WO2023019622A1 - 液晶显示面板、液晶配向方法及移动终端 - Google Patents

液晶显示面板、液晶配向方法及移动终端 Download PDF

Info

Publication number
WO2023019622A1
WO2023019622A1 PCT/CN2021/114645 CN2021114645W WO2023019622A1 WO 2023019622 A1 WO2023019622 A1 WO 2023019622A1 CN 2021114645 W CN2021114645 W CN 2021114645W WO 2023019622 A1 WO2023019622 A1 WO 2023019622A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
substrate
electrode
crystal molecules
Prior art date
Application number
PCT/CN2021/114645
Other languages
English (en)
French (fr)
Inventor
刘金明
严允晟
肖军城
李吉
俞云
何孝金
张琪
胡春晓
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/600,015 priority Critical patent/US12025888B2/en
Publication of WO2023019622A1 publication Critical patent/WO2023019622A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes

Definitions

  • the invention relates to the field of display technology, in particular to a liquid crystal display panel, a liquid crystal alignment method and a mobile terminal.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • IPS-LCD In-Plane Switching, IPS, In-Plane Switching, in-plane switching
  • OLED displays Compared with IPS-LCD (In-Plane Switching, IPS, In-Plane Switching, in-plane switching) and OLED displays, VA-LCD (Vertical Alignment Liquid Crystal Display) has a poor viewing angle. Therefore, the improvement of the viewing angle has been the focus of VA-LCD researchers.
  • the liquid crystal pretilt angle is one of the important factors affecting the response time and viewing angle. Therefore, it is necessary to develop a solution to realize the differentiation of the liquid crystal pretilt angle, thereby significantly improving the display quality.
  • FIG. 1(a) is a cross-sectional view of a liquid crystal display panel before alignment
  • Figure 1(b) is an alignment
  • FIG. 1( c ) is a schematic diagram of the electric field strength between the branch electrodes and the common electrode in the pixel layer and the electric field strength between the slit and the common electrode during the alignment process
  • FIG. 2 is a schematic structural diagram of sub-pixels of a pixel layer.
  • the common electrode 140 receives an alignment voltage, and the direction of the electric field is from the common electrode 140 to the pixel layer 150.
  • the difference between the electric field strength between 140 and the electric field strength between the slit 153 and the common electrode 140 is not large, such as when the electric field strength between the branch electrodes 152 and the common electrode 140 is the electric field strength formed under the voltage of 17V At this time, the electric field strength between the slit 153 and the common electrode 140 may reach the electric field strength formed at a voltage of 16V, which makes the liquid crystal layer 130, the liquid crystal molecules 131 corresponding to the branch electrodes 152
  • the pretilt angle and the The pretilt angles formed by the liquid crystal molecules 131 corresponding to the slits 153 are basically the same. Referring to FIG.
  • Embodiments of the present application provide a liquid crystal display panel, a method for aligning liquid crystals, and a mobile terminal, so as to solve the problem of poor viewing angles at low gray scales of existing liquid crystal display panels.
  • An embodiment of the present application provides a liquid crystal display panel, including: a first substrate and a second substrate oppositely arranged; a liquid crystal layer, composed of a plurality of liquid crystal molecules, disposed between the first substrate and the second substrate
  • the common electrode is arranged on the side of the second substrate facing the first substrate
  • the pixel layer is arranged on the side of the first substrate facing the second substrate, and the pixel layer includes multiple electrodes arranged in an array sub-pixels, each sub-pixel includes at least two branch electrodes arranged in parallel, and a slit is formed between the two branch electrodes
  • the liquid crystal display panel further includes: an electrode layer arranged on the first substrate and the first substrate between the pixel layers and spaced apart from the pixel layer; wherein, the pretilt angles of the liquid crystal molecules corresponding to the branch electrodes are smaller than the pretilt angles of the liquid crystal molecules corresponding to the slits.
  • a gate insulating layer and a protection layer are stacked between the electrode layer and the pixel layer, and the pixel layer is disposed on the protection layer.
  • the electrode layer is an ITO electrode layer.
  • the distance between the common electrode and the pixel layer is 3.2-3.3 ⁇ m.
  • the electrode layer is disposed on the first substrate, and a first array of common electrodes is further disposed on the first substrate, and the first array of common electrodes is disposed on the same layer as the electrode layer.
  • the embodiment of the present application also provides a liquid crystal alignment method, including:
  • An alignment voltage is applied to the electrode layer, and an alignment electric field is formed between the electrode layer and the common electrode, so that the liquid crystal molecules in the liquid crystal layer are deflected, and the pretilt angle formed by the liquid crystal molecules opposite to the branch electrodes of the pixel layer is smaller than that formed by the branch electrodes opposite to the slits.
  • the liquid crystal molecules are fixed at the pretilt angle by irradiating the liquid crystal display panel with ultraviolet light.
  • the electric field strength between the branch electrodes and the common electrode is lower than the electric field strength between the slit and the common electrode.
  • the voltage value of the alignment voltage is 50-100V.
  • the absolute value of the difference between the azimuth angles of the liquid crystal molecules at the edge positions on opposite sides of the branch electrodes and the azimuth angles of the liquid crystal molecules at the central position of the branch electrodes is equal.
  • a driving voltage is applied to the common electrode, and the azimuth angles of the liquid crystal molecules at the edge positions on opposite sides of the branch electrodes are different from the azimuth angles of the liquid crystal molecules at the center positions of the branch electrodes.
  • the absolute value of the difference between the azimuth angles of the liquid crystal molecules at the edge positions on opposite sides of the branch electrodes and the azimuth angles of the liquid crystal molecules at the center of the branch electrodes is less than or equal to 1.
  • the embodiment of the present application also provides a mobile terminal, the mobile terminal includes a terminal body and the aforementioned liquid crystal display panel.
  • an electrode layer is arranged on the side of the first substrate facing the second substrate, and an alignment voltage is applied to the electrode layer during the liquid crystal alignment process, so that in the same domain area of the sub-pixel, the corresponding branch electrodes
  • an alignment voltage is applied to the electrode layer during the liquid crystal alignment process, so that in the same domain area of the sub-pixel, the corresponding branch electrodes
  • the difference is obvious, so that in the actual driving process of the liquid crystal display panel, due to the overall pretilt angle of the liquid crystal molecules
  • the increase and the differentiation of the pretilt angle in the same domain can be realized, which can improve the response time of the liquid crystal display panel and the viewing angle characteristics of the medium and low gray scales.
  • FIG. 1(a) is a cross-sectional view of an existing liquid crystal display panel before liquid crystal alignment
  • FIG. 1(b) is a cross-sectional view of an existing liquid crystal display panel after liquid crystal alignment is completed;
  • Fig. 1(c) is a schematic diagram of the electric field strength between the branch electrode and the common electrode and the electric field strength between the slit and the common electrode in the same domain region of the sub-pixel of the pixel layer during the liquid crystal alignment process of the existing liquid crystal display panel;
  • FIG. 2 is a schematic structural diagram of sub-pixels of a pixel layer
  • FIG. 3 is a cross-sectional view of a liquid crystal display panel before liquid crystal alignment in an exemplary embodiment of the present invention
  • FIG. 4 is a cross-sectional view of a liquid crystal display panel after liquid crystal alignment is completed in an exemplary embodiment of the present invention
  • FIG. 5 is a flowchart of a liquid crystal alignment method in an exemplary embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a first substrate, a second substrate, a pretilt angle of liquid crystal molecules, and an azimuth angle of liquid crystal molecules;
  • Fig. 7 is a schematic diagram of a relationship curve between azimuth and penetration
  • FIG. 8 is a schematic diagram of azimuth angles of liquid crystal molecules in a liquid crystal display panel after liquid crystal alignment is completed in an exemplary embodiment of the present invention
  • FIG. 9 is a schematic diagram of azimuth angles of liquid crystal molecules during actual driving of the liquid crystal display panel in an exemplary embodiment of the present invention.
  • Liquid crystal display panel 110, first substrate, 120, second substrate, 130, liquid crystal layer, 131, liquid crystal molecules, 131a, liquid crystal molecule regions arranged opposite to branch electrodes, 131b, liquid crystal molecules arranged opposite to slits area, 140, common electrode, 150, pixel layer, 151, sub-pixel, 151a, main area, 151b, sub area, 152, branch electrode, 153, slit, 160, electrode layer, 170, gate insulating layer, 180 , protective layer, 191, the common electrode of the first array, 192, the common electrode of the second array;
  • an electrode layer (ITO electrode layer) is added on the first substrate, and an alignment voltage is applied to the electrode layer during the liquid crystal alignment process, so that in the same domain area of the sub-pixel, the corresponding branch electrodes.
  • an alignment voltage is applied to the electrode layer during the liquid crystal alignment process, so that in the same domain area of the sub-pixel, the corresponding branch electrodes.
  • the liquid crystal display panel can be applied to a mobile terminal, such as a TFT-LCD mobile terminal equipped with a VA-LCD panel, that is, the liquid crystal display panel is a VA-LCD panel, and the mobile terminal is a TFT-LCD display.
  • a mobile terminal such as a TFT-LCD mobile terminal equipped with a VA-LCD panel, that is, the liquid crystal display panel is a VA-LCD panel, and the mobile terminal is a TFT-LCD display.
  • the liquid crystal display panel 100 includes a first substrate 110 , a second substrate 120 , a liquid crystal layer 130 , a common electrode 140 , a pixel layer 150 and an electrode layer 160 .
  • the first substrate 110 and the second substrate 120 are arranged oppositely, the liquid crystal layer 130 includes a plurality of liquid crystal molecules 131, the electrode layer 160 is arranged on the side of the first substrate 110 facing the second substrate 120, and the electrode layer 160 and the pixel layer 150 are stacked
  • a gate insulating layer 170 (GI layer) and a protective layer 180 (PV layer) are provided, the pixel layer 150 is provided on the side of the protective layer 180 away from the gate insulating layer 170 , and a second layer is provided between the protective layer 180 and the gate insulating layer 170
  • Two arrays of common electrodes 192 ( M2 ) one end of the electrode layer 160 is provided with a first array of common electrodes 191 ( M1 ), and the electrode layer 160 and the first array of common electrodes 191 are provided on the same layer.
  • the pixel layer 150 includes a plurality of sub-pixels 151 arranged in an array.
  • each sub-pixel 151 includes a main area 151a and a sub-area 151b, in the pixel array, between two adjacent rows of sub-pixels
  • a scanning line 200 is set, and a data line 300 is set between two adjacent columns of sub-pixels.
  • Each of the sub-pixels 151 also includes: a main area thin film transistor T1, a sub area thin film transistor T2 and a shared thin film transistor T3, the main area thin film transistor
  • the gate of T1 is connected to the scanning line 200, its source is connected to the data line 300, its drain is connected to the main area pixel electrode (not shown in the figure) in the main area 151a, and the gate of the sub-area thin film transistor T2 is connected to the scanning line 200 , the source is connected to the data line 300, the drain is connected to the sub-region pixel electrode (not shown in the figure) in the sub-region 151b, the gate of the shared thin film transistor T3 is connected to the scan line 200, and its source is connected to the main region pixel electrode.
  • the drain is connected to the pixel electrode of the sub-region.
  • the pixel electrodes of the main area and the pixel electrodes of the sub area form the pixel electrodes of the sub-pixel 151 .
  • the pixel electrode in the main area is divided into four domains, and each domain includes a plurality of branch electrodes 152 arranged in parallel at intervals, and a slit 153 is formed between two adjacent branch electrodes 152; the storage electrode in the sub area is divided into There are four domains, and each domain includes a plurality of branch electrodes 152 arranged in parallel at intervals, and a slit 153 is formed between two adjacent branch electrodes 152 .
  • the area where the branch electrode 152 is located is the Line area
  • the area where the slit 153 is located is the Space area.
  • the pretilt angles of the liquid crystal molecules 131 corresponding to the branch electrodes 152 are smaller than the pretilt angles of the liquid crystal molecules 131 corresponding to the slits 153 .
  • the slit 153 includes a region between two adjacent branch electrodes 152 in a sub-pixel 151 .
  • the slit 153 may also include an area between two adjacent sub-pixels 151 , specifically, an area between adjacent pixel electrodes of two adjacent sub-pixels 151 .
  • an electrode layer 160 corresponds to the entire pixel array in the pixel layer 150 .
  • the electrode layer 160 includes a plurality of electrode sub-layers (not shown in the figure) arranged in sequence, and one electrode sub-layer corresponds to a part of the sub-pixels 151 in the pixel array.
  • the first substrate 110 is an array substrate
  • the common electrodes disposed on the array substrate are array common electrodes
  • the array common electrodes include a first array common electrode 191 and a second array common electrode 192, and the array common electrodes 192 on the array substrate
  • the common electrodes are used to transmit voltage signals and control signals.
  • the second substrate 120 is a color filter substrate, and the common electrode 140 disposed on the second substrate 120 may also be called a color filter common electrode (Cf common electrode).
  • the liquid crystal alignment method is as follows:
  • a first alignment film (not shown in the figure) may be provided on the side of the pixel layer 150 facing the second substrate 120
  • a second alignment film may be provided on the side of the common electrode 140 facing the first substrate 110 layer (not shown in the figure).
  • step S203 ultraviolet light using UVM (Ultraviolet main curing (ultraviolet light curing main process) machine, in step S203, the liquid crystal display panel 100 is transported to the UVM machine, and the UVM machine performs ultraviolet exposure on the liquid crystal display panel 100, and the first alignment film layer and the second alignment film layer Under the irradiation of ultraviolet rays, it interacts with the liquid crystal molecules, and then keeps the pretilt angle of the liquid crystal molecules fixed, and completes the liquid crystal alignment process of the liquid crystal display panel 100 .
  • UVM Ultraviolet main curing (ultraviolet light curing main process) machine
  • an alignment voltage is applied to the electrode layer 160 (ITO electrode layer).
  • the alignment voltage is a high voltage.
  • the alignment voltage is set to 50V.
  • the pixel layer 150 can apply a voltage according to actual needs, such as 4V to adjust Alignment electric field, no voltage is applied to the common electrode 140 (that is, the voltage on the common electrode 140 is 0V), and the electrode layer 160 receives the alignment voltage. Due to the existence of the voltage difference, an electric field is formed between the electrode layer 160 and the common electrode 140, and the electric field The direction is from the electrode layer 160 to the common electrode 140 (Cf common electrode).
  • the electric field strength between the branch electrodes 152 and the common electrode 140 is weakened due to the obstruction or shielding effect of the branch electrodes 152 (eg, about is the electric field strength generated by the 10V voltage difference), and because there is no branch electrode 152 or other electrodes in the slit 153, the electric field strength between the slit 153 and the common electrode 140 is normal (for example, the electric field strength generated by the 17V voltage difference) , greater than the electric field strength between the branch electrode 152 and the common electrode 140, that is, when the electrode layer 160 receives a high voltage (for example, 50V), the electric field strength between the slit 153 and the common electrode 140 is obviously higher than that of the branch electrode 152 and the common electrode 140, so that the pretilt angle ⁇ 2 formed by the liquid crystal molecules 131 in the liquid crystal molecule region 131a opposite to the branch electrodes is obviously lower than that in the liquid crystal
  • the pretilt angle ⁇ 1 formed by the liquid crystal molecules that is, the difference between the pretilt angles of the liquid crystal molecules corresponding to the Line region and the pretilt angles of the liquid crystal molecules corresponding to the Space region, in this embodiment, the liquid crystal molecule region 131a disposed opposite to the branch electrodes
  • the pretilt angle ⁇ 2 formed by the liquid crystal molecules 131 in the slit is 0.4°
  • the pretilt angle ⁇ 1 formed by the liquid crystal molecules 131 in the liquid crystal molecule region 131b arranged opposite to the slit is 2.4°
  • the difference between ⁇ 1 and ⁇ 2 is 2.0°, compared with the pretilt angle ⁇ a of 1.4° for all liquid crystal molecules in the existing liquid crystal display panel
  • this embodiment realizes the overall increase and differentiation of the pretilt angle.
  • the degrees of the pre-tilt angle such as 0.4°, 2.0°, and 1.4°, are exemplary degrees in this embodiment and are not fixed values.
  • the specific pre-tilt angles can be determined according to actual needs.
  • the electric field strength can be changed with the magnitude of the alignment voltage applied to the electrode layer 160, thereby adjusting the size of ⁇ 1 and ⁇ 2 , adjusting the difference between ⁇ 1 and ⁇ 2 , that is, adjusting the distance between the Line region and the Space region
  • the differential amplitude of the pre-tilt angle of the liquid crystal molecules can be adjusted according to actual use requirements.
  • the distance between the common electrode 140 and the pixel layer 150 is set at 3.2-3.3 ⁇ m, which can ensure the strength of the electric field.
  • applying a high voltage to the electrode layer 160 during the liquid crystal alignment process can reduce the pretilt angle formed by the liquid crystal molecules 131 in the liquid crystal molecule region 131a opposite to the branch electrodes, and increase the liquid crystal molecule region 131b opposite to the slit.
  • the pretilt angle formed by the inner liquid crystal molecules 131 is fixed at ⁇ 2 after the post-processing steps such as retreat and UV irradiation, etc. 0.4° in the middle), so that the pretilt angle formed by the liquid crystal molecules 131 in the liquid crystal molecule region 131 b disposed opposite to the slit is fixed at ⁇ 1 (2.4° in this embodiment).
  • a voltage is applied to the common electrode 140, the common electrode 140 receives the driving voltage (the same as the actual driving method of the existing liquid crystal display panel), and the electrode layer 160 does not receive the voltage (that is, the voltage on the electrode layer 160 is 0V ), the voltage on the pixel layer 150 is about 8V.
  • the transmittance T is maximum when the azimuth angle ⁇ is 45° (at this time, the long axis of the liquid crystal molecule 131 is parallel to the length direction of the branch electrode 152),
  • the brightness of the liquid crystal display panel 100 is the highest; and when ⁇ is 35° or 55°, T decreases, and the brightness of the liquid crystal display panel 100 decreases relatively.
  • the azimuth ⁇ is the angle between the orthographic projection line of the long axis of the liquid crystal molecule 131 on the side of the first substrate 110 facing the second substrate 120 and the x-axis
  • the pretilt angle ⁇ is the angle between the long axis of the liquid crystal molecule 131 and the x-axis.
  • the angle between the z axes (that is, the vertical direction).
  • the common electrode 140 receives an alignment voltage, and the direction of the electric field is from the common electrode 140 to the pixel layer 150.
  • the pretilt angle ⁇ a of each liquid crystal molecule 131 in the liquid crystal layer 130 is the same, which is 1.4°, that is, the pretilt angle ⁇ a is fixed.
  • the driving voltage is also applied to the common electrode 140, and the direction of the driving electric field is also from The common electrode 140 points to the pixel layer 150 (in the same direction as the electric field), so the azimuth angle of the liquid crystal molecules in the edge area corresponding to the driving electric field of the existing liquid crystal display panel will not change. Therefore, the azimuth angle ⁇ of the liquid crystal molecules corresponding to the edge area will not be 45°, and an offset will occur, that is, the azimuth angle ⁇ of the liquid crystal molecules in the edge area may be 35° or 55°, resulting in the existing liquid crystal display
  • the transmittance T of the edge area of the panel decreases, and the brightness decreases.
  • the electrode layer 160 receives the alignment voltage, and the direction of the electric field (that is, the alignment electric field) is from the electrode layer 160 to the common electrode 140.
  • the pretilt angle ⁇ is fixed (for example, in this In the embodiment, ⁇ 1 is 2.4°, ⁇ 2 is 0.4°), in this case, due to the effect of the alignment electric field formed by the alignment voltage, the edge region (that is, the region near the two sides of the first substrate 110 in FIG. 3 )
  • the electric field intensity is lower than the central area of the electric field, therefore, the azimuth angle ⁇ of the liquid crystal molecules corresponding to the edge area of the electric field will not be 45°, but may be 35° or 55°.
  • the liquid crystal molecules 131 located at the edge positions on opposite sides of the branch electrodes 152 are liquid crystal molecules 1313 (with an azimuth angle of 55°) and liquid crystal molecules 1314 (with an azimuth angle of 35°).
  • the liquid crystal molecules 131 at the center of the electrode 152 are liquid crystal molecules 1311 (the azimuth angle is 45°), the liquid crystal molecules 131 corresponding to the slit 153 are liquid crystal molecules 1312, the liquid crystal molecules 1311 (the azimuth angle is 45°), and the liquid crystal molecules 1313
  • a driving voltage is applied to the common electrode 140, and the direction of the electric field (that is, the driving electric field) is from the common electrode 140 to the pixel layer 150, which is opposite to the direction of the alignment electric field.
  • the liquid crystal layer 130 Due to the effect of the driving electric field, there will be Apply a force opposite to the previous liquid crystal alignment process to the liquid crystal molecules in the edge region of the driving electric field, and then form a correction to the azimuth angle ⁇ of the liquid crystal molecules in the edge region of the driving electric field, so that the azimuth angle of the liquid crystal molecules in the edge region of the driving electric field ⁇ is close to 45°, that is, the direction of the long axis of the liquid crystal molecules 131 located in the edge region of the driving electric field is parallel or close to parallel to the branch electrodes 152 (or the length direction of the Line region), so that in the actual driving process, the liquid crystal layer 130
  • the azimuth angle ⁇ of all the liquid crystal molecules 131 is approximately equal to 45°.
  • the azimuth angles ⁇ of the liquid crystal molecules 1313 and 1314 are both 45°, that is, the difference between the azimuth angle ⁇ of the liquid crystal molecules 1313 and the azimuth angle ⁇ of the liquid crystal molecules 1311 is 0, the difference between the orientation angle ⁇ of the liquid crystal molecule 1314 and the orientation angle ⁇ of the liquid crystal molecule 1311 is 0; or, the absolute value of the difference between the orientation angle ⁇ of the liquid crystal molecule 1313 and the orientation angle ⁇ of the liquid crystal molecule 1311 is less than or equal to 1.
  • the absolute value of the difference between the azimuth angle ⁇ of the liquid crystal molecule 1314 and the azimuth angle ⁇ of the liquid crystal molecule 1311 is less than or equal to 1.
  • the azimuth angle of the liquid crystal molecule 1313 is 46°
  • the azimuth angle of the liquid crystal molecule 1314 is 44°. Close to 45°, which makes the difference in the penetration contribution of the liquid crystal in the slit area and the space area small, so that the transmittance T of the liquid crystal display panel 100 is at or near the maximum value, which can be improved compared with the existing liquid crystal display panel.
  • the overall transmittance T makes the brightness of the liquid crystal display panel 100 higher and more uniform.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板(100)、液晶配向方法及移动终端。其中,液晶配向过程中,电极层(100)接收配向电压,与分支电极(152)相对设置的液晶分子(131)的预倾角小于与狭缝(153)相对设置的液晶分子(131)的预倾角。由于液晶层(130)内液晶分子(131)的预倾角的整体增大且实现了子像素(151)同一畴内预倾角的差异化,因此可提升液晶显示面板(100)的响应时间和中低灰阶的视角特性。

Description

液晶显示面板、液晶配向方法及移动终端 技术领域
本发明涉及显示技术领域,特别涉及一种液晶显示面板、液晶配向方法及移动终端。
背景技术
大尺寸TFT-LCD(薄膜晶体管液晶显示器)是目前电视采用的主流技术,随着信息技术和生活水平的不断提升,人们对显示器画质如响应时间和视角的要求也越来越高。此外,相对于IPS-LCD(平面转换液晶显示器,IPS, In-Plane Switching,平面转换)和OLED显示屏,VA-LCD(垂直排列液晶显示器)视角较差。因此视角提升一直受到VA-LCD研究者的重点关注。根据穿透液晶配向原理和驱动方案,若要提高视角,则需要对像素进行多畴划分,但这会带来穿透率的损失。而在相同像素架构条件下,液晶预倾角是影响响应时间和视角的重要因子之一。因此需要开发实现液晶预倾角差异化的方案,进而显著提升显示画质。
现有HVA配向技术原理和液晶穿透特征如图1(a)~图1(c)所示,其中图1(a)是配向前的液晶显示面板的剖面图,图1(b)是配向完成后的液晶显示面板的剖面图,图1(c)是配向过程中像素层中分支电极与公共电极之间的电场强度以及狭缝与公共电极之间的电场强度示意图。图2是像素层的子像素的结构示意图。在配向过程中,公共电极140接收配向电压,电场方向从公共电极140到像素层150,由图1(c)可见,由于在像素层150的子像素151同一畴内的分支电极152与公共电极140之间的电场强度和狭缝153与公共电极140之间的电场强度之间的差异并不大,如当分支电极152与公共电极140之间的电场强度是在17V电压下形成的电场强度时,此时狭缝153与公共电极140之间的电场强度可能达到在16V电压下形成的电场强度,这使得液晶层130内,与分支电极152相对应的液晶分子131形成的预倾角和与狭缝153相对应的液晶分子131形成的预倾角基本相同,参照图1(b),液晶分子131的预倾角θ a均约为1.4°,导致在实际驱动过程中,由于子像素151同一畴区域内的分支电极152对应的液晶分子131的预倾角和狭缝153对应的液晶分子131的预倾角无差异,而使得面板低灰阶视角比较单一。
技术问题
本申请实施例提供一种液晶显示面板、液晶配向方法及移动终端,以解决现有液晶显示面板低灰阶视角较差的问题。
技术解决方案
本申请实施例提供了一种液晶显示面板,包括:相对设置的第一基板和第二基板;液晶层,由多个液晶分子组成,设置于所述第一基板和所述第二基板之间;公共电极,设置于所述第二基板朝向所述第一基板的一面;像素层,设置于所述第一基板朝向所述第二基板的一面,所述像素层包括呈阵列排布的多个子像素,每个所述子像素包括至少两平行排布的分支电极,两所述分支电极之间形成狭缝;所述液晶显示面板还包括:电极层,设置于所述第一基板与所述像素层之间,并与所述像素层间隔设置;其中,与所述分支电极对应设置的液晶分子的预倾角小于与所述狭缝对应设置的液晶分子的预倾角。
进一步地,所述电极层与所述像素层之间层叠设置有栅极绝缘层和保护层,所述像素层设置于所述保护层上。
进一步地,所述电极层为ITO电极层。
进一步地,所述公共电极与所述像素层之间的间距为3.2~3.3μm。
进一步地,所述电极层设置于所述第一基板上,所述第一基板上还设置有第一阵列公共电极,所述第一阵列公共电极与所述电极层同层设置。
本申请实施例还提供一种液晶配向方法,包括:
提供如前所述的液晶显示面板;
向电极层施加配向电压,在电极层与公共电极之间形成配向电场,使得液晶层内的液晶分子偏转,与像素层的分支电极相对设置的液晶分子形成的预倾角小于与狭缝相对设置的液晶分子形成的预倾角;
通过紫外光照射所述液晶显示面板,将所述液晶分子以所述预倾角固定。
进一步地,所述分支电极与所述公共电极之间的电场强度低于所述狭缝与所述公共电极之间的电场强度。
进一步地,所述配向电压的电压值为50~100V。
进一步地,位于所述分支电极的相对两侧边缘位置处的液晶分子的方位角与所述分支电极中心位置处的液晶分子的方位角的差值的绝对值相等。
进一步地,配向完成后的实际驱动中,向公共电极施加驱动电压,位于所述分支电极的相对两侧边缘位置处的液晶分子的方位角与所述分支电极中心位置处的液晶分子的方位角相同,或者,位于所述分支电极的相对两侧边缘位置处的液晶分子的方位角与所述分支电极中心位置处的液晶分子的方位角的差值的绝对值小于或者等于1。
本申请实施例还提供一种移动终端,所述移动终端包括终端主体和如前所述的液晶显示面板。
有益效果
本申请的有益效果为:在第一基板朝向第二基板一面设置一层电极层,在液晶配向过程中,向该电极层施加配向电压,使得在子像素的同一畴区域内,对应分支电极的液晶层内的液晶分子的预倾角,与对应狭缝的液晶层内的液晶分子的预倾角之间存在差异,且差异明显,从而使得液晶显示面板在实际驱动过程中,由于液晶分子整体预倾角的增大且实现了同一畴内预倾角的差异化,可提升液晶显示面板的响应时间和中低灰阶的视角特性。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1(a)是液晶配向前的现有液晶显示面板的剖面图;
图1(b)是液晶配向完成后的现有液晶显示面板的剖面图;
图1(c)是现有液晶显示面板在液晶配向过程中像素层的子像素同一畴区域内分支电极与公共电极之间的电场强度以及狭缝与公共电极之间的电场强度示意图;
图2是像素层的子像素的结构示意图;
图3是本发明一示例性实施例中的液晶显示面板在液晶配向前的剖面图;
图4是本发明一示例性实施例中的液晶显示面板在液晶配向完成后的剖面图;
图5是本发明一示例性实施例中的液晶配向方法流程图;
图6是第一基板、第二基板、液晶分子预倾角以及液晶分子方位角的示意图;
图7是方位角与穿透率的关系曲线示意图;
图8是本发明一示例性实施例中的液晶显示面板在液晶配向完成后的液晶分子的方位角示意图;
图9是本发明一示例性实施例中的液晶显示面板在实际驱动中液晶分子的方位角示意图。
图中部件编号如下:
100、液晶显示面板,110、第一基板,120、第二基板,130、液晶层,131、液晶分子,131a、与分支电极相对设置的液晶分子区域,131b、与狭缝相对设置的液晶分子区域,140、公共电极,150、像素层,151、子像素,151a、主区,151b、次区,152、分支电极,153、狭缝,160、电极层,170、栅极绝缘层,180、保护层,191、第一阵列公共电极,192、第二阵列公共电极;
200、扫描线;
300、数据线。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
所述液晶显示面板通过在第一基板上增加一层电极层(ITO电极层),并在液晶配向过程中,通过向电极层施加配向电压,使得在子像素同一畴区域内,对应分支电极的液晶层内的液晶分子的预倾角,与对应狭缝的液晶层内的液晶分子的预倾角之间存在差异,从而提升液晶显示面板的响应时间和中低灰阶的视角特性。作为典型应用,液晶显示面板可被应用于移动终端上,例如具备VA-LCD面板的TFT-LCD移动终端,即液晶显示面板为VA-LCD面板,移动终端为TFT-LCD显示器。
参照图3和图4,在本发明的一个实施例中,液晶显示面板100包括第一基板110、第二基板120、液晶层130、公共电极140、像素层150和电极层160。其中,第一基板110和第二基板120相对设置,液晶层130包括多个液晶分子131,电极层160设置于第一基板110朝向第二基板120一面,电极层160与像素层150之间层叠设置有栅极绝缘层170(GI层)和保护层180(PV层),像素层150设置于保护层180远离栅极绝缘层170一面,保护层180与栅极绝缘层170之间设置有第二阵列公共电极192(M2),电极层160一端设置有第一阵列公共电极191(M1),电极层160与第一阵列公共电极191同层设置。像素层150包括呈阵列排布的多个子像素151,子像素151的结构参照图2,本实施例中的子像素151结构以3T_8畴结构为例,但不限于3T_8畴结构,也可以采用4畴结构等,而且对于像素结构内薄膜晶体管和电容的数量也不做限定,例如2T1C或3T1C,每个子像素151包括主区151a和次区151b,像素阵列中,相邻两行子像素之间设置一扫描线200,相邻两列子像素之间设置一数据线300,每个所述子像素151还包括:主区薄膜晶体管T1、次区薄膜晶体管T2和共享薄膜晶体管T3,主区薄膜晶体管T1的栅极连接扫描线200,其源极连接数据线300,其漏极连接主区151a内的主区像素电极(图中未示出),次区薄膜晶体管T2的栅极连接扫描线200,源极连接数据线300,漏极连接次区151b内的次区像素电极(图中未示出),共享薄膜晶体管T3的栅极连接扫描线200,其源极连接主区像素电极,其漏极连接次区像素电极。主区像素电极和次区像素电极形成子像素151的像素电极。
其中,主区像素电极内被划分为4个畴,每个畴内包括多个平行间隔排布的分支电极152,相邻两分支电极152之间形成狭缝153;次区存储电极内被划分为4个畴,每个畴内包括多个平行间隔排布的分支电极152,相邻两分支电极152之间形成狭缝153。分支电极152所在区域为Line区,狭缝153所在区域为Space区。与所述分支电极152对应设置的液晶分子131的预倾角小于与所述狭缝153对应设置的液晶分子131的预倾角。
在本实施例中,狭缝153包括一个子像素151内的相邻两分支电极152之间的区域。作为一种改进,狭缝153还可以包括相邻两子像素151之间的区域,确切地说,是相邻两子像素151的相邻像素电极之间的区域。
在本实施例中,一电极层160对应整个所述像素层150内的像素阵列。作为本发明的一种优选方式,电极层160包括多个依次排布的电极子层(图中未示出),一个电极子层对应像素阵列内的一部分子像素151。在本实施例中,第一基板110为阵列基板,设置于阵列基板上的公共电极为阵列公共电极,阵列公共电极包括第一阵列公共电极191和第二阵列公共电极192,阵列基板上的阵列公共电极用于传输电压信号和控制信号。第二基板120为彩膜基板,设置于第二基板120上的公共电极140也可称作彩膜公共电极(Cf公共电极)。
本实施例中,参照图5,液晶配向方法为:
S201、提供液晶显示面板100;
S202、向电极层160施加配向电压,在电极层160与公共电极140之间形成配向电场,使得液晶层130内的液晶分子131偏转,与像素层150的分支电极152相对设置的液晶分子131形成的预倾角小于与狭缝153相对设置的液晶分子131形成的预倾角;
S203、通过紫外光照射所述液晶显示面板100,将所述液晶分子131以所述预倾角固定。
具体来说,可以在所述像素层150朝向所述第二基板120一面设置第一配向膜层(图中未示出),在公共电极140朝向所述第一基板110一面设置第二配向膜层(图中未示出)。
其中,紫外光照采用UVM(Ultraviolet main curing,紫外光固化主制程)机台,步骤S203中,将液晶显示面板100运送至UVM机台,UVM机台对液晶显示面板100进行紫外线曝光,第一配向膜层和第二配向膜层在紫外线的照射下与液晶分子发生作用,进而将液晶分子的预倾角保持固定,完成液晶显示面板100的液晶配向制程。
液晶配向过程中,向电极层160(ITO电极层)施加配向电压,该配向电压为高电压,在本实施例中配向电压设为50V,像素层150可根据实际需要施加电压,例如4V以调节配向电场,公共电极140上不施加电压(即公共电极140上的电压均为0V),电极层160接收配向电压,由于压差的存在,使得电极层160与公共电极140之间形成电场,电场方向从电极层160指向公共电极140(Cf公共电极)。
其中,液晶配向过程中,所述电极层160接收配向电压与公共电极140形成电场时,由于分支电极152存在阻碍或者屏蔽作用,进而使得分支电极152与公共电极140之间的电场强度减弱(如约为10V压差产生的电场强度),而狭缝153内由于没有分支电极152或其他电极存在,使得狭缝153与公共电极140之间的电场强度正常(如约为17V压差产生的电场强度),大于分支电极152与公共电极140之间的电场强度,即在电极层160接收一个高电压(例如50V)的情况下,狭缝153与公共电极140之间的电场强度要明显高于分支电极152与公共电极140之间的电场强度,从而使得与分支电极相对设置的液晶分子区域131a内的液晶分子131形成的预倾角θ 2要明显低于与狭缝相对设置的液晶分子区域131b内的液晶分子形成的预倾角θ 1,即,Line区对应的液晶分子的预倾角与Space区对应的液晶分子的预倾角的差异化,在本实施例中,与分支电极相对设置的液晶分子区域131a内的液晶分子131形成的预倾角θ 2为0.4°,与狭缝相对设置的液晶分子区域131b内的液晶分子131形成的预倾角θ 1为2.4°,θ 1与θ 2之间的差值为2.0°,与现有液晶显示面板中液晶分子均为1.4°的预倾角θ a相比,本实施例实现了预倾角的整体增大和差异化。进而在液晶显示面板100的实际驱动过程中,由于预倾角的整体增大和多样化,可提升液晶显示面板100的响应时间和中低灰阶的视角特性。
其中,所述的预倾角的度数如0.4°、2.0°、1.4°,均为本实施例中的示例性度数,并非固定值,具体的预倾角度数的确定可根据实际需要而定。
所述电场强度可随施加至电极层160上的配向电压大小而改变,从而调节θ 1与θ 2的大小,调节θ 1与θ 2之间的差值,即调节Line区和Space区之间的液晶分子的预倾角差异化幅度,可根据实际使用需求进行调节。而公共电极140与像素层150之间的间距设置为3.2~3.3μm,可保证电场的强度。
在本实施例,液晶配向过程中向电极层160施加高电压,可减小与分支电极相对设置的液晶分子区域131a内液晶分子131形成的预倾角,增加与狭缝相对设置的液晶分子区域131b内液晶分子131形成的预倾角,在经过回退、UV光照等后处理工序之后,使得与分支电极相对设置的液晶分子区域131a内的液晶分子131形成的预倾角定格为θ 2(本实施例中为0.4°),使得与狭缝相对设置的液晶分子区域131b内的液晶分子131形成的预倾角定格为θ 1(本实施例中为2.4°)。
实际驱动液晶显示面板100过程中,向公共电极140施加电压,公共电极140接收驱动电压(与现有液晶显示面板实际驱动方式相同),电极层160不接收电压(即电极层160上电压为0V),像素层150上电压约为8V。
此外,穿透率随方位角φ和倾斜角θ的关系如下式所示:
T=1/2*sin 2(2φ)*sin 2(f(θ))
结合上述关系式,并参照图6和图7,当预倾角θ固定时,穿透率T在方位角φ为45°时最大(此时液晶分子131长轴与分支电极152长度方向平行),液晶显示面板100的亮度最高;而当φ为35°或者55°时,T减小,液晶显示面板100的亮度相对降低。其中,参照图6,方位角φ为液晶分子131长轴在第一基板110朝向第二基板120一面上的正投影线与x轴之间的夹角,预倾角θ为液晶分子131长轴与z轴(即竖直方向)之间的夹角。
对于现有液晶显示面板,参照图1(a)和图1(b),在液晶配向过程中,公共电极140接收配向电压,电场方向是从公共电极140指向像素层150,液晶配向完成后,液晶层130内各液晶分子131的预倾角θ a相同,均为1.4°,即预倾角θ a固定,在实际驱动液晶显示面板过程中,也是向公共电极140施加驱动电压,驱动电场方向也是从公共电极140指向像素层150(与电场方向相同),故而现有液晶显示面板对应驱动电场边缘区域液晶分子的方位角不会变化,一般来说,由于边缘区域的电场强度低于中心区域的电场强度,因此,对应边缘区域的液晶分子的方位角φ不会是45°,会产生偏移,即位于边缘区域的液晶分子的方位角φ可能会是35°或55°,导致现有液晶显示面板边缘区域穿透率T减小、亮度降低。
而本发明实施例,在液晶配向过程中,电极层160接收配向电压,电场(即配向电场)方向是从电极层160指向公共电极140,在液晶配向完成后,预倾角θ固定(例如在本实施例中θ 1为2.4°,θ 2为0.4°),在这种情况下,由于配向电压形成的配向电场的作用,使得边缘区域(即图3中靠近第一基板110两侧的区域)电场强度低于电场中心区域,因此,对应电场边缘区域液晶分子的方位角φ不会是45°,可能会是35°或55°。
参照图8,在本实施例中,位于分支电极152的相对两侧边缘位置处的液晶分子131为液晶分子1313(方位角为55°)和液晶分子1314(方位角为35°),位于分支电极152中心位置处的液晶分子131为液晶分子1311(方位角为45°),与狭缝153对应的液晶分子131为液晶分子1312,液晶分子1311(方位角为45°),液晶分子1313的方位角与液晶分子1311的方位角之间的差值为55°-45°=10°,液晶分子1314的方位角与液晶分子1311的方位角之间的差值为35°-45°=-10°,绝对值均为10°,即绝对值相等。
而在液晶显示面板100的实际驱动过程中,向公共电极140施加驱动电压,电场(即驱动电场)方向是从公共电极140指向像素层150,与配向电场方向相反,由于驱动电场的作用,会对处于驱动电场边缘区域的液晶分子施加一个与之前液晶配向过程相反的力,进而形成对处于驱动电场边缘区域的液晶分子的方位角φ的修正,使得处于驱动电场边缘区域的液晶分子的方位角φ接近45°,即位于驱动电场边缘区域的液晶分子131或长轴方向与分支电极152(或者说Line区长度方向)平行或趋近于平行,从而使得在实际驱动过程中,液晶层130内所有液晶分子131的方位角φ均约等于45°。
在本实施例中,参照图9,实际驱动过程中,液晶分子1313和液晶分子1314的方位角φ均为45°,即液晶分子1313的方位角φ与液晶分子1311的方位角φ的差值为0,液晶分子1314的方位角φ与液晶分子1311的方位角φ的差值为0;或者,液晶分子1313的方位角φ与液晶分子1311的方位角φ的差值的绝对值小于或者等于1,液晶分子1314的方位角φ与液晶分子1311的方位角φ的差值的绝对值小于或者等于1,例如液晶分子1313的方位角为46°,液晶分子1314的方位角为44°,均接近45°,这使得slit区和space区液晶穿透贡献差异较小,从而使得液晶显示面板100的穿透率T处于最大值或接近最大值,这与现有液晶显示面板相比,可提升整体穿透率T,使得液晶显示面板100的亮度较高且较为均匀。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种液晶显示面板,包括:
    相对设置的第一基板和第二基板;
    液晶层,由多个液晶分子组成,设置于所述第一基板和所述第二基板之间;
    公共电极,设置于所述第二基板朝向所述第一基板的一面;
    像素层,设置于所述第一基板朝向所述第二基板的一面,所述像素层包括呈阵列排布的多个子像素,每个所述子像素包括至少两平行排布的分支电极,两所述分支电极之间形成狭缝;
    其中,所述液晶显示面板还包括:
    电极层,设置于所述第一基板与所述像素层之间,并与所述像素层间隔设置;
    与所述分支电极对应设置的液晶分子的预倾角小于与所述狭缝对应设置的液晶分子的预倾角。
  2. 如权利要求1所述的液晶显示面板,其中,所述电极层与所述像素层之间层叠设置有栅极绝缘层和保护层,所述像素层设置于所述保护层上。
  3. 如权利要求1所述的液晶显示面板,其中,所述电极层为ITO电极层。
  4. 如权利要求1所述的液晶显示面板,其中,所述公共电极与所述像素层之间的间距为3.2~3.3μm。
  5. 如权利要求1所述的液晶显示面板,其中,所述电极层设置于所述第一基板上,所述第一基板上还设置有第一阵列公共电极,所述第一阵列公共电极与所述电极层同层设置。
  6. 一种液晶配向方法,其中,包括:
    提供液晶显示面板,所述液晶显示面板,包括:相对设置的第一基板和第二基板;液晶层,由多个液晶分子组成,设置于所述第一基板和所述第二基板之间;公共电极,设置于所述第二基板朝向所述第一基板的一面;像素层,设置于所述第一基板朝向所述第二基板的一面,所述像素层包括呈阵列排布的多个子像素,每个所述子像素包括至少两平行排布的分支电极,两所述分支电极之间形成狭缝;电极层,设置于所述第一基板与所述像素层之间,并与所述像素层间隔设置;
    向电极层施加配向电压,在电极层与公共电极之间形成配向电场,使得液晶层内的液晶分子偏转,与像素层的分支电极相对设置的液晶分子形成的预倾角小于与狭缝相对设置的液晶分子形成的预倾角;
    通过紫外光照射所述液晶显示面板,将所述液晶分子以所述预倾角固定。
  7. 如权利要求6所述的液晶配向方法,其中,所述分支电极与所述公共电极之间的电场强度低于所述狭缝与所述公共电极之间的电场强度。
  8. 如权利要求6所述的液晶配向方法,其中,所述配向电压的电压值为50~100V。
  9. 如权利要求6所述的液晶配向方法,其中,位于所述分支电极的相对两侧边缘位置处的液晶分子的方位角与所述分支电极中心位置处的液晶分子的方位角的差值的绝对值相等。
  10. 如权利要求9所述的液晶配向方法,其中,配向完成后的实际驱动中,向公共电极施加驱动电压,位于所述分支电极的相对两侧边缘位置处的液晶分子的方位角与所述分支电极中心位置处的液晶分子的方位角相同。
  11. 如权利要求9所述的液晶配向方法,其中,配向完成后的实际驱动中,位于所述分支电极的相对两侧边缘位置处的液晶分子的方位角与所述分支电极中心位置处的液晶分子的方位角的差值的绝对值小于或者等于1。
  12. 如权利要求6所述的液晶配向方法,其中,所述电极层与所述像素层之间层叠设置有栅极绝缘层和保护层,所述像素层设置于所述保护层上。
  13. 如权利要求6所述的液晶配向方法,其中,所述电极层为ITO电极层。
  14. 如权利要求6所述的液晶配向方法,其中,所述公共电极与所述像素层之间的间距为3.2~3.3μm。
  15. 如权利要求6所述的液晶配向方法,其中,所述电极层设置于所述第一基板上,所述第一基板上还设置有第一阵列公共电极,所述第一阵列公共电极与所述电极层同层设置。
  16. 一种移动终端,其中,所述移动终端包括终端主体和液晶显示面板;
    所述液晶显示面板包括:
    相对设置的第一基板和第二基板;
    液晶层,由多个液晶分子组成,设置于所述第一基板和所述第二基板之间;
    公共电极,设置于所述第二基板朝向所述第一基板的一面;
    像素层,设置于所述第一基板朝向所述第二基板的一面,所述像素层包括呈阵列排布的多个子像素,每个所述子像素包括至少两平行排布的分支电极,两所述分支电极之间形成狭缝;
    电极层,设置于所述第一基板与所述像素层之间,并与所述像素层间隔设置;
    与所述分支电极对应设置的液晶分子的预倾角小于与所述狭缝对应设置的液晶分子的预倾角。
  17. 如权利要求16所述的移动终端,其中,所述电极层与所述像素层之间层叠设置有栅极绝缘层和保护层,所述像素层设置于所述保护层上。
  18. 如权利要求16所述的移动终端,其中,所述电极层为ITO电极层。
  19. 如权利要求16所述的移动终端,其中,所述公共电极与所述像素层之间的间距为3.2~3.3μm。
  20. 如权利要求16所述的移动终端,其中,所述电极层设置于所述第一基板上,所述第一基板上还设置有第一阵列公共电极,所述第一阵列公共电极与所述电极层同层设置。
PCT/CN2021/114645 2021-08-19 2021-08-26 液晶显示面板、液晶配向方法及移动终端 WO2023019622A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/600,015 US12025888B2 (en) 2021-08-19 2021-08-26 Liquid crystal display panel, liquid crystal alignment method, and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110964643.8A CN113655664B (zh) 2021-08-19 2021-08-19 液晶显示面板、液晶配向方法及移动终端
CN202110964643.8 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023019622A1 true WO2023019622A1 (zh) 2023-02-23

Family

ID=78491903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114645 WO2023019622A1 (zh) 2021-08-19 2021-08-26 液晶显示面板、液晶配向方法及移动终端

Country Status (2)

Country Link
CN (1) CN113655664B (zh)
WO (1) WO2023019622A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655663B (zh) * 2021-08-19 2022-09-27 深圳市华星光电半导体显示技术有限公司 液晶配向方法、液晶显示面板及移动终端
CN114355675B (zh) * 2021-11-30 2023-10-20 北海惠科光电技术有限公司 显示面板及其液晶配向方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740581A (zh) * 2008-11-26 2010-06-16 奇美电子股份有限公司 薄膜晶体管阵列基板及其应用与制造方法
US20110149220A1 (en) * 2009-12-21 2011-06-23 Samsung Electronics Co., Ltd. Vertical alignment layer and liquid crystal display including the same
CN102854673A (zh) * 2012-09-03 2013-01-02 深圳市华星光电技术有限公司 液晶显示面板
CN107942591A (zh) * 2017-11-20 2018-04-20 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN108121116A (zh) * 2017-12-29 2018-06-05 深圳市华星光电半导体显示技术有限公司 一种液晶显示面板的配向方法
CN108845463A (zh) * 2018-07-17 2018-11-20 惠科股份有限公司 显示面板及其显示方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148629A (ja) * 2000-11-15 2002-05-22 Canon Inc 液晶素子
JP4197404B2 (ja) * 2001-10-02 2008-12-17 シャープ株式会社 液晶表示装置およびその製造方法
EP2363744B1 (en) * 2006-04-24 2015-12-16 Sharp Kk Liquid crystal display device
CN101589335A (zh) * 2007-01-26 2009-11-25 夏普株式会社 液晶显示装置
JP2010276622A (ja) * 2007-09-19 2010-12-09 シャープ株式会社 液晶表示装置
CN101872098B (zh) * 2009-04-24 2012-08-01 上海天马微电子有限公司 液晶显示面板及其制造方法
CN101923251B (zh) * 2009-06-09 2015-05-20 群创光电股份有限公司 液晶显示器基板配向处理方法及液晶显示器制造方法
CN102692770B (zh) * 2012-06-07 2015-02-18 昆山龙腾光电有限公司 液晶显示装置
CN104777671B (zh) * 2015-03-31 2018-09-25 深超光电(深圳)有限公司 液晶显示面板及其制造方法
CN111208676B (zh) * 2020-03-05 2021-08-03 Tcl华星光电技术有限公司 液晶显示面板及液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740581A (zh) * 2008-11-26 2010-06-16 奇美电子股份有限公司 薄膜晶体管阵列基板及其应用与制造方法
US20110149220A1 (en) * 2009-12-21 2011-06-23 Samsung Electronics Co., Ltd. Vertical alignment layer and liquid crystal display including the same
CN102854673A (zh) * 2012-09-03 2013-01-02 深圳市华星光电技术有限公司 液晶显示面板
CN107942591A (zh) * 2017-11-20 2018-04-20 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN108121116A (zh) * 2017-12-29 2018-06-05 深圳市华星光电半导体显示技术有限公司 一种液晶显示面板的配向方法
CN108845463A (zh) * 2018-07-17 2018-11-20 惠科股份有限公司 显示面板及其显示方法

Also Published As

Publication number Publication date
CN113655664B (zh) 2022-09-27
CN113655664A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
US10520781B2 (en) Liquid crystal display
US8319926B2 (en) Liquid crystal display device
US20180315386A1 (en) Lcd pixel driver circuit and tft substrate
US8804085B2 (en) Liquid crystal display
WO2018184257A1 (zh) 阵列基板
US9568785B2 (en) Liquid crystal display
US7616283B2 (en) In-plane switching mode LCD device
US8817212B2 (en) Liquid crystal display panel
KR20200034791A (ko) 픽셀 전극 및 액정 디스플레이 패널
JP2014149524A (ja) 液晶表示装置
WO2013137254A1 (ja) 液晶表示装置
JP2006201451A (ja) 液晶表示装置
KR101960459B1 (ko) 액정 표시 장치
WO2023019622A1 (zh) 液晶显示面板、液晶配向方法及移动终端
TW201942642A (zh) 顯示裝置
US20100007808A1 (en) Display substrate and liquid crystal display panel having the same
KR102160112B1 (ko) 액정 표시 장치
US20160209709A1 (en) Curved liquid crystal display device
WO2023019624A1 (zh) 液晶配向方法、液晶显示面板、移动终端及配向设备
WO2023019623A1 (zh) 液晶配向方法、液晶显示面板及移动终端
US11487168B2 (en) Liquid crystal panel and display device
JP2013117700A (ja) 液晶表示装置
US12025888B2 (en) Liquid crystal display panel, liquid crystal alignment method, and mobile terminal
US20110122351A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE