WO2023019395A1 - 一种透光率调整方法及装置 - Google Patents

一种透光率调整方法及装置 Download PDF

Info

Publication number
WO2023019395A1
WO2023019395A1 PCT/CN2021/112759 CN2021112759W WO2023019395A1 WO 2023019395 A1 WO2023019395 A1 WO 2023019395A1 CN 2021112759 W CN2021112759 W CN 2021112759W WO 2023019395 A1 WO2023019395 A1 WO 2023019395A1
Authority
WO
WIPO (PCT)
Prior art keywords
light transmittance
eye closure
region
degree
moment
Prior art date
Application number
PCT/CN2021/112759
Other languages
English (en)
French (fr)
Inventor
吴梓聪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180047790.7A priority Critical patent/CN115989155A/zh
Priority to PCT/CN2021/112759 priority patent/WO2023019395A1/zh
Publication of WO2023019395A1 publication Critical patent/WO2023019395A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency

Definitions

  • the present application relates to the technical field of smart cars, in particular to a method and device for adjusting light transmittance.
  • the present application provides a light transmittance adjustment method and device, which can avoid the interference of strong light on the driver and reduce the impact on the driving safety of the vehicle.
  • the embodiment of the present application provides a light transmittance adjustment method, the method includes: the light transmittance adjustment device obtains the incident light intensity of the N first regions included in the window glass at the first moment, and the N is an integer greater than 1, according to the incident light intensity at the first moment, determine the target light transmittance of each of the N first regions, and adjust the light transmittance of the first region to The target light transmittance.
  • the light transmittance of the window glass can be adjusted in different regions. If the incident light intensity of any two first regions is different, the target light transmittance of the two first regions will also be different, so that the window glass
  • the target light transmittance on the glass can form the effect of spatial gradient.
  • the light transmittance can be adaptively adjusted according to the incident light intensity, effectively reducing the intensity of strong light. The impact of light on the driver improves driving safety.
  • the N first regions include a second region and a third region, the incident light intensity of the second region at the first moment is greater than the incident light intensity of the third region at the first moment, and the second region The target light transmittance of is less than the target light transmittance of the third region.
  • the second area includes one or more first areas
  • the third area includes one or more first areas
  • the number of first areas included in the second area and the third area is less than or equal to N.
  • an area with a greater incident light intensity such as the second area
  • an area with a smaller incident light intensity such as the third area
  • has a larger target light transmittance so that different incident light intensities
  • the light transmittance of any plurality of first regions is different, so that the light transmittance on the window glass can form a spatial gradient effect.
  • determining the target light transmittance of each of the N first regions according to the incident light intensity at the first moment includes: the light transmittance adjusting device The incident light intensity at a moment and the first adjustment coefficient determine the target light transmittance of the first region, and the first adjustment coefficient is used to indicate the mapping relationship between the incident light intensity and the light transmittance. In this way, the adaptive adjustment of the light transmittance of each region of the window glass can be realized.
  • the above method further includes: the light transmittance adjustment device acquires multiple frames of facial images of the driver, the multiple frames of facial images correspond to the first moment, and according to the multiple frames of facial images, determine the The degree of eye closure and/or the speed of eye closure; according to the degree of eye closure and/or the speed of eye closure, the first adjustment coefficient is determined.
  • the degree of eye closure and/or the speed of eye closure can indicate whether the driver is disturbed by strong light, so that each incident light intensity can be adjusted by the first adjustment coefficient ( It can also be referred to simply as light intensity) corresponding to the target light transmittance, for example, when the degree of eye closure and/or eye closure speed are large, it means that the driver is disturbed by strong light, and each light intensity can be adjusted by the first adjustment coefficient
  • the corresponding target light transmittance is reduced, reducing the interference of strong light to the driver and improving safety; for example, when the degree of eye closure and/or the speed of eye closure are small, it means that the driver is less disturbed by strong light.
  • the first adjustment coefficient is used to adjust the target light transmittance increase corresponding to each light intensity, so that the driver can see the road conditions ahead and improve safety.
  • determining the first adjustment coefficient according to the degree of eye closure and/or the speed of eye closure includes: determining the first adjustment coefficient according to the degree of eye closure and/or the speed of eye closure and the first corresponding relationship
  • the first corresponding relationship includes the corresponding relationship between the degree of eye closure and/or the speed of eye closure and the preset first adjustment coefficient.
  • adjusting the light transmittance of the first region to the target light transmittance may include: adjusting the light transmittance of the first region according to the target light transmittance of the first region and the second adjustment coefficient The second adjustment coefficient is used to indicate the mapping relationship between the light transmittance of the first region and time.
  • the light transmittance of the window glass can be adjusted in a time-gradient manner, giving the driver's eyes time to adapt to the change in light transmittance, and improving safety and eye comfort.
  • the above method further includes: the light transmittance adjustment device acquires multiple frames of facial images of the driver, the multiple frames of facial images correspond to the first moment, and according to the multiple frames of facial images, determine the The degree of eye closure and/or the speed of eye closure, and the second adjustment coefficient is determined according to the degree of eye closure and/or the speed of eye closure.
  • the degree of eye closure and/or the speed of eye closure can indicate whether the driver is disturbed by strong light
  • the light transmittance change speed can be adjusted by the second adjustment coefficient according to whether the driver is disturbed by strong light
  • the second adjustment coefficient can be used to adjust the light transmittance to change more rapidly, and quickly reduce the interference of strong light to the driver , to improve safety; for another example, when the degree of eye closure and/or eye closure speed are small, it means that the driver is less disturbed by strong light
  • the second adjustment factor can be used to adjust the light transmittance to change more slowly, improving the driver's eyesight. comfort.
  • determining the second adjustment coefficient according to the degree of eye closure and/or the speed of eye closure includes: determining the second adjustment coefficient according to the degree of eye closure and/or the speed of eye closure and the second corresponding relationship
  • the second corresponding relationship includes the corresponding relationship between the degree of eye closure and/or the speed of eye closure and the preset second adjustment coefficient.
  • the embodiment of the present application further provides a light transmittance adjustment device, the light transmittance adjustment device includes an acquisition unit, an acquisition unit, and an adjustment unit.
  • the acquiring unit is used to acquire the incident light intensity of the N first areas included in the window glass at the first moment, and N is an integer greater than 1;
  • the processing unit is used to determine the N intensity according to the incident light intensity at the first moment.
  • the target light transmittance of each first area in the first areas; the adjustment unit is used to adjust the light transmittance of the first area to the target light transmittance.
  • the N first regions include a second region and a third region; the incident light intensity of the second region at the first moment is greater than the incident light intensity of the third region at the first moment, and the second region
  • the target light transmittance of is less than the target light transmittance of the third region.
  • the second area includes one or more first areas
  • the third area includes one or more first areas
  • the number of first areas included in the second area and the third area is less than or equal to N.
  • the processing unit is specifically configured to: determine the target light transmittance of the first region according to the incident light intensity of the first region at the first moment and the first adjustment coefficient, and the first adjustment coefficient is used for Indicates the mapping relationship between incident light intensity and light transmittance.
  • the acquiring unit is also configured to: acquire multiple frames of facial images of the driver, the multiple frames of facial images corresponding to the first moment; the processing unit is also configured to: according to the multiple frames of facial images , determine the degree of eye closure and/or the speed of eye closure of the driver; and determine the first adjustment coefficient according to the degree of eye closure and/or the speed of eye closure.
  • the processing unit is specifically configured to: determine the preset value of the first adjustment coefficient according to the degree of eye closure and/or the speed of eye closure, and the first corresponding relationship, the first corresponding relationship includes The corresponding relationship between the degree and/or eye closing speed and the preset first adjustment coefficient.
  • the adjusting unit is specifically configured to: adjust the light transmittance of the first region to the target light transmittance after a target time period according to the target light transmittance of the first region and the second adjustment coefficient.
  • the acquiring unit is further configured to: acquire multiple frames of facial images of the driver, and the multiple frames of images correspond to the first moment; the processing unit is specifically configured to: according to the multiple frames of facial images, determine The degree of eye closure and/or the speed of eye closure of the driver; according to the degree of eye closure and/or the speed of eye closure, a second adjustment coefficient is determined, and the second adjustment coefficient is used to indicate the mapping between the light transmittance of the first area and time relation.
  • the processing unit is specifically configured to: determine the preset value of the second adjustment coefficient according to the degree of eye closure and/or the speed of eye closure, and the second correspondence, the second correspondence including eye closure The corresponding relationship between the degree and/or eye closing speed and the preset second adjustment coefficient.
  • the embodiment of the present application also provides an electronic device, the electronic device includes a processor and a memory, the memory is used to store computer-executable instructions, and when the electronic device is running, the processor executes the The computer executes instructions to use the hardware resources in the electronic device to execute the operation steps of the above-mentioned first aspect and the method of any possible design of the first aspect.
  • an embodiment of the present application further provides a vehicle, including the light transmittance adjusting device described in the second aspect and any possible implementation manner of the second aspect, or the electronic device in the third aspect above.
  • the embodiment of the present application further provides a computer-readable storage medium, the computer-readable storage medium includes computer instructions, and when the computer instructions are run on the vehicle-mounted equipment, the vehicle-mounted equipment is made to execute the first method of the embodiment of the application.
  • the computer-readable storage medium includes computer instructions, and when the computer instructions are run on the vehicle-mounted equipment, the vehicle-mounted equipment is made to execute the first method of the embodiment of the application.
  • the embodiment of the present application further provides a computer program product, including instructions, when the computer program product runs on the vehicle-mounted device, the vehicle-mounted device executes the first aspect and the first aspect of the embodiment of the present application Any possible design of the technical solution.
  • the embodiment of the present application further provides a chip system, where the chip system may include a processor.
  • the processor is coupled with the memory and can be used to execute the first aspect and the method in any possible implementation manner of the first aspect.
  • the chip system further includes a memory. Memory, used to store computer programs (also called code, or instructions).
  • the processor is configured to call and run a computer program from the memory, so that the device installed with the system-on-a-chip executes the first aspect and the method in any possible implementation manner of the first aspect.
  • the above light transmittance adjusting device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • the embodiment of the present application also provides a light transmittance adjustment system, the system includes a window glass, and the light transmittance as described in the second aspect and any possible implementation of the second aspect An adjustment device, or the electronic device in the third aspect above.
  • Fig. 1 is a system block diagram of a light transmittance adjustment system for a windshield provided in an embodiment of the present application;
  • FIG. 2 is a schematic flow chart of a light transmittance adjustment method provided in an embodiment of the present application
  • Fig. 3 is a schematic diagram of the functional relationship curve between the target light transmittance and the incident light intensity provided by the embodiment of the present application;
  • Fig. 4 is the schematic diagram of the functional relation curve of light transmittance and time provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a scene where high beams are irradiated on the windshield according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a light transmittance adjustment device provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the vehicle can communicate with other objects based on the vehicle to everything (V2X) wireless communication technology.
  • V2X vehicle to everything
  • the communication between the vehicle and the audience-side terminal device can be realized based on vehicle-to-vehicle wireless communication technology (vehicle to vehicle, V2V).
  • vehicle to vehicle V2V
  • the communication between vehicles and other objects can be based on wireless fidelity (Wi-Fi), fifth generation (5th generation, 5G) mobile communication technology, long term evolution (long term evolution, LTE) and so on.
  • Wi-Fi wireless fidelity
  • 5G fifth generation
  • LTE long term evolution
  • the embodiment of the present application provides a light transmittance adjustment method, the method can be implemented by a light transmittance adjustment device, the light transmittance adjustment device can be set at any position of the vehicle, for example, it can be integrated in the window glass or integrated in the on-board equipment (for example, integrated in the vehicle machine, vehicle controller or domain controller), or set in the cockpit as an independent controller, or integrated with other control devices in the cockpit .
  • the light transmittance adjustment device can acquire the incident light intensity of the N first areas included in the window glass on the vehicle, and for each first area: according to the incident light intensity of the first area, determine the target of the first area light transmittance, and adjust the light transmittance of the first region to the target light transmittance, so that the light transmittance of the window glass can be adjusted in different regions, and the light transmittance of any number of first regions with different incident light intensities is different , so that the light transmittance on the window glass can form a spatial gradient effect, which can meet the user's driving needs for intelligently coping with strong light interference scenes.
  • the strong light interference scene is, for example, a high beam interference scene, or a strong sunlight scene, which is not limited in this embodiment of the present application.
  • the window glass can be any one or more of the front windshield glass, the rear windshield glass, the side window glass, and the sunroof (or sunroof) glass.
  • the type of glass is not limited.
  • the window glass can be made of glass, or a composite material with glass as the base material, or other materials with a certain light transmittance and strength that can realize the function of the window glass, such as polymer materials.
  • the embodiment of this application The specific material of the vehicle window glass is not limited.
  • the system block diagram of the light transmittance adjustment system for the windshield applicable to the present application is provided below.
  • the light transmittance adjustment system of the windshield includes an electronic windshield and a light transmittance adjustment device.
  • the electronic windshield is provided with at least one photosensitive device and a dimming component.
  • the photosensitive device can collect the light intensity signal irradiated on the electronic windshield.
  • the photosensitive device can be a photosensitive sensor, for example, in the embodiment of this application
  • the electronic windshield is divided into N areas, and N is an integer greater than 1.
  • Each area can be equipped with a photosensitive sensor, so that the incident light intensity of each area can be obtained.
  • N as 10 the electronic windshield The windshield is divided into 10 areas with the same area, and 10 photosensitive sensors can be set on the electronic windshield.
  • N photosensitive sensors In order to save costs, it is also possible to set up less than N photosensitive sensors, and set photosensitive sensors in an interval, such as continuous area 1 , Area 2, and Area 3, Area 1 and Area 3 are provided with photosensitive sensors respectively, and the incident light intensity collected by the photosensitive sensor arranged in Area 1 and the incident light intensity collected by the photosensitive sensor arranged in Area 3 can be taken as The average value is the incident light intensity in zone 2. More photosensitive sensors can also be provided if more precise incident light intensity on the electronic windshield is desired.
  • the dimming component is used to adjust the light transmittance of the electronic windshield.
  • the electronic windshield can be made of a material with an electroluminescent variable transmittance. The current output by the material realizes the adjustment of light transmittance.
  • the light transmittance adjusting device can be arranged inside the electronic windshield, and can also be arranged outside the electronic windshield.
  • the light transmittance adjusting device can include a light intensity input interface and a light transmittance output interface, and can receive signals from The incident light intensity of the photosensitive device.
  • the light transmittance adjustment device generates the target light transmittance in each area (or position) of the electronic windshield through a spatial gradient scheme according to the incident light intensity in each area, and then generates the corresponding light transmittance in each area (or position) through a time gradient scheme.
  • the light transmittance gradient adjustment of the electronic windshield is completed according to the magnitude of the current.
  • the light transmittance adjustment system may also include a camera device, and the light transmittance adjustment device may also include a picture input interface through which facial images collected by the camera device can be received.
  • the camera device can acquire facial images in real time, and the light transmittance adjustment device can intelligently identify the eye closure degree and eye closure speed through the eye feature data in the facial image, and then adjust the spatial gradient scheme and time gradient scheme in real time. parameters.
  • the camera device can be a camera installed in the cockpit (such as near the A-pillar, the center console, the rearview mirror or the steering column), and the camera can be an infrared camera (infra-red, IR), a color camera (red green black,RGB) or other types of cameras capable of capturing face/eye images.
  • a light transmittance adjustment method provided in the embodiment of the present application will be introduced below.
  • This method can be executed by the light transmittance adjustment device or components (such as chips, circuits, etc.) of the light transmittance adjustment device.
  • the method will be executed by the light transmittance adjusting device as an example below.
  • the method includes:
  • the light transmittance adjusting device obtains the incident light intensity of N first regions included in the windshield at a first moment, where N is an integer greater than 1.
  • the windshield is divided into N first regions as an example for illustration. It should be understood that the N first regions in step 201 can also be replaced by N positions.
  • the light transmittance adjustment scheme can be applied to the light transmittance adjustment of each position.
  • Step 202 the light transmittance adjusting device determines the target light transmittance of each of the N first areas according to the incident light intensity at the first moment.
  • the incident light intensity of the second region at the first moment is greater than that of the first region
  • the target light transmittance of the second area is smaller than the target light transmittance of the third area, so that the target light transmittance of the first area with greater incident light intensity is lower, and the incident light
  • the target light transmittance of the first region with lower intensity is higher, so that the light transmittance on the windshield can form a spatial gradient effect.
  • step 202 there are many possible implementation manners for determining the target light transmittance of the first region according to the incident light intensity at the first moment.
  • the target light transmittance of the first region is determined according to the incident light intensity at the first moment and the first adjustment coefficient, wherein the first adjustment coefficient is used to indicate the mapping between the incident light intensity and the light transmittance relation.
  • the target light transmittance of the first region has a certain functional relationship with the incident light intensity, and as the incident light intensity increases, the target light transmittance of the first region decreases, for example as follows Formula (1) shows:
  • k is the first adjustment coefficient
  • y is the target light transmittance of the first region
  • x is the incident light intensity of the first region at the first moment.
  • k is the first adjustment coefficient
  • y is the target light transmittance of the first region
  • x is the incident light intensity of the first region at the first moment.
  • the first adjustment coefficient includes a first parameter used to control the length of the first incident light intensity range and a second parameter used to control the initial light intensity position corresponding to the first incident light intensity range.
  • the first incident light intensity range may be the range between the incident light intensity corresponding to the first preset light transmittance and the incident light intensity corresponding to the second preset light transmittance, and the second preset light transmittance is greater than
  • the first preset light transmittance for example, the first preset light transmittance is 3%, the second preset light transmittance is 97%, the first preset light transmittance and the second preset light transmittance can be based on actual needs setting, and its specific value is not limited here.
  • the determination of the target light transmittance of the first region according to the incident light intensity at the first moment and the first adjustment coefficient can be achieved in the following manner: according to the incident light intensity of the first region at the first moment, it is used to control the first incident light intensity
  • the first parameter of the length of the light intensity range and the second parameter used to control the initial light intensity position corresponding to the first incident light intensity range determine the target light transmittance of the first region.
  • the first incident light intensity range is x11 ⁇ x12
  • the length of the first incident light intensity range is the difference between x12 and x11
  • the initial light intensity position corresponding to the first incident light intensity range is x11.
  • the target light transmittance of the first region can be determined based on a Sigmoid function.
  • the following formula (3) can be used to determine the target light transmittance of the first region:
  • the y is the target light transmittance of the first region
  • the x is the incident light intensity of the first region at the first moment
  • the a is the first parameter
  • the b is the second parameter.
  • the first parameter and the second parameter may be default values, and the default value may be acceptable according to different incident light intensities and corresponding eyes in the scene of simulating high beam illumination.
  • a and b are calculated in combination with the above formula (3), which are respectively used as the default values of the first parameter and the second parameter.
  • the first parameter and the second parameter may also be values adjusted according to actual needs.
  • the first parameter and the second parameter may be adjusted according to the driver's degree of interference by high beams.
  • the degree of interference may be represented by the degree of eye closure and/or the speed of eye closure, which will be described in detail below.
  • the light transmittance adjusting device may store a first correspondence, the first correspondence including the correspondence between eye closure degree and/or eye closure speed and the preset value of the first parameter and the preset value of the second parameter, that is to say,
  • the first corresponding relationship can be the corresponding relationship between the degree of eye closure and the preset value of the first parameter and the preset value of the second parameter, or it can be the relationship between the eye closing speed and the preset value of the first parameter and the preset value of the second parameter
  • the corresponding relationship of the values may also be the corresponding relationship between the degree of eye closure and the speed of eye closure and the preset value of the first parameter and the preset value of the second parameter.
  • the degree of eye closure can be expressed by the degree of reduction of the eyes when the eyes are disturbed by the high beam light and when the eyes are not disturbed by the high beam light.
  • the perpendicular line connecting the two corners of the eyes when the eyes are normally open The maximum distance m0 between the upper eyelid and the lower eyelid is used as the reference, and when the eyes are closed at the first moment and the high beam is disturbed, the distance between the upper eyelid and the lower eyelid on the vertical line connecting the two eye corners is m1 , at this time, the degree of eye closure can be represented by the ratio between m1 and m0 (for example, expressed as a percentage).
  • the degree of eye closure is 100%, which means it is completely closed, and for example, the degree of eye closure is 0%, which means it is completely opened.
  • High beam interference the greater the degree of eye closure, the greater the degree of interference of the driver by the high beam.
  • the speed of eye closure can be expressed according to how much the distance between the upper eyelid and the lower eyelid on the vertical line connecting the two eye corners per second decreases. It can be expressed as a percentage, such as closing 10% per second, or closing per second 30%, the larger the value, the faster the eye closing speed, and the faster the eye closing speed can indicate that the driver is more disturbed by the high beam.
  • the first correspondence may also be stored in a storage device inside the vehicle, and the light transmittance adjusting device may obtain the first correspondence from the storage device. The embodiment of the present application does not limit the storage location of the first correspondence.
  • the light transmittance adjusting device may also acquire multiple frames of facial images of the driver, the multiple frames of images corresponding to the first moment, and determine the driver's eye closure degree and/or eye closure speed, and then determine the first adjustment coefficient according to the eye closure degree and/or eye closure speed.
  • the facial image includes the eyes of the driver, which may be a partial facial image (for example, only including the eyes), or an image including other parts of the human body besides the eyes of the driver.
  • the multi-frame image corresponds to the first moment means that the time for acquiring (for example, shooting) the multi-frame image may include the first moment and at least one moment before the first moment.
  • the light transmittance adjustment device can determine the preset value of the first adjustment coefficient according to the degree of eye closure and/or the speed of eye closure, and the first corresponding relationship, and then according to the incident light intensity at the first moment and The preset value of the first adjustment coefficient determines the target light transmittance of the first region.
  • the first corresponding relationship includes a corresponding relationship between the degree of eye closure and/or the speed of eye closure and a preset first adjustment coefficient.
  • the first corresponding relationship may include The degree of eye closure and/or the corresponding relationship between the eye closure speed and the preset value of the first parameter and the preset value of the second parameter
  • the light transmittance adjustment device can be based on the degree of eye closure and/or the speed of eye closure, and the first correspondence relationship, determining a first preset value of the first parameter and a second preset value of the second parameter corresponding to the degree of eye closure and/or the speed of eye closure. In this way, the adjustment values of the first parameter and the second parameter can be determined.
  • the light transmittance adjusting device can acquire multiple frames of facial images of the driver at the next moment and at least one moment before the next moment, and determine the driver's eyes according to the multiple frames of facial images. degree of closure and/or eye closure speed, and then according to the first correspondence, determine the first preset value of the first parameter and the second preset value of the second parameter corresponding to the degree of eye closure and/or eye closure speed, as follows
  • the first preset value of the first parameter and the second preset value of the second parameter determined at a moment, relative to the first preset value of the first parameter and the second preset of the second parameter determined at the first moment In terms of value, it is the adjustment value of the first parameter and the second parameter corresponding to the next moment.
  • the light transmittance adjusting device determines the target light transmittance of the first area according to the incident light intensity of the first area at the first moment, the first preset value of the first parameter, and the second preset value of the second parameter. Rate.
  • curve 1 is the functional relationship curve between the target light transmittance and incident light intensity at time t1, which satisfies the above formula (3), the first parameter a corresponding to curve 1 is a1, and the second parameter b is b1 , according to the characteristics of curve 1, the gradient interval can be divided into low-risk area, medium-risk area and high-risk area, which correspond to different light transmittance change values, and can be adjusted according to different risks.
  • the boundary between the low-risk area and the medium-risk area is x11 corresponding to a light transmittance of 97%
  • the boundary between the medium-risk area and the high-risk area is x12 corresponding to a light transmittance of 3%.
  • the incident light intensity range corresponding to the low-risk area is 0-x11
  • the incident light intensity range corresponding to the medium-risk area is x11-x12, which is the above-mentioned first incident light intensity range
  • the incident light intensity range corresponding to the high-risk area is Incident light intensity range greater than x12.
  • the first parameter a and the second parameter b are adjustable parameters, wherein the first parameter a is used to control the length of the first incident light intensity range corresponding to the medium risk zone, that is, the length of x11 ⁇ x12, and b is used to control the medium risk The initial light intensity position corresponding to the first incident light intensity range corresponding to the zone, that is, the position of x11.
  • the first parameter a can be appropriately reduced and the second parameter b can be increased, for example, switching from curve 2 to curve 1, in this case , strong light has little effect on the eyes, the tolerance for risk is higher, the rate of decline in the medium-risk area is slower, and the speed of entering the high-risk area is slower.
  • Step 203 the light transmittance adjusting device adjusts the light transmittance of the first region to a target light transmittance.
  • Possible implementation mode b1 calculate the current value corresponding to the target light transmittance, and then output the current corresponding to the current value to the electroluminescent variable transmittance material, and directly adjust the light transmittance of the first region from the first light transmittance to the target light transmittance, wherein the first light transmittance is the first initial light transmittance of the first region.
  • the light transmittance of the first region is adjusted to the target light transmittance in a time-gradient manner, that is, the light transmittance of the first region starts from the first light transmittance and is adjusted to Target transmittance.
