) * 2013-09-17 2013-12-11 济钢集团有限公司 一种海洋平台用钢板及其制造方法
CN104726769A (zh) * 2015-03-19 2015-06-24 舞阳钢铁有限责任公司 大厚度海洋平台用s355g10+n钢板及其生产方法
CN105239003A (zh) * 2015-11-20 2016-01-13 山东钢铁股份有限公司 一种厚规格海洋平台用钢板及其生产方法
CN105369132A (zh) * 2015-11-10 2016-03-02 湖南华菱湘潭钢铁有限公司 大断面海洋平台用钢的生产方法
CN108085604A (zh) * 2017-11-29 2018-05-29 南京钢铁股份有限公司 海洋工程用低温韧性s355g10+m宽厚钢板及其生产方法
CN109628853A (zh) * 2019-01-03 2019-04-16 南京钢铁股份有限公司 一种海洋工程用s355g10特厚钢板及制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711249B2 (ja) * 2001-05-07 2005-11-02 新日本製鐵株式会社 溶接熱影響部のCTOD特性に優れた500〜550MPa級の降伏強度を有する厚鋼板
KR20140056765A (ko) * 2012-10-31 2014-05-12 현대제철 주식회사 형강 및 그 제조 방법
CN103194677B (zh) * 2013-04-28 2015-04-08 济钢集团有限公司 一种355MPa级易焊接海洋平台用钢板及其生产工艺
CN106191658A (zh) * 2016-08-19 2016-12-07 南京钢铁股份有限公司 一种三坯复合生产特厚低温冲击钢板的工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360047A (ja) * 2003-06-06 2004-12-24 Nippon Steel Corp 溶接部靭性の優れたフラッシュバット溶接用高張力鋼材およびその溶接構造物
CN101397626A (zh) * 2007-12-07 2009-04-01 江苏沙钢集团有限公司 高强度高韧性热轧钢板及其生产方法
JP2012122116A (ja) * 2010-12-10 2012-06-28 Jfe Steel Corp 塗膜耐久性に優れた塗装用鋼材
CN103436784A (zh) * 2013-09-17 2013-12-11 济钢集团有限公司 一种海洋平台用钢板及其制造方法
CN104726769A (zh) * 2015-03-19 2015-06-24 舞阳钢铁有限责任公司 大厚度海洋平台用s355g10+n钢板及其生产方法
CN105369132A (zh) * 2015-11-10 2016-03-02 湖南华菱湘潭钢铁有限公司 大断面海洋平台用钢的生产方法
CN105239003A (zh) * 2015-11-20 2016-01-13 山东钢铁股份有限公司 一种厚规格海洋平台用钢板及其生产方法
CN108085604A (zh) * 2017-11-29 2018-05-29 南京钢铁股份有限公司 海洋工程用低温韧性s355g10+m宽厚钢板及其生产方法
CN109628853A (zh) * 2019-01-03 2019-04-16 南京钢铁股份有限公司 一种海洋工程用s355g10特厚钢板及制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410935A (zh) * 2021-12-30 2022-04-29 舞阳钢铁有限责任公司 一种低温冲击韧性良好的p265gh钢板的生产方法
CN114410935B (zh) * 2021-12-30 2024-05-24 舞阳钢铁有限责任公司 一种低温冲击韧性良好的p265gh钢板的生产方法
CN115198074A (zh) * 2022-07-30 2022-10-18 日钢营口中板有限公司 一种提升低合金钢板探伤挽救合格率的热处理方法

Also Published As

Publication number Publication date
CN111455271B (zh) 2021-10-26
CN111455271A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2021189621A1 (zh) 海洋结构用厚度s355g10+n钢板及其生产方法
EP3988683B1 (en) Large-thickness lamellar tearing-resistant high-strength steel plate with 960 mpa-level yield strength, and production method therefor
WO2022205939A1 (zh) 一种厚度>200~250mm抗氢致开裂压力容器钢板及其制造方法
WO2022033128A1 (zh) 一种正火态交货的100-120mm厚海上风电管桩用FH36钢板及其制备方法
WO2020140442A1 (zh) 一种海洋工程用s355g10特厚钢板及制造方法
WO2019184310A1 (zh) 一种海上可焊接结构用s460g2+m钢板及其生产方法
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
EP4198158A1 (en) Steel board for polar marine engineering and preparation method therefor
WO2021017521A1 (zh) 一种低屈强比薄规格管线钢的制造方法
CN102994874A (zh) 屈服强度500MPa级高止裂韧性钢板及其生产方法
CN102851609A (zh) 一种用于海上风电设备的材料及工件的制造工艺
WO2023097979A1 (zh) 一种耐腐蚀大线能量焊接海洋工程用高强度钢板及其制备方法
WO2014201877A1 (zh) 抗锌致裂纹钢板及其制造方法
WO2023019690A1 (zh) 一种铁素体珠光体型Q345qD桥梁钢特厚板及制造方法
CN110106445B (zh) 一种用于海洋平台铸造节点高强度高低温韧性用钢及其制备方法
CN104674130A (zh) 大厚度抗层状撕裂调质高强钢板的生产方法
CN115961202B (zh) 一种大于100mm厚1000MPa级水电用钢板的生产方法
CN110358973A (zh) 一种低成本s420nl低温韧性钢板及制造方法
CN107557690B (zh) 一种耐低温和抗层状撕裂的特厚钢板及其制造方法
WO2024001078A1 (zh) 一种80mm厚690MPa级超高强韧海工钢板及其制备方法
WO2024131007A1 (zh) 一种低成本800MPa级光伏支架用含锑耐候钢及其制备方法
CN105369132A (zh) 大断面海洋平台用钢的生产方法
WO2022062176A1 (zh) 一种ew420特厚海工钢板及其制造方法
WO2022142101A1 (zh) 一种高韧性高时效冲击钢板及其制造方法
CN116657058A (zh) 一种具有优良耐腐蚀、抗震性能的高强钢筋及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927477

Country of ref document: EP

Kind code of ref document: A1