WO2023018101A1 - High-hardness bulletproof steel having excellent low-temperature toughness, and manufacturing method therefor - Google Patents

High-hardness bulletproof steel having excellent low-temperature toughness, and manufacturing method therefor Download PDF

Info

Publication number
WO2023018101A1
WO2023018101A1 PCT/KR2022/011499 KR2022011499W WO2023018101A1 WO 2023018101 A1 WO2023018101 A1 WO 2023018101A1 KR 2022011499 W KR2022011499 W KR 2022011499W WO 2023018101 A1 WO2023018101 A1 WO 2023018101A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hardness
steel
excluding
relational expression
Prior art date
Application number
PCT/KR2022/011499
Other languages
French (fr)
Korean (ko)
Inventor
김용우
조현관
변영섭
조남영
김인호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP22856100.7A priority Critical patent/EP4386104A1/en
Publication of WO2023018101A1 publication Critical patent/WO2023018101A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to high-hardness bulletproof steel with excellent low-temperature toughness and a manufacturing method thereof. More specifically, it relates to high-hardness bulletproof steel with excellent low-temperature toughness that can be preferably used for armored vehicles, explosion-proof structures, and the like, and a manufacturing method thereof.
  • Patent Document 1 relates to steel materials used for crushing of industrial waste and wear parts of grinders, and seeks to secure surface hardness by actively utilizing Nb together with a large amount of Cr and Mo, but it is difficult to secure low-temperature toughness due to excessive content. There are limits.
  • Patent Document 2 is a technique for securing high hardness by causing the retained austenite structure to cause plastic-induced machining hardening after forming the steel or when the steel is applied to a product and in use, or in the case of bulletproof steel, deformation / impact by bullets The speed is very high, and it is difficult to obtain the effect by the above phenomenon.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 10-102185
  • Patent Document 2 Japanese Unexamined Patent Publication No. 07-173571
  • One aspect of the present invention is to provide a high-hardness bulletproof steel with excellent low-temperature toughness and a manufacturing method thereof.
  • carbon (C) 0.28 ⁇ 0.32%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 0.2 ⁇ 1.1%, nickel (Ni) : 0.7 ⁇ 1.2%, Chromium (Cr): 0.2 ⁇ 1.1%, Phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.015% or less (excluding 0%), Nitrogen (N) : 0.006% or less (excluding 0%), Aluminum (Al): 0.05% or less (excluding 0%), Molybdenum (Mo): 0.2 to 1.0%, Vanadium (V): 0.02 to 0.5%, Calcium (Ca) : 0.0005 to 0.004%, the balance includes Fe and other unavoidable impurities, and the unavoidable impurities include Nb: 0.0015% or less and B: 0.0008% or less, satisfy the following relational expression 1, in area%, tempered martensite contains a micro
  • carbon (C) 0.28 to 0.32%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 0.2 to 1.1%, nickel (Ni) : 0.7 ⁇ 1.2%, Chromium (Cr): 0.2 ⁇ 1.1%, Phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.015% or less (excluding 0%), Nitrogen (N) : 0.006% or less (excluding 0%), Aluminum (Al): 0.05% or less (excluding 0%), Molybdenum (Mo): 0.2 to 1.0%, Vanadium (V): 0.02 to 0.5%, Calcium (Ca) : 0.0005 to 0.004%, the balance includes Fe and other unavoidable impurities, and the unavoidable impurities include Nb: 0.0015% or less and B: 0.0008% or less, heating a slab satisfying the following relational expression 1 at 1050 to 1250 ° C.
  • step; Obtaining a bar by rough rolling the heated slab at 950 to 1150 ° C; After finishing hot rolling the bar at 850 ⁇ 950 °C to obtain a hot-rolled steel sheet, cooling to room temperature;
  • T max is 112.5[C]-5.7[Mn]+18.8[Cr]-1.3[Ni]+114.3[V]+169.4[Mo]+200, and in the above relational expression 1 and T max The content of each element means % by weight.
  • Carbon (C) is effective in improving strength and hardness in steel having a low-temperature transformation phase such as martensite or bainite, and is an element effective in improving hardenability.
  • the content of C is preferably in the range of 0.28 to 0.32%.
  • the lower limit of the C content is more preferably 0.29%.
  • the upper limit of the C content is more preferably 0.31%.
  • Silicon (Si) is an effective element for improving hardness due to solid solution strengthening along with a deoxidation effect, and is particularly advantageous for securing low-temperature toughness by suppressing the formation of coarse cementite in tempered martensite.
  • the content of Si is limited to 0.5% or less.
  • the Si content is more preferably 0.48% or less, even more preferably 0.45% or less, and most preferably 0.4% or less.
  • Manganese (Mn) is an element advantageous for securing hardness by improving hardenability of steel, suppressing the formation of ferrite and promoting the formation of martensite. If the content is less than 0.2%, it is difficult to obtain the above-mentioned effects, and if it exceeds 1.1%, the weldability of the steel is deteriorated and center segregation is promoted, so there is a risk of lowering the toughness of the center of the steel. Therefore, the Mn content is preferably in the range of 0.2 to 1.1%. The lower limit of the Mn content is more preferably 0.22%, even more preferably 0.25%, and most preferably 0.3%. The upper limit of the Mn content is more preferably 1.08%, even more preferably 1.05%, and most preferably 1.0%.
  • Nickel (Ni) is an advantageous element for simultaneously improving the strength and toughness of steel. If the content is less than 0.7%, it is difficult to obtain the above-mentioned effect, and if it exceeds 1.2%, since Ni is an expensive element, economic efficiency may be reduced and weldability may be deteriorated. Therefore, the Ni content is preferably in the range of 0.7 to 1.2%. The lower limit of the Ni content is more preferably 0.72%, even more preferably 0.75%, and most preferably 0.8%. The upper limit of the Ni content is more preferably 1.18%, even more preferably 1.15%, and most preferably 1.1%.
  • Chromium (Cr) is an element that improves strength by increasing hardenability of steel and effectively contributes to securing the hardness of the surface and center of steel. In addition, since it is a relatively inexpensive element, it is also an element that can secure hardness and toughness economically. If the content is less than 0.2%, it is difficult to obtain the above-mentioned effect, and if it exceeds 1.1%, weldability may be deteriorated. Therefore, the Cr content is preferably in the range of 0.2 to 1.1%. The lower limit of the Cr content is more preferably 0.22%, even more preferably 0.25%, and most preferably 0.3%. The upper limit of the Cr content is more preferably 1.08%, more preferably 1.05%, and most preferably 1.0%.
  • Phosphorus (P) is an impurity that is unavoidably contained, and since it inhibits the weldability of steel and is a major cause of increasing brittleness by segregating at grain boundaries, it is desirable to control its content as low as possible. Theoretically, it is advantageous to limit the content of P to 0%, but it is inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the P content is limited to 0.03% or less. The P content is more preferably 0.025% or less, even more preferably 0.02% or less, and most preferably 0.015% or less.
  • S is an impurity that is unavoidably contained like the phosphorus (P), and it is preferable to suppress the content as much as possible because it combines with Mn and the like to form non-metallic inclusions, thereby greatly reducing the toughness of steel.
  • P phosphorus
  • S is an impurity that is unavoidably contained like the phosphorus (P)
  • S Sulfur
  • the S content is more preferably 0.01% or less, even more preferably 0.008% or less, and most preferably 0.006% or less.
  • N Nitrogen
  • P phosphorus
  • N contributes somewhat to securing the hardness of the steel, but it is difficult to control, and like phosphorus (P), it is segregated at the grain boundary and serves to increase the brittleness of the steel.
  • N content is limited to 0.006% or less.
  • the N content is more preferably 0.0058% or less, even more preferably 0.0055% or less, and most preferably 0.005% or less.
  • Aluminum (Al) is an element added for deoxidation of molten steel. However, if the content exceeds 0.05%, it may be advantageous to increase strength by grain refinement, but there is a problem of causing nozzle clogging during steelmaking or continuous casting. Therefore, in the present invention, the Al content is limited to 0.05% or less.
  • the Al content is more preferably 0.048% or less, even more preferably 0.045% or less, and most preferably 0.04% or less.
  • Molybdenum (Mo) increases the hardenability of steel, and is particularly advantageous for improving low-temperature toughness. If the content is less than 0.2%, it is difficult to obtain the above-mentioned effects, and if it exceeds 1.0%, manufacturing costs may increase as well as poor weldability. Therefore, the Mo content is preferably in the range of 0.2 to 1.0%.
  • the lower limit of the Mo content is more preferably 0.22%, even more preferably 0.25%, and most preferably 0.3%.
  • the upper limit of the Mo content is more preferably 0.98%, more preferably 0.95%, and most preferably 0.9%.
  • Vanadium (V) is an element advantageous for securing hardness and toughness by suppressing the growth of austenite crystal grains by forming VC carbide during reheating after hot rolling and improving hardenability of steel. If the content is less than 0.02%, it is difficult to obtain the above-mentioned effect, and if it exceeds 0.5%, since V is an expensive element, economic efficiency may be reduced and toughness may also be deteriorated. Therefore, the content of V is preferably in the range of 0.02 to 0.5%.
  • the lower limit of the V content is more preferably 0.022%, even more preferably 0.025%, and most preferably 0.03%.
  • the upper limit of the V content is more preferably 0.48%, even more preferably 0.45%, and most preferably 0.4%.
  • Ca has a good binding force with sulfur (S), so it generates CaS around (circumference) MnS to suppress elongation of MnS and is an advantageous element for improving toughness in a direction perpendicular to the rolling direction.
  • CaS produced by the addition of calcium (Ca) can increase resistance to corrosion in a humid external environment. If the content is less than 0.0005%, it is difficult to obtain the above-mentioned effects, and if it exceeds 0.004%, defects such as nozzle clogging may be caused during steelmaking operations. Therefore, the content of Ca is preferably in the range of 0.0005 to 0.004%.
  • the lower limit of the Ca content is more preferably 0.0006%, more preferably 0.0007%, and most preferably 0.0008%.
  • the upper limit of the Ca content is more preferably 0.0038%, more preferably 0.0035%, and most preferably 0.003%.
  • the remaining components of the present invention are iron (Fe).
  • Fe iron
  • the above impurities can be known to anyone skilled in the art, all of them are not specifically mentioned in the present invention.
  • the unavoidable impurities may include Nb: 0.0015% or less and B: 0.0008% or less.
  • the Nb may form coarse precipitates after the QT heat treatment to reduce low-temperature toughness, and if the B is non-uniformly segregated, it causes a difference in the phase transformation time in the quenching heat treatment process. may cause poor low-temperature toughness, and may cause shape defects. Therefore, in the present invention, low-temperature toughness can be improved by controlling the upper limit of the amount that can be included as an impurity without intentionally adding Nb and B.
  • the Nb content is more preferably 0.0012% or less, and even more preferably 0.001% or less.
  • the B content is more preferably 0.0006% or less, and even more preferably 0.0005% or less.
  • the bulletproof steel of the present invention preferably satisfies the above-described alloy composition and at the same time satisfies the following relational expression 1.
  • the following Relational Equation 1 is an equation derived in order to sufficiently obtain an effect of improving hardness, and when Relational Equation 1 is not satisfied, it is difficult to secure high hardness.
  • the value of the following relational expression 1 is more preferably 225 or more, more preferably 230 or more, and most preferably 235 or more.
  • the upper limit of the value of the relational expression 1 is not particularly limited. However, in terms of manufacturing cost, the upper limit of the value of Equation 1 below may be 600.
  • the upper limit of the value of the following relational expression 1 is more preferably 580, even more preferably 550, and most preferably 500.
  • the bulletproof steel of the present invention preferably includes a microstructure in which tempered martensite is 90% or more (including 100%) by area%.
  • the tempered martensite is a structure that is advantageous for securing excellent levels of hardness and low-temperature toughness at the same time.
  • the fraction of the tempered martensite is less than 90%, there may be some advantages in improving low-temperature toughness by the secondary phase, but it may be disadvantageous in securing hardness.
  • the secondary phase may be one or more of retained austenite, bainite, pearlite, and ferrite, and the fraction thereof is preferably 10 area% or less in total.
  • the fraction of the tempered martensite is more preferably 92% or more, even more preferably 94% or more, and most preferably 95% or more.
  • the average effective grain size of the tempered martensite is preferably 20 ⁇ m or less.
  • the low-temperature toughness can be improved to a more excellent level by minimizing the average effective grain size of the tempered martensite, and when the size exceeds 20 ⁇ m, it may be difficult to sufficiently obtain the above-described effect.
  • the average effective grain size of the tempered martensite is more preferably 18 ⁇ m or less, even more preferably 15 ⁇ m or less, and most preferably 12 ⁇ m or less.
  • the average effective grain size means the average size of grains having a grain boundary with a high angle of 15° or more.
  • the KAM of the tempered martensite is preferably 0.3 to 3.0.
  • the KAM is an index for estimating the dislocation density. It is interpreted that the higher the KAM, the higher the dislocation density. In the present invention, when the KAM is less than 0.3, it may be difficult to secure sufficient hardness due to low dislocation density, and when it exceeds 3.0, it may be difficult to secure low-temperature toughness.
  • the lower limit of the KAM is more preferably 0.4, even more preferably 0.45, and most preferably 0.5.
  • the upper limit of the KAM is more preferably 2.8, even more preferably 2.5, and most preferably 2.0.
  • V(C,N)-based precipitates are included in the grains of the tempered martensite, and the average size of the V(C,N)-based precipitates is preferably 30 nm or less. In this way, by miniaturizing the size of V(C,N)-based precipitates, high hardness can be secured through precipitation strengthening. On the other hand, when the average size of the V(C,N)-based precipitates exceeds 30 nm, it may be difficult to sufficiently obtain the above-described effects.
  • the average size of the V(C,N)-based precipitates is more preferably 28 nm or less, even more preferably 25 nm or less, and most preferably 20 nm or less.
  • the V(C,N)-based precipitates may include V-based carbides, V-based nitrides, and V-based carbonitrides.
  • the ratio of the number of precipitates having a size greater than 100 nm to the total number of precipitates is 10% or less.
  • the number of V(C,N)-based precipitates exceeding 100 nm in size exceeds 10% relative to the total number of precipitates, not only the precipitation hardening effect may be reduced, but also the low-temperature toughness may be deteriorated.
  • the number of precipitates having a size exceeding 100 nm is more preferably 8% or less, more preferably 6% or less, and most preferably 5% or less relative to the total number of precipitates.
  • the bulletproof steel according to one embodiment of the present invention provided as described above may have a surface hardness of 480 to 530 HB, an impact absorption energy of 16 J or more at -40 ° C, and a thickness of 5 to 40 mm.
  • a slab satisfying the above alloy composition and relational expression 1 is heated at 1050 to 1250 ° C. If the slab heating temperature is less than 1050 ° C., the deformation resistance of the steel increases and the subsequent rolling process cannot be effectively performed. On the other hand, if it exceeds 1250 ° C., austenite crystal grains become coarse and low-temperature toughness may deteriorate.
  • the lower limit of the slab heating temperature is more preferably 1060 ° C, more preferably 1070 ° C, and most preferably 1080 ° C.
  • the upper limit of the slab heating temperature is more preferably 1240 ° C, more preferably 1230 ° C, and most preferably 1220 ° C.
  • the heated slab is crudely rolled at 950 to 1150° C. to obtain a bar.
  • the rough rolling temperature is less than 950 ° C., the rolling load increases and the deformation is not sufficiently transmitted to the center in the thickness direction of the slab as the rolling load increases and the reduction is relatively weak, and as a result, there is a risk that defects such as voids may not be removed.
  • the temperature exceeds 1150 ° C., the recrystallized grain size becomes excessively coarse, and there is a possibility that the toughness may deteriorate.
  • the lower limit of the rough rolling temperature is more preferably 960°C, even more preferably 970°C, and most preferably 980°C.
  • the upper limit of the rough rolling temperature is more preferably 1140°C, even more preferably 1130°C, and most preferably 1120°C.
  • the bar is finished hot-rolled at 850 to 950° C. to obtain a hot-rolled steel sheet, and then cooled to room temperature.
  • the finish hot rolling temperature is less than 850 ° C, two-phase rolling is performed and ferrite may be generated in the microstructure. On the other hand, if it exceeds 950 ° C, the grain size of the final microstructure becomes coarse, resulting in poor low-temperature toughness.
  • the lower limit of the finish hot rolling temperature is more preferably 860°C, even more preferably 870°C, and most preferably 880°C.
  • the upper limit of the finish hot rolling temperature is more preferably 945°C, even more preferably 940°C, and most preferably 935°C.
  • Heating during the primary heat treatment is for reverse transformation of the hot-rolled steel sheet in which the microstructure is composed of ferrite and pearlite into an austenite single phase.
  • the heating temperature during the first heat treatment is less than 880° C., austenitization is not sufficiently achieved and coarse soft ferrite is mixed, and thus the hardness of the final product may be lowered.
  • the lower limit of the heating temperature during the first heat treatment is more preferably 882°C, more preferably 885°C, and most preferably 890°C.
  • the upper limit of the heating temperature during the first heat treatment is more preferably 928°C, more preferably 925°C, and most preferably 920°C.
  • the heating time in the first heat treatment is more preferably 1.3t + 35 minutes or more, more preferably 1.3t + 40 minutes or more, and most preferably 1.3t + 45 minutes or more.
  • the longer the heating time during the primary heat treatment is, the more favorable it is for austenitization and the re-dissolution of coarse V(C,N)-based precipitates, so the upper limit of the heating time is not particularly limited in the present invention.
  • the upper limit of the heating time during the first heat treatment may be 1.3t + 60 minutes.
  • the cooling is intended to transform the austenitized microstructure into martensite.
  • the cooling is preferably rapid cooling through water cooling.
  • the cooling rate is more preferably 12 °C/s or more, more preferably 15 °C/s or more, and most preferably 20 °C/s or more.
  • the upper limit of the cooling rate is not particularly limited.
  • the cooling end temperature is more preferably 100°C or less, even more preferably 80°C or less, and most preferably 50°C or less.
  • the lower limit of the cooling end temperature is not particularly limited, and may be, for example, room temperature.
  • a second heat treatment is performed on the hot-rolled steel sheet subjected to the first heat treatment by tempering heat treatment for 1.5t + 32 minutes (t: sheet thickness (mm)) to 1.5t + 60 minutes to satisfy the condition of the following relational expression 2.
  • the tempering heat treatment releases the internal stress of the hot-rolled steel sheet in which the microstructure is transformed into martensite by the first heat treatment to secure excellent low-temperature toughness, and to secure high hardness by precipitating fine V (C, N)-based precipitates. will be. If the tempering heat treatment temperature is less than 200 ° C., it is possible to prevent the decrease in hardness, but there is a disadvantage in securing low-temperature toughness because the internal stress is not sufficiently released after quenching.
  • the hardness of the final product may be reduced due to excessive reduction.
  • the lower limit of the tempering heat treatment temperature is more preferably 202°C, even more preferably 205°C, and most preferably 210°C.
  • the upper limit of the tempering heat treatment temperature is more preferably T max -5°C, more preferably T max -10°C, and most preferably T max -15°C.
  • the tempering heat treatment time exceeds 1.5 t + 60 minutes, it may not be easy to secure a desired high hardness because the dislocation inside martensite is reduced.
  • the lower limit of the tempering heat treatment time is more preferably 1.5t + 35 minutes, more preferably 1.5t + 38 minutes, and most preferably 1.5t + 40 minutes.
  • the upper limit of the tempering heat treatment time is more preferably 1.5t + 57 minutes, more preferably 1.5t + 55 minutes, and most preferably 1.5t + 50 minutes.
  • T max is 112.5 [C] -5.7 [Mn] + 18.8 [Cr] -1.3 [Ni] + 114.3 [V] + 169.4 [Mo] + 200, and in the T max Content means % by weight.)
  • the slab heating - rough rolling - finish hot rolling - primary heat treatment - secondary heat treatment are performed to produce bulletproof steel did At this time, air cooling was applied to room temperature after water cooling to the cooling end temperature during the first heat treatment, and air cooling was applied to room temperature after the second heat treatment.
  • the microstructure and mechanical properties of the bulletproof steel thus prepared were measured, and the results are shown in Table 5 below.
  • the microstructure was prepared by cutting the manufactured steel sheet into an arbitrary size to make a specimen, mirror-processing it, corroding it using a nital etchant, and using a scanning electron microscope to examine the 1/4t (t: thickness) portion of the steel sheet. Observed.
  • the average effective grain size of tempered martensite was measured based on a misorientation angle of 15° or more using EBSD.
  • KAM of tempered martensite was examined using a scanning electron microscope (SEM) JSM-7001F manufactured by JEOL Co., Ltd., on the polished surface of the cross section in the rolling direction of the steel sheet, in a field of view of 100 ⁇ m ⁇ 100 ⁇ m EBSD (Electron Backscatter Diffraction analysis (measurement step: 0.05 ⁇ m) was performed at a position of 1/4 of the plate thickness, and the average value of the orientation difference (°) between each pixel in the crystal grain and the adjacent pixel was calculated.
  • SEM scanning electron microscope
  • JSM-7001F manufactured by JEOL Co., Ltd.
  • the V(C,N)-based precipitates formed in the tempered martensite grains are prepared by cutting the manufactured steel sheet into a random size and then preparing a specimen, and then at a magnification of 50,000 times (2 ⁇ m ⁇ 2 ⁇ m) at 5 random areas, and then the average value was calculated.
  • Hardness was measured 3 times using a Brinell hardness tester (load 3000 kgf, 10 mm tungsten indentation) after milling the surface of the steel plate by 2 mm, and then expressed as an average value.
  • the low-temperature toughness was measured three times at -40 ° C after processing a 1/4t (t: thickness) part of the steel plate into a specimen using a Charpy impact tester, and then expressed as an average value of impact absorption energy.
  • the alloy composition of the present invention is satisfactory, but the average effective crystal grain size of tempered martensite increases as the heating time is not sufficient during the first heat treatment, and the average size of precipitates and total precipitates proposed by the present invention It can be seen that the low-temperature toughness is low because the ratio of the number of precipitates having a size of more than 100 nm to the number is not satisfied.
  • the alloy composition of the present invention is satisfactory, but the tempering heat treatment time during the secondary heat treatment is not sufficient, so the average size of precipitates proposed by the present invention, the ratio of the number of precipitates whose size exceeds 100 nm to the total number of precipitates , it can be seen that the low-temperature toughness is low because it does not satisfy the KAM.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention relates to high-hardness bulletproof steel having excellent low-temperature toughness, and a manufacturing method therefor. More specifically, the present invention relates to high-hardness bulletproof steel having excellent low-temperature toughness, and a manufacturing method therefor, the high-hardness bulletproof steel being preferably usable in an armored vehicle, an explosion-proof structure and the like.

Description

저온인성이 우수한 고경도 방탄강 및 그 제조방법High-hardness bulletproof steel with excellent low-temperature toughness and its manufacturing method
본 발명은 저온인성이 우수한 고경도 방탄강 및 그 제조방법에 관한 것이다. 보다 구체적으로는, 장갑차, 방폭 구조물 등에 바람직하게 이용될 수 있는 저온인성이 우수한 고경도 방탄강 및 그 제조방법에 관한 것이다.The present invention relates to high-hardness bulletproof steel with excellent low-temperature toughness and a manufacturing method thereof. More specifically, it relates to high-hardness bulletproof steel with excellent low-temperature toughness that can be preferably used for armored vehicles, explosion-proof structures, and the like, and a manufacturing method thereof.
전장의 탄알을 막아 인명살상의 위험을 안정적으로 방지하기 위해, 장갑차, 방폭 구조물 등 방호력이 필요한 방탄강 소재의 고경도화가 요구되고 있다. 이는 고경도 특성이 탄알이 소재를 관통하지 못하도록 하는 저항성을 높이는 인자이기 때문이다. 다만, 고경도 특성을 가지는 소재는 상대적으로 쉽게 깨질 수 있기 때문에, 보다 안정적인 방호력 확보를 위해서는 소재의 고경도화와 더불어 외부 충격에 대한 파괴 저항성을 동시에 확보 가능한 소재 개발이 필요하다.In order to stably prevent the risk of human casualties by blocking bullets on the battlefield, high hardness of bulletproof steel materials that require protection such as armored vehicles and explosion-proof structures are required. This is because high hardness is a factor that increases resistance to prevent bullets from penetrating the material. However, since materials with high hardness can be broken relatively easily, it is necessary to develop materials that can simultaneously secure high hardness and fracture resistance to external impact in order to secure more stable protection.
특허문헌 1은 산업 폐기물의 파쇄 및 분쇄기의 마모 부품 등에 이용되는 강재에 관한 것으로서, 다량의 Cr, Mo와 함께 Nb를 적극적으로 활용하여 표면 경도를 확보하고자 하나, 그 함량이 과다하여 저온인성 확보에는 한계가 있다.Patent Document 1 relates to steel materials used for crushing of industrial waste and wear parts of grinders, and seeks to secure surface hardness by actively utilizing Nb together with a large amount of Cr and Mo, but it is difficult to secure low-temperature toughness due to excessive content. There are limits.
특허문헌 2는 강재의 성형 후 또는 강재가 제품에 적용되어 사용 중일 때, 잔류 오스테나이트 조직이 소성유기가공경화 현상을 일으키도록 하여 고경도를 확보하는 기술이나, 방탄강의 경우 탄알에 의한 변형/충격 속도가 매우 커 상기 현상에 의한 효과를 얻기 어렵다.Patent Document 2 is a technique for securing high hardness by causing the retained austenite structure to cause plastic-induced machining hardening after forming the steel or when the steel is applied to a product and in use, or in the case of bulletproof steel, deformation / impact by bullets The speed is very high, and it is difficult to obtain the effect by the above phenomenon.
[선행기술문헌][Prior art literature]
(특허문헌 1) 일본 공개특허공보 특개평10-102185호(Patent Document 1) Japanese Unexamined Patent Publication No. 10-102185
(특허문헌 2) 일본 공개특허공보 특개평07-173571호(Patent Document 2) Japanese Unexamined Patent Publication No. 07-173571
본 발명의 일측면은 저온인성이 우수한 고경도 방탄강 및 그 제조방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a high-hardness bulletproof steel with excellent low-temperature toughness and a manufacturing method thereof.
본 발명의 일 실시형태는 중량%로, 탄소(C): 0.28~0.32%, 실리콘(Si): 0.5% 이하(0%는 제외), 망간(Mn): 0.2~1.1%, 니켈(Ni): 0.7~1.2%, 크롬(Cr): 0.2~1.1%, 인(P): 0.03% 이하(0%는 제외), 황(S): 0.015% 이하(0%는 제외), 질소(N): 0.006% 이하(0%는 제외), 알루미늄(Al): 0.05% 이하(0%는 제외), 몰리브덴(Mo): 0.2~1.0%, 바나듐(V): 0.02~0.5%, 칼슘(Ca): 0.0005~0.004%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 상기 불가피한 불순물은 Nb: 0.0015% 이하 및 B: 0.0008% 이하를 포함하며, 하기 관계식 1을 만족하고, 면적%로, 템퍼드 마르텐사이트가 90% 이상(100%를 포함)인 미세조직을 포함하며, 상기 템퍼드 마르텐사이트의 평균 유효 결정립 크기는 20㎛ 이하이고, 상기 템퍼드 마르텐사이트의 입내에 평균 크기가 30nm 이하인 V(C,N)계 석출물을 포함하는 저온인성이 우수한 고경도 방탄강을 제공한다.One embodiment of the present invention, in weight%, carbon (C): 0.28 ~ 0.32%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 0.2 ~ 1.1%, nickel (Ni) : 0.7~1.2%, Chromium (Cr): 0.2~1.1%, Phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.015% or less (excluding 0%), Nitrogen (N) : 0.006% or less (excluding 0%), Aluminum (Al): 0.05% or less (excluding 0%), Molybdenum (Mo): 0.2 to 1.0%, Vanadium (V): 0.02 to 0.5%, Calcium (Ca) : 0.0005 to 0.004%, the balance includes Fe and other unavoidable impurities, and the unavoidable impurities include Nb: 0.0015% or less and B: 0.0008% or less, satisfy the following relational expression 1, in area%, tempered martensite contains a microstructure of 90% or more (including 100%), the average effective grain size of the tempered martensite is 20 μm or less, and the average size in the grains of the tempered martensite is 30 nm or less V (C, Provided is a high-hardness bulletproof steel having excellent low-temperature toughness including N)-based precipitates.
[관계식 1] 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo] ≥ 220[Relational Expression 1] 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo] ≥ 220
(단, 상기 관계식 1에서 각 원소의 함량은 중량%를 의미함.)(However, in the relational expression 1, the content of each element means % by weight.)
본 발명의 다른 실시형태는 중량%로, 탄소(C): 0.28~0.32%, 실리콘(Si): 0.5% 이하(0%는 제외), 망간(Mn): 0.2~1.1%, 니켈(Ni): 0.7~1.2%, 크롬(Cr): 0.2~1.1%, 인(P): 0.03% 이하(0%는 제외), 황(S): 0.015% 이하(0%는 제외), 질소(N): 0.006% 이하(0%는 제외), 알루미늄(Al): 0.05% 이하(0%는 제외), 몰리브덴(Mo): 0.2~1.0%, 바나듐(V): 0.02~0.5%, 칼슘(Ca): 0.0005~0.004%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 상기 불가피한 불순물은 Nb: 0.0015% 이하 및 B: 0.0008% 이하를 포함하며, 하기 관계식 1을 만족하는 슬라브를 1050~1250℃에서 가열하는 단계; 상기 가열된 슬라브를 950~1150℃에서 조압연하여 바를 얻는 단계; 상기 바를 850~950℃에서 마무리 열간압연하여 열연강판을 얻은 후, 상온까지 냉각하는 단계; 상기 냉각된 열연강판을 880~930℃로 1.3t+30분(t: 판 두께(mm)) 이상 가열한 후, 10℃/s 이상의 냉각속도로 150℃ 이하까지 냉각하는 1차 열처리 단계; 및 상기 1차 열처리된 열연강판을 하기 관계식 2의 조건을 만족하도록 1.5t+32분(t: 판 두께(mm))~1.5t+60분간 템퍼링 열처리하는 2차 열처리 단계;를 포함하는 저온인성이 우수한 고경도 방탄강의 제조방법을 제공한다.Another embodiment of the present invention, in weight percent, carbon (C): 0.28 to 0.32%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 0.2 to 1.1%, nickel (Ni) : 0.7~1.2%, Chromium (Cr): 0.2~1.1%, Phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.015% or less (excluding 0%), Nitrogen (N) : 0.006% or less (excluding 0%), Aluminum (Al): 0.05% or less (excluding 0%), Molybdenum (Mo): 0.2 to 1.0%, Vanadium (V): 0.02 to 0.5%, Calcium (Ca) : 0.0005 to 0.004%, the balance includes Fe and other unavoidable impurities, and the unavoidable impurities include Nb: 0.0015% or less and B: 0.0008% or less, heating a slab satisfying the following relational expression 1 at 1050 to 1250 ° C. step; Obtaining a bar by rough rolling the heated slab at 950 to 1150 ° C; After finishing hot rolling the bar at 850 ~ 950 ℃ to obtain a hot-rolled steel sheet, cooling to room temperature; A first heat treatment step of heating the cooled hot-rolled steel sheet to 880 to 930 ° C for 1.3 t + 30 minutes or more (t: sheet thickness (mm)) and then cooling to 150 ° C or less at a cooling rate of 10 ° C / s or more; And a second heat treatment step of tempering the first heat-treated hot-rolled steel sheet for 1.5t + 32 minutes (t: sheet thickness (mm)) to 1.5t + 60 minutes to satisfy the condition of the following relational expression 2; low-temperature toughness including Provides a method for manufacturing this excellent high hardness bulletproof steel.
[관계식 1] 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo] ≥ 220[Relational Expression 1] 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo] ≥ 220
[관계식 2] 200 ≤ 템퍼링 열처리 온도 ≤ Tmax [Relational Expression 2] 200 ≤ tempering heat treatment temperature ≤ T max
(단, 상기 관계식 2에서 Tmax는 112.5[C]-5.7[Mn]+18.8[Cr]-1.3[Ni]+114.3[V]+169.4[Mo]+200이고, 상기 관계식 1 및 Tmax에서 각 원소의 함량은 중량%를 의미함.)(However, in the above relational expression 2, T max is 112.5[C]-5.7[Mn]+18.8[Cr]-1.3[Ni]+114.3[V]+169.4[Mo]+200, and in the above relational expression 1 and T max The content of each element means % by weight.)
본 발명의 일측면에 따르면, 저온인성이 우수한 고경도 방탄강 및 그 제조방법을 제공할 수 있다.According to one aspect of the present invention, it is possible to provide a high-hardness bulletproof steel with excellent low-temperature toughness and a manufacturing method thereof.
이하, 본 발명의 일 실시형태에 따른 저온인성이 우수한 고경도 방탄강에 대하여 설명한다. 먼저, 본 발명의 합금조성에 대해 설명한다. 하기 설명되는 합금조성의 함량은 중량%를 의미한다.Hereinafter, high-hardness bulletproof steel excellent in low-temperature toughness according to an embodiment of the present invention will be described. First, the alloy composition of the present invention will be described. The content of the alloy composition described below refers to % by weight.
탄소(C): 0.28~0.32%Carbon (C): 0.28 to 0.32%
탄소(C)는 마르텐사이트 또는 베이나이트 상과 같은 저온 변태상을 가지는 강에서 강도와 경도를 향상시키는데 효과적이며, 경화능 향상에 유효한 원소이다. 다만, 그 함량이 0.28% 미만인 경우에는 상술한 효과를 얻기 어렵고, 0.32%를 초과하는 경우에는 강의 용접성 및 인성을 저해할 우려가 있다. 따라서, 상기 C의 함량은 0.28~0.32%의 범위를 갖는 것이 바람직하다. 상기 C 함량의 하한은 0.29%인 것이 보다 바람직하다. 상기 C 함량의 상한은 0.31%인 것이 보다 바람직하다.Carbon (C) is effective in improving strength and hardness in steel having a low-temperature transformation phase such as martensite or bainite, and is an element effective in improving hardenability. However, if the content is less than 0.28%, it is difficult to obtain the above-mentioned effects, and if it exceeds 0.32%, there is a concern that the weldability and toughness of the steel may be impaired. Therefore, the content of C is preferably in the range of 0.28 to 0.32%. The lower limit of the C content is more preferably 0.29%. The upper limit of the C content is more preferably 0.31%.
실리콘(Si): 0.5% 이하(0%는 제외)Silicon (Si): 0.5% or less (excluding 0%)
실리콘(Si)은 탈산 효과와 더불어 고용강화에 따른 경도 향상에 유효한 원소이고, 특히 템퍼드 마르텐사이트에서 조대한 세멘타이트 형성을 억제하여 저온인성을 확보하는데 유리한 원소이다. 다만, 그 함량이 과도할 경우 표면 품질 및 용접성이 급격히 열화될 수 있으며, 이에, 본 발명에서는 상기 Si의 함량을 0.5% 이하로 제한한다. 상기 Si 함량은 0.48% 이하인 것이 보다 바람직하고, 0.45% 이하인 것이 보다 더 바람직하며, 0.4% 이하인 것이 가장 바람직하다.Silicon (Si) is an effective element for improving hardness due to solid solution strengthening along with a deoxidation effect, and is particularly advantageous for securing low-temperature toughness by suppressing the formation of coarse cementite in tempered martensite. However, if the content is excessive, surface quality and weldability may be rapidly deteriorated. Therefore, in the present invention, the content of Si is limited to 0.5% or less. The Si content is more preferably 0.48% or less, even more preferably 0.45% or less, and most preferably 0.4% or less.
망간(Mn): 0.2~1.1%Manganese (Mn): 0.2 to 1.1%
망간(Mn)은 강의 소입성을 향상시킴으로써 페라이트의 형성을 억제하고 마르텐사이트의 형성을 촉진시켜 경도를 확보하는데 유리한 원소이다. 그 함량이 0.2% 미만인 경우에는 상술한 효과를 얻기 어렵고, 1.1%를 초과하는 경우에는 강의 용접성이 저하되고 중심 편석이 조장되어 강 중심부 인성이 저하될 우려가 있다. 따라서 상기 Mn의 함량은 0.2~1.1%의 범위를 갖는 것이 바람직하다. 상기 Mn 함량의 하한은 0.22%인 것이 보다 바람직하고, 0.25%인 것이 보다 더 바람직하며, 0.3%인 것이 가장 바람직하다. 상기 Mn 함량의 상한은 1.08%인 것이 보다 바람직하고, 1.05%인 것이 보다 더 바람직하며, 1.0%인 것이 가장 바람직하다.Manganese (Mn) is an element advantageous for securing hardness by improving hardenability of steel, suppressing the formation of ferrite and promoting the formation of martensite. If the content is less than 0.2%, it is difficult to obtain the above-mentioned effects, and if it exceeds 1.1%, the weldability of the steel is deteriorated and center segregation is promoted, so there is a risk of lowering the toughness of the center of the steel. Therefore, the Mn content is preferably in the range of 0.2 to 1.1%. The lower limit of the Mn content is more preferably 0.22%, even more preferably 0.25%, and most preferably 0.3%. The upper limit of the Mn content is more preferably 1.08%, even more preferably 1.05%, and most preferably 1.0%.
니켈(Ni): 0.7~1.2%Nickel (Ni): 0.7 to 1.2%
니켈(Ni)은 강의 강도와 인성을 동시에 향상시키는데 유리한 원소이다. 그 함량이 0.7% 미만인 경우에는 상술한 효과를 얻기 어렵고, 1.2%를 초과하는 경우에는 Ni이 고가의 원소이므로 경제성이 저하될 수 있으며, 용접성 열화의 문제점도 야기할 수 있다. 따라서 상기 Ni의 함량은 0.7~1.2%의 범위를 갖는 것이 바람직하다. 상기 Ni 함량의 하한은 0.72%인 것이 보다 바람직하고, 0.75%인 것이 보다 더 바람직하며, 0.8%인 것이 가장 바람직하다. 상기 Ni 함량의 상한은 1.18%인 것이 보다 바람직하고, 1.15%인 것이 보다 더 바람직하며, 1.1%인 것이 가장 바람직하다.Nickel (Ni) is an advantageous element for simultaneously improving the strength and toughness of steel. If the content is less than 0.7%, it is difficult to obtain the above-mentioned effect, and if it exceeds 1.2%, since Ni is an expensive element, economic efficiency may be reduced and weldability may be deteriorated. Therefore, the Ni content is preferably in the range of 0.7 to 1.2%. The lower limit of the Ni content is more preferably 0.72%, even more preferably 0.75%, and most preferably 0.8%. The upper limit of the Ni content is more preferably 1.18%, even more preferably 1.15%, and most preferably 1.1%.
크롬(Cr): 0.2~1.1%Chromium (Cr): 0.2~1.1%
크롬(Cr)은 강의 소입성을 증가시킴으로써 강도를 향상시키며, 강의 표면부 및 중심부 경도 확보에 효과적으로 기여하는 원소이다. 또한, 비교적 저가의 원소이므로, 경제적으로 경도 및 인성을 확보할 수 있는 원소이기도 하다. 그 함량이 0.2% 미만인 경우에는 상술한 효과를 얻기 어렵고, 1.1%를 초과하는 경우에는 용접성이 열위해질 수 있다. 따라서, 상기 Cr의 함량은 0.2~1.1%의 범위를 갖는 것이 바람직하다. 상기 Cr 함량의 하한은 0.22%인 것이 보다 바람직하고, 0.25%인 것이 보다 더 바람직하며, 0.3%인 것이 가장 바람직하다. 상기 Cr 함량의 상한은 1.08%인 것이 보다 바람직하고, 1.05%인 것이 보다 더 바람직하며, 1.0%인 것이 가장 바람직하다.Chromium (Cr) is an element that improves strength by increasing hardenability of steel and effectively contributes to securing the hardness of the surface and center of steel. In addition, since it is a relatively inexpensive element, it is also an element that can secure hardness and toughness economically. If the content is less than 0.2%, it is difficult to obtain the above-mentioned effect, and if it exceeds 1.1%, weldability may be deteriorated. Therefore, the Cr content is preferably in the range of 0.2 to 1.1%. The lower limit of the Cr content is more preferably 0.22%, even more preferably 0.25%, and most preferably 0.3%. The upper limit of the Cr content is more preferably 1.08%, more preferably 1.05%, and most preferably 1.0%.
인(P): 0.03% 이하(0%는 제외)Phosphorus (P): 0.03% or less (excluding 0%)
인(P)은 불가피하게 함유되는 불순물로서, 강의 용접성을 저해하고, 입계에 편석되어 취성을 높이는 주요 원인이 되는 원소이므로, 그 함량을 가능한 낮게 제어하는 것이 바람직하다. 이론상 P의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 그 상한을 관리하는 것이 중요하며 본 발명에서는 상기 P의 함량을 0.03% 이하로 제한한다. 상기 P 함량은 0.025% 이하인 것이 보다 바람직하고, 0.02% 이하인 것이 보다 더 바람직하며, 0.015% 이하인 것이 가장 바람직하다.Phosphorus (P) is an impurity that is unavoidably contained, and since it inhibits the weldability of steel and is a major cause of increasing brittleness by segregating at grain boundaries, it is desirable to control its content as low as possible. Theoretically, it is advantageous to limit the content of P to 0%, but it is inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the P content is limited to 0.03% or less. The P content is more preferably 0.025% or less, even more preferably 0.02% or less, and most preferably 0.015% or less.
황(S): 0.015% 이하(0%는 제외)Sulfur (S): 0.015% or less (excluding 0%)
황(S)은 상기 인(P)과 마찬가지로 불가피하게 함유되는 불순물로서, Mn 등과 결합하여 비금속개재물을 형성하며 이에 따라 강의 인성을 크게 떨어뜨리기 때문에 그 함량을 최대한 억제하는 것이 바람직하다. 이론상 S의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 그 상한을 관리하는 것이 중요하며 본 발명에서는 상기 S의 함량을 0.015% 이하로 제한한다. 상기 S 함량은 0.01% 이하인 것이 보다 바람직하고, 0.008% 이하인 것이 보다 더 바람직하며, 0.006% 이하인 것이 가장 바람직하다.Sulfur (S) is an impurity that is unavoidably contained like the phosphorus (P), and it is preferable to suppress the content as much as possible because it combines with Mn and the like to form non-metallic inclusions, thereby greatly reducing the toughness of steel. Theoretically, it is advantageous to limit the content of S to 0%, but it is inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the content of S is limited to 0.015% or less. The S content is more preferably 0.01% or less, even more preferably 0.008% or less, and most preferably 0.006% or less.
질소(N): 0.006% 이하(0%는 제외)Nitrogen (N): 0.006% or less (excluding 0%)
질소(N)는 강재의 경도 확보에 다소 기여하나 그 제어가 어려우며, 인(P)과 마찬가지로 입계에 편석되어 강의 취성을 높이는 역할을 한다. 이론상 N의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 그 상한을 관리하는 것이 중요하며 본 발명에서는 상기 N의 함량을 0.006% 이하로 제한한다. 상기 N 함량은 0.0058% 이하인 것이 보다 바람직하고, 0.0055% 이하인 것이 보다 더 바람직하며, 0.005% 이하인 것이 가장 바람직하다.Nitrogen (N) contributes somewhat to securing the hardness of the steel, but it is difficult to control, and like phosphorus (P), it is segregated at the grain boundary and serves to increase the brittleness of the steel. Theoretically, it is advantageous to limit the content of N to 0%, but it is inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the N content is limited to 0.006% or less. The N content is more preferably 0.0058% or less, even more preferably 0.0055% or less, and most preferably 0.005% or less.
알루미늄(Al): 0.05% 이하(0%는 제외)Aluminum (Al): 0.05% or less (excluding 0%)
알루미늄(Al)은 용강의 탈산을 위해 첨가되는 원소이다. 다만, 그 함량이 0.05%를 초과하는 경우에는 결정립 미세화에 의한 강도 상승에는 유리할 수 있으나 제강이나 연속주조시 노즐 막힘을 유발하는 문제가 있다. 따라서, 본 발명에서는 상기 Al의 함량을 0.05% 이하로 제한한다. 상기 Al 함량은 0.048% 이하인 것이 보다 바람직하고, 0.045% 이하인 것이 보다 더 바람직하며, 0.04% 이하인 것이 가장 바람직하다.Aluminum (Al) is an element added for deoxidation of molten steel. However, if the content exceeds 0.05%, it may be advantageous to increase strength by grain refinement, but there is a problem of causing nozzle clogging during steelmaking or continuous casting. Therefore, in the present invention, the Al content is limited to 0.05% or less. The Al content is more preferably 0.048% or less, even more preferably 0.045% or less, and most preferably 0.04% or less.
몰리브덴(Mo): 0.2~1.0%Molybdenum (Mo): 0.2 to 1.0%
몰리브덴(Mo)은 강의 소입성을 증가시키며, 특히 저온인성을 향상시키는데 유리한 원소이다. 그 함량이 0.2% 미만인 경우에는 상술한 효과를 얻기 어렵고, 1.0%를 초과하는 경우에는 제조 원가가 상승할 뿐만 아니라, 용접성이 열위해지질 수 있다. 따라서, 상기 Mo의 함량은 0.2~1.0%의 범위를 갖는 것이 바람직하다. 상기 Mo 함량의 하한은 0.22%인 것이 보다 바람직하고, 0.25%인 것이 보다 더 바람직하며, 0.3%인 것이 가장 바람직하다. 상기 Mo 함량의 상한은 0.98%인 것이 보다 바람직하고, 0.95%인 것이 보다 더 바람직하며, 0.9%인 것이 가장 바람직하다.Molybdenum (Mo) increases the hardenability of steel, and is particularly advantageous for improving low-temperature toughness. If the content is less than 0.2%, it is difficult to obtain the above-mentioned effects, and if it exceeds 1.0%, manufacturing costs may increase as well as poor weldability. Therefore, the Mo content is preferably in the range of 0.2 to 1.0%. The lower limit of the Mo content is more preferably 0.22%, even more preferably 0.25%, and most preferably 0.3%. The upper limit of the Mo content is more preferably 0.98%, more preferably 0.95%, and most preferably 0.9%.
바나듐(V): 0.02~0.5%Vanadium (V): 0.02 to 0.5%
바나듐(V)은 열간압연 후 재가열시 VC 탄화물을 형성하여 오스테나이트 결정립의 성장을 억제하고, 강의 소입성을 향상시켜 경도와 인성을 확보하는데 유리한 원소이다. 그 함량이 0.02% 미만인 경우에는 상술한 효과를 얻기 어렵고, 0.5%를 초과하는 경우에는 V이 고가의 원소이므로 경제성이 저하될 수 있으며, 인성 열화의 문제점도 야기할 수 있다. 따라서, 상기 V의 함량은 0.02~0.5%의 범위를 갖는 것이 바람직하다. 상기 V 함량의 하한은 0.022%인 것이 보다 바람직하고, 0.025%인 것이 보다 더 바람직하며, 0.03%인 것이 가장 바람직하다. 상기 V 함량의 상한은 0.48%인 것이 보다 바람직하고, 0.45%인 것이 보다 더 바람직하며, 0.4%인 것이 가장 바람직하다.Vanadium (V) is an element advantageous for securing hardness and toughness by suppressing the growth of austenite crystal grains by forming VC carbide during reheating after hot rolling and improving hardenability of steel. If the content is less than 0.02%, it is difficult to obtain the above-mentioned effect, and if it exceeds 0.5%, since V is an expensive element, economic efficiency may be reduced and toughness may also be deteriorated. Therefore, the content of V is preferably in the range of 0.02 to 0.5%. The lower limit of the V content is more preferably 0.022%, even more preferably 0.025%, and most preferably 0.03%. The upper limit of the V content is more preferably 0.48%, even more preferably 0.45%, and most preferably 0.4%.
칼슘(Ca): 0.0005~0.004%Calcium (Ca): 0.0005 to 0.004%
칼슘(Ca)은 황(S)과의 결합력이 좋아 MnS 주변(둘레)에 CaS를 생성하여 MnS의 연신을 억제하며, 압연 방향에 대한 직각방향으로의 인성을 향상시키는데 유리한 원소이다. 또한, 칼슘(Ca)의 첨가로 생성된 CaS는 다습한 외부 환경에서의 부식에 대한 저항성을 높일 수 있다. 그 함량이 0.0005% 미만인 경우에는 상술한 효과를 얻기 어렵고, 0.004%를 초과하는 경우에는 제강 조업 시 노즐 막힘 등의 결함이 유발될 수 있다. 따라서, 상기 Ca의 함량은 0.0005~0.004%의 범위를 갖는 것이 바람직하다. 상기 Ca 함량의 하한은 0.0006%인 것이 보다 바람직하고, 0.0007%인 것이 보다 더 바람직하며, 0.0008%인 것이 가장 바람직하다. 상기 Ca 함량의 상한은 0.0038%인 것이 보다 바람직하고, 0.0035%인 것이 보다 더 바람직하며, 0.003%인 것이 가장 바람직하다.Calcium (Ca) has a good binding force with sulfur (S), so it generates CaS around (circumference) MnS to suppress elongation of MnS and is an advantageous element for improving toughness in a direction perpendicular to the rolling direction. In addition, CaS produced by the addition of calcium (Ca) can increase resistance to corrosion in a humid external environment. If the content is less than 0.0005%, it is difficult to obtain the above-mentioned effects, and if it exceeds 0.004%, defects such as nozzle clogging may be caused during steelmaking operations. Therefore, the content of Ca is preferably in the range of 0.0005 to 0.004%. The lower limit of the Ca content is more preferably 0.0006%, more preferably 0.0007%, and most preferably 0.0008%. The upper limit of the Ca content is more preferably 0.0038%, more preferably 0.0035%, and most preferably 0.003%.
이외, 본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 상기 불순물들은 통상의 기술자라면 누구라도 알 수 있는 것이기 때문에 본 발명에서는 그 모든 내용을 특별히 언급하지는 않는다.In addition, the remaining components of the present invention are iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in a normal manufacturing process, this cannot be excluded. Since the above impurities can be known to anyone skilled in the art, all of them are not specifically mentioned in the present invention.
다만, 본 발명에서는 상기 불가피한 불순물이 Nb: 0.0015% 이하 및 B: 0.0008% 이하를 포함할 수 있다. 상기 Nb는 QT 열처리 후에 조대한 석출물을 형성시켜 저온인성을 저하시킬 우려가 있고, 상기 B는 불균일하게 편석되면 퀜칭 열처리 공정에서 상변태 시점의 차이를 유발함에 따라 템퍼드 마르텐사이트의 유효 결정립 크기의 불균일성을 야기하여 저온인성을 열위하게 할 수 있으며, 형상 불량을 야기할 수도 있다. 따라서, 본 발명에서는 상기 Nb 및 B를 의도적으로 첨가하지 않으면서도 불순물로서 포함될 수 있는 양의 상한을 제어함으로써 저온인성을 향상시킬 수 있다. 상기 Nb 함량은 0.0012% 이하인 것이 보다 바람직하고, 0.001% 이하인 것이 보다 더 바람직하다. 상기 B 함량은 0.0006% 이하인 것이 보다 바람직하고, 0.0005% 이하인 것이 보다 더 바람직하다.However, in the present invention, the unavoidable impurities may include Nb: 0.0015% or less and B: 0.0008% or less. The Nb may form coarse precipitates after the QT heat treatment to reduce low-temperature toughness, and if the B is non-uniformly segregated, it causes a difference in the phase transformation time in the quenching heat treatment process. may cause poor low-temperature toughness, and may cause shape defects. Therefore, in the present invention, low-temperature toughness can be improved by controlling the upper limit of the amount that can be included as an impurity without intentionally adding Nb and B. The Nb content is more preferably 0.0012% or less, and even more preferably 0.001% or less. The B content is more preferably 0.0006% or less, and even more preferably 0.0005% or less.
한편, 본 발명의 방탄강은 상술한 합금조성을 만족함과 동시에, 하기 관계식 1을 만족하는 것이 바람직하다. 하기 관계식 1은 경도 향상 효과를 충분히 얻기 위하여 도출된 식이며, 관계식 1을 만족하지 않을 경우 고경도를 확보하기 어렵다는 단점이 있다. 하기 관계식 1의 값은 225 이상인 것이 보다 바람직하고, 230 이상인 것이 보다 더 바람직하며, 235 이상인 것이 가장 바람직하다. 한편, 상기 관계식 1의 값은 높을수록 고경도 확보에 유리하므로, 본 발명에서는 상기 관계식 1의 값의 상한에 대해서 특별히 한정하지 않는다. 다만, 제조 비용 측면에서 하기 관계식 1의 값의 상한은 600일 수 있다. 하기 관계식 1의 값의 상한은 580인 것이 보다 바람직하고, 550인 것이 보다 더 바람직하며, 500인 것이 가장 바람직하다.On the other hand, the bulletproof steel of the present invention preferably satisfies the above-described alloy composition and at the same time satisfies the following relational expression 1. The following Relational Equation 1 is an equation derived in order to sufficiently obtain an effect of improving hardness, and when Relational Equation 1 is not satisfied, it is difficult to secure high hardness. The value of the following relational expression 1 is more preferably 225 or more, more preferably 230 or more, and most preferably 235 or more. On the other hand, the higher the value of the relational expression 1, the more advantageous it is to secure high hardness. In the present invention, the upper limit of the value of the relational expression 1 is not particularly limited. However, in terms of manufacturing cost, the upper limit of the value of Equation 1 below may be 600. The upper limit of the value of the following relational expression 1 is more preferably 580, even more preferably 550, and most preferably 500.
[관계식 1] 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo] ≥ 220[Relational Expression 1] 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo] ≥ 220
(단, 상기 관계식 1에서 각 원소의 함량은 중량%를 의미함.)(However, in the relational expression 1, the content of each element means % by weight.)
본 발명의 방탄강은 면적%로, 템퍼드 마르텐사이트가 90% 이상(100%를 포함)인 미세조직을 포함하는 것이 바람직하다. 상기 템퍼드 마르텐사이트는 경도와 저온인성을 동시에 우수한 수준으로 확보하기에 유리한 조직이다. 상기 템퍼드 마르텐사이트의 분율이 90% 미만인 경우에는 2차상에 의한 저온인성 향상에는 다소 이점이 있을 수 있으나 경도 확보에 불리할 수 있다. 상기 템퍼드 마르텐사이트의 분율은 이론적으로 100%인 것이 유리하나, 제조공정상 불가피하게 2차상이 형성될 수 있다. 상기 2차상은 잔류 오스테나이트, 베이나이트, 펄라이트 및 페라이트 중 하나 이상일 수 있으며, 그 분율은 합계로 10면적% 이하인 것이 바람직하다. 상기 2차상의 분율이 10%를 초과하는 경우에는 저온인성 향상에는 다소 이점이 있을 수 있으나 경도 확보에 불리할 수 있다. 상기 템퍼드 마르텐사이트의 분율은 92% 이상인 것이 보다 바람직하고, 94% 이상인 것이 보다 더 바람직하며, 95% 이상인 것이 가장 바람직하다.The bulletproof steel of the present invention preferably includes a microstructure in which tempered martensite is 90% or more (including 100%) by area%. The tempered martensite is a structure that is advantageous for securing excellent levels of hardness and low-temperature toughness at the same time. When the fraction of the tempered martensite is less than 90%, there may be some advantages in improving low-temperature toughness by the secondary phase, but it may be disadvantageous in securing hardness. It is advantageous that the fraction of the tempered martensite is theoretically 100%, but a secondary phase may inevitably be formed in the manufacturing process. The secondary phase may be one or more of retained austenite, bainite, pearlite, and ferrite, and the fraction thereof is preferably 10 area% or less in total. When the fraction of the secondary phase exceeds 10%, there may be some advantages in improving low-temperature toughness, but it may be disadvantageous in securing hardness. The fraction of the tempered martensite is more preferably 92% or more, even more preferably 94% or more, and most preferably 95% or more.
상기 템퍼드 마르텐사이트의 평균 유효 결정립 크기는 20㎛ 이하인 것이 바람직하다. 본 발명에서는 상기 템퍼드 마르텐사이트의 평균 유효 결정립 크기 미세화시킴으로써 저온인성을 보다 우수한 수준으로 향상시킬 수 있으며, 그 크기가 20㎛를 초과하는 경우에는 상술한 효과를 충분히 얻기 곤란할 수 있다. 상기 템퍼드 마르텐사이트의 평균 유효 결정립 크기는 18㎛ 이하인 것이 보다 바람직하고, 15㎛ 이하인 것이 보다 더 바람직하며, 12㎛ 이하인 것이 가장 바람직하다. 한편, 상기 평균 유효 결정립 크기란 15° 이상의 고경각 입계를 갖는 결정립의 평균 크기를 의미한다.The average effective grain size of the tempered martensite is preferably 20 μm or less. In the present invention, the low-temperature toughness can be improved to a more excellent level by minimizing the average effective grain size of the tempered martensite, and when the size exceeds 20 μm, it may be difficult to sufficiently obtain the above-described effect. The average effective grain size of the tempered martensite is more preferably 18 μm or less, even more preferably 15 μm or less, and most preferably 12 μm or less. On the other hand, the average effective grain size means the average size of grains having a grain boundary with a high angle of 15° or more.
상기 템퍼드 마르텐사이트의 KAM은 0.3~3.0인 것이 바람직하다. 상기 KAM은 전위밀도를 가늠하기 위한 지표이다. 상기 KAM은 높을수록 전위밀도가 높아지는 것으로 해석된다. 본 발명에서는 상기 KAM이 0.3 미만인 경우 낮은 전위밀도로 인하여 충분한 경도를 확보하기 곤란할 수 있으며, 3.0을 초과하는 경우에는 저온인성 확보가 곤란할 수 있다. 상기 KAM의 하한은 0.4인 것이 보다 바람직하고, 0.45인 것이 보다 더 바람직하며, 0.5인 것이 가장 바람직하다. 상기 KAM의 상한은 2.8인 것이 보다 바람직하고, 2.5인 것이 보다 더 바람직하며, 2.0인 것이 가장 바람직하다.The KAM of the tempered martensite is preferably 0.3 to 3.0. The KAM is an index for estimating the dislocation density. It is interpreted that the higher the KAM, the higher the dislocation density. In the present invention, when the KAM is less than 0.3, it may be difficult to secure sufficient hardness due to low dislocation density, and when it exceeds 3.0, it may be difficult to secure low-temperature toughness. The lower limit of the KAM is more preferably 0.4, even more preferably 0.45, and most preferably 0.5. The upper limit of the KAM is more preferably 2.8, even more preferably 2.5, and most preferably 2.0.
상기 템퍼드 마르텐사이트의 입내에는 V(C,N)계 석출물이 포함되며, 상기 V(C,N)계 석출물은 평균 크기가 30nm 이하인 것이 바람직하다. 이와 같이, V(C,N)계 석출물의 크기를 미세화시킴으로써 석출강화를 통해 고경도를 확보할 수 있다. 한편, 상기 V(C,N)계 석출물의 평균 크기가 30nm를 초과하는 경우에는 상술한 효과를 충분히 얻기 곤란할 수 있다. 상기 V(C,N)계 석출물의 평균 크기는 28nm 이하인 것이 보다 바람직하고, 25nm 이하인 것이 보다 더 바람직하며, 20nm 이하인 것이 가장 바람직하다. 상기 V(C,N)계 석출물은 V계 탄화물, V계 질화물, V계 탄질화물 등을 포함할 수 있다. V(C,N)-based precipitates are included in the grains of the tempered martensite, and the average size of the V(C,N)-based precipitates is preferably 30 nm or less. In this way, by miniaturizing the size of V(C,N)-based precipitates, high hardness can be secured through precipitation strengthening. On the other hand, when the average size of the V(C,N)-based precipitates exceeds 30 nm, it may be difficult to sufficiently obtain the above-described effects. The average size of the V(C,N)-based precipitates is more preferably 28 nm or less, even more preferably 25 nm or less, and most preferably 20 nm or less. The V(C,N)-based precipitates may include V-based carbides, V-based nitrides, and V-based carbonitrides.
상기 V(C,N)계 석출물은 전체 석출물 개수 대비 크기가 100nm를 초과하는 석출물 개수의 비율이 10% 이하인 것이 바람직하다. 크기가 100nm를 초과하는 V(C,N)계 석출물이 전체 석출물 개수 대비 10%를 초과하는 경우에는 석출강화 효과를 저하시킬 뿐만 아니라 저온인성을 열위하게 할 수 있다. 상기 크기가 100nm를 초과하는 석출물 개수는 전체 석출물 개수 대비 8% 이하인 것이 보다 바람직하고, 6% 이하인 것이 보다 더 바람직하며, 5% 이하인 것이 가장 바람직하다.In the V(C,N)-based precipitates, it is preferable that the ratio of the number of precipitates having a size greater than 100 nm to the total number of precipitates is 10% or less. When the number of V(C,N)-based precipitates exceeding 100 nm in size exceeds 10% relative to the total number of precipitates, not only the precipitation hardening effect may be reduced, but also the low-temperature toughness may be deteriorated. The number of precipitates having a size exceeding 100 nm is more preferably 8% or less, more preferably 6% or less, and most preferably 5% or less relative to the total number of precipitates.
전술한 바와 같이 제공되는 본 발명의 일 실시형태에 따른 방탄강은 480~530HB의 표면 경도와 16J 이상의 -40℃에서의 충격 흡수 에너지를 가질 수 있으며, 5~40mm의 두께를 가질 수 있다.The bulletproof steel according to one embodiment of the present invention provided as described above may have a surface hardness of 480 to 530 HB, an impact absorption energy of 16 J or more at -40 ° C, and a thickness of 5 to 40 mm.
이하, 본 발명의 일 실시형태에 따른 저온인성이 우수한 고경도 방탄강의 제조방법에 대하여 설명한다. Hereinafter, a method for manufacturing high-hardness bulletproof steel having excellent low-temperature toughness according to an embodiment of the present invention will be described.
우선, 상술한 합금조성과 관계식 1을 만족하는 슬라브를 1050~1250℃에서 가열한다. 상기 슬라브 가열 온도가 1050℃ 미만이면 강의 변형 저항이 커져 후속 압연 공정을 효과적으로 행할 수 없으며, 반면 1250℃를 초과하게 되면 오스테나이트 결정립이 조대해져 저온 인성이 열화될 우려가 있다. 상기 슬라브 가열 온도의 하한은 1060℃인 것이 보다 바람직하고, 1070℃인 것이 보다 더 바람직하며, 1080℃인 것이 가장 바람직하다. 상기 슬라브 가열 온도의 상한은 1240℃인 것이 보다 바람직하고, 1230℃인 것이 보다 더 바람직하며, 1220℃인 것이 가장 바람직하다.First, a slab satisfying the above alloy composition and relational expression 1 is heated at 1050 to 1250 ° C. If the slab heating temperature is less than 1050 ° C., the deformation resistance of the steel increases and the subsequent rolling process cannot be effectively performed. On the other hand, if it exceeds 1250 ° C., austenite crystal grains become coarse and low-temperature toughness may deteriorate. The lower limit of the slab heating temperature is more preferably 1060 ° C, more preferably 1070 ° C, and most preferably 1080 ° C. The upper limit of the slab heating temperature is more preferably 1240 ° C, more preferably 1230 ° C, and most preferably 1220 ° C.
이후, 상기 가열된 슬라브를 950~1150℃에서 조압연하여 바(bar)를 얻는다. 상기 조압연 온도가 950℃ 미만이면 압연 하중이 증가하여 상대적으로 약압하됨에 따라 슬라브 두께 방향 중심까지 변형이 충분히 전달되지 못하게 되며, 그 결과 공극과 같은 결함이 제거되지 않을 우려가 있다. 반면, 1150℃를 초과하게 되면 재결정 입도가 지나치게 조대해져 인성이 저하될 우려가 있다. 상기 조압연 온도의 하한은 960℃인 것이 보다 바람직하고, 970℃인 것이 보다 더 바람직하며, 980℃인 것이 가장 바람직하다. 상기 조압연 온도의 상한은 1140℃인 것이 보다 바람직하고, 1130℃인 것이 보다 더 바람직하며, 1120℃인 것이 가장 바람직하다.Thereafter, the heated slab is crudely rolled at 950 to 1150° C. to obtain a bar. If the rough rolling temperature is less than 950 ° C., the rolling load increases and the deformation is not sufficiently transmitted to the center in the thickness direction of the slab as the rolling load increases and the reduction is relatively weak, and as a result, there is a risk that defects such as voids may not be removed. On the other hand, when the temperature exceeds 1150 ° C., the recrystallized grain size becomes excessively coarse, and there is a possibility that the toughness may deteriorate. The lower limit of the rough rolling temperature is more preferably 960°C, even more preferably 970°C, and most preferably 980°C. The upper limit of the rough rolling temperature is more preferably 1140°C, even more preferably 1130°C, and most preferably 1120°C.
이후, 상기 바를 850~950℃에서 마무리 열간압연하여 열연강판을 얻은 후, 상온까지 냉각한다. 상기 마무리 열간압연 온도가 850℃ 미만이면 2상역 압연이 행해져 미세조직 중 페라이트가 생성될 우려가 있으며, 반면 950℃를 초과하게 되면 최종 미세조직의 입도가 조대해져 저온 인성이 열위하게 되는 문제가 있다. 상기 마무리 열간압연 온도의 하한은 860℃인 것이 보다 바람직하고, 870℃인 것이 보다 더 바람직하며, 880℃인 것이 가장 바람직하다. 상기 마무리 열간압연 온도의 상한은 945℃인 것이 보다 바람직하고, 940℃인 것이 보다 더 바람직하며, 935℃인 것이 가장 바람직하다.Thereafter, the bar is finished hot-rolled at 850 to 950° C. to obtain a hot-rolled steel sheet, and then cooled to room temperature. If the finish hot rolling temperature is less than 850 ° C, two-phase rolling is performed and ferrite may be generated in the microstructure. On the other hand, if it exceeds 950 ° C, the grain size of the final microstructure becomes coarse, resulting in poor low-temperature toughness. . The lower limit of the finish hot rolling temperature is more preferably 860°C, even more preferably 870°C, and most preferably 880°C. The upper limit of the finish hot rolling temperature is more preferably 945°C, even more preferably 940°C, and most preferably 935°C.
이후, 상기 냉각된 열연강판을 880~930℃로 1.3t+30분(t: 판 두께(mm)) 이상 가열한 후, 10℃/s 이상의 냉각속도로 150℃ 이하까지 냉각하는 1차 열처리를 행한다. 상기 1차 열처리시 가열은 미세조직이 페라이트와 펄라이트로 구성되는 열연강판을 오스테나이트 단상으로 역변태시키기 위한 것이다. 상기 1차 열처리시 가열 온도가 880℃ 미만인 경우에는 오스테나이트화가 충분히 이루어지지 못하여 조대한 연질 페라이트가 혼재하게 되며, 이에 따라 최종 제품의 경도가 저하될 수 있다. 반면, 930℃를 초과하는 경우 오스테나이트 결정립이 조대해져 소입성이 커지는 효과는 있으나, 저온인성이 열위해지고 대량 생산시 열효율 측면에서도 불리한 면이 있다. 상기 1차 열처리시 가열 온도의 하한은 882℃인 것이 보다 바람직하고, 885℃인 것이 보다 더 바람직하며, 890℃인 것이 가장 바람직하다. 상기 1차 열처리시 가열 온도의 상한은 928℃인 것이 보다 바람직하고, 925℃인 것이 보다 더 바람직하며, 920℃인 것이 가장 바람직하다. 상기 1차 열처리시 가열시간이 1.3t+30분 미만인 경우에는 오스테나이트화가 충분히 일어나지 못하여 후속하는 급속 냉각에 의한 상변태 즉, 마르텐사이트 조직을 충분히 얻을 수 없게 된다. 또한, 열간압연 공정에서 석출된 100nm를 초과하는 조대한 V(C,N)계 석출물을 재고용하지 못하여 후속하는 템퍼링 공정에서 미세한 석출물의 형성이 부족하게 되어 석출강화 효과를 충분히 얻을 수 없고, 저온인성 또한 저하된다. 상기 1차 열처리시 가열시간은 1.3t+35분 이상인 것이 보다 바람직하고, 1.3t+40분 이상인 것이 보다 더 바람직하며, 1.3t+45분 이상인 것이 가장 바람직하다. 한편, 상기 1차 열처리시 가열시간이 많을수록 오스테나이트화 및 조대한 V(C,N)계 석출물의 재고용에 유리하므로, 본 발명에서는 상기 가열시간의 상한에 대해서 특별히 한정하지 않는다. 다만, 저온인성 열화 방지 및 생산성 측면에서 상기 1차 열처리시 가열시간의 상한은 1.3t+60분일 수 있다. 상기 냉각은 오스테나이트화된 미세조직을 마르텐사이트로 변태시키기 위한 것이다. 상기 냉각은 수냉을 통한 급속 냉각인 것이 바람직하다. 상기 냉각속도가 10℃/s 미만이거나 냉각종료온도가 150℃를 초과하는 경우에는 냉각 중 페라이트 또는 베이나이트가 과도하게 형성될 수 있다. 상기 냉각속도는 12℃/s 이상인 것이 보다 바람직하고, 15℃/s 이상인 것이 보다 더 바람직하며, 20℃/s 이상인 것이 가장 바람직하다. 한편, 상기 냉각속도가 빠를수록 마르텐사이트 변태에 유리하므로, 본 발명에서는 상기 냉각속도의 상한에 대해서 특별히 한정하지 않는다. 다만, 설비의 한계상 상기 냉각속도는 150℃/s를 초과하기는 어렵다. 상기 냉각종료온도는 100℃ 이하인 것이 보다 바람직하고, 80℃ 이하인 것이 보다 더 바람직하며, 50℃ 이하인 것이 가장 바람직하다. 본 발명에서는 상기 냉각종료온도의 하한에 대해서 특별히 한정하지 않으며, 예를 들면, 상온일 수 있다.Thereafter, a first heat treatment of heating the cooled hot-rolled steel sheet to 880 to 930 ° C for 1.3 t + 30 minutes or more (t: sheet thickness (mm)) and then cooling to 150 ° C or less at a cooling rate of 10 ° C / s or more do Heating during the primary heat treatment is for reverse transformation of the hot-rolled steel sheet in which the microstructure is composed of ferrite and pearlite into an austenite single phase. When the heating temperature during the first heat treatment is less than 880° C., austenitization is not sufficiently achieved and coarse soft ferrite is mixed, and thus the hardness of the final product may be lowered. On the other hand, when the temperature exceeds 930 ° C., the austenite grains become coarse and hardenability increases, but the low-temperature toughness deteriorates and there is a disadvantage in terms of thermal efficiency during mass production. The lower limit of the heating temperature during the first heat treatment is more preferably 882°C, more preferably 885°C, and most preferably 890°C. The upper limit of the heating temperature during the first heat treatment is more preferably 928°C, more preferably 925°C, and most preferably 920°C. When the heating time during the first heat treatment is less than 1.3 t + 30 minutes, austenitization does not sufficiently occur, and thus phase transformation by rapid cooling, that is, martensitic structure cannot be sufficiently obtained. In addition, since the coarse V (C, N)-based precipitates exceeding 100 nm precipitated in the hot rolling process cannot be re-dissolved, the formation of fine precipitates in the subsequent tempering process is insufficient, so that the precipitation strengthening effect cannot be sufficiently obtained, and low-temperature toughness also degrades The heating time in the first heat treatment is more preferably 1.3t + 35 minutes or more, more preferably 1.3t + 40 minutes or more, and most preferably 1.3t + 45 minutes or more. On the other hand, since the longer the heating time during the primary heat treatment is, the more favorable it is for austenitization and the re-dissolution of coarse V(C,N)-based precipitates, so the upper limit of the heating time is not particularly limited in the present invention. However, in terms of preventing deterioration of low-temperature toughness and productivity, the upper limit of the heating time during the first heat treatment may be 1.3t + 60 minutes. The cooling is intended to transform the austenitized microstructure into martensite. The cooling is preferably rapid cooling through water cooling. When the cooling rate is less than 10 °C/s or the cooling end temperature exceeds 150 °C, ferrite or bainite may be excessively formed during cooling. The cooling rate is more preferably 12 °C/s or more, more preferably 15 °C/s or more, and most preferably 20 °C/s or more. On the other hand, since the faster the cooling rate is, the more advantageous the martensite transformation is, in the present invention, the upper limit of the cooling rate is not particularly limited. However, due to the limitations of the facility, it is difficult for the cooling rate to exceed 150°C/s. The cooling end temperature is more preferably 100°C or less, even more preferably 80°C or less, and most preferably 50°C or less. In the present invention, the lower limit of the cooling end temperature is not particularly limited, and may be, for example, room temperature.
이후, 상기 1차 열처리된 열연강판을 하기 관계식 2의 조건을 만족하도록 1.5t+32분(t: 판 두께(mm))~1.5t+60분간 템퍼링 열처리하는 2차 열처리를 행한다. 상기 템퍼링 열처리는 1차 열처리에 의해 미세조직이 마르텐사이트로 변태된 열연강판의 내부 응력을 풀어주어 우수한 저온 인성을 확보하고, 미세한 V(C,N)계 석출물을 석출시켜 고경도를 확보하기 위한 것이다. 상기 템퍼링 열처리 온도가 200℃ 미만인 경우 경도 저하를 방지할 수는 있으나, 퀜칭 후 내부 응력이 충분히 풀리지 않아 저온인성 확보에 불리한 측면이 있고, 반면, Tmax를 초과할 경우 마르텐사이트 내부의 전위 밀도가 지나치게 감소하여 최종 제품의 경도가 저하될 수 있다. 상기 템퍼링 열처리 온도의 하한은 202℃인 것이 보다 바람직하고, 205℃인 것이 보다 더 바람직하며, 210℃인 것이 가장 바람직하다. 상기 템퍼링 열처리 온도의 상한은 Tmax-5℃인 것이 보다 바람직하고, Tmax-10℃인 것이 보다 더 바람직하며, Tmax-15℃인 것이 가장 바람직하다. 상기 템퍼링 열처리 시간이 1.5t+32분 미만일 경우에는 짧은 시간 동안 열처리 됨에 따라 표면 대비 두께 중심부는 충분히 숙열이 되지 않을 수 있다. 또한, 미세한 석출물의 형성이 부족하게 되어 석출강화 효과를 충분히 얻을 수 없고, 저온인성 또한 저하된다. 반면, 상기 템퍼링 열처리 시간이 1.5t+60분을 초과하는 경우에는 마르텐사이트 내부의 전위가 줄어들어 원하는 고경도를 확보하기 용이하지 않을 수 있다. 상기 템퍼링 열처리 시간의 하한은 1.5t+35분인 것이 보다 바람직하고, 1.5t+38분인 것이 보다 더 바람직하며, 1.5t+40분인 것이 가장 바람직하다. 상기 템퍼링 열처리 시간의 상한은 1.5t+57분인 것이 보다 바람직하고, 1.5t+55분인 것이 보다 더 바람직하며, 1.5t+50분인 것이 가장 바람직하다.Thereafter, a second heat treatment is performed on the hot-rolled steel sheet subjected to the first heat treatment by tempering heat treatment for 1.5t + 32 minutes (t: sheet thickness (mm)) to 1.5t + 60 minutes to satisfy the condition of the following relational expression 2. The tempering heat treatment releases the internal stress of the hot-rolled steel sheet in which the microstructure is transformed into martensite by the first heat treatment to secure excellent low-temperature toughness, and to secure high hardness by precipitating fine V (C, N)-based precipitates. will be. If the tempering heat treatment temperature is less than 200 ° C., it is possible to prevent the decrease in hardness, but there is a disadvantage in securing low-temperature toughness because the internal stress is not sufficiently released after quenching. On the other hand, if it exceeds T max , the dislocation density inside martensite The hardness of the final product may be reduced due to excessive reduction. The lower limit of the tempering heat treatment temperature is more preferably 202°C, even more preferably 205°C, and most preferably 210°C. The upper limit of the tempering heat treatment temperature is more preferably T max -5°C, more preferably T max -10°C, and most preferably T max -15°C. When the tempering heat treatment time is less than 1.5t + 32 minutes, the center of the thickness compared to the surface may not be sufficiently heated as the heat treatment is performed for a short time. In addition, since the formation of fine precipitates is insufficient, the precipitation strengthening effect cannot be sufficiently obtained, and the low-temperature toughness is also reduced. On the other hand, when the tempering heat treatment time exceeds 1.5 t + 60 minutes, it may not be easy to secure a desired high hardness because the dislocation inside martensite is reduced. The lower limit of the tempering heat treatment time is more preferably 1.5t + 35 minutes, more preferably 1.5t + 38 minutes, and most preferably 1.5t + 40 minutes. The upper limit of the tempering heat treatment time is more preferably 1.5t + 57 minutes, more preferably 1.5t + 55 minutes, and most preferably 1.5t + 50 minutes.
[관계식 2] 200 ≤ 템퍼링 열처리 온도 ≤ Tmax [Relational Expression 2] 200 ≤ tempering heat treatment temperature ≤ T max
(단, 상기 관계식 2에서 Tmax는 112.5[C]-5.7[Mn]+18.8[Cr]-1.3[Ni]+114.3[V]+169.4[Mo]+200이고, 상기 Tmax에서 각 원소의 함량은 중량%를 의미함.)(However, in relational expression 2, T max is 112.5 [C] -5.7 [Mn] + 18.8 [Cr] -1.3 [Ni] + 114.3 [V] + 169.4 [Mo] + 200, and in the T max Content means % by weight.)
이하, 실시예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 하기 실시예는 본 발명을 상세하게 설명하기 위한 예시일 뿐, 본 발명의 권리범위를 한정하지 않는다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only examples for explaining the present invention in detail, and do not limit the scope of the present invention.
(실시예)(Example)
하기 표 1 및 2에 기재된 합금조성을 갖는 슬라브를 준비한 뒤, 하기 표 3 및 4에 기재된 제조조건에 따라 슬라브 가열 - 조압연 - 마무리 열간압연 - 1차 열처리 - 2차 열치리를 행하여 방탄강을 제조하였다. 이 때, 1차 열처리시 냉각종료온도까지 수냉한 후 상온까지 공냉을 적용하였으며, 또한, 2차 열처리 후에도 상온까지 공냉을 적용하였다. 이와 같이 제조된 방탄강에 대하여 미세조직과 기계적 물성을 측정하고, 그 결과를 하기 표 5에 나타내었다.After preparing the slabs having the alloy compositions shown in Tables 1 and 2 below, according to the manufacturing conditions shown in Tables 3 and 4 below, the slab heating - rough rolling - finish hot rolling - primary heat treatment - secondary heat treatment are performed to produce bulletproof steel did At this time, air cooling was applied to room temperature after water cooling to the cooling end temperature during the first heat treatment, and air cooling was applied to room temperature after the second heat treatment. The microstructure and mechanical properties of the bulletproof steel thus prepared were measured, and the results are shown in Table 5 below.
미세조직은 제조된 강판을 임의의 크기로 절단하여 시편으로 제조한 다음, 경면 가공한 후 나이탈 에칭액을 이용하여 부식시키고, 전자주사현미경을 활용하여 강판의 1/4t(t:두께) 부위를 관찰하였다. 또한, 템퍼드 마르텐사이트의 평균 유효 결정립 크기는 EBSD를 이용하여 방향이탈 각도(misorientation angle) 15° 이상을 기준으로 측정하였다. 아울러, 템퍼드 마르텐사이트의 KAM은 니혼 전자 제조 주사 전자 현미경(SEM) JSM-7001F를 사용하여, 강판의 압연 방향 단면의 연마면에 대해, 100㎛×100㎛의 시야에 있어서의 EBSD(Electron Backscatter Diffraction) 해석(측정 스텝 : 0.05 ㎛)을, 판 두께 1/4 위치에서 실시한 결과로부터, 결정립 내의 각 픽셀과 인접하는 픽셀의 방위차 (°)의 평균치로 계산하였다.The microstructure was prepared by cutting the manufactured steel sheet into an arbitrary size to make a specimen, mirror-processing it, corroding it using a nital etchant, and using a scanning electron microscope to examine the 1/4t (t: thickness) portion of the steel sheet. Observed. In addition, the average effective grain size of tempered martensite was measured based on a misorientation angle of 15° or more using EBSD. In addition, KAM of tempered martensite was examined using a scanning electron microscope (SEM) JSM-7001F manufactured by JEOL Co., Ltd., on the polished surface of the cross section in the rolling direction of the steel sheet, in a field of view of 100 μm × 100 μm EBSD (Electron Backscatter Diffraction analysis (measurement step: 0.05 μm) was performed at a position of 1/4 of the plate thickness, and the average value of the orientation difference (°) between each pixel in the crystal grain and the adjacent pixel was calculated.
템퍼드 마르텐사이트 입내에 형성되는 V(C,N)계 석출물은, 제조된 강판을 임의의 크기로 절단하여 시편으로 제조한 다음, 압연 방향 단면의 연마면에 대하여 5만배의 배율(2㎛×2㎛)로 임의의 영역을 5군데 측정한 뒤, 평균값으로 계산하였다.The V(C,N)-based precipitates formed in the tempered martensite grains are prepared by cutting the manufactured steel sheet into a random size and then preparing a specimen, and then at a magnification of 50,000 times (2㎛ × 2 μm) at 5 random areas, and then the average value was calculated.
경도는 강판의 표면을 2mm 밀링 가공한 다음, 브리넬 경도 시험기(하중 3000kgf, 10mm 텅스텐 압입구)를 이용하여 3회 측정한 후 평균값으로 나타내었다.Hardness was measured 3 times using a Brinell hardness tester (load 3000 kgf, 10 mm tungsten indentation) after milling the surface of the steel plate by 2 mm, and then expressed as an average value.
저온인성은 샤르피 충격시험기를 이용하여 강판의 1/4t(t:두께) 부위를 시편으로 가공한 다음 -40℃에서 3회 측정한 뒤 충격흡수 에너지의 평균값으로 나타내었다.The low-temperature toughness was measured three times at -40 ° C after processing a 1/4t (t: thickness) part of the steel plate into a specimen using a Charpy impact tester, and then expressed as an average value of impact absorption energy.
강종No.Steel grade No. 합금조성(중량%)Alloy composition (% by weight)
CC SiSi MnMn PP SS NiNi CrCr
발명강1invention steel 1 0.30.3 0.30.3 0.50.5 0.0070.007 0.0020.002 1.01.0 0.50.5
발명강2invention steel 2 0.30.3 0.30.3 0.50.5 0.0070.007 0.0020.002 1.01.0 0.50.5
발명강3invention steel 3 0.30.3 0.30.3 0.50.5 0.0070.007 0.0020.002 1.01.0 0.50.5
발명강4Invention Steel 4 0.30.3 0.30.3 0.50.5 0.0070.007 0.0020.002 1.01.0 0.70.7
발명강5invention steel 5 0.30.3 0.30.3 0.50.5 0.0070.007 0.0020.002 1.01.0 0.50.5
발명강6invention steel 6 0.30.3 0.30.3 0.50.5 0.0070.007 0.0020.002 1.01.0 0.70.7
비교강1comparative steel 1 0.30.3 0.30.3 0.50.5 0.0070.007 0.0020.002 1.01.0 0.50.5
비교강2comparative steel 2 0.30.3 0.30.3 0.80.8 0.0070.007 0.0020.002 1.01.0 0.50.5
비교강3comparative lecture 3 0.30.3 0.30.3 0.50.5 0.0070.007 0.0020.002 1.01.0 0.50.5
비교강4comparative lecture 4 0.30.3 0.30.3 0.50.5 0.0070.007 0.0020.002 1.01.0 0.50.5
강종No.Steel grade No. 합금조성(중량%)Alloy composition (% by weight)
MoMo VV AlAl NN NbNb BB 식 1Equation 1 식 2Equation 2
발명강1invention steel 1 0.50.5 0.400.40 0.030.03 0.0040.004 0.00080.0008 0.00010.0001 338.9338.9 369369
발명강2invention steel 2 0.50.5 0.050.05 0.030.03 0.0040.004 0.00090.0009 0.00030.0003 258.9258.9 329329
발명강3invention steel 3 0.50.5 0.100.10 0.030.03 0.0040.004 0.00060.0006 0.00020.0002 270.4270.4 335335
발명강4Invention Steel 4 0.80.8 0.200.20 0.030.03 0.0040.004 0.00070.0007 00 402.4402.4 401401
발명강5invention steel 5 0.50.5 0.100.10 0.030.03 0.0040.004 0.00060.0006 0.00030.0003 270.4270.4 335335
발명강6invention steel 6 0.80.8 0.200.20 0.030.03 0.0040.004 0.00090.0009 0.00010.0001 402.4402.4 401401
비교강1comparative steel 1 0.40.4 0.010.01 0.030.03 0.0040.004 0.00080.0008 00 215.9215.9 308308
비교강2comparative steel 2 0.40.4 0.030.03 0.030.03 0.0040.004 0.00070.0007 0.00010.0001 217.1217.1 308308
비교강3comparative lecture 3 0.50.5 0.400.40 0.030.03 0.0040.004 0.0150.015 0.00010.0001 338.9338.9 369369
비교강4comparative lecture 4 0.50.5 0.400.40 0.030.03 0.0040.004 0.00080.0008 0.00120.0012 338.9338.9 369369
[식 1] = 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo]
[식 2] = 112.5[C]-5.7[Mn]+18.8[Cr]-1.3[Ni]+114.3[V]+169.4[Mo]+200
[Equation 1] = 225 [C] -11.3 [Mn] + 37.5 [Cr] -2.5 [Ni] + 228.6 [V] + 338.8 [Mo]
[Equation 2] = 112.5 [C] -5.7 [Mn] + 18.8 [Cr] -1.3 [Ni] + 114.3 [V] + 169.4 [Mo] + 200
구분division 강종No,Steel grade No, 슬라브
가열온도(℃)
slab
Heating temperature (℃)
압연rolling 강재 두께
(mm)
steel thickness
(mm)
조압연 온도(℃)Rough rolling temperature (℃) 마무리 압연온도(℃)Finish rolling temperature (℃)
발명예1Invention example 1 발명강1invention steel 1 11591159 10591059 890890 1212
발명예2Invention example 2 발명강2invention steel 2 11251125 10181018 924924 1818
발명예3Invention Example 3 발명강3invention steel 3 11761176 10631063 899899 1515
발명예4Invention example 4 발명강4Invention Steel 4 11641164 10221022 909909 2525
비교예1Comparative Example 1 발명강5invention steel 5 11651165 10401040 887887 1212
비교예2Comparative Example 2 발명강6invention steel 6 11651165 10251025 923923 2525
비교예3Comparative Example 3 비교강1comparative steel 1 11491149 10291029 928928 2525
비교예4Comparative Example 4 비교강2comparative steel 2 11471147 10551055 861861 1010
비교예5Comparative Example 5 비교강3comparative lecture 3 11561156 10411041 906906 1717
비교예6Comparative Example 6 비교강4comparative lecture 4 11571157 10371037 900900 1818
비교예7Comparative Example 7 발명강1invention steel 1 11561156 10391039 903903 2020
비교예8Comparative Example 8 발명강1invention steel 1 11581158 10411041 906906 1616
비교예9Comparative Example 9 발명강1invention steel 1 11551155 10381038 900900 1919
구분division 강종No.Steel grade No. 1차 열처리1st heat treatment 2차 열처리2nd heat treatment
가열온도
(℃)
heating temperature
(℃)
가열시간
(분)
heating time
(minute)
냉각속도
(℃/s)
cooling rate
(℃/s)
냉각종료
온도(℃)
Cooling down
Temperature (℃)
템퍼링
열처리
온도(℃)
Tempering
heat treatment
Temperature (℃)
템퍼링
열처리
시간(분)
Tempering
heat treatment
time (minutes)
발명예1Invention example 1 발명강1invention steel 1 911911 5151 6565 2525 250250 5353
발명예2Invention example 2 발명강2invention steel 2 910910 5858 3939 2929 200200 6262
발명예3Invention example 3 발명강3invention steel 3 900900 5555 4848 2626 200200 5858
발명예4Invention example 4 발명강4Invention Steel 4 907907 6868 4444 2929 350350 7373
비교예1Comparative Example 1 발명강5invention steel 5 909909 5151 4646 2323 130130 5353
비교예2Comparative Example 2 발명강6invention steel 6 910910 6868 4545 2323 500500 7373
비교예3Comparative Example 3 비교강1comparative steel 1 913913 6868 4646 3737 250250 7373
비교예4Comparative Example 4 비교강2comparative steel 2 909909 4848 6565 3030 100100 5050
비교예5Comparative Example 5 비교강3comparative lecture 3 907907 5757 2727 5151 240240 6161
비교예6Comparative Example 6 비교강4comparative lecture 4 910910 5858 2828 5050 250250 6262
비교예7Comparative Example 7 발명강1invention steel 1 909909 1010 2828 4848 230230 6565
비교예8Comparative Example 8 발명강1invention steel 1 907907 5656 2727 4949 250250 1010
비교예9Comparative Example 9 발명강1invention steel 1 910910 6060 2828 5050 250250 100100
구분division 미세조직microstructure 표면
경도
(HB)
surface
Hardness
(H-B)
충격
인성
(J, @-40℃)
Shock
tenacity
(J, @-40℃)
템퍼드
마르텐
사이트
(면적%)
tempered
Marten
site
(area%)
템퍼드
마르텐사이트
평균 유효
결정립 크기(㎛)
tempered
martensite
average effective
Grain size (μm)
KAMKAM 석출물
평균
크기
(nm)
precipitate
average
size
(nm)
전체 석출물 개수 대비 크기가 100nm를 초과하는 석출물 개수의 비율(%)Ratio (%) of the number of precipitates whose size exceeds 100 nm to the total number of precipitates 2차상
(면적%)
2nd prize
(area%)
발명예1Invention example 1 9898 4.64.6 0.990.99 88 44 22 503503 2828
발명예2Invention Example 2 9797 3.53.5 1.421.42 1313 33 33 492492 3636
발명예3Invention example 3 9999 4.64.6 1.061.06 1111 22 1One 498498 3737
발명예4Invention example 4 9797 3.23.2 1.351.35 77 44 33 507507 2929
비교예1Comparative Example 1 9898 7.77.7 3.353.35 153153 8888 22 525525 66
비교예2Comparative Example 2 9797 5.75.7 0.230.23 4747 88 33 470470 5959
비교예3Comparative Example 3 9797 6.36.3 0.910.91 3333 1414 33 446446 4949
비교예4Comparative Example 4 9999 5.05.0 3.433.43 146146 8686 1One 457457 33
비교예5Comparative Example 5 9898 3.93.9 1.011.01 210210 5454 22 500500 1111
비교예6Comparative Example 6 9898 6.26.2 1.331.33 1818 77 22 505505 1010
비교예7Comparative Example 7 9797 22.022.0 0.910.91 161161 4242 33 495495 77
비교예8Comparative Example 8 9797 4.04.0 3.163.16 125125 6464 33 515515 55
비교예9Comparative Example 9 9898 8.38.3 0.210.21 4646 99 22 466466 6161
2차상: 잔류 오스테나이트, 베이나이트, 펄라이트 및 페라이트 중 하나 이상Secondary phase: at least one of retained austenite, bainite, pearlite, and ferrite
상기 표 1 내지 5를 통해 알 수 있듯이, 본 발명의 합금조성 및 제조조건을 만족하는 발명예 1 내지 4의 경우에는 본 발명이 얻고자 하는 미세조직을 얻음으로써 표면 경도와 충격인성이 우수한 수준임을 알 수 있다.As can be seen from Tables 1 to 5, in the case of Inventive Examples 1 to 4 satisfying the alloy composition and manufacturing conditions of the present invention, the surface hardness and impact toughness are excellent by obtaining the microstructure to be obtained by the present invention. Able to know.
반면, 비교예 1의 경우, 본 발명의 합금조성은 만족하나 2차 열처리시 템퍼링 열처리 온도가 낮음에 따라 본 발명이 제안하는 석출물 평균 크기, 전체 석출물 개수 대비 크기가 100nm를 초과하는 석출물 개수의 비율, KAM을 만족하지 못하여 저온인성이 낮은 수준임을 알 수 있다.On the other hand, in the case of Comparative Example 1, the alloy composition of the present invention is satisfied, but the tempering heat treatment temperature during the secondary heat treatment is low, so the average size of precipitates proposed by the present invention, the ratio of the number of precipitates whose size exceeds 100 nm to the total number of precipitates , it can be seen that the low-temperature toughness is low because it does not satisfy the KAM.
비교예 2의 경우, 본 발명의 합금조성은 만족하나 2차 열처리시 템퍼링 열처리 온도가 높음에 따라 본 발명이 제안하는 석출물 평균 크기, KAM을 만족하지 못하여 경도가 낮은 수준임을 알 수 있다.In the case of Comparative Example 2, the alloy composition of the present invention is satisfied, but as the tempering heat treatment temperature during the secondary heat treatment is high, the average precipitate size, KAM, proposed by the present invention is not satisfied, so it can be seen that the hardness is low.
비교예 3의 경우, 본 발명의 제조조건은 만족하나 V 함량 및 관계식 1의 조건을 만족하지 않음에 따라 경도가 낮은 수준임을 알 수 있다.In the case of Comparative Example 3, the manufacturing conditions of the present invention are satisfied, but the V content and the conditions of relational expression 1 are not satisfied, so it can be seen that the hardness is low.
비교예 4의 경우, 본 발명의 관계식 1의 조건을 만족하지 않고, 또한 2차 열처리시 템퍼링 열처리 온도도 낮음에 따라 본 발명이 제안하는 석출물 평균 크기, 전체 석출물 개수 대비 크기가 100nm를 초과하는 석출물 개수의 비율, KAM을 만족하지 못하여 경도와 저온인성이 낮은 수준임을 알 수 있다.In the case of Comparative Example 4, since the condition of relational expression 1 of the present invention is not satisfied, and the temperature of the tempering heat treatment during the secondary heat treatment is also low, the average size of the precipitates proposed by the present invention and the total number of precipitates are larger than 100 nm. It can be seen that the hardness and low-temperature toughness are low because the ratio of numbers and KAM are not satisfied.
비교예 5의 경우, Nb의 함량이 높음에 따라 본 발명이 제안하는 석출물 평균 크기, 전체 석출물 개수 대비 크기가 100nm를 초과하는 석출물 개수의 비율을 만족하지 못하여 저온인성이 낮은 수준임을 알 수 있다.In the case of Comparative Example 5, as the Nb content is high, the ratio of the average size of precipitates and the number of precipitates having a size exceeding 100 nm to the total number of precipitates proposed by the present invention is not satisfied, indicating that the low-temperature toughness is low.
비교예 6의 경우, B의 함량이 높음에 따라 저온인성이 낮은 수준임을 알 수 있다.In the case of Comparative Example 6, it can be seen that the low-temperature toughness is low as the content of B is high.
비교예 7의 경우, 본 발명의 합금조성은 만족하나 1차 열처리시 가열시간이 충분하지 않음에 따라 템퍼드 마르텐사이트의 평균 유효 결정립 크기가 커키고, 본 발명이 제안하는 석출물 평균 크기, 전체 석출물 개수 대비 크기가 100nm를 초과하는 석출물 개수의 비율을 만족하지 못하여 저온인성이 낮은 수준임을 알 수 있다.In the case of Comparative Example 7, the alloy composition of the present invention is satisfactory, but the average effective crystal grain size of tempered martensite increases as the heating time is not sufficient during the first heat treatment, and the average size of precipitates and total precipitates proposed by the present invention It can be seen that the low-temperature toughness is low because the ratio of the number of precipitates having a size of more than 100 nm to the number is not satisfied.
비교예 8의 경우, 본 발명의 합금조성은 만족하나 2차 열처리시 템퍼링 열처리 시간이 충분하지 않음에 따라 본 발명이 제안하는 석출물 평균 크기, 전체 석출물 개수 대비 크기가 100nm를 초과하는 석출물 개수의 비율, KAM을 만족하지 못하여 저온인성이 낮은 수준임을 알 수 있다.In the case of Comparative Example 8, the alloy composition of the present invention is satisfactory, but the tempering heat treatment time during the secondary heat treatment is not sufficient, so the average size of precipitates proposed by the present invention, the ratio of the number of precipitates whose size exceeds 100 nm to the total number of precipitates , it can be seen that the low-temperature toughness is low because it does not satisfy the KAM.
비교예 9의 경우, 본 발명의 합금조성은 만족하나 2차 열처리시 템퍼링 열처리 시간이 과도함에 따라 석출물 평균 크기, KAM을 만족하지 못하여 경도가 낮은 수준임을 알 수 있다.In the case of Comparative Example 9, the alloy composition of the present invention is satisfied, but as the tempering heat treatment time during the secondary heat treatment is excessive, the average precipitate size and KAM are not satisfied, so it can be seen that the hardness is low.

Claims (7)

  1. 중량%로, 탄소(C): 0.28~0.32%, 실리콘(Si): 0.5% 이하(0%는 제외), 망간(Mn): 0.2~1.1%, 니켈(Ni): 0.7~1.2%, 크롬(Cr): 0.2~1.1%, 인(P): 0.03% 이하(0%는 제외), 황(S): 0.015% 이하(0%는 제외), 질소(N): 0.006% 이하(0%는 제외), 알루미늄(Al): 0.05% 이하(0%는 제외), 몰리브덴(Mo): 0.2~1.0%, 바나듐(V): 0.02~0.5%, 칼슘(Ca): 0.0005~0.004%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,By weight, carbon (C): 0.28 to 0.32%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 0.2 to 1.1%, nickel (Ni): 0.7 to 1.2%, chromium (Cr): 0.2~1.1%, Phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.015% or less (excluding 0%), Nitrogen (N): 0.006% or less (0% excluding), Aluminum (Al): 0.05% or less (excluding 0%), Molybdenum (Mo): 0.2 to 1.0%, Vanadium (V): 0.02 to 0.5%, Calcium (Ca): 0.0005 to 0.004%, balance Contains Fe and other unavoidable impurities,
    상기 불가피한 불순물은 Nb: 0.0015% 이하 및 B: 0.0008% 이하를 포함하며, The unavoidable impurities include Nb: 0.0015% or less and B: 0.0008% or less,
    하기 관계식 1을 만족하고, Satisfies the following relational expression 1,
    면적%로, 템퍼드 마르텐사이트가 90% 이상(100%를 포함)인 미세조직을 포함하며,In area%, including a microstructure with tempered martensite at least 90% (including 100%),
    상기 템퍼드 마르텐사이트의 평균 유효 결정립 크기는 20㎛ 이하이고, The average effective grain size of the tempered martensite is 20 μm or less,
    상기 템퍼드 마르텐사이트의 입내에 평균 크기가 30nm 이하인 V(C,N)계 석출물을 포함하는 저온인성이 우수한 고경도 방탄강.High-hardness bulletproof steel with excellent low-temperature toughness including V (C, N)-based precipitates having an average size of 30 nm or less in grains of the tempered martensite.
    [관계식 1] 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo] ≥ 220[Relational Expression 1] 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo] ≥ 220
    (단, 상기 관계식 1에서 각 원소의 함량은 중량%를 의미함.)(However, in the relational expression 1, the content of each element means % by weight.)
  2. 청구항 1에 있어서,The method of claim 1,
    상기 미세조직은 잔류 오스테나이트, 베이나이트, 펄라이트 및 페라이트 중 하나 이상을 그 합계로 10면적% 이하가 되도록 포함하는 저온인성이 우수한 고경도 방탄강.The microstructure is high-hardness bulletproof steel with excellent low-temperature toughness, including at least one of retained austenite, bainite, pearlite, and ferrite so that the sum thereof is 10 area% or less.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 템퍼드 마르텐사이트는 KAM은 0.3~3.0인 저온인성이 우수한 고경도 방탄강.The tempered martensite is a high-hardness bulletproof steel with excellent low-temperature toughness with a KAM of 0.3 to 3.0.
  4. 청구항 1에 있어서,The method of claim 1,
    상기 V(C,N)계 석출물은 전체 석출물 개수 대비 크기가 100nm를 초과하는 석출물 개수의 비율이 10% 이하인 저온인성이 우수한 고경도 방탄강.The V (C, N)-based precipitate is a high-hardness bulletproof steel having excellent low-temperature toughness in which the ratio of the number of precipitates having a size exceeding 100 nm to the total number of precipitates is 10% or less.
  5. 청구항 1에 있어서,The method of claim 1,
    상기 방탄강은 480~530HB의 표면 경도와 16J 이상의 -40℃에서의 충격 흡수 에너지를 갖는 저온인성이 우수한 고경도 방탄강.The bulletproof steel is a high-hardness bulletproof steel with excellent low-temperature toughness having a surface hardness of 480 to 530HB and an impact absorption energy at -40 ° C of 16J or more.
  6. 청구항 1에 있어서,The method of claim 1,
    상기 방탄강은 5~40mm의 두께를 갖는 저온인성이 우수한 고경도 방탄강.The bulletproof steel is a high-hardness bulletproof steel having excellent low-temperature toughness having a thickness of 5 to 40 mm.
  7. 중량%로, 탄소(C): 0.28~0.32%, 실리콘(Si): 0.5% 이하(0%는 제외), 망간(Mn): 0.2~1.1%, 니켈(Ni): 0.7~1.2%, 크롬(Cr): 0.2~1.1%, 인(P): 0.03% 이하(0%는 제외), 황(S): 0.015% 이하(0%는 제외), 질소(N): 0.006% 이하(0%는 제외), 알루미늄(Al): 0.05% 이하(0%는 제외), 몰리브덴(Mo): 0.2~1.0%, 바나듐(V): 0.02~0.5%, 칼슘(Ca): 0.0005~0.004%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 상기 불가피한 불순물은 Nb: 0.0015% 이하 및 B: 0.0008% 이하를 포함하며, 하기 관계식 1을 만족하는 슬라브를 1050~1250℃에서 가열하는 단계; By weight, carbon (C): 0.28 to 0.32%, silicon (Si): 0.5% or less (excluding 0%), manganese (Mn): 0.2 to 1.1%, nickel (Ni): 0.7 to 1.2%, chromium (Cr): 0.2~1.1%, Phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.015% or less (excluding 0%), Nitrogen (N): 0.006% or less (0% excluding), Aluminum (Al): 0.05% or less (excluding 0%), Molybdenum (Mo): 0.2 to 1.0%, Vanadium (V): 0.02 to 0.5%, Calcium (Ca): 0.0005 to 0.004%, balance including Fe and other unavoidable impurities, wherein the unavoidable impurities include Nb: 0.0015% or less and B: 0.0008% or less, and heating a slab satisfying the following relational expression 1 at 1050 to 1250 ° C;
    상기 가열된 슬라브를 950~1150℃에서 조압연하여 바를 얻는 단계; Obtaining a bar by rough rolling the heated slab at 950 to 1150 ° C;
    상기 바를 850~950℃에서 마무리 열간압연하여 열연강판을 얻은 후, 상온까지 냉각하는 단계; After finishing hot rolling the bar at 850 ~ 950 ℃ to obtain a hot-rolled steel sheet, cooling to room temperature;
    상기 냉각된 열연강판을 880~930℃로 1.3t+30분(t: 판 두께(mm)) 이상 가열한 후, 10℃/s 이상의 냉각속도로 150℃ 이하까지 냉각하는 1차 열처리 단계; 및 A first heat treatment step of heating the cooled hot-rolled steel sheet to 880 to 930 ° C for 1.3 t + 30 minutes or more (t: sheet thickness (mm)) and then cooling to 150 ° C or less at a cooling rate of 10 ° C / s or more; and
    상기 1차 열처리된 열연강판을 하기 관계식 2의 조건을 만족하도록 1.5t+32분(t: 판 두께(mm))~1.5t+60분간 템퍼링 열처리하는 2차 열처리 단계;를 포함하는 저온인성이 우수한 고경도 방탄강의 제조방법.A second heat treatment step of tempering the first heat-treated hot-rolled steel sheet for 1.5t + 32 minutes (t: sheet thickness (mm)) to 1.5t + 60 minutes to satisfy the condition of Equation 2 below; Method for manufacturing excellent high-hardness bulletproof steel.
    [관계식 1] 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo] ≥ 220[Relational Expression 1] 225[C]-11.3[Mn]+37.5[Cr]-2.5[Ni]+228.6[V]+338.8[Mo] ≥ 220
    [관계식 2] 200 ≤ 템퍼링 열처리 온도 ≤ Tmax [Relational Expression 2] 200 ≤ tempering heat treatment temperature ≤ T max
    (단, 상기 관계식 2에서 Tmax는 112.5[C]-5.7[Mn]+18.8[Cr]-1.3[Ni]+114.3[V]+169.4[Mo]+200이고, 상기 관계식 1 및 Tmax에서 각 원소의 함량은 중량%를 의미함.)(However, in the above relational expression 2, T max is 112.5[C]-5.7[Mn]+18.8[Cr]-1.3[Ni]+114.3[V]+169.4[Mo]+200, and in the above relational expression 1 and T max The content of each element means % by weight.)
PCT/KR2022/011499 2021-08-11 2022-08-03 High-hardness bulletproof steel having excellent low-temperature toughness, and manufacturing method therefor WO2023018101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22856100.7A EP4386104A1 (en) 2021-08-11 2022-08-03 High-hardness bulletproof steel having excellent low-temperature toughness, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210106204A KR20230024090A (en) 2021-08-11 2021-08-11 High hardness bulletproof steel having excellent low temperature toughness and method of manufacturing the same
KR10-2021-0106204 2021-08-11

Publications (1)

Publication Number Publication Date
WO2023018101A1 true WO2023018101A1 (en) 2023-02-16

Family

ID=85200815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011499 WO2023018101A1 (en) 2021-08-11 2022-08-03 High-hardness bulletproof steel having excellent low-temperature toughness, and manufacturing method therefor

Country Status (3)

Country Link
EP (1) EP4386104A1 (en)
KR (1) KR20230024090A (en)
WO (1) WO2023018101A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173571A (en) 1993-12-16 1995-07-11 Nippon Steel Corp High workability wear resistant steel and production thereof
JPH10102185A (en) 1996-10-02 1998-04-21 Nippon Steel Corp Production of member with high toughness and high temperature wear resistance and thick steel plate therefor
KR20100116608A (en) * 2008-01-31 2010-11-01 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and process for production therof
JP2014025130A (en) * 2012-07-30 2014-02-06 Jfe Steel Corp Wear resistant steel sheet having excellent impact wear resistance and method for producing the same
KR20150064223A (en) * 2013-03-28 2015-06-10 바오샨 아이론 앤 스틸 유한공사 Low-alloy high-hardness wear-resistant steel plate and manufacturing method therefor
KR20160072099A (en) * 2013-08-30 2016-06-22 라우타루끼 오와이제이 A high-hardness hot-rolled steel product, and a method of manufacturing the same
KR102076053B1 (en) * 2013-03-28 2020-02-11 바오샨 아이론 앤 스틸 유한공사 High-Performance Low-Alloy Wear-Resistant Steel Sheet and Method of Manufacturing the Same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173571A (en) 1993-12-16 1995-07-11 Nippon Steel Corp High workability wear resistant steel and production thereof
JPH10102185A (en) 1996-10-02 1998-04-21 Nippon Steel Corp Production of member with high toughness and high temperature wear resistance and thick steel plate therefor
KR20100116608A (en) * 2008-01-31 2010-11-01 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and process for production therof
JP2014025130A (en) * 2012-07-30 2014-02-06 Jfe Steel Corp Wear resistant steel sheet having excellent impact wear resistance and method for producing the same
KR20150064223A (en) * 2013-03-28 2015-06-10 바오샨 아이론 앤 스틸 유한공사 Low-alloy high-hardness wear-resistant steel plate and manufacturing method therefor
KR102076053B1 (en) * 2013-03-28 2020-02-11 바오샨 아이론 앤 스틸 유한공사 High-Performance Low-Alloy Wear-Resistant Steel Sheet and Method of Manufacturing the Same
KR20160072099A (en) * 2013-08-30 2016-06-22 라우타루끼 오와이제이 A high-hardness hot-rolled steel product, and a method of manufacturing the same

Also Published As

Publication number Publication date
KR20230024090A (en) 2023-02-20
EP4386104A1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
WO2020067685A1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2019125083A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2018117481A1 (en) High-hardness wear-resistant steel and method for manufacturing same
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2011081349A2 (en) High strength steel sheet having excellent brittle crack resistance and method for manufacturing same
WO2021125621A1 (en) High hardness wear-resistant steel having excellent low-temperature impact toughness, and manufacturing method therefor
WO2017034216A1 (en) High-hardness steel sheet, and manufacturing method therefor
WO2020067686A1 (en) Abrasion resistant steel having excellent hardness and impact toughness, and manufacturing method therefor
WO2014163431A1 (en) Method for manufacturing high-strength bolt having excellent tensile strength
WO2020111863A1 (en) Ultrahigh-strength steel having excellent cold workability and ssc resistance, and manufacturing method therefor
WO2019132310A1 (en) Wear-resistant steel plate having excellent material uniformity and manufacturing method therefor
WO2017104995A1 (en) High hardness abrasion resistant steel with excellent toughness and cutting crack resistance, and method for manufacturing same
WO2020111857A1 (en) Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same
WO2020040388A1 (en) Wire rod and steel wire for spring, having enhanced toughness and corrosion fatigue properties, and respective manufacturing methods therefor
WO2019125076A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2023121179A1 (en) Ultrathick steel materials for flange having excellent strength and low temperature impact toughness, and manufacturing method therefor
WO2022139214A1 (en) Martensitic stainless steel with improved strength and corrosion resistance, and manufacturing method therefor
WO2023018101A1 (en) High-hardness bulletproof steel having excellent low-temperature toughness, and manufacturing method therefor
WO2018106016A1 (en) Wire rod for springs with excellent corrosion fatigue resistance, steel wire, and manufacturing method thereof
WO2018124654A1 (en) High-strength medium manganese steel for warm stamping and method for manufacturing same
WO2022131540A1 (en) Armored steel having high hardness and excellent low-temperature impact toughness and manufacturing method therefor
WO2022131538A1 (en) High-hardness bullet-proof steel with excellent low-temperature impact toughness and method for manufacturing same
WO2022131539A1 (en) Armored steel having high hardness and excellent low-temperature impact toughness, and method for manufacturing same
WO2020130619A1 (en) Steel material for brake disc of motor vehicle having excellent wear resistance and high temperature strength and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22856100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022856100

Country of ref document: EP

Effective date: 20240311