  • the light transmittance adjusting device adjusts the light transmittance of the first area to the target light transmittance after the target time length according to the target light transmittance of the first area and the second adjustment coefficient .
  • the second adjustment coefficient is used to indicate the mapping relationship between the light transmittance of the first region and time.
  • the light transmittance adjusting device can also obtain multiple frames of facial images of the driver, and the multiple frames of facial images correspond to the first moment, and determine the driver's driving position according to the multiple frames of facial images.
  • the degree of eye closure and/or the speed of eye closure of the personnel, and the second adjustment coefficient is determined according to the degree of eye closure and/or the speed of eye closure. Then, according to the first light transmittance of the first region at the first moment, the target light transmittance, and the preset value of the second adjustment coefficient, the light transmittance of the first region is adjusted from the first light transmittance to the target time length. Target transmittance.
  • the above method b21 can be passed Realized in the following way: according to the first light transmittance of the first region at the first moment, the target light transmittance, the third parameter used to control the length of the first time range corresponding to the light transmittance adjustment stage, used to control the first
  • the fourth parameter of the starting time position of a time range is to adjust the light transmittance of the first region from the first light transmittance to the target light transmittance after a target time length.
  • the light transmittance of the first region has a certain functional relationship with time, and as time goes on, the light transmittance of the first region decreases until it is adjusted to the target light transmittance.
  • the following formula (4) is used to determine the second light transmittance of the first region at the second moment, where the second moment is any moment after the first moment and within the target duration, Then the light transmittance of the first region is adjusted to the second light transmittance at the second moment, and the light transmittance of the first region is the target light transmittance when the target time elapses.
  • y is the second light transmittance of the first region at the second moment
  • t is the second moment
  • c is the third parameter
  • d is the fourth parameter
  • G is the target light transmittance .
  • the third parameter and the fourth parameter may be default values, and the default value may be the light transmittance from 100 to % is reduced to the time required for G, and c and d are calculated in combination with the above formula (4), which are respectively used as the default values of the third parameter and the fourth parameter.
  • the third parameter and the fourth parameter may also be values adjusted according to actual needs.
  • the third parameter and the fourth parameter can be adjusted according to the driver's degree of interference by high beams.
  • the degree of interference can be represented by the degree of eye closure and/or the speed of eye closure, which will be described in detail below.
  • the light transmittance adjusting device may store a second corresponding relationship, the second corresponding relationship includes the corresponding relationship between the degree of eye closure and/or the eye closing speed and the preset value of the third parameter and the preset value of the fourth parameter, that is to say , the second corresponding relationship may be the corresponding relationship between the degree of eye closure and the preset value of the third parameter and the preset value of the fourth parameter, or the relationship between the eye closing speed and the preset value of the third parameter and the preset value of the fourth parameter.
  • the corresponding relationship of the set values may also be the corresponding relationship between the degree of eye closure and the eye closing speed and the preset value of the third parameter and the preset value of the fourth parameter.
  • the relevant contents of the degree of eye closure and the speed of eye closure can refer to the relevant contents mentioned above, and will not be repeated here.
  • the second corresponding relationship may also be stored in a storage device inside the vehicle, and the light transmittance adjusting device may obtain the second corresponding relationship from the storage device.
  • the embodiment of the present application does not limit the storage location of the second corresponding relationship.
  • the light transmittance adjustment device acquires multiple frames of facial images of the driver at the first moment and at least one moment before the first moment, and determines the driver's face according to the multiple frames of facial images.
  • the degree of eye closure and/or the speed of eye closure and then according to the second correspondence, determine the third preset value of the third parameter and the fourth preset value of the fourth parameter corresponding to the degree of eye closure and/or eye closure speed . In this way, the adjustment values of the third parameter and the fourth parameter can be determined.
  • the light transmittance adjusting device is based on the first light transmittance of the first region at the first moment, the target light transmittance, the third preset value of the third parameter, and the fourth value of the fourth parameter.
  • the preset value is to adjust the light transmittance of the first region from the first light transmittance to the target light transmittance after a target time period.
  • curve 3 is the function relationship curve of light transmittance and time corresponding to time t1, satisfying the above formula (4), the third parameter c corresponding to curve 3 is c1, and the fourth parameter d is d1, according to the curve 3, the gradient interval can be divided into adaptation stage, change stage and stable stage, which correspond to different speeds of light transmittance change, which is more in line with the law of light changes observed by the eyes.
  • the boundary between the adaptation stage and the change stage is time t2 corresponding to the transmittance change speed k1
  • the boundary between the change stage and the stable stage is time t4 corresponding to the light transmittance change speed k2.
  • the time range corresponding to the adaptation phase is 0-t2
  • the time range corresponding to the change phase is t2-t4, which is the first time range mentioned above
  • the time range corresponding to the stable phase is the time range of t4.
  • the third parameter c and the fourth parameter d are adjustable parameters, wherein the third parameter c is used to control the length of the first time range corresponding to the light transmittance adjustment stage (that is, the change stage in Figure 4), that is, t2 ⁇ t4
  • the length of d is used to control the starting time position of the first time range, that is, the position of t2.
  • G is the target light transmittance of a certain area on the windshield, which is given by the spatial gradient scheme, and the target light transmittance is a constant value in the time gradient scheme.
  • the change stage of curve 4 shifts to the left, and enters the change stage faster from the adaptation stage, and the light transmittance decreases faster in the change stage, and enters the stable stage faster, thereby ensuring driving safety .
  • the third parameter c can be appropriately reduced and the fourth parameter d can be increased, for example, switching from curve 4 to curve 3, in this case
  • the situation is not urgent, it will enter the change stage more slowly from the adaptation stage, and the light transmittance will decrease more slowly in the change stage, and will enter the stable stage more slowly, so as to ensure driving comfort.
  • the degree of interference of the current driver by strong light is judged, and the parameters in the spatial and time gradient scheme are intelligentized according to the degree of interference of the current driver by strong light Real-time adjustments to ensure safety and comfort.
  • the embodiment of the present application simulates the scene where the oncoming high beam of the oncoming vehicle shines on the windshield, and the effect after the above-mentioned transmittance adjustment scheme is shown in the left figure in Figure 5.
  • the degree of eye closure is small, that is, the scene with a low degree of urgency. Fast forward to dark scenes.
  • the light transmittance adjustment device will intelligently adjust the light transmittance according to the incident light intensity, instead of "one size fits all", so that the key positions on the windshield have low light transmittance and non-key points
  • the location is high light transmittance.
  • the two darkest places in Figure 5 correspond to the irradiation centers of the two high beams on the opposite side.
  • the light transmittance gradient effect is formed around the center of the irradiation center, that is, from the high-risk area to the low-risk area. Gradient transition.
  • the change of light transmittance is gradually formed with time, which means that the time of change is planned, and it is not simply adjusted by the controller.
  • the left picture and the right picture correspond to the adaptation stage, change stage and stable stage from top to bottom, which is more in line with the rules of the eyes to observe changing things, and helps drivers make accurate driving judgments while avoiding light.
  • the light transmittance of the left picture changes slowly, which ensures that the eyes can adapt to the light changes in a more comfortable state.
  • the light transmittance at the corresponding position of the windshield in the right picture is also low, and the light transmittance changes quickly to ensure driving safety.
  • the above process of intelligently adjusting the light transmittance can be adjusted by obtaining eye information in real time. Respond to different complex night driving scenarios.
  • the above possible implementation manner a1 or the possible implementation manner a2 can implement a spatial gradient adjustment scheme for the light transmittance of the windshield, and the above possible implementation manner b2 can implement a time gradient adjustment scheme for the windshield light transmittance.
  • the spatial gradient adjustment scheme and the time gradient adjustment scheme for the light transmittance of the windshield may be used in combination, or may be used separately.
  • the spatial gradient adjustment scheme is used alone
  • the above-mentioned possible implementation manner a1 or possible implementation manner a2 and possible implementation manner b1 can be used to adjust the light transmittance of the windshield.
  • the time-gradient adjustment scheme is used alone, the light transmittance of the windshield can be adjusted integrally by using the above-mentioned possible embodiment b2, that is, the light transmittance of all regions of the windshield is consistent.
  • FIG. 6 is a schematic diagram of a light transmittance adjustment device provided in the embodiment of the present application.
  • the light transmittance adjustment device 600 can realize the light transmittance adjustment in the above method embodiment The steps performed by the device.
  • the light transmittance adjusting device may include an acquiring unit 601 , a processing unit 602 and an adjusting unit 603 .
  • An acquisition unit 601 configured to acquire the incident light intensity of the N first areas included in the window glass at the first moment, where N is an integer greater than 1;
  • a processing unit 602 configured to determine the target light transmittance of each of the N first regions according to the incident light intensity at the first moment;
  • the adjustment unit 603 is configured to adjust the light transmittance of the first region to a target light transmittance.
  • the N first regions include a second region and a third region
  • the incident light intensity of the second region at the first moment is greater than the incident light intensity of the third region at the first moment
  • the incident light intensity of the second region The target light transmittance is smaller than the target light transmittance of the third area.
  • the processing unit 602 is specifically configured to: determine the target light transmittance of the first region according to the incident light intensity of the first region at the first moment and the first adjustment coefficient, and the first adjustment coefficient is used for Indicates the mapping relationship between incident light intensity and light transmittance.
  • the acquiring unit 601 is also configured to: acquire multiple frames of facial images of the driver, the multiple frames of images corresponding to the first moment; the processing unit 602 is also configured to: according to the multiple frames of facial images, Determine the eye closure degree and/or eye closure speed of the driver; determine the first adjustment coefficient according to the eye closure degree and/or eye closure speed.
  • the processing unit 602 is specifically configured to: determine the preset value of the first adjustment coefficient according to the degree of eye closure and/or the speed of eye closure, and the first corresponding relationship, the first corresponding relationship includes eye closure The corresponding relationship between the degree and/or eye closing speed and the preset first adjustment coefficient.
  • the adjustment unit 603 is specifically configured to: adjust the light transmittance of the first region to the target light transmittance after a target time length according to the target light transmittance of the first region and the second adjustment coefficient.
  • the acquiring unit 601 is further configured to: acquire multiple frames of facial images of the driver, the multiple frames of images corresponding to the first moment; the processing unit 602 is specifically configured to: according to the multiple frames of facial images, Determine the degree of eye closure and/or eye closure speed of the driver; determine a second adjustment coefficient according to the degree of eye closure and/or eye closure speed, and the second adjustment coefficient is used to indicate the difference between the light transmittance of the first area and time Mapping relations.
  • the processing unit 602 is specifically configured to: determine the preset value of the second adjustment coefficient according to the degree of eye closure and/or the speed of eye closure, and the second corresponding relationship, the second corresponding relationship includes eye closure The corresponding relationship between the degree and/or eye closing speed and the preset second adjustment coefficient.
  • the present application also provides a light transmittance adjustment system, the light transmittance adjustment system includes vehicle window glass, and the light transmittance adjustment device described in any of the above-mentioned embodiments.
  • the present application further provides a vehicle, the vehicle including the light transmittance adjusting device described in any of the above embodiments.
  • FIG. 7 is a schematic structural diagram of an electronic device provided in the embodiment of the present application. As shown in FIG. Can be connected via a bus system.
  • the above processor 702 may be a chip.
  • the processor 702 may be a field programmable gate array (field programmable gate array, FPGA), may be an application specific integrated circuit (ASIC), may also be a system chip (system on chip, SoC), or It can be a central processing unit (central processor unit, CPU), or a network processor (network processor, NP), or a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller) unit, MCU), it can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller micro controller
  • MCU microcontroller
  • PLD programmable logic device
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 702 or instructions in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor 702 .
  • the software module may be located in storage media such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 701, and the processor 702 reads the information in the memory 701, and completes the steps of the above method in combination with its hardware.
  • the present application also provides a computer program product, the computer program product including: computer program code or instruction, when the computer program code or instruction is run on the computer, the computer is made to execute the above method The method of any one of the embodiments in the embodiments.
  • the present application also provides a computer-readable storage medium, the computer-readable medium stores program codes, and when the program codes are run on a computer, the computer executes the method described in the above-mentioned embodiments. The method of any one of the embodiments.
  • the present application further provides a chip system, where the chip system may include a processor.
  • the processor is coupled with the memory, and can be used to execute the method in any one of the above method embodiments.
  • the chip system further includes a memory.
  • Memory used to store computer programs (also called code, or instructions).
  • the processor is configured to invoke and run a computer program from the memory, so that the device installed with the system-on-a-chip executes the method in any one of the above method embodiments.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Crystal (AREA)

Abstract

一种透光率调整方法及装置,可用于智能汽车技术领域。透光率调整方法包括:获取车窗玻璃包括的N个第一区域在第一时刻的入射光强度,N为大于1的整数(201),然后根据所述第一时刻的入射光强度,确定N个第一区域中的每个第一区域的目标透光率(202),将第一区域的透光率调整为目标透光率(203)。通过该方法,可以实现分区域调整车窗玻璃的透光率,从而使得车窗玻璃上的透光率可以形成渐变的效果,可以避免强光对驾驶员的干扰,降低对车辆行驶安全性的影响。

Description

一种透光率调整方法及装置 技术领域
本申请涉及智能汽车技术领域,尤其涉及一种透光率调整方法及装置。
背景技术
在夜间行车时,对向车辆的远光对驾驶人员会造成极大的视觉干扰,甚至导致驾驶人员短暂地丧失视觉,从而产生严重的安全隐患。使用机械装置控制挡风玻璃或遮光板、或者利用玻璃材质进行快速遮光的方法,往往会在遮光的同时遮挡驾驶人员的视线,使得驾驶人员获取路况信息的完整性受到限制,进而影响到驾驶决策的正确性。
发明内容
本申请提供一种透光率调整方法及装置,可以避免强光对驾驶员的干扰,降低对车辆行驶安全性的影响。
第一方面,本申请实施例提供了一种透光率调整方法,该方法包括:透光率调整装置获取车窗玻璃包括的N个第一区域在第一时刻的入射光强度,所述N为大于1的整数,根据所述第一时刻的入射光强度,确定所述N个第一区域中的每个第一区域的目标透光率,将所述第一区域的透光率调整为所述目标透光率。
通过该方法,可以实现分区域调整车窗玻璃的透光率,如果任意两个第一区域的入射光强度不同,那么这两个第一区域的目标透光率也就不同,从而使得车窗玻璃上的目标透光率可以形成空间渐变的效果,在发生强光照射的情况下(例如,对向车辆开启远光灯),可以根据入射光强度适应性地调整透光率,有效减少强光对驾驶员的影响,提高行车安全性。
在一种可能的实现方式中,N个第一区域包括第二区域和第三区域,第二区域在第一时刻的入射光强度大于第三区域在第一时刻的入射光强度,第二区域的目标透光率小于第三区域的目标透光率。可以理解的,第二区域包括一个或多个第一区域,第三区域包括一个或多个第一区域,第二区域和第三区域中包含的第一区域的个数小于或等于N。如此,入射光强度越大的区域,例如第二区域,其目标透光率越低;入射光强度越小的区域,例如第三区域,其目标透光率越大,从而入射光强度不同的任多个第一区域的透光率不同,使得车窗玻璃上的透光率可以形成空间渐变效果。
在一种可能的实现方式中,根据第一时刻的入射光强度,确定N个第一区域中的每个第一区域的目标透光率,包括:透光率调整装置根据第一区域在第一时刻的入射光强度以及第一调整系数,确定第一区域的目标透光率,第一调整系数用于指示入射光强度与透光率之间的映射关系。如此,可以实现对车窗玻璃各个区域透光率的适应性调整。
在一种可能的实现方式中,上述方法还包括:透光率调整装置获取驾驶员的多帧脸部图像,多帧脸部图像对应于第一时刻,根据多帧脸部图像,确定驾驶员的眼睛闭合程度和/或眼睛闭合速度;根据眼睛闭合程度和/或眼睛闭合速度,确定第一调整系数。在该实现方式中,眼睛闭合程度和/或眼睛闭合速度可以说明驾驶员是否受到强光干扰,从而可以根据驾驶员是否受到明显的强光干扰,通过第一调整系数来调整各个入射光强度(也可简称 为光强)对应的目标透光率,例如,眼睛闭合程度和/或眼睛闭合速度较大时,说明驾驶员受到明显的强光干扰,可以通过第一调整系数来调整各个光强对应的目标透光率减小,降低强光对驾驶员的干扰,提高安全性;又例如,眼睛闭合程度和/或眼睛闭合速度较小时,说明驾驶员受到的强光干扰较小,可以通过第一调整系数来调整各个光强对应的目标透光率增大,使得驾驶员可以看清前方路况,提高安全性。
在一种可能的实现方式中,根据眼睛闭合程度和/或眼睛闭合速度,确定第一调整系数,包括:根据眼睛闭合程度和/或眼睛闭合速度、以及第一对应关系,确定第一调整系数的预设值,第一对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第一调整系数之间的对应关系。如此,可以实现适应性地调整第一调整系数,提高车辆驾驶的安全性和舒适性。
在一种可能的实现方式中,将第一区域的透光率调整为目标透光率,可以包括:根据第一区域的目标透光率、以及第二调整系数,将第一区域的透光率经过目标时长调整至目标透光率,所述第二调整系数用于指示所述第一区域的透光率与时间之间的映射关系。如此,针对每个第一区域来说,可以实现时间渐变方式调整车窗玻璃的透光率,给驾驶员眼睛适应透光率变化的时间,提高安全性和眼睛的舒适性。
在一种可能的实现方式中,上述方法还包括:透光率调整装置获取驾驶员的多帧脸部图像,多帧脸部图像对应于第一时刻,根据多帧脸部图像,确定驾驶员的眼睛闭合程度和/或眼睛闭合速度,根据眼睛闭合程度和/或眼睛闭合速度,确定第二调整系数。在该实现方式中,眼睛闭合程度和/或眼睛闭合速度可以说明驾驶员是否受到强光干扰,从而可以根据驾驶员是否受到明显的强光干扰,通过第二调整系数来调整透光率变化速度,例如,眼睛闭合程度和/或眼睛闭合速度较大时,说明驾驶员受到明显的强光干扰,可以通过第二调整系数来调整透光率变化更加迅速,快速降低强光对驾驶员的干扰,提高安全性;又例如,眼睛闭合程度和/或眼睛闭合速度较小时,说明驾驶员受到的强光干扰较小,可以通过第二调整系数来调整透光率变化更加缓慢,提高驾驶员眼睛的舒适性。
在一种可能的实现方式中,根据眼睛闭合程度和/或眼睛闭合速度,确定第二调整系数,包括:根据眼睛闭合程度和/或眼睛闭合速度、以及第二对应关系,确定第二调整系数的预设值,第二对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第二调整系数之间的对应关系。如此,可以实现适应性地调整第二调整系数,提高车辆驾驶的安全性和舒适性。
第二方面,本申请实施例还提供了一种透光率调整装置,所述透光率调整装置包括获取单元、获取单元和调整单元。其中,获取单元,用于获取车窗玻璃包括的N个第一区域在第一时刻的入射光强度,N为大于1的整数;处理单元,用于根据第一时刻的入射光强度,确定N个第一区域中的每个第一区域的目标透光率;调整单元,用于将第一区域的透光率调整为目标透光率。
在一种可能的实现方式中,N个第一区域包括第二区域和第三区域;第二区域在第一时刻的入射光强度大于第三区域在第一时刻的入射光强度,第二区域的目标透光率小于第三区域的目标透光率。可以理解的,第二区域包括一个或多个第一区域,第三区域包括一个或多个第一区域,第二区域和第三区域中包含的第一区域的个数小于或等于N。
在一种可能的实现方式中,处理单元,具体用于:根据第一区域在第一时刻的入射光强度以及第一调整系数,确定第一区域的目标透光率,第一调整系数用于指示入射光强度与透光率之间的映射关系。
在一种可能的实现方式中,获取单元,还用于:获取驾驶员的多帧脸部图像,多帧脸 部图像对应于第一时刻;处理单元,还用于:根据多帧脸部图像,确定驾驶员的眼睛闭合程度和/或眼睛闭合速度;根据眼睛闭合程度和/或眼睛闭合速度,确定第一调整系数。
在一种可能的实现方式中,处理单元,具体用于:根据眼睛闭合程度和/或眼睛闭合速度、以及第一对应关系,确定第一调整系数的预设值,第一对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第一调整系数之间的对应关系。
在一种可能的实现方式中,调整单元,具体用于:根据第一区域的目标透光率、以及第二调整系数,将第一区域的透光率经过目标时长调整至目标透光率。
在一种可能的实现方式中,获取单元,还用于:获取驾驶员的多帧脸部图像,多帧图像对应于第一时刻;处理单元,具体用于:根据多帧脸部图像,确定驾驶员的眼睛闭合程度和/或眼睛闭合速度;根据眼睛闭合程度和/或眼睛闭合速度,确定第二调整系数,第二调整系数用于指示第一区域的透光率与时间之间的映射关系。
在一种可能的实现方式中,处理单元,具体用于:根据眼睛闭合程度和/或眼睛闭合速度、以及第二对应关系,确定第二调整系数的预设值,第二对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第二调整系数之间的对应关系。
应理解,上述第二方面以及第二方面中任一可能的实现方式的技术效果,可参考上述第一方面以及第一方面中任一可能的实现方式中的技术效果,此处不再赘述。
第三方面,本申请实施例还提供一种电子装置,电子装置包括处理器和存储器,所述存储器用于存储计算机执行指令,所述电子装置运行时,所述处理器执行所述存储器中的计算机执行指令以利用所述电子装置中的硬件资源执行上述第一方面以及第一方面的任一可能设计的方法的操作步骤。
第四方面,本申请实施例还提供一种车辆,包括上述第二方面以及第二方面中任一可能的实现方式中所述的透光率调整装置,或者上述第三方面中的电子装置。
第五方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质包括计算机指令,当计算机指令在车载设备上运行时,使得所述车载设备执行本申请实施例第一方面、以及第一方面的任一可能的实现方式中的技术方案。
第六方面,本申请实施例还提供一种计算机程序产品,包括指令,当所述计算机程序产品在车载设备上运行时,使得所述车载设备执行本申请实施例第一方面、以及第一方面的任一可能设计的技术方案。
第七方面,本申请实施例还提供了一种芯片系统,该芯片系统可以包括处理器。该处理器与存储器耦合,可用于执行第一方面、以及第一方面的任一种可能实现方式中的方法。可选地,该芯片系统还包括存储器。存储器,用于存储计算机程序(也可以称为代码,或指令)。处理器,用于从存储器调用并运行计算机程序,使得安装有芯片系统的设备执行第一方面、以及第一方面的任一种可能实现方式中的方法。
在具体实现过程中,上述透光率调整装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,本申请实施例还提供了一种透光率调整系统,该系统包括车窗玻璃,以及 如上述第二方面以及第二方面中任一可能的实现方式中所述的透光率调整装置,或者上述第三方面中的电子装置。
附图说明
图1为本申请实施例提供的挡风玻璃的透光率调整系统的系统框图;
图2为本申请实施例提供的一种透光率调整方法的流程示意图;
图3为本申请实施例提供的目标透光率与入射光强度的函数关系曲线示意图;
图4为本申请实施例提供的透光率与时间的函数关系曲线示意图;
图5为本申请实施例提供的远光灯照射到挡风玻璃上的场景示意图;
图6为本申请实施例提供的透光率调整装置的示意图;
图7为本申请实施例提供的电子装置的示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。方法实施例中的具体操作方法也可以应用于装置实施例中。其中,在本申请实施例的描述中,本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也不用来表示先后顺序。“多个”的含义是两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。
本申请实施例中车辆可以基于车辆与外界无线通信技术(vehicle to everything,V2X)与其它物体进行通信。例如,可以基于车辆间无线通信技术(vehicle to vehicle,V2V)实现车辆与观众侧终端设备之间的通信。车辆与其它物体之间进行通信可以基于无线高保真(wireless fidelity,Wi-Fi)、第五代(5th generation,5G)移动通信技术、长期演进(long term evolution,LTE)等进行通信。
车辆在夜间行驶过程中,从对向行驶而来的其它车辆的远光灯照射到车辆的前车窗玻璃上,远光灯的光线透过车窗玻璃会照射到驾驶人员的眼睛,从而影响到驾驶人员观察前方路况,容易发生危险。另外,在一些场景中,车辆驶入光照度较高的环境中,例如阳光直射的道路上,可能会影响驾驶人员对驾驶环境信息的观察,导致安全隐患。
为解决夜间行车过程中驾驶人员经常受到前方的远光灯干扰的问题,可以使用机械装置控制车窗玻璃或遮光板等遮光的方法,但这些方法会在遮光的同时遮挡驾驶人员的视线,缺乏适应性调整投射光线强度的能力,使得驾驶人员无法在被遮挡视线时获取完整的路况信息,进而难以做出正确的决策,影响了车辆驾驶的安全性。
为解决上述问题,本申请实施例提供一种透光率调整方法,该方法可以由透光率调整装置执行,该透光率调整装置可以设置于车辆的任意位置,例如可以集成在车窗玻璃中,或者集成在车载设备中(例如,集成在车机、整车控制器或者域控制器中),或者作为独立设置的控制器设置于座舱内,或者与座舱内的其它控制设备集成在一起。该透光率调整装置可以获取车辆上的车窗玻璃包括的N个第一区域的入射光强度,针对每个第一区域: 根据该第一区域的入射光强度,确定该第一区域的目标透光率,并将该第一区域的透光率调整为目标透光率,从而可以分区域调整车窗玻璃的透光率,入射光强度不同的任多个第一区域的透光率不同,使得车窗玻璃上透光率可以形成空间渐变效果,可以满足用户对智能应对强光干扰场景的驾驶需求。其中,强光干扰场景例如为远光灯干扰场景,又例如为强光日照场景,本申请实施例对此不作限定。
本申请实施例中,车窗玻璃可以为前挡风玻璃、后挡风玻璃、侧窗玻璃、遮阳顶窗(或称天窗)玻璃中的任意一种或多种,本申请实施例对车窗玻璃的类型不做限定。车窗玻璃可以为玻璃材质,也可以为以玻璃为基材的复合材料,也可以为具有一定透光度和强度的其它可以实现车窗玻璃功能的材料,例如高分子材料,本申请实施例中车窗玻璃的具体材质不作限定。
下面以强光光源为远光灯、车窗玻璃为前挡风玻璃为例,提供本申请适用的挡风玻璃的透光率调整系统的系统框图。
如图1所示,该挡风玻璃的透光率调整系统包括电子挡风玻璃和透光率调整装置。
其中,电子挡风玻璃上设置有至少一个光感器件和调光组件,光感器件可以采集照射到电子挡风玻璃上的光强信号,光感器件例如可以为光敏传感器,例如本申请实施例中将电子挡风玻璃划分为N个区域,N为大于1的整数,每个区域可以设置一个光敏传感器,这样可以获取到每个区域的入射光强度,以N为10为例,将电子挡风玻璃划分为10个面积相同的区域,可以在电子挡风玻璃上设置10个光敏传感器,为了节省成本,也可以设置少于N个光敏传感器,间隔一个区域设置光敏传感器,例如连续的区域1、区域2、区域3中,区域1和区域3设置分别设置光敏传感器,可以通过设置于区域1的光敏传感器采集到的入射光强度和设置于区域3的光敏传感器采集到的入射光强度,取平均值即为区域2的入射光强度。如果想获得电子挡风玻璃上更精确的入射光强度,也可以设置更多的光敏传感器。
调光组件用于负责调整电子挡风玻璃的透光率,电子挡风玻璃可以采用电致透光率可变材质的材料,如此,调光组件可以通过改变向电致透光率可变材质的材料输出的电流实现调整透光率。
透光率调整装置可以设置于电子挡风玻璃内,也可以设置于电子挡风玻璃外,透光率调整装置可以包括光强输入接口以及透光率输出接口,通过光强输入接口可以接收来自光感器件的入射光强度。透光率调整装置根据各个区域的入射光强度,通过空间渐变方案生成电子挡风玻璃各个区域(或位置)上的目标透光率,接着通过时间渐变方案,生成各个区域(或位置)上对应时间的透光率,然后通过透光率输出接口,向控制器输出对应位置上在对应时间的期望透光率数值,控制器运算得到所需要输出的电流大小,然后通过调光组件输出到电致透光率可变材质中,根据电流的大小完成电子挡风玻璃的透光率渐变调整。
可选的,透光率调整系统还可以包括摄像装置,透光率调整装置还可以包括图片输入接口,通过图片输入接口可以接收来自摄像装置所采集的脸部图像。摄像装置可以实时地获取脸部图像,透光率调整装置可以通过脸部图像中的眼睛特征数据,对眼睛闭合程度和眼睛闭合速度进行智能识别,然后实时地调整空间渐变方案和时间渐变方案中的参数。示例性的,摄像装置可以是设置在座舱内(例如A柱、中控台、后视镜或转向柱附近)的摄像头,该摄像头可以红外摄像头(infra-red,IR)、彩色摄像头(red green black,RGB)或其它类型的能够获取脸部/眼部图像的摄像头。
下面基于上述内容,对本申请实施例提供的一种透光率调整方法进行介绍,该方法可以由透光率调整装置或透光率调整装置的部件(如芯片、电路等)执行,为便于说明,下面以透光率调整装置执行该方法为例进行说明。如图2所示,该方法包括:
步骤201,透光率调整装置获取挡风玻璃包括的N个第一区域在第一时刻的入射光强度,N为大于1的整数。
本申请实施例中,以挡风玻璃划分为N个第一区域为例进行说明,应理解,步骤201中的N个第一区域也可以替换为N个位置,那么下文中针对第一区域的透光率调整方案可以应用于每个位置的透光率调整。
步骤202,透光率调整装置根据第一时刻的入射光强度,确定N个第一区域中的每个第一区域的目标透光率。
其中,N个第一区域中的任意两个第一区域中,以任两个第一区域分别称为第二区域和第三区域为例,第二区域在第一时刻的入射光强度大于第三区域在第一时刻的入射光强度,第二区域的目标透光率小于第三区域的目标透光率,如此,入射光强度越大的第一区域其目标透光率越低,入射光强度越小的第一区域其目标透光率越大,使得挡风玻璃上透光率可以形成空间渐变效果。
基于上述实施例,上述步骤202中,根据该第一时刻的入射光强度,确定该第一区域的目标透光率有多种可能的实施方式。
可能的实施方式a1,根据第一时刻的入射光强度以及第一调整系数,确定第一区域的目标透光率,其中,第一调整系数用于指示入射光强度与透光率之间的映射关系。
在一种可能的实现方式中,该第一区域的目标透光率与入射光强度存在一定的函数关系,随着入射光强度增大,第一区域的目标透光率减小,例如下述公式(1)所示:
y(x)=kx   (1)
在公式(1)中:k为第一调整系数,y为该第一区域的目标透光率,所述x为该第一区域在第一时刻的入射光强度。
又例如下述公式(2)所示:
Figure PCTCN2021112759-appb-000001
在公式(2)中:k为第一调整系数,y为该第一区域的目标透光率,所述x为该第一区域在第一时刻的入射光强度。
在另一种可能的实现方式中,第一调整系数包括用于控制第一入射光强度范围的长度的第一参数和用于控制第一入射光强度范围对应的起始光强位置的第二参数,其中,第一入射光强度范围可以为第一预设透光率对应的入射光强度至第二预设透光率对应的入射光强度之间的范围,第二预设透光率大于第一预设透光率,例如第一预设透光率为3%,第二预设透光率为97%,第一预设透光率与第二预设透光率可根据实际需要设置,此处不限定其具体数值。
上述根据第一时刻的入射光强度以及第一调整系数,确定第一区域的目标透光率可以通过以下方式实现:根据该第一区域在第一时刻的入射光强度、用于控制第一入射光强度范围的长度的第一参数、用于控制第一入射光强度范围对应的起始光强位置的第二参数,确定该第一区域的目标透光率。示例的,第一入射光强度范围为x11~x12,第一入射光强度范围的长度即为x12与x11之间的差值,第一入射光强度范围对应的起始光强位置为x11。
在一个示例中,可以基于Sigmoid函数确定该第一区域的目标透光率。例如,可以采 用如下公式(3)确定该第一区域的目标透光率:
Figure PCTCN2021112759-appb-000002
在公式(3)中,所述y为该第一区域的目标透光率,所述x为该第一区域在第一时刻的入射光强度,所述a为所述第一参数,所述b为所述第二参数。
在一种可能的实现方式中,第一参数和第二参数可以为默认值,该默认值可以为模拟远光照射的场景下,根据不同的入射光强度和入射光强度对应的眼睛可以接受的透光率,结合上述公式(3)计算出a和b,分别作为第一参数和第二参数的默认值。
在另一种可能的实现方式中,第一参数和第二参数也可以为根据实际需要进行调整的值。例如可以为根据驾驶人员受远光灯的干扰程度对第一参数与第二参数进行调整,受干扰程度可以通过眼睛闭合程度和/或眼睛闭合速度来表示,下面进行详细说明。
透光率调整装置可以存储第一对应关系,第一对应关系包括眼睛闭合程度和/或眼睛闭合速度与第一参数的预设值及第二参数的预设值的对应关系,也就是说,第一对应关系可以为眼睛闭合程度与第一参数的预设值及第二参数的预设值的对应关系,也可以为眼睛闭合速度与第一参数的预设值及第二参数的预设值的对应关系,也可以为眼睛闭合程度和眼睛闭合速度与第一参数的预设值及第二参数的预设值的对应关系。其中,眼睛闭合程度可以采用眼睛在受到远光灯干扰时与眼睛在未受到远光灯干扰时的变小程度来表示,示例的,以眼睛正常睁开时两个眼角连线的中垂线上的上眼皮与下眼皮之间的最大距离m0为基准,当第一时刻眼睛闭合受到远光灯干扰时两个眼角连线的中垂线上的上眼皮与下眼皮之间的距离为m1,此时眼睛闭合程度可以采用m1与m0之间的比值表示(例如,采用百分比表示),例如眼睛闭合程度为100%表示完全闭合,又例如眼睛闭合程度为0%表示完全睁开,未受到远光灯干扰,眼睛闭合程度越大可以说明驾驶人员受远光灯的干扰程度越大。眼睛闭合速度可以根据每秒两个眼角连线的中垂线上的上眼皮与下眼皮之间的距离减少多少来表示,可以采用百分比来表示,例如每秒闭合10%,又例如每秒闭合30%,数值越大表示眼睛闭合速度越快,眼睛闭合速度越快可以说明驾驶人员受远光灯的干扰程度越大。应理解,第一对应关系也可以是存储于车辆内部的存储设备中,透光率调整装置可以从存储设备中获取第一对应关系,本申请实施例对第一对应关系的存储位置不作限制。
可能的实施方式a2,透光率调整装置还可以获取驾驶员的多帧脸部图像,该多帧图像对应于第一时刻,根据多帧脸部图像,确定驾驶员的眼睛闭合程度和/或眼睛闭合速度,然后根据所述眼睛闭合程度和/或眼睛闭合速度,确定所述第一调整系数。其中,脸部图像包含驾驶员的眼睛,可以是部分脸部图像(例如,仅包括眼部),也可以是除了包含驾驶员的眼睛之外还包含人体其它部位的图像。可以理解的,多帧图像对应于第一时刻是指获取(例如,拍摄)该多帧图像的时间可以包含第一时刻、以及第一时刻之前的至少一个时刻。
基于该可能的实现方式,透光率调整装置可以根据眼睛闭合程度和/或眼睛闭合速度、以及第一对应关系,确定第一调整系数的预设值,然后根据第一时刻的入射光强度以及第一调整系数的预设值,确定第一区域的目标透光率。其中,第一对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第一调整系数之间的对应关系。
当第一调整系数包括用于控制第一入射光强度范围的长度的第一参数和用于控制第一入射光强度范围对应的起始光强位置的第二参数时,第一对应关系可以包括眼睛闭合程度和/或眼睛闭合速度与第一参数的预设值及第二参数的预设值的对应关系,透光率调整装置可以根据眼睛闭合程度和/或眼睛闭合速度、以及第一对应关系,确定与眼睛闭合程度和 /或眼睛闭合速度对应的第一参数的第一预设值及第二参数的第二预设值。如此,可以确定出第一参数以及第二参数的调整值。在第一时刻的下一时刻,透光率调整装置可以获取驾驶员在下一时刻、以及下一时刻之前的至少一个时刻的多帧脸部图像,根据多帧脸部图像,确定驾驶员的眼睛闭合程度和/或眼睛闭合速度,然后根据第一对应关系,确定与眼睛闭合程度和/或眼睛闭合速度对应的第一参数的第一预设值及第二参数的第二预设值,在下一时刻确定出的第一参数的第一预设值及第二参数的第二预设值,相对于第一时刻确定的第一参数的第一预设值及第二参数的第二预设值来说,即为下一时刻对应的第一参数与第二参数的调整值。
进一步,透光率调整装置根据该第一区域在第一时刻的入射光强度、第一参数的第一预设值、第二参数的第二预设值,确定该第一区域的目标透光率。
下面以第一时刻为t2,第一时刻的前一时刻为t1为例,结合具体示例说明调整透光率空间渐变方案的参数。
如图3所示,曲线1为t1时刻对应的目标透光率与入射光强度的函数关系曲线,满足上述公式(3),曲线1对应的第一参数a为a1,第二参数b为b1,根据曲线1的特点,可将渐变区间分为低风险区、中风险区和高风险区,分别对应不同的透光率变化数值,可根据不同风险进行对应的调整。例如,低风险区与中风险区的边界为透光率97%对应的x11,中风险区与高风险区的边界为透光率3%对应的x12。其中,低风险区对应的入射光强度范围为0~x11,中风险区对应的入射光强度范围为x11~x12,即为上述第一入射光强度范围,高风险区对应的入射光强度范围为大于x12的入射光强度范围。
第一参数a和第二参数b为可调参数,其中,第一参数a用于控制中风险区对应的第一入射光强度范围的长度,即x11~x12的长度,b用于控制中风险区对应的第一入射光强度范围对应的起始光强位置,即x11的位置。
当在t2检测到眼睛闭合程度较大和/或眼睛闭合程度较快时,则意味着驾驶人员已经受到了明显的强光干扰,即当时情况十分紧急,此时应该适当增大第一参数a和减小第二参数b,使曲线1上任一位置入射光强度对应的透光率减小,如图3所示的曲线2。曲线2相较于曲线1来说,低风险区左移,也就是说,低风险区对风险的容忍度更低,而中风险区透光率的下降速度更快,会更快的进入高风险区,更倾向于安全性。若t3时刻检测到眼睛闭合程度较小和/或眼睛闭合程度较慢时,可适当减小第一参数a和增大第二参数b,例如,从曲线2切换至曲线1,这种情况下,强光对眼睛影响不大,对风险的容忍度更高,中风险区下降速度更慢,更慢的进入高风险区。
步骤203,透光率调整装置将该第一区域的透光率调整为目标透光率。
基于上述实施例,上述步骤203中,有多种可能的实现方式,下面通过下述可能的实施方式b1和可能的实施方式b2,来进行具体的描述。
可能的实施方式b1,计算目标透光率对应的电流值,然后输出电流值对应的电流至电致透光率可变材质中,将第一区域的透光率从第一透光率直接调整至目标透光率,其中,第一透光率为该第一区域在第一初始透光率。
可能的实施方式b2,通过时间渐变方式将第一区域的透光率调整至目标透光率,即将第一区域的透光率从第一透光率开始,经过至少一个中间透光率调整至目标透光率。
一种可实现上述步骤203的方式b21中,透光率调整装置根据第一区域的目标透光率、以及第二调整系数,将第一区域的透光率经过目标时长调整至目标透光率。其中,第二调 整系数用于指示第一区域的透光率与时间之间的映射关系。
在一种可实现上述步骤203的方式b22中,透光率调整装置还可以获取驾驶员的多帧脸部图像,多帧脸部图像对应于第一时刻,根据多帧脸部图像,确定驾驶员的眼睛闭合程度和/或眼睛闭合速度,根据眼睛闭合程度和/或眼睛闭合速度,确定第二调整系数。然后,根据第一区域在第一时刻的第一透光率、目标透光率、第二调整系数的预设值,将第一区域的透光率从第一透光率经过目标时长调整至目标透光率。
当第二调整系数包括用于控制透光率调整阶段对应的第一时间范围的长度的第三参数、用于控制第一时间范围的起始时间位置的第四参数时,上述方式b21可通过以下方式实现:根据该第一区域在第一时刻的第一透光率、目标透光率、用于控制透光率调整阶段对应的第一时间范围的长度的第三参数、用于控制第一时间范围的起始时间位置的第四参数,将该第一区域的透光率从第一透光率经过目标时长调整至目标透光率。
第一区域的透光率与时间存在一定的函数关系,随着时间延长,第一区域的透光率减小,直至调整至目标透光率。在一种可能的实现方式中,采用如下公式(4)确定该第一区域在第二时刻的第二透光率,第二时刻为第一时刻之后、且在目标时长内的任意一个时刻,然后将该第一区域的透光率调整至第二时刻的第二透光率,在经过目标时长时该第一区域的透光率为目标透光率。
Figure PCTCN2021112759-appb-000003
在公式(4)中,y为该第一区域在第二时刻的第二透光率,t为第二时刻,c为第三参数,d为第四参数,所述G为目标透光率。
在一种可能的实现方式中,第三参数和第四参数可以为默认值,该默认值可以为模拟远光照射的场景下,根据眼睛可以接受的透光率变化速度,从透光率100%降低至G所需的时间,结合上述公式(4)计算出c和d,分别作为第三参数和第四参数的默认值。
在另一种可能的实现方式中,第三参数和第四参数也可以为根据实际需要进行调整的值。例如可以为根据驾驶人员受远光灯的干扰程度对第三参数和第四参数进行调整,受干扰程度可以通过眼睛闭合程度和/或眼睛闭合速度来表示,下面进行详细说明。
透光率调整装置可以存储有第二对应关系,第二对应关系包括眼睛闭合程度和/或眼睛闭合速度与第三参数的预设值及第四参数的预设值的对应关系,也就是说,第二对应关系可以为眼睛闭合程度与第三参数的预设值及第四参数的预设值的对应关系,也可以为眼睛闭合速度与第三参数的预设值及第四参数的预设值的对应关系,也可以为眼睛闭合程度和眼睛闭合速度与第三参数的预设值及第四参数的预设值的对应关系。其中,眼睛闭合程度和眼睛闭合速度的相关内容可参见上述相关内容,此处不再赘述。应理解,第二对应关系也可以是存储于车辆内部的存储设备中,透光率调整装置可以从存储设备中获取第二对应关系,本申请实施例对第二对应关系的存储位置不作限制。
一种可实现上述步骤203的方式中,透光率调整装置获取驾驶员在第一时刻、以及第一时刻之前的至少一个时刻的多帧脸部图像,根据多帧脸部图像,确定驾驶员的眼睛闭合程度和/或眼睛闭合速度,然后根据第二对应关系,确定与眼睛闭合程度和/或眼睛闭合速度对应的第三参数的第三预设值及第四参数的第四预设值。如此,可以确定出第三参数以及第四参数的调整值。
进一步,透光率调整装置根据该第一区域在第一时刻的第一透光率、所述目标透光率、所述第三参数的第三预设值、所述第四参数的第四预设值,将该第一区域的透光率从第一 透光率经过目标时长调整至所述目标透光率。
下面以第一时刻为t2,第一时刻的前一时刻为t1为例,结合具体示例说明调整透光率时间渐变方案的参数。
如图4所示,曲线3为t1时刻对应的透光率与时间的函数关系曲线,满足上述公式(4),曲线3对应的第三参数c为c1,第四参数d为d1,根据曲线3的特点,可将渐变区间分为适应阶段、变化阶段和稳定阶段,分别对应不同的透光率变化速度,更加符合眼睛观察光线变化的规律。
例如,适应阶段与变化阶段的边界为透光率变化速度k1对应的时间t2,变化阶段与稳定阶段的边界为透光率变化速度k2对应的时间t4。其中,适应阶段对应的时间范围为0~t2,变化阶段对应的时间范围为t2~t4,即为上述第一时间范围,稳定阶段对应的时间范围为t4的时间范围。
第三参数c和第四参数d为可调参数,其中,第三参数c用于控制透光率调整阶段(即图4中的变化阶段)对应的第一时间范围的长度,即t2~t4的长度,d用于控制第一时间范围的起始时间位置,即t2的位置。
在图4中,G是挡风玻璃上某一区域的目标透光率,由空间渐变方案给出,在时间渐变方案中该目标透光率为定值。当检测到眼睛闭合程度较大和/或眼睛闭合程度较快时,则意味着驾驶人员已经受到了明显的强光干扰,即当时情况十分紧急,此时应该适当增大c和减小d,使透光率变化更加迅速,如图4所示的曲线4。
曲线4相较于曲线3来说,变化阶段左移,从适应阶段更快进入变化阶段,且变化阶段透光率的下降速度更快,会更快的进入稳定阶段,从而保证驾驶的安全性。若下一时刻检测到眼睛闭合程度较小和/或眼睛闭合程度较慢时,可适当减小第三参数c和增大第四参数d,例如,从曲线4切换至曲线3,这种情况下,情况不紧急,从适应阶段更慢进入变化阶段,且变化阶段透光率的下降速度更慢,会更慢的进入稳定阶段,从而保证驾驶的舒适性。
通过上述方法,通过检测眼睛闭合程度和/或眼睛闭合速度,判断当前驾驶人员受到强光干扰的程度,根据当前驾驶人员受到强光干扰的程度,对空间和时间渐变方案中的参数进行智能化的实时调整,从而保证安全性和舒适性。
基于上述内容,本申请实施例中提供模拟了对向车辆迎面而来的远光灯照射到挡风玻璃上的场景,通过上述透射率调整方案之后的效果,如图5中左图所示为通过摄像装置采集到的眼睛特征数据识别到眼睛闭合程度小,即情况紧急程度低的场景,右图为通过摄像装置采集到的眼睛特征数据识别到眼睛闭合程度大,即当时情况十分紧急,需要快速进行避光的场景。
如图5所示的两种场景,在空间上,透光率调整装置会根据入射光强度智能调整透光率,不搞“一刀切”,使得挡风玻璃上的重点位置低透光,非重点位置高透光,图5中两处黑色最深的地方对应对面两个远光灯的照射中心,以该照射中心点为中心向四周形成透光率渐变效果,即从高风险区向低风险区渐变过渡。在时间上,透光率变化是随着时间渐变形成的,这意味着对于变化的时间是有规划的,并不是单纯地交由控制器进行调整。左图和右图从上到下分别对应了适应阶段、变化阶段和稳定阶段,更加符合眼睛观察变化事物的规律,有助于驾驶人员在避光的同时准确做出驾驶判断。
在图5所示的左右两张图中,左图透光率的变化较慢,保证了眼睛能以较为舒适的状 态适应光线变化。右图挡风玻璃对应位置的透光率也较低,透光率的变化较快,以保证驾驶的安全性,以上这种智能调整透光率的过程可通过实时获取眼睛信息进行调整,可应对不同的复杂的夜间行车情景。
上述可能的实施方式a1或可能的实施方式a2可以实现对挡风玻璃的透光率的空间渐变调整方案,上述可能的实施方式b2可以实现对挡风玻璃的透光率的时间渐变调整方案。本申请实施例中,对挡风玻璃的透光率的空间渐变调整方案和时间渐变调整方案可以结合使用,也可以单独使用。例如,当空间渐变调整方案单独使用时,可以采用上述可能的实施方式a1或可能的实施方式a2,以及可能的实施方式b1对挡风玻璃的透光率进行调整。又例如,当时间渐变调整方案单独使用时,可以采用上述可能的实施方式b2对挡风玻璃的透光率进行一体式调整,即挡风玻璃的所有区域的透光率一致。
基于以上实施例以及相同构思,图6为本申请实施例提供的透光率调整装置的示意图,如图6所示,该透光率调整装置600可以实现上述方法实施例中的透光率调整装置所执行的步骤。该透光率调整装置可以包括获取单元601、处理单元602和调整单元603。
获取单元601,用于获取车窗玻璃包括的N个第一区域在第一时刻的入射光强度,N为大于1的整数;
处理单元602,用于根据第一时刻的入射光强度,确定N个第一区域中的每个第一区域的目标透光率;
调整单元603,用于将该第一区域的透光率调整为目标透光率。
一种可能的实现方式中,N个第一区域包括第二区域和第三区域,第二区域在第一时刻的入射光强度大于第三区域在第一时刻的入射光强度,第二区域的目标透光率小于第三区域的目标透光率。
一种可能的实现方式中,处理单元602,具体用于:根据第一区域在第一时刻的入射光强度以及第一调整系数,确定第一区域的目标透光率,第一调整系数用于指示入射光强度与透光率之间的映射关系。
一种可能的实现方式中,获取单元601,还用于:获取驾驶员的多帧脸部图像,多帧图像对应于第一时刻;处理单元602,还用于:根据多帧脸部图像,确定驾驶员的眼睛闭合程度和/或眼睛闭合速度;根据眼睛闭合程度和/或眼睛闭合速度,确定第一调整系数。
一种可能的实现方式中,处理单元602,具体用于:根据眼睛闭合程度和/或眼睛闭合速度、以及第一对应关系,确定第一调整系数的预设值,第一对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第一调整系数之间的对应关系。
一种可能的实现方式中,调整单元603,具体用于:根据第一区域的目标透光率、以及第二调整系数,将第一区域的透光率经过目标时长调整至目标透光率。
一种可能的实现方式中,获取单元601,还用于:获取驾驶员的多帧脸部图像,多帧图像对应于第一时刻;处理单元602,具体用于:根据多帧脸部图像,确定驾驶员的眼睛闭合程度和/或眼睛闭合速度;根据眼睛闭合程度和/或眼睛闭合速度,确定第二调整系数,第二调整系数用于指示第一区域的透光率与时间之间的映射关系。
一种可能的实现方式中,处理单元602,具体用于:根据眼睛闭合程度和/或眼睛闭合速度、以及第二对应关系,确定第二调整系数的预设值,第二对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第二调整系数之间的对应关系。
该透光率调整装置所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本申请实施例提供的方法,本申请还提供一种透光率调整系统,该透光率调整系统包括车窗玻璃,以及上述任一实施例中所述的透光率调整装置。
根据本申请实施例提供的方法,本申请还提供一种车辆,该车辆包括上述任一实施例中所述的透光率调整装置。
根据前述方法,图7为本申请实施例提供的电子装置的结构示意图,如图7所示,该电子装置700可以包括存储器701、处理器702,还可以包括总线系统,处理器702和存储器701可以通过总线系统相连。
应理解,上述处理器702可以是一个芯片。例如,该处理器702可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器702中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器702中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等存储介质中。该存储介质位于存储器701,处理器702读取存储器701中的信息,结合其硬件完成上述方法的步骤。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码或指令,当该计算机程序代码或指令在计算机上运行时,使得该计算机执行上述方法实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种芯片系统,该芯片系统可以包括处理器。该处理器与存储器耦合,可用于执行上述方法实施例中任意一个实施例的方法。可选地,该芯片系统还包括存储器。存储器,用于存储计算机程序(也可以称为代码,或指令)。处理器,用于从存储器调用并运行计算机程序,使得安装有芯片系统的设备执行上述方法实施例中任意一个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分, 仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种透光率调整方法,其特征在于,所述方法包括:
    获取车窗玻璃包括的N个第一区域在第一时刻的入射光强度,所述N为大于1的整数;
    根据所述第一时刻的入射光强度,确定所述N个第一区域中的每个第一区域的目标透光率;
    将所述第一区域的透光率调整为所述目标透光率。
  2. 如权利要求1所述的方法,其特征在于,所述N个第一区域包括第二区域和第三区域;
    所述第二区域在所述第一时刻的入射光强度大于所述第三区域在所述第一时刻的入射光强度,所述第二区域的目标透光率小于所述第三区域的目标透光率。
  3. 如权利要求1或2所述的方法,其特征在于,所述根据所述第一时刻的入射光强度,确定N个第一区域中的每个所述第一区域的目标透光率,包括:
    根据所述第一时刻的入射光强度以及第一调整系数,确定所述第一区域的目标透光率,所述第一调整系数用于指示入射光强度与所述透光率之间的映射关系。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    获取驾驶员的多帧脸部图像,所述多帧脸部图像对应于第一时刻;
    根据所述多帧脸部图像,确定所述驾驶员的眼睛闭合程度和/或眼睛闭合速度;
    根据所述眼睛闭合程度和/或眼睛闭合速度,确定所述第一调整系数。
  5. 如权利要求4所述的方法,其特征在于,所述根据所述眼睛闭合程度和/或眼睛闭合速度,确定所述第一调整系数,包括:
    根据所述眼睛闭合程度和/或眼睛闭合速度、以及第一对应关系,确定所述第一调整系数的预设值,所述第一对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第一调整系数之间的对应关系。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述将所述第一区域的透光率调整为所述目标透光率,包括:
    根据所述第一区域的所述目标透光率、以及第二调整系数,将所述第一区域的透光率经过目标时长调整至所述目标透光率,所述第二调整系数用于指示所述第一区域的透光率与时间之间的映射关系。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    获取驾驶员的多帧脸部图像,所述多帧脸部图像对应于第一时刻;
    根据所述多帧脸部图像,确定所述驾驶员的眼睛闭合程度和/或眼睛闭合速度;
    根据所述眼睛闭合程度和/或眼睛闭合速度,确定所述第二调整系数。
  8. 如权利要求7所述的方法,其特征在于,所述根据所述眼睛闭合程度和/或眼睛闭合速度,确定所述第二调整系数,包括:
    根据所述眼睛闭合程度和/或眼睛闭合速度、以及第二对应关系,确定所述第二调整系数的预设值,所述第二对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第二调整系数之间的对应关系。
  9. 一种透光率调整装置,其特征在于,包括:
    获取单元,用于获取车窗玻璃包括的N个第一区域在第一时刻的入射光强度,所述N 为大于1的整数;
    处理单元,用于根据所述第一时刻的入射光强度,确定所述N个第一区域中的每个第一区域的目标透光率;
    调整单元,用于将所述第一区域的透光率调整为所述目标透光率。
  10. 如权利要求9所述的装置,其特征在于,所述N个第一区域包括第二区域和第三区域;
    所述第二区域在所述第一时刻的入射光强度大于所述第三区域在所述第一时刻的入射光强度,所述第二区域的目标透光率小于所述第三区域的目标透光率。
  11. 如权利要求9或10所述的装置,其特征在于,所述处理单元,具体用于:
    根据所述第一区域在第一时刻的入射光强度以及第一调整系数,确定所述第一区域的目标透光率,所述第一调整系数用于指示入射光强度与所述透光率之间的映射关系。
  12. 如权利要求11所述的装置,其特征在于,所述获取单元,还用于:
    获取驾驶员的多帧脸部图像,所述多帧脸部图像对应于第一时刻;
    所述处理单元,还用于:
    根据所述多帧脸部图像,确定所述驾驶员的眼睛闭合程度和/或眼睛闭合速度;根据所述眼睛闭合程度和/或眼睛闭合速度,确定所述第一调整系数。
  13. 如权利要求12所述的装置,其特征在于,所述处理单元,具体用于:
    根据所述眼睛闭合程度和/或眼睛闭合速度、以及第一对应关系,确定所述第一调整系数的预设值,所述第一对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第一调整系数之间的对应关系。
  14. 如权利要求9-13任一项所述的装置,其特征在于,所述调整单元,具体用于:
    根据所述第一区域的所述目标透光率、以及第二调整系数,将所述第一区域的透光率经过目标时长调整至所述目标透光率。
  15. 如权利要求14所述的装置,其特征在于,所述获取单元,还用于:
    获取驾驶员的多帧脸部图像,所述多帧脸部图像对应于第一时刻;
    所述处理单元,具体用于:
    根据所述多帧脸部图像,确定所述驾驶员的眼睛闭合程度和/或眼睛闭合速度;
    根据所述眼睛闭合程度和/或眼睛闭合速度,确定所述第二调整系数,所述第二调整系数用于指示所述第一区域的透光率与时间之间的映射关系。
  16. 如权利要求15所述的装置,其特征在于,所述处理单元,具体用于:
    根据所述眼睛闭合程度和/或眼睛闭合速度、以及第二对应关系,确定所述第二调整系数的预设值,所述第二对应关系包括眼睛闭合程度和/或眼睛闭合速度与预设的第二调整系数之间的对应关系。
  17. 一种电子装置,其特征在于,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,当所述存储器中存储的指令被执行时,实现如权利要求1至8中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,包括计算机可读指令,当所述计算机读取并执行所述计算机可读指令时,实现如权利要求1至8中任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,包括计算机可读指令,当所述计算机可读指令被执行时,实现如权利要求1至8中任一项所述的方法。
  20. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求1至8中任意一项所述的方法。
  21. 一种透光率调整系统,其特征在于,所述系统包括车窗玻璃,以及如权利要求9-16任一项所述的透光率调整装置或如权利要求17所述的电子装置。
  22. 一种车辆,其特征在于,包括如权利要求9-16任一项所述的透光率调整装置或如权利要求17所述的电子装置。
PCT/CN2021/112759 2021-08-16 2021-08-16 一种透光率调整方法及装置 WO2023019395A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180047790.7A CN115989155A (zh) 2021-08-16 2021-08-16 一种透光率调整方法及装置
PCT/CN2021/112759 WO2023019395A1 (zh) 2021-08-16 2021-08-16 一种透光率调整方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112759 WO2023019395A1 (zh) 2021-08-16 2021-08-16 一种透光率调整方法及装置

Publications (1)

Publication Number Publication Date
WO2023019395A1 true WO2023019395A1 (zh) 2023-02-23

Family

ID=85239895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112759 WO2023019395A1 (zh) 2021-08-16 2021-08-16 一种透光率调整方法及装置

Country Status (2)

Country Link
CN (1) CN115989155A (zh)
WO (1) WO2023019395A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035384A (ja) * 2003-07-14 2005-02-10 Nissan Motor Co Ltd 車両用自動遮光装置
CN105286802A (zh) * 2015-11-30 2016-02-03 华南理工大学 基于视频信息的驾驶员疲劳检测方法
US20190092221A1 (en) * 2016-04-01 2019-03-28 Semiconductor Energy Laboratory Co., Ltd. Mobile unit and system for mobile unit
JP2019189193A (ja) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 車両の制御装置
CN111674246A (zh) * 2020-06-18 2020-09-18 北京航迹科技有限公司 一种车窗调节方法、装置、电子设备及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035384A (ja) * 2003-07-14 2005-02-10 Nissan Motor Co Ltd 車両用自動遮光装置
CN105286802A (zh) * 2015-11-30 2016-02-03 华南理工大学 基于视频信息的驾驶员疲劳检测方法
US20190092221A1 (en) * 2016-04-01 2019-03-28 Semiconductor Energy Laboratory Co., Ltd. Mobile unit and system for mobile unit
JP2019189193A (ja) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 車両の制御装置
CN111674246A (zh) * 2020-06-18 2020-09-18 北京航迹科技有限公司 一种车窗调节方法、装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN115989155A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN108460734B (zh) 车辆驾驶员辅助模块进行图像呈现的系统和方法
US20160232423A1 (en) Environmental scene condition detection
CN108650495B (zh) 一种车用全景环视系统及其自适应补光方法
US20180015879A1 (en) Side-view mirror camera system for vehicle
CN111507930B (zh) 图像融合方法、装置、存储介质和计算机设备
CN106023104A (zh) 人脸眼部区域的图像增强方法、系统及拍摄终端
US20220207850A1 (en) Image recognition device and image recognition method
WO2020012546A1 (ja) 車載表示制御装置および車載表示制御プログラム
US10455159B2 (en) Imaging setting changing apparatus, imaging system, and imaging setting changing method
CN111815721A (zh) 车辆及其后视镜防眩目的控制方法、装置、系统与存储介质
WO2023019395A1 (zh) 一种透光率调整方法及装置
JP7144926B2 (ja) 撮像制御装置、撮像装置、および、撮像制御装置の制御方法
CN116494871A (zh) 一种车辆外后视镜系统及方法
JP6411644B2 (ja) ヒストグラム拡散を伴う自動車両カメラ装置
US11851003B2 (en) Driving assistance system and method for driver
JP5716944B2 (ja) 車載カメラ装置
CN111376682A (zh) 一种防远光方法、系统及终端装置
TWI630818B (zh) Dynamic image feature enhancement method and system
CN115027363A (zh) 汽车智能座舱显示系统及方法
JP6266022B2 (ja) 画像処理装置、警報装置、および画像処理方法
US20220148485A1 (en) Image display device
CN110435547A (zh) 一种流媒体后视镜系统及其防眩光方法
CN113657427B (zh) 一种车内多源图像融合识别方法及装置
WO2023000204A1 (zh) 一种控制透光率可变玻璃的方法和装置
KR20200128464A (ko) 자율 주행 차량의 카메라 시스템의 작동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE