WO2011081349A2 - High strength steel sheet having excellent brittle crack resistance and method for manufacturing same - Google Patents

High strength steel sheet having excellent brittle crack resistance and method for manufacturing same Download PDF

Info

Publication number
WO2011081349A2
WO2011081349A2 PCT/KR2010/009222 KR2010009222W WO2011081349A2 WO 2011081349 A2 WO2011081349 A2 WO 2011081349A2 KR 2010009222 W KR2010009222 W KR 2010009222W WO 2011081349 A2 WO2011081349 A2 WO 2011081349A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
high strength
strength steel
resistance
Prior art date
Application number
PCT/KR2010/009222
Other languages
French (fr)
Korean (ko)
Other versions
WO2011081349A3 (en
Inventor
김상호
방기현
서인식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP10841181.0A priority Critical patent/EP2520683B1/en
Priority to CN201080063862.9A priority patent/CN102753719B/en
Publication of WO2011081349A2 publication Critical patent/WO2011081349A2/en
Publication of WO2011081349A3 publication Critical patent/WO2011081349A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Definitions

  • the present invention relates to a high-strength steel sheet used in marine structures, building structures, and the like, and more particularly, to a high-strength steel sheet having excellent brittle cracking resistance in a base material and a heat affected zone (HAZ) and a method of manufacturing the same. will be.
  • COD crack tip opening displacement
  • CTOD tests have been used primarily to evaluate the resistance to brittle cracking in welded heat affected zones.
  • impact tests have been used in place of CTOD tests for base metal parts.
  • the high-strength thick steel plates having a thickness of 50 mm or more are used in consideration of the collision with the iceberg, and the fatigue crack generated in the weld zone is subjected to cyclic stress.
  • brittle cracks may occur from fatigue cracks under specific conditions after propagation to the base metal part. Therefore, a high level of brittle crack generation resistance is required for not only the weld heat affected part but also the base material part.
  • Korean Laid-Open Patent Publication No. 2002-0028203 discloses a method of adding Mg to suppress coarsening of grains generated near the Fusion Line during welding to prevent brittle fracture from occurring in the heat affected zone.
  • the published patent guarantees the prevention of brittle fracture only at a temperature of -10 ° C. or higher, and thus cannot protect the brittle fracture at low temperatures such as -40 ° C.
  • Korean Laid-Open Patent Publication No. 2008-0067957 limits Al, Nb, etc. to below a certain limit to prevent sudden drop in toughness generated in the weld heat affected zone, and utilizes -40 Mn, which has little effect on the weld heat affected zone toughness.
  • a technique for securing resistance to brittle crack generation at a welded heat affected zone even at low temperatures of ° C is disclosed.
  • the disclosed patent does not describe a method of securing resistance to brittle crack generation for the base material portion unlike the welding heat affected portion.
  • Korean Laid-Open Patent Publication No. 2006-0090287 is a technology for securing the physical properties of the steel sheet by lowering the C content to suppress phase martensite and adding 0.8% or more of Cu to increase precipitation by Cu precipitates.
  • Disclosed is a method of manufacturing a steel having excellent resistance to brittle crack generation at a low temperature at the base material and the weld heat affected zone.
  • the disclosed patent requires a further aging treatment after controlled rolling and accelerated cooling in a state where a large amount of Cu is added in order to secure Cu precipitates, and thus, the manufacturing process is complicated and manufacturing costs increase.
  • One aspect of the present invention is to provide a high-strength steel sheet excellent in brittle cracking resistance having a yield strength of 420MPa or more and both the base material and the welding heat affected zone (HAZ) can suppress the occurrence of brittle cracks at low temperatures It is.
  • C 0.02 to 0.06%
  • Si 0.1% or less
  • Mn 1.5 to 2.0%
  • P 0.012% or less
  • S 0.003% or less
  • Ni 0.5 to 1.5%
  • Al 0.003 to 0.015%
  • Ti 0.005% to 0.02%
  • Nb 0.005% to 0.015%
  • N 0.002% to 0.006%
  • the rest includes Fe and unavoidable impurities
  • the present invention comprises the steps of heating a steel slab satisfying the composition range to a temperature range of 1000 ⁇ 1100 °C;
  • It provides a method of producing a high strength steel sheet excellent in brittle crack generation resistance comprising the step of cooling the rolled steel sheet.
  • the present invention can provide a high strength steel sheet having a yield strength of 420 MPa or more and excellent resistance to brittle cracking at low temperatures of -60 ° C. and -40 ° C. in the base material and the weld heat affected zone, respectively, and the thick steel sheet. It can be used for offshore structures, building structures, ships and tankers operating under extreme conditions.
  • Figure 1 is a graph showing the CTOD test results of the heat affected zone for the C + 0.5 Si-0.1 Ni + 6 Al + 3 Nb value.
  • 2 is a graph showing the CTOD test results of the base material portion according to the effective grain size.
  • the inventors have recognized that the brittle cracks appearing at low temperatures in the weld heat affected zone are caused by the in-phase martensite structure generated in the weld heat affected zone.
  • very small amounts of phase martensite present in the welding heat affected zone may cause brittle fracture in the CTOD test, so it is recognized that the inhibition of phase martensite is very important.
  • In-depth study has been made on the method of inhibiting the iconic martensite structure in the department.
  • the present inventors have investigated the cause of brittle cracks occurring in the base material of the thick steel plate of 50 mm or more, the brittle fracture occurs mainly in the center of the thickness of the steel sheet, microscopically, the embrittlement in relatively coarse grains among the grains of the center of the thickness As a result of discovering the fact that a crack occurs and studying in depth the method which can suppress it, it came to this invention.
  • composition range of the present invention will be described in detail (hereinafter,% by weight).
  • C is an important alloying element that forms the martensite which is formed in the weld heat affected zone and causes brittle fracture
  • the C content is more than 0.06%, it is preferable to limit the upper limit to 0.06% because the island martensite is not sufficiently suppressed and the object of the present invention cannot be achieved.
  • the C content is too low, it is difficult to secure the strength of the steel sheet, so it is preferable to make 0.02% the lower limit.
  • Si is an element necessary for increasing the tensile strength of the base material and deoxidation of the steel, but prevents the metamorphic austenite from being decomposed into ferrite and cementite when the unmodified austenite formed by the welding heat cycle is cooled to form a final structure. Since it greatly contributes to the formation of the site and greatly reduces the CTOD toughness in the weld heat affected zone, the amount of addition is preferably 0.1% or less.
  • Mn is a useful element for securing strength, it should be added at least 1.5% to secure strength of the steel sheet. However, when the amount of Mn added is excessive, the center segregation is encouraged at the center of thickness, and the formation of phase martensite is locally promoted at the site where the central segregation is formed, which greatly inhibits the CTOD characteristics of the weld heat affected zone, so the upper limit is limited to 2.0%. It is desirable to.
  • P and S are elements that cause grain embrittlement in the heat affected zone, it is necessary to reduce them as much as possible. However, P and S are limited to 0.012% or less and S to 0.003% or less because they are difficult in the steelmaking process.
  • Ni promotes the formation of martensite by increasing the hardenability, but since the toughness strengthening effect of the matrix structure is greater than that of the alloy, Ni has an effect of improving the toughness of the weld heat affected zone when added. In addition, since the effect of improving the matrix structure toughness by Ni is exerted on the base material part, it is also effective in strengthening the toughness of the base material part. In addition, it is necessary to add 0.5% or more in order to secure the strength of the steel sheet required by the present invention in a state where C and Si are extremely limited. However, if an excessively large amount is added, the upper limit of toughness of the matrix structure is saturated, so the upper limit is preferably limited to 1.5%.
  • Al similar to Si, prevents the formation of ferrite and cementite from unmodified austenite during the welding heat cycle, and contributes to the formation of phase martensite.
  • Al is added in excess of 0.015%, the toughness of the weld heat affected zone is greatly reduced. Therefore, it is preferable to limit the upper limit to 0.015%.
  • Al is a very effective element for deoxidation of steel, and in the present invention, when the Si content is limited to 0.1% or less, if the Al content is too low, the deoxidation of the steel may not be sufficiently performed, and thus the cleanliness of the steel may be greatly deteriorated. It is preferable to add more.
  • Ti combines with N to form fine nitride and prevents grain coarsening near the weld melting line, thereby improving the toughness of the weld heat affected zone. If the Ti content is too small, Ti nitride is not sufficiently formed, and thus it is not possible to prevent grain coarsening near the weld melting line, and therefore, 0.005% or more is preferably added. However, when Ti is added in excess of 0.02%, Ti carbide may be formed together with Ti nitride, and due to the precipitation hardening effect of Ti carbide, the hardness of the base material portion and the weld heat affected zone increases, thereby increasing the possibility of brittle cracking. It is preferable to make an upper limit into 0.02%.
  • Nb is an alloying element that lowers the brittle fracture resistance of the welded heat affected zone during addition, but it is an important element to increase the brittle fracture resistance of the base metal part because it greatly contributes to making the structure fine in the controlled rolling-accelerated cooling process.
  • a thick steel sheet having a thickness of 50 mm or more it is difficult to secure an effective grain size of 30 ⁇ m or less, which is required in the present invention, even when controlled rolling-acceleration cooling is not accompanied by micronization of the structure by Nb. Therefore, in order to ensure brittle fracture resistance of the base material portion required by the present invention, it is preferable to add 0.005% or more.
  • the upper limit thereof is preferably limited to 0.015%.
  • N combines with Ti to form TiN particles to prevent grain coarsening near the weld melting line. Therefore, it is necessary to include 0.002% or more in order to achieve such an effect, but if it is added too much, the toughness of the base material portion and the welding influence part may be impaired by free N atoms not bonded with Ti, so the upper limit is preferably set to 0.006%. Do.
  • the physical properties can be sufficiently secured even with the basic composition described above, but Cu may be added to further improve the properties of the steel sheet.
  • the content of Cu is preferably 0.35% or less.
  • the Cu is an alloying element which can secure the strength of the steel sheet while relatively harming the toughness of the weld heat affected zone, but when added excessively, the strength of the steel sheet is too high due to the precipitation of Cu, so that the CTOD toughness cannot be secured stably in the base material portion. Since Cu cracks may be generated on the surface of the slab and the steel sheet, the upper limit thereof is preferably 0.35%.
  • the rest consists of Fe and unavoidable impurities.
  • the C + 0.5Si-0.1Ni + 6Al + 3Nb value in the composition is preferably 0.1% or less.
  • the present inventors have conducted in-depth studies on the alloying elements that affect the formation of martensite in the weld heat affected zone. As a result, the weld heat affected under low to medium heat input welding conditions where the welding heat input was 0.8 to 4.5 kJ / mm. We have come up with ways to minimize the generation of in-phase martensite in wealth.
  • the present inventors have identified an intercritically reheated coarse known as the region where the most martensite is generated in the weld heat affected zone. To simulate the heat affected zone, the weld heat affected zone simulation experiment was performed as follows.
  • a small specimen having a thickness of 10 mm, a width of 10 mm, and a length of 60 mm is heated to 1400 ° C., and then the temperature section between 800 ° C. and 500 ° C. is cooled at a cooling rate of 20 ° C./s, and then reheated to an ideal region. After cooling the temperature range between the maximum heating temperature and 500 °C at a cooling rate of 20 °C / s to simulate the ideal zone reheating grain coarsening heat affected zone.
  • the CTOD test was performed at -40 ° C after the fatigue cracks were introduced to the thermally affected zone simulated specimens up to 50% of the specimen width.
  • the correlation between the alloying element and the CTOD toughness of the weld heat affected zone is derived from this experiment and the results are shown in FIG. 1.
  • Figure 1 shows the relationship between the C + 0.5 Si-0.1 Ni + 6 Al + 3 Nb value and -40 °C limit CTOD test value obtained from the heat affected zone simulation specimens. It can be seen that the lower the C + 0.5Si-0.1Ni + 6Al + 3Nb value, the -40 ° C limit CTOD value of the weld heat affected zone increases. When the C + 0.5Si-0.1Ni + 6Al + 3Nb value exceeded 0.2%, brittle fracture occurred in all specimens. It can be seen from FIG. 1 that C + 0.5Si-0.1Ni + 6Al + 3Nb should be 0.1% or less in order for the limit CTOD value measured at ⁇ 40 ° C. to be 0.25 mm or more.
  • the alloying elements of C, Si, Al, and Nb in the formula C + 0.5Si-0.1Ni + 6Al + 3Nb promote brittle cracks in the weld heat affected zone when the alloy is added, but only Ni has the opposite effect. This is because the toughening effect of the matrix structure is increased more than the effect of decreasing the toughness by increasing the phase martensite in the weld heat affected zone as the hardenable element.
  • the steel sheet of the present invention at least 5 or more crystal grains defined as boundaries having a crystal orientation difference of 15 degrees or more measured by the Electro Back-Scattered Pattern (EBSP) method at the center of the thickness of the steel sheet are in the top 5%. It is preferable that the average circle equivalent diameter of belonging crystal grains is 30 micrometers or less. In the present invention, the thickness center is defined within ⁇ 1 mm in the thickness direction from the 1/2 point of the steel sheet thickness.
  • EBSP Electro Back-Scattered Pattern
  • an image analysis method is used based on an optical microscope image, but the image analysis method is relatively accurate only when the microstructure is composed of polygonal ferrite and pearlite. In the microstructure mixed with knight, the grain boundary is unclear, which makes it difficult to accurately measure the particle size.
  • the present inventors used the Electro Back-Scattered Pattern (EBSP) method based on the Kikuchi pattern to more accurately measure the grain size of the center of thickness.
  • EBSP Electro Back-Scattered Pattern
  • Using the electron backscattering pattern method has the advantage of quantitatively analyzing the orientation difference between grains regardless of the microstructure.
  • the boundary where the orientation difference between measured crystals is 15 degrees or more is defined as diagonal boundary.
  • the size of the crystal grains (effective grains) belonging to the top 5% was defined as the effective grain size.
  • specimens having various particle sizes by changing heating and rolling conditions of slabs having a composition of 0.05C-0.04Si-1.62Mn-0.95Ni The specimens were subjected to CTOD test at various temperatures and 0.25mm limit CTOD transition temperature was obtained.
  • the 0.25 mm limit CTOD transition temperature represents the transition temperature when the measured limit CTOD value is 0.25 mm.
  • the relationship between the effective grain size measured from each specimen and the 0.25 mm limit CTOD transition temperature is shown in FIG. 2.
  • a steel sheet having a limit CTOD value of at least 0.25 mm at -60 ° C. can be obtained only when the effective grain size defined in the present invention is 30 ⁇ m or less. If the effective grain size exceeds 30 ⁇ m, the -60 ° C. limit CTOD value of the steel plate base material portion is 0.25 mm or less, and thus the object of the present invention cannot be satisfied.
  • the basic microstructure of the thickness center portion is preferably ferrite, bainite, or a complex structure thereof except for martensite.
  • the martensitic structure has a fine particle size, the hardness is too high to easily pop-in at cryogenic temperatures such as -60 ° C, making it difficult to obtain a target limit CTOD value.
  • the steel sheet of the present invention satisfies the -60 °C limit CTOD value of 0.25 mm or more in the base material portion, and the -40 °C limit CTOD value of 0.25 mm or more in the welding heat affected zone (HAZ) during welding, the weld heat Not only the affected part but also the base material part has excellent low temperature brittle crack resistance.
  • Steel slab that satisfies the composition is heated to a temperature range of 1000 ⁇ 1100 °C.
  • the slab uses a continuously cast slab. Since the continuous casting process has a faster solidification rate and cooling rate after solidification than the ingot process, finer TiN particles can be secured in the material, which is advantageous in increasing resistance to brittle cracks in the base material and the weld heat affected zone.
  • the slab heating temperature is a major factor affecting the particle size of the final structure. If the slab heating temperature exceeds 1100 ° C., the final structure cannot be sufficiently refined, and the TiN particles in the structure are coarsened to reduce the toughness of the weld heat affected zone. Therefore, it is preferable to make the upper limit into 1100 degreeC. On the contrary, when the slab heating temperature is less than 1000 ° C, the alloying elements are not sufficiently dissolved and sufficient rolling becomes difficult at or above the recrystallization temperature.
  • finish rolling is made in the temperature range of 700-800 degreeC. If the finish rolling temperature is higher than 800 °C, it is difficult to secure the brittle crack generation resistance due to insufficient microstructure of the thickness center portion, and the lower the finish rolling temperature, the better the microstructure of the thickness center portion structure, but if it is too low, the rolling productivity decreases excessively. Since it is difficult to apply industrially, it is preferable to set the minimum to 700 degreeC.
  • finish rolling cumulative reduction ratio is preferably performed at least 40% or more in order to further refine the final structure.
  • the cooling rate and the cooling stop temperature is preferably 3 ⁇ 20 °C / s and 350 ⁇ 550 °C. If the strength is too high compared to the target, brittle cracking is easy to occur, so it is important not to have too high strength. From this point of view, the cooling rate and the cooling stop temperature should be 20 ° C / s or less and 350 ° C or more, respectively. However, if the cooling is not sufficient, the target strength of the present invention cannot be obtained. For this purpose, the cooling rate is 3 ° C / s.
  • the cooling end temperature is preferably 550 ° C. or lower.
  • a molten steel was made in a 300 ton converter and a 300 mm slab was made by continuous casting.
  • the slabs were heated, and the steel sheets were finally accelerated and cooled by rough rolling and finish rolling to prepare steel sheets.
  • an electronic backscattering pattern (EBSP) device mounted on a scanning electron microscope (SEM) was used.
  • the magnification used was about 300 to 500 times, the step size was 0.75 ⁇ m, and the thickness center of the cross section consisting of the rolling direction and the thickness direction of the steel sheet was observed.
  • EBSP electronic backscattering pattern
  • SEM scanning electron microscope
  • the effective grain size defined in the present invention was calculated using software capable of analyzing the orientation difference measured by the electronic backscattering pattern method.
  • Specimens were taken from steel sheets prepared by the methods shown in Tables 1 and 2, and tensile tests were performed. CTOD tests were performed to evaluate the brittle fracture resistance of the base material. Tensile specimens were processed into rod-shaped specimens by taking the specimens from the surface at a quarter of the thickness of the steel sheet so that the direction perpendicular to the rolling direction was the length of the specimens. CTOD specimens were machined to full thickness specimens in accordance with BS7448 specifications and the lengths of the specimens were perpendicular to the rolling direction. After the notch was given to the CTOD specimen by the discharge machining, the fatigue crack was generated to 50% of the specimen width, and the CTOD test was performed three times at a temperature of -60 ° C, and the minimum value was evaluated.
  • the yield strength and tensile strength of the steel sheet obtained through the tensile test, and the limit CTOD values evaluated at -60 ° C and -40 ° C for the base metal part and the welded part, respectively, are shown in Table 3.
  • the limit CTOD value shown in Table 3 represents the lowest value among the three test values
  • CTOD-60 is the -60 °C CTOD test value evaluated for the base material portion
  • CTOD-40 is evaluated for the weld heat affected zone Mean -40 ° C CTOD test value.
  • Inventive Examples 1 to 16 which correspond to the composition and preparation method of the present invention, have an effective grain size defined in the present invention of 30 ⁇ m or less, and a limit CTOD value of 0.25 mm or more of the base metal part evaluated at -60 ° C. Under the conditions, the minimum value of -40 °C CTOD of the welded heat affected zone was 0.25mm or more, indicating very good brittle cracking resistance.
  • Comparative Example 1 since the C + 0.5Si-0.1Ni + 6Al + 3Nb value exceeded 0.1%, the CTOD value of the weld heat affected zone did not exceed 0.25 mm.
  • Comparative Example 2 Si and Al did not satisfy the scope of the present invention, and the C + 0.5Si-0.1Ni + 6Al + 3Nb value was also high as 0.199%, and the CTOD characteristics of the weld heat affected zone at -40 ° C were not very good.
  • the alloy component is in the scope of the present invention, the C + 0.5 Si-0.1 Ni + 6 Al + 3 Nb value is also 0.1% or less, the toughness of the weld heat affected zone was not bad, but the manufacturing conditions required by the present invention It was not satisfied that the effective grain size was 30 ⁇ m or more, and Comparative Example 7 also did not reach the strength of the present invention.
  • the C + 0.5Si-0.1Ni + 6Al + 3Nb value exceeded 0.1%, so that the toughness of the welded heat affected zone fell, and the cooling rate was insufficient in the manufacturing conditions, so that the yield strength of the steel sheet did not reach 420 MPa.

Abstract

The present invention relates to a steel sheet having excellent brittle crack resistance at a base and a welding heat affected zone, and particularly to a high strength steel sheet having excellent brittle crack resistance and a method for manufacturing the same, wherein the steel sheet comprises, by weight%, C: 0.02 to 0.06%, Si: 0.1% or lower, Mn: 1.5 to 2.0%, P: 0.012% or lower, S: 0.003% or lower, Ni: 0.5 to 1.5%, Al: 0.003 to 0.015%, Ti: 0.005 to 0.02%, Nb: 0.005 to 0.015%, N: 0.002 to 0.006%, and the balance Fe and unavoidable impurities, wherein the value of C+0.5Si-0.1Ni+6Al+3Nb is 0.1% or lower.

Description

취성 균열 발생 저항성이 우수한 고강도 강판 및 그 제조방법High strength steel sheet with excellent brittle cracking resistance and manufacturing method thereof
본 발명은 해양 구조물, 건축 구조물 등에 사용되는 고강도 강판에 관한 것으로서, 보다 상세하게는 모재와 용접 열영향부(Heat Affected Zone, HAZ)에서 우수한 취성 균열 발생 저항성을 갖는 고강도 강판 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength steel sheet used in marine structures, building structures, and the like, and more particularly, to a high-strength steel sheet having excellent brittle cracking resistance in a base material and a heat affected zone (HAZ) and a method of manufacturing the same. will be.
중국, 인도 등의 신흥국을 중심으로 에너지에 대한 요구가 급증함에 따라 과거 채산성이 낮아 개발이 되지 않았던 극한지, 특히 사할린, 북극해 등에 대한 석유자원개발이 추진되고 있다. As demand for energy increases rapidly, especially in emerging economies such as China and India, oil resource development is being promoted in extreme regions, such as Sakhalin and the Arctic Ocean, which have not been developed due to low profitability in the past.
상기 극한지 등에 건설되는 구조물에 사용되는 강재는 구조물의 안전성을 담보하기 위해 저온에서 취성균열 발생에 대한 높은 저항성이 요구된다. 저온에서 취성균열 발생에 대한 저항성을 평가하는 방법으로는 파괴역학에 기반한 균열선단개구변위(Crack Tip Opening Displacement, CTOD) 시험이 주로 활용되고 있다. Steel materials used in the structures to be built in the extreme cold, etc. are required to have high resistance to brittle cracking at low temperatures to ensure the safety of the structure. The crack tip opening displacement (CTOD) test based on fracture mechanics is mainly used to evaluate the resistance to brittle cracking at low temperatures.
현재까지 CTOD 시험은 용접 열영향부의 취성균열 발생 저항성을 평가하는데 주로 사용되어 왔다. 이와는 다르게 모재부에 대해서는 CTOD 시험 대신 충격시험이 이용되어 왔다. 그러나, 사할린, 북극해 등 극한지 해역에 건설되는 해양구조물 등은 빙산과의 충돌 등을 고려해 50 mm 이상의 두께를 갖는 고강도 후강판이 많이 사용되고 있고, 아울러 용접부에서 발생한 피로균열이 반복 응력이 가해지는 방향에 따라 모재부로 전파한 후 특정조건 하에서 피로균열로부터 취성균열이 발생할 가능성이 있으므로 용접 열영향부 뿐만 아니라 모재부에 대해서도 높은 수준의 취성균열 발생 저항성이 요구되고 있다.To date, CTOD tests have been used primarily to evaluate the resistance to brittle cracking in welded heat affected zones. Alternatively, impact tests have been used in place of CTOD tests for base metal parts. However, in the case of offshore structures, such as the Sakhalin and Arctic Oceans, the high-strength thick steel plates having a thickness of 50 mm or more are used in consideration of the collision with the iceberg, and the fatigue crack generated in the weld zone is subjected to cyclic stress. According to the present invention, brittle cracks may occur from fatigue cracks under specific conditions after propagation to the base metal part. Therefore, a high level of brittle crack generation resistance is required for not only the weld heat affected part but also the base material part.
저온에서 취성균열 발생에 대한 저항성이 우수한 강판에 관한 종래의 기술을 살펴보면, 다음과 같다. Looking at the prior art of a steel sheet excellent in resistance to brittle cracking at low temperatures, as follows.
한국 공개특허공보 제2002-0028203호에는 Mg을 첨가하여 용접 시 용융선(Fusion Line) 근처에서 발생하는 결정립의 조대화를 억제하여 용접 열영향부에서 취성파괴가 발생하는 것을 막는 방법이 개시되어 있다. 그러나, 상기 공개특허는 -10℃ 이상의 온도에서만 취성파괴의 방지를 담보하고 있어, -40℃와 같은 저온에서는 취성파괴에 대한 저항성을 담보할 수 없다. Korean Laid-Open Patent Publication No. 2002-0028203 discloses a method of adding Mg to suppress coarsening of grains generated near the Fusion Line during welding to prevent brittle fracture from occurring in the heat affected zone. . However, the published patent guarantees the prevention of brittle fracture only at a temperature of -10 ° C. or higher, and thus cannot protect the brittle fracture at low temperatures such as -40 ° C.
또한, 한국 공개특허공보 제2008-0067957에는 Al, Nb 등을 일정 한계 이하로 제한함으로써 용접 열영향부에서 발생하는 급격한 인성 저하를 방지하고 용접 열영향부 인성에 영향이 적은 Mn을 활용하여 -40℃의 저온에서도 용접 열영향부의 취성균열 발생 저항성을 확보하는 기술이 개시되어 있다. 그러나, 상기 공개특허는 용접 열영향부와 달리 모재부에 대해서는 취성균열 발생 저항성을 확보하는 방법에 대해 기술하고 있지 않다. In addition, Korean Laid-Open Patent Publication No. 2008-0067957 limits Al, Nb, etc. to below a certain limit to prevent sudden drop in toughness generated in the weld heat affected zone, and utilizes -40 Mn, which has little effect on the weld heat affected zone toughness. A technique for securing resistance to brittle crack generation at a welded heat affected zone even at low temperatures of ° C is disclosed. However, the disclosed patent does not describe a method of securing resistance to brittle crack generation for the base material portion unlike the welding heat affected portion.
한편, 한국 공개특허공보 제2006-0090287호는 C함량을 낮추어 도상 마르텐사이트를 억제하고 Cu를 0.8% 이상 첨가하여 Cu 석출물에 의한 석출강화를 이용해 강판의 물성을 확보하는 기술로서, -40℃의 저온에서 모재부와 용접 열영향부에 대해 취성균열 발생에 대한 저항성이 우수한 강재를 제조하는 방법이 개시되어 있다. 그러나, 상기 공개특허는 Cu 석출물을 확보하기 위해 Cu를 대량으로 첨가한 상태에서 제어압연 및 가속냉각 이후 시효처리가 추가적으로 필요하므로 제조공정이 복잡하고, 제조비용이 상승하는 문제점이 있다.On the other hand, Korean Laid-Open Patent Publication No. 2006-0090287 is a technology for securing the physical properties of the steel sheet by lowering the C content to suppress phase martensite and adding 0.8% or more of Cu to increase precipitation by Cu precipitates. Disclosed is a method of manufacturing a steel having excellent resistance to brittle crack generation at a low temperature at the base material and the weld heat affected zone. However, the disclosed patent requires a further aging treatment after controlled rolling and accelerated cooling in a state where a large amount of Cu is added in order to secure Cu precipitates, and thus, the manufacturing process is complicated and manufacturing costs increase.
본 발명의 일측면은 모재부와 용접 열영향부(HAZ) 모두 저온에서의 취성 균열의 발생을 억제할 수 있고, 항복강도가 420MPa 이상인 취성 균열 발생 저항성이 우수한 고강도 강판 및 그 제조방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a high-strength steel sheet excellent in brittle cracking resistance having a yield strength of 420MPa or more and both the base material and the welding heat affected zone (HAZ) can suppress the occurrence of brittle cracks at low temperatures It is.
본 발명은 중량%로, C: 0.02~0.06%, Si: 0.1% 이하, Mn: 1.5~2.0%, P: 0.012%이하, S: 0.003% 이하, Ni: 0.5~1.5%, Al: 0.003~0.015%, Ti: 0.005~0.02%, Nb: 0.005~0.015%, N: 0.002~0.006%, 나머지는 Fe 및 불가피한 불순물을 포함하며,In the present invention, by weight%, C: 0.02 to 0.06%, Si: 0.1% or less, Mn: 1.5 to 2.0%, P: 0.012% or less, S: 0.003% or less, Ni: 0.5 to 1.5%, Al: 0.003 to 0.015%, Ti: 0.005% to 0.02%, Nb: 0.005% to 0.015%, N: 0.002% to 0.006%, the rest includes Fe and unavoidable impurities,
C+0.5Si-0.1Ni+6Al+3Nb 값이 0.1% 이하인 취성 균열 발생 저항성이 우수한 고강도 강판을 제공한다.  It provides a high strength steel sheet excellent in brittle cracking resistance having a C + 0.5 Si-0.1 Ni + 6 Al + 3 Nb value of 0.1% or less.
또한, 본 발명은 상기 조성범위를 만족하는 강 슬라브를 1000~1100℃의 온도범위로 가열하는 단계;In addition, the present invention comprises the steps of heating a steel slab satisfying the composition range to a temperature range of 1000 ~ 1100 ℃;
상기 가열된 슬라브를 950℃ 이상의 온도에서 누적 압하율 40% 이상으로 조압연하는 단계;Roughly rolling the heated slab with a cumulative reduction ratio of 40% or more at a temperature of 950 ° C. or higher;
상기 조압연 후 700~800℃의 온도범위에서 마무리 압연하는 단계; 및 Finishing rolling in a temperature range of 700 to 800 ° C. after the rough rolling; And
상기 압연된 강판을 냉각하는 단계를 포함하는 취성 균열 발생 저항성이 우수한 고강도 강판의 제조방법을 제공한다.It provides a method of producing a high strength steel sheet excellent in brittle crack generation resistance comprising the step of cooling the rolled steel sheet.
본 발명에 의하여 항복강도가 420 MPa이상이면서 모재와 용접 열영향부에서 각각 -60℃와 -40℃의 저온에서 취성균열 발생 저항성이 우수한 고강도 강판 및 그 제조방법을 제공할 수 있으며, 상기 후강판은 극한 환경하에서 운용되는 해양구조물, 건축구조물, 선박, 탱커 등에 활용될 수 있다.The present invention can provide a high strength steel sheet having a yield strength of 420 MPa or more and excellent resistance to brittle cracking at low temperatures of -60 ° C. and -40 ° C. in the base material and the weld heat affected zone, respectively, and the thick steel sheet. It can be used for offshore structures, building structures, ships and tankers operating under extreme conditions.
도 1은 C+0.5Si-0.1Ni+6Al+3Nb 값에 대한 용접 열영향부의 CTOD 시험결과를 나타낸 그래프이다.Figure 1 is a graph showing the CTOD test results of the heat affected zone for the C + 0.5 Si-0.1 Ni + 6 Al + 3 Nb value.
도 2는 유효 결정립 크기에 따른 모재부의 CTOD 시험결과를 나타낸 그래프이다.2 is a graph showing the CTOD test results of the base material portion according to the effective grain size.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명자들은 용접 열영향부에서의 저온에서 나타나는 취성균열은 용접 열영향부에 생성되는 도상 마르텐사이트 조직이 원인인 것을 인지하게 되었다. 특히, -40℃와 같은 저온에서는 용접 열영향부에 존재하는 매우 소량의 도상 마르텐사이트로도 CTOD 시험에서 취성파괴를 일으킬 수 있기 때문에, 도상 마르텐사이트의 억제가 매우 중요한 것을 인지하고, 용접 열영향부에서의 도상 마르텐사이트 조직을 억제하는 방법에 대하여 깊이 연구하였다.The inventors have recognized that the brittle cracks appearing at low temperatures in the weld heat affected zone are caused by the in-phase martensite structure generated in the weld heat affected zone. In particular, at low temperatures such as -40 ° C, very small amounts of phase martensite present in the welding heat affected zone may cause brittle fracture in the CTOD test, so it is recognized that the inhibition of phase martensite is very important. In-depth study has been made on the method of inhibiting the iconic martensite structure in the department.
또한, 본 발명자들은 50㎜이상의 후강판의 모재에서 발생한 취성균열의 원인을 조사한 결과, 취성 파괴가 주로 강판의 두께 중심부에서 발생하며, 미세조직학적으로 두께 중심부의 결정립 가운데 상대적으로 조대한 결정립에서 취성균열이 발생한다는 사실을 발견하고, 이를 억제할 수 있는 방법에 대하여 깊이 연구한 결과, 본 발명에 이르게 되었다.In addition, the present inventors have investigated the cause of brittle cracks occurring in the base material of the thick steel plate of 50 mm or more, the brittle fracture occurs mainly in the center of the thickness of the steel sheet, microscopically, the embrittlement in relatively coarse grains among the grains of the center of the thickness As a result of discovering the fact that a crack occurs and studying in depth the method which can suppress it, it came to this invention.
이하, 본 발명의 조성범위에 대하여 상세히 설명한다(이하, 중량%).Hereinafter, the composition range of the present invention will be described in detail (hereinafter,% by weight).
탄소(C): 0.02~0.06%Carbon (C): 0.02-0.06%
C는 용접 열영향부에 생성되어 취성파괴를 일으키는 도상 마르텐사이트를 구성하는 중요한 합금원소이므로 도상 마르텐사이트의 형성을 억제하기 위해서는 일차적으로 C 함량의 제한이 필수적이다. C 함량이 0.06%을 초과하면, 도상 마르텐사이트를 충분히 억제하지 못해 본 발명의 목표를 달성할 수 없으므로 그 상한을 0.06%로 한정하는 것이 바람직하다. 그러나, C 함량이 너무 낮으면 강판의 강도 확보가 곤란해지므로 0.02%를 그 하한으로 하는 것이 바람직하다.Since C is an important alloying element that forms the martensite which is formed in the weld heat affected zone and causes brittle fracture, it is necessary to first limit the C content to suppress the formation of the martensite. When the C content is more than 0.06%, it is preferable to limit the upper limit to 0.06% because the island martensite is not sufficiently suppressed and the object of the present invention cannot be achieved. However, if the C content is too low, it is difficult to secure the strength of the steel sheet, so it is preferable to make 0.02% the lower limit.
실리콘(Si): 0.1% 이하(0은 제외)Silicon (Si): 0.1% or less (excluding 0)
Si은 모재부의 인장강도를 높이고 강의 탈산을 위해 필요한 원소이나, 용접 열사이클에 의해 형성된 미변태 오스테나이트가 냉각되어 최종 조직을 만들 때 미변태 오스테나이트가 페라이트와 세멘타이트로 분해되는 것을 막아 도상 마르텐사이트의 형성에 크게 기여하여, 용접 열영향부에서 CTOD 인성을 크게 저하시키므로 그 첨가량을 0.1% 이하로 하는 것이 바람직하다.Si is an element necessary for increasing the tensile strength of the base material and deoxidation of the steel, but prevents the metamorphic austenite from being decomposed into ferrite and cementite when the unmodified austenite formed by the welding heat cycle is cooled to form a final structure. Since it greatly contributes to the formation of the site and greatly reduces the CTOD toughness in the weld heat affected zone, the amount of addition is preferably 0.1% or less.
망간(Mn): 1.5~2.0%Manganese (Mn): 1.5-2.0%
Mn은 강도 확보를 위해 유용한 원소이므로, 강판의 강도 확보를 위해 1.5% 이상 투입되어야 한다. 그러나, Mn의 첨가량이 과다하면 두께중심부에 중심편석 형성이 조장되고 중심편석이 형성된 부위에서 도상 마르텐사이트의 형성이 국부적으로 촉진되어 용접 열영향부의 CTOD 특성이 크게 저해되므로 그 상한을 2.0%로 한정하는 것이 바람직하다.Since Mn is a useful element for securing strength, it should be added at least 1.5% to secure strength of the steel sheet. However, when the amount of Mn added is excessive, the center segregation is encouraged at the center of thickness, and the formation of phase martensite is locally promoted at the site where the central segregation is formed, which greatly inhibits the CTOD characteristics of the weld heat affected zone, so the upper limit is limited to 2.0%. It is desirable to.
인(P): 0.012% 이하, 황(S): 0.003% 이하Phosphorus (P): 0.012% or less, Sulfur (S): 0.003% or less
P, S는 용접 열영향부에서 입계취화를 일으키는 원소이므로 최대한 줄일 필요가 있으나, 매우 낮은 수준까지 감소시키는 데는 제강 공정상에 어려움이 있으므로 P는 0.012% 이하, S는 0.003% 이하로 한정한다.Since P and S are elements that cause grain embrittlement in the heat affected zone, it is necessary to reduce them as much as possible. However, P and S are limited to 0.012% or less and S to 0.003% or less because they are difficult in the steelmaking process.
니켈(Ni): 0.5~1.5%Nickel (Ni): 0.5 to 1.5%
Ni은 경화능을 높여 도상 마르텐사이트 형성을 촉진시키지만, 그 효과에 비해 기지조직의 인성 강화 효과가 더 크기 때문에 다른 합금원소와 달리 첨가 시 용접 열영향부의 인성을 오히려 개선시키는 효과가 있다. 또한, Ni에 의한 기지조직 인성 개선 효과는 모재부에 대해서도 발휘되므로 모재부의 인성을 강화하는데도 효과적이다. 아울러, C와 Si이 극도로 제한된 상태에서 본 발명에서 요구하는 강판의 강도를 확보하기 위해서는 0.5% 이상 첨가할 필요가 있다. 그러나, 지나치게 많은 양을 첨가하면 기지조직 인성 강화 효과가 포화되기 때문에 그 상한을 1.5%로 한정하는 것이 바람직하다.Ni promotes the formation of martensite by increasing the hardenability, but since the toughness strengthening effect of the matrix structure is greater than that of the alloy, Ni has an effect of improving the toughness of the weld heat affected zone when added. In addition, since the effect of improving the matrix structure toughness by Ni is exerted on the base material part, it is also effective in strengthening the toughness of the base material part. In addition, it is necessary to add 0.5% or more in order to secure the strength of the steel sheet required by the present invention in a state where C and Si are extremely limited. However, if an excessively large amount is added, the upper limit of toughness of the matrix structure is saturated, so the upper limit is preferably limited to 1.5%.
알루미늄(Al): 0.003~0.015%Aluminum (Al): 0.003-0.015%
Al은 Si과 유사하게 용접 열사이클 동안 미변태 오스테나이트로부터 페라이트와 세멘타이트가 형성되는 것을 막아 도상 마르텐사이트의 형성에 기여하는 원소로서, 0.015%을 초과하여 첨가되면 용접 열영향부의 인성을 크게 저하시키므로 그 상한을 0.015%로 제한하는 것이 바람직하다. 그러나, Al은 강의 탈산에 매우 효과적인 원소로서, 본 발명에서 Si 함량이 0.1% 이하로 제한되어 있는 상태에서 Al 함량까지 너무 낮게 되면 강의 탈산이 충분히 이루어지지 않아, 강의 청정성을 크게 해칠 수 있으므로 0.003% 이상 첨가되는 것이 바람직하다.Al, similar to Si, prevents the formation of ferrite and cementite from unmodified austenite during the welding heat cycle, and contributes to the formation of phase martensite. When Al is added in excess of 0.015%, the toughness of the weld heat affected zone is greatly reduced. Therefore, it is preferable to limit the upper limit to 0.015%. However, Al is a very effective element for deoxidation of steel, and in the present invention, when the Si content is limited to 0.1% or less, if the Al content is too low, the deoxidation of the steel may not be sufficiently performed, and thus the cleanliness of the steel may be greatly deteriorated. It is preferable to add more.
티타늄(Ti): 0.005~0.02%Titanium (Ti): 0.005 ~ 0.02%
Ti은 N과 결합하여 미세한 질화물을 형성, 용접 용융선 근처에서 발생하는 결정립 조대화를 막아 용접 열영향부의 인성을 개선한다. 이러한 Ti 함량이 너무 적으면 Ti 질화물이 충분히 형성되지 않아 용접 용융선 부근의 결정립 조대화를 막지 못하므로 0.005% 이상은 첨가되는 것이 바람직하다. 그러나, Ti가 0.02%를 초과하여 첨가되면 Ti 질화물과 함께 Ti 탄화물이 형성될 수 있고, Ti 탄화물의 석출경화 효과로 인해 모재부와 용접 열영향부의 경도가 상승하여 취성균열 발생 가능성을 높이므로 그 상한을 0.02%로 하는 것이 바람직하다.Ti combines with N to form fine nitride and prevents grain coarsening near the weld melting line, thereby improving the toughness of the weld heat affected zone. If the Ti content is too small, Ti nitride is not sufficiently formed, and thus it is not possible to prevent grain coarsening near the weld melting line, and therefore, 0.005% or more is preferably added. However, when Ti is added in excess of 0.02%, Ti carbide may be formed together with Ti nitride, and due to the precipitation hardening effect of Ti carbide, the hardness of the base material portion and the weld heat affected zone increases, thereby increasing the possibility of brittle cracking. It is preferable to make an upper limit into 0.02%.
니오븀(Nb): 0.005~0.015%Niobium (Nb): 0.005 to 0.015%
Nb는 첨가 시 용접 열영향부의 취성파괴 저항성을 낮추는 합금원소이나, 제어압연-가속냉각 공정에서 조직을 미세하게 만드는데 크게 기여하므로 모재부의 취성파괴 저항성을 높이는 데 중요한 원소이다. 특히, 두께 50 mm 이상의 후강판에서는 제어압연-가속냉각을 하더라도 Nb에 의한 조직 미세화가 동반되지 않으면 본 발명에서 요구되는 30㎛ 이하의 유효 결정립 크기를 확보하기 어렵다. 따라서, 본 발명에서 요구하는 모재부의 취성파괴 저항성을 확보하기 위해 0.005% 이상 첨가되는 것이 바람직하다. 그러나, 지나치게 많이 첨가하면 도상 마르텐사이트의 생성을 촉진하여 용접 열영향부의 인성을 해칠 수 있으므로 그 상한을 0.015%로 제한하는 것이 바람직하다.Nb is an alloying element that lowers the brittle fracture resistance of the welded heat affected zone during addition, but it is an important element to increase the brittle fracture resistance of the base metal part because it greatly contributes to making the structure fine in the controlled rolling-accelerated cooling process. In particular, in a thick steel sheet having a thickness of 50 mm or more, it is difficult to secure an effective grain size of 30 μm or less, which is required in the present invention, even when controlled rolling-acceleration cooling is not accompanied by micronization of the structure by Nb. Therefore, in order to ensure brittle fracture resistance of the base material portion required by the present invention, it is preferable to add 0.005% or more. However, since too much addition may promote formation of island martensite and damage the toughness of the weld heat affected zone, the upper limit thereof is preferably limited to 0.015%.
질소(N): 0.002~0.006%Nitrogen (N): 0.002 ~ 0.006%
N은 Ti와 결합하여 TiN 입자를 형성하여 용접 용융선 근처의 결정립 조대화를 막는다. 따라서, 이러한 효과를 내기 위해서는 0.002% 이상 포함되는 것이 필요하나, 지나치게 많이 첨가하면 Ti와 결합하지 못한 자유 N 원자에 의해 모재부와 용접 영향부의 인성을 해칠 수 있으므로 그 상한을 0.006%로 하는 것이 바람직하다.N combines with Ti to form TiN particles to prevent grain coarsening near the weld melting line. Therefore, it is necessary to include 0.002% or more in order to achieve such an effect, but if it is added too much, the toughness of the base material portion and the welding influence part may be impaired by free N atoms not bonded with Ti, so the upper limit is preferably set to 0.006%. Do.
본 발명에서는 상기한 기본 조성으로도 충분히 물성 확보가 가능하나, 강판의 특성을 보다 향상시키기 위해서는 Cu를 첨가할 수 있다. Cu의 함량은 0.35% 이하가 바람직하다. 상기 Cu는 비교적 용접 열영향부의 인성을 덜 해치면서도 강판의 강도를 확보할 수 있는 합금원소이나, 지나치게 첨가하면 Cu 석출에 의해 강판의 강도가 지나치게 높아져 모재부에서 안정적으로 CTOD 인성을 확보할 수 없고, 슬라브와 강판 표면에 Cu 균열을 발생시킬 수 있으므로 그 상한을 0.35%로 하는 것이 바람직하다.In the present invention, the physical properties can be sufficiently secured even with the basic composition described above, but Cu may be added to further improve the properties of the steel sheet. The content of Cu is preferably 0.35% or less. The Cu is an alloying element which can secure the strength of the steel sheet while relatively harming the toughness of the weld heat affected zone, but when added excessively, the strength of the steel sheet is too high due to the precipitation of Cu, so that the CTOD toughness cannot be secured stably in the base material portion. Since Cu cracks may be generated on the surface of the slab and the steel sheet, the upper limit thereof is preferably 0.35%.
나머지는 Fe 및 불가피한 불순물로 이루어진다.The rest consists of Fe and unavoidable impurities.
본 발명은 상기 조성에서 C+0.5Si-0.1Ni+6Al+3Nb 값이 0.1% 이하인 것이 바람직하다. In the present invention, the C + 0.5Si-0.1Ni + 6Al + 3Nb value in the composition is preferably 0.1% or less.
본 발명자들은 용접 열영향부에서 도상 마르텐사이트의 생성에 영향을 미치는 합금원소들에 대해 심도있게 연구한 결과, 용접 입열량이 0.8~4.5 kJ/㎜인 저입열 내지 중입열 용접조건 하에서 용접 열영향부에서 도상 마르텐사이트가 생성되는 것을 최대한 낮추는 방법을 도출하기에 이르렀다.The present inventors have conducted in-depth studies on the alloying elements that affect the formation of martensite in the weld heat affected zone. As a result, the weld heat affected under low to medium heat input welding conditions where the welding heat input was 0.8 to 4.5 kJ / mm. We have come up with ways to minimize the generation of in-phase martensite in wealth.
본 발명자들은 다음과 같은 연구결과를 토대로 합금원소와 용접 열영향부의 상관관계를 도출하기 위해서, 용접 열영향부 가운데 가장 도상 마르텐사이트가 많이 생성되는 영역으로 알려진 이상역 재가열 결정립 조대화(Intercritically Reheated Coarse Grained) 열영향부를 모사하기 위해 다음와 같이 용접 열영향부 모사실험을 수행하였다. In order to derive the correlation between the alloy element and the weld heat affected zone based on the following findings, the present inventors have identified an intercritically reheated coarse known as the region where the most martensite is generated in the weld heat affected zone. To simulate the heat affected zone, the weld heat affected zone simulation experiment was performed as follows.
먼저, 두께 10㎜, 폭 10㎜, 길이 60㎜의 치수를 갖는 소형시편을 1400℃까지 가열한 후 800~500℃ 사이의 온도구간을 냉각속도 20℃/s로 냉각하고, 다시 이상역으로 재가열한 후 최고가열온도에서 500℃ 사이의 온도구간을 20℃/s의 냉각속도로 냉각하여 이상역 재가열 결정립 조대화 열영향부를 모사하였다. 열영향부 모사시편에 시편폭의 50%까지 피로균열을 도입한 후 -40℃에서 CTOD 시험을 수행하였다. 이 실험으로부터 합금원소와 용접 열영향부 CTOD 인성과의 상관관계를 도출하고 그 결과를 도 1에 나타내었다.First, a small specimen having a thickness of 10 mm, a width of 10 mm, and a length of 60 mm is heated to 1400 ° C., and then the temperature section between 800 ° C. and 500 ° C. is cooled at a cooling rate of 20 ° C./s, and then reheated to an ideal region. After cooling the temperature range between the maximum heating temperature and 500 ℃ at a cooling rate of 20 ℃ / s to simulate the ideal zone reheating grain coarsening heat affected zone. The CTOD test was performed at -40 ° C after the fatigue cracks were introduced to the thermally affected zone simulated specimens up to 50% of the specimen width. The correlation between the alloying element and the CTOD toughness of the weld heat affected zone is derived from this experiment and the results are shown in FIG. 1.
도 1은 C+0.5Si-0.1Ni+6Al+3Nb 값과 열영향부 모사시편으로부터 얻어진 -40℃ 한계 CTOD 시험값의 관계를 도시한 것이다. C+0.5Si-0.1Ni+6Al+3Nb 값이 낮을수록 용접 열영향부의 -40℃ 한계 CTOD 값이 증가하는 것을 알 수 있다. C+0.5Si-0.1Ni+6Al+3Nb 값이 0.2%를 넘어서면 모든 시편에서 취성파괴가 발생하였다. 도 1로부터 -40℃에서 측정된 한계 CTOD 값이 0.25 mm 이상이 되기 위해서는 C+0.5Si-0.1Ni+6Al+3Nb 값이 0.1% 이하가 되어야 함을 알 수 있다. Figure 1 shows the relationship between the C + 0.5 Si-0.1 Ni + 6 Al + 3 Nb value and -40 ℃ limit CTOD test value obtained from the heat affected zone simulation specimens. It can be seen that the lower the C + 0.5Si-0.1Ni + 6Al + 3Nb value, the -40 ° C limit CTOD value of the weld heat affected zone increases. When the C + 0.5Si-0.1Ni + 6Al + 3Nb value exceeded 0.2%, brittle fracture occurred in all specimens. It can be seen from FIG. 1 that C + 0.5Si-0.1Ni + 6Al + 3Nb should be 0.1% or less in order for the limit CTOD value measured at −40 ° C. to be 0.25 mm or more.
C+0.5Si-0.1Ni+6Al+3Nb 수식에서 C, Si, Al, Nb의 합금원소들은 합금 첨가 시 용접 열영향부에서 취성균열 발생을 촉진시키나, Ni만이 반대의 효과를 나타내고 있는데, 이는 Ni에 의한 기지조직의 인성 강화 효과가 경화능 원소로서 용접 열영향부에서 도상 마르텐사이트를 증가시켜 인성을 감소시키는 효과보다 더 크기 때문이다.The alloying elements of C, Si, Al, and Nb in the formula C + 0.5Si-0.1Ni + 6Al + 3Nb promote brittle cracks in the weld heat affected zone when the alloy is added, but only Ni has the opposite effect. This is because the toughening effect of the matrix structure is increased more than the effect of decreasing the toughness by increasing the phase martensite in the weld heat affected zone as the hardenable element.
본 발명의 강판은 강판의 두께 중심부에서 전자후방산란패턴(Electro Back-Scattered Pattern, EBSP)법으로 측정한 결정방위차가 15도 이상인 경계로 정의되는 최소 5000개 이상의 결정립 가운데 그 크기가 상위 5%에 속하는 결정립들의 평균 원 상당 지름이 30㎛이하인 것이 바람직하다. 본 발명에서 상기 두께 중심부는 강판 두께 1/2 지점으로부터 두께방향으로 ±1㎜ 이내로 정의한다.In the steel sheet of the present invention, at least 5 or more crystal grains defined as boundaries having a crystal orientation difference of 15 degrees or more measured by the Electro Back-Scattered Pattern (EBSP) method at the center of the thickness of the steel sheet are in the top 5%. It is preferable that the average circle equivalent diameter of belonging crystal grains is 30 micrometers or less. In the present invention, the thickness center is defined within ± 1 mm in the thickness direction from the 1/2 point of the steel sheet thickness.
일반적으로 입도를 측정하기 위해서는 광학현미경 촬영 이미지를 기초로 이미지 분석방법을 사용하나, 상기 이미지 분석방법은 미세조직이 다각형 페라이트와 퍼얼라이트로 구성되는 경우에만 비교적 정확한 분석이 가능하고 침상형 페라이트나 베이나이트가 혼재된 미세조직에서는 입계가 불명확해 입도의 정확한 측정이 매우 어려운 문제가 있다, In general, to measure the particle size, an image analysis method is used based on an optical microscope image, but the image analysis method is relatively accurate only when the microstructure is composed of polygonal ferrite and pearlite. In the microstructure mixed with knight, the grain boundary is unclear, which makes it difficult to accurately measure the particle size.
이에 따라, 본 발명자들은 두께중심부의 결정립도를 보다 정확하게 측정하기 위해 Kikuchi 패턴에 기초한 전자후방산란패턴(Electro Back-Scattered Pattern, EBSP)법을 활용하였다. 전자후방산란패턴법을 사용하면 미세조직에 관계없이 결정립간의 방위차를 정량적으로 분석할 수 있는 장점이 있다. 이 방법으로 결정립을 정의할 경우 측정한 결정간의 방위차가 15도 이상을 갖는 경계를 대각입계로 정의한다.Accordingly, the present inventors used the Electro Back-Scattered Pattern (EBSP) method based on the Kikuchi pattern to more accurately measure the grain size of the center of thickness. Using the electron backscattering pattern method has the advantage of quantitatively analyzing the orientation difference between grains regardless of the microstructure. When defining grains in this way, the boundary where the orientation difference between measured crystals is 15 degrees or more is defined as diagonal boundary.
상기 전자후방산란패턴법을 이용하여 얻어진 두께중심부 입도의 분포와 CTOD 특성을 비교한 결과, 대각입계로 정의되는 전체 결정립의 입도보다는 전체 입도 분포 가운데 그 크기가 상위 5%에 속하는 결정립들에 의해 취성균열 발생 저항성이 결정된다는 점을 발견하였다. 즉, 모재부의 취성균열 발생 저항성을 높이기 위해서는 두께중심부의 조직에서 소수의 조대한 결정립을 억제하는 것이 매우 중요하다.As a result of comparing the particle size distribution of the thickness center and the CTOD characteristics obtained using the electron backscattering pattern method, it is brittle by the grains belonging to the top 5% of the total grain size distribution rather than the grain size of the whole grains defined by the diagonal grain boundary. It was found that the crack initiation resistance was determined. That is, in order to increase the brittle crack generation resistance of the base material portion, it is very important to suppress a few coarse grains in the structure of the thickness center portion.
본 발명에서는 강판의 두께중심부에서 전자후방산란패턴법으로 측정한 결정방위차가 15도 이상인 경계(대각입계)로 정의되는 최소 5000개 이상의 결정립 가운데 그 크기가 상위 5%에 속하는 결정립(유효 결정립)들의 평균 원 상당 지름을 유효 결정립 크기라고 정의하였다.In the present invention, among the at least 5000 crystal grains defined as the boundary (diagonal grain boundary) whose crystal orientation difference measured by the electron rear scattering pattern method in the thickness center of the steel sheet is 15 degrees or more, the size of the crystal grains (effective grains) belonging to the top 5% The average equivalent circle diameter was defined as the effective grain size.
본 발명에서 정의한 유효 결정립 크기와 모재부의 취성파괴 저항성과의 상관관계를 도출하기 위해 0.05C-0.04Si-1.62Mn-0.95Ni의 성분을 갖는 슬라브를 가열 및 압연 조건을 변경하여 다양한 입도를 갖는 시편으로 제작하고, 이 시편들을 이용해 여러 온도에서 CTOD 시험을 수행한 후 0.25mm 한계 CTOD 천이온도를 구하였다. 여기서, 0.25mm 한계 CTOD 천이온도는 측정된 한계 CTOD 값이 0.25mm일 때의 천이온도를 나타낸다. 각 시편들로부터 측정된 유효 결정립 크기와 0.25mm 한계 CTOD 천이온도 사이의 관계를 도 2에 나타내었다.In order to derive a correlation between the effective grain size defined in the present invention and the brittle fracture resistance of the base metal part, specimens having various particle sizes by changing heating and rolling conditions of slabs having a composition of 0.05C-0.04Si-1.62Mn-0.95Ni The specimens were subjected to CTOD test at various temperatures and 0.25mm limit CTOD transition temperature was obtained. Here, the 0.25 mm limit CTOD transition temperature represents the transition temperature when the measured limit CTOD value is 0.25 mm. The relationship between the effective grain size measured from each specimen and the 0.25 mm limit CTOD transition temperature is shown in FIG. 2.
도 2로부터 본 발명에서 정의한 유효 결정립 크기가 30㎛ 이하가 되어야 -60℃에서 최소 0.25㎜ 이상의 한계 CTOD 값을 갖는 강판을 확보할 수 있음을 알 수 있다. 만약, 유효 결정립 크기가 30㎛ 초과하게 되면 강판 모재부의 -60℃ 한계 CTOD 값이 0.25㎜이하가 되어 본 발명의 목표를 만족시킬 수 없다.It can be seen from FIG. 2 that a steel sheet having a limit CTOD value of at least 0.25 mm at -60 ° C. can be obtained only when the effective grain size defined in the present invention is 30 μm or less. If the effective grain size exceeds 30 μm, the -60 ° C. limit CTOD value of the steel plate base material portion is 0.25 mm or less, and thus the object of the present invention cannot be satisfied.
또한, 이때 두께중심부의 기본 미세조직으로는 마르텐사이트를 제외한 페라이트, 베이나이트 또는 이들의 복합조직이 바람직하다. 그 이유는 마르텐사이트 조직은 입도가 미세하더라도 경도가 너무 높아 -60℃와 같은 극저온에서 쉽게 팝인(pop-in) 현상을 일으켜 목표하는 한계 CTOD 값의 확보가 어렵기 때문이다.In this case, the basic microstructure of the thickness center portion is preferably ferrite, bainite, or a complex structure thereof except for martensite. The reason is that even though the martensitic structure has a fine particle size, the hardness is too high to easily pop-in at cryogenic temperatures such as -60 ° C, making it difficult to obtain a target limit CTOD value.
즉, 본 발명의 강판은 모재부에서 -60℃ 한계 CTOD 값이 0.25㎜ 이상을 만족하고, 용접시 용접 열영향부(HAZ)에서 -40℃ 한계 CTOD 값이 0.25㎜ 이상을 만족하여, 용접 열영향부뿐만 아니라, 모재부에서도 우수한 저온 취성 균열 저항특성을 갖는다.That is, the steel sheet of the present invention satisfies the -60 ℃ limit CTOD value of 0.25 mm or more in the base material portion, and the -40 ℃ limit CTOD value of 0.25 mm or more in the welding heat affected zone (HAZ) during welding, the weld heat Not only the affected part but also the base material part has excellent low temperature brittle crack resistance.
이하, 본 발명의 제조방법에 대하여 상세히 설명한다.Hereinafter, the manufacturing method of the present invention will be described in detail.
상기 조성을 만족하는 강슬라브를 1000~1100℃의 온도범위로 가열한다.Steel slab that satisfies the composition is heated to a temperature range of 1000 ~ 1100 ℃.
상기 슬라브는 연속주조된 슬라브를 이용하는 것이 바람직하다. 연속주조 공정은 주괴 공정에 비해 용강의 응고속도 및 응고 후 냉각속도가 빠르므로, 소재 내에 보다 미세한 TiN 입자를 확보할 수 있어 모재부와 용접 열영향부의 취성균열 발생 저항성을 높이는데 유리하다.It is preferable that the slab uses a continuously cast slab. Since the continuous casting process has a faster solidification rate and cooling rate after solidification than the ingot process, finer TiN particles can be secured in the material, which is advantageous in increasing resistance to brittle cracks in the base material and the weld heat affected zone.
상기 슬라브의 가열온도는 최종 조직의 입도에 영향을 주는 주요 인자로서, 슬라브 가열온도가 1100℃를 초과하면 최종 조직을 충분히 미세화시키지 못하며, 조직 내의 TiN 입자가 조대화되어 용접 열영향부의 인성을 저하시키므로 그 상한을 1100℃로 하는 것이 바람직하다. 반대로, 슬라브 가열온도가 1000℃ 미만이면 합금원소가 충분히 용해되지 않고 재결정 온도 이상에서 충분한 압연이 곤란해지므로 1000℃ 이상으로 가열하는 것이 바람직하다.The slab heating temperature is a major factor affecting the particle size of the final structure. If the slab heating temperature exceeds 1100 ° C., the final structure cannot be sufficiently refined, and the TiN particles in the structure are coarsened to reduce the toughness of the weld heat affected zone. Therefore, it is preferable to make the upper limit into 1100 degreeC. On the contrary, when the slab heating temperature is less than 1000 ° C, the alloying elements are not sufficiently dissolved and sufficient rolling becomes difficult at or above the recrystallization temperature.
슬라브를 가열한 다음 950℃ 이상의 온도에서 누적 압하율이 40% 이상으로 조압연을 행한다. 950℃ 이상의 온도에서는 오스테나이트 결정립의 재결정이 활발히 일어나 입도를 줄이는데 유리하다. 또한, 누적 압하율을 40% 이상으로 하는 이유는 누적 압하율이 40% 미만에서는 재결정이 충분히 일어나지 않아 최종 조직의 혼립(mixed grain)을 발생시킬 수 있기 때문이다.After heating the slab, rough rolling is performed with a cumulative reduction ratio of 40% or more at a temperature of 950 ° C or higher. At temperatures above 950 ° C, recrystallization of the austenite grains occurs actively, which is advantageous for reducing the particle size. In addition, the cumulative reduction ratio of 40% or more is because when the cumulative reduction ratio is less than 40%, recrystallization does not sufficiently occur, resulting in mixed grains of the final structure.
마무리 압연은 700~800℃의 온도범위에서 이루어지는 것이 바람직하다. 마무리 압연온도가 800℃를 초과하면 두께중심부 조직의 미세화가 충분히 이루어지지 않아 취성균열 발생 저항성을 확보하기 어렵고, 마무리 압연 온도가 낮을수록 두께중심부 조직의 미세화에 유리하나 너무 낮으면 압연 생산성이 지나치게 저하되어 공업적으로 적용하기에 어려움이 있으므로 그 하한을 700℃로 하는 것이 바람직하다.It is preferable that finish rolling is made in the temperature range of 700-800 degreeC. If the finish rolling temperature is higher than 800 ℃, it is difficult to secure the brittle crack generation resistance due to insufficient microstructure of the thickness center portion, and the lower the finish rolling temperature, the better the microstructure of the thickness center portion structure, but if it is too low, the rolling productivity decreases excessively. Since it is difficult to apply industrially, it is preferable to set the minimum to 700 degreeC.
또한, 마무리 압연 누적 압하율은 최종 조직을 보다 미세화하기 위해 최소 40% 이상으로 행하는 것이 바람직하다.In addition, the finish rolling cumulative reduction ratio is preferably performed at least 40% or more in order to further refine the final structure.
상기 제어압연 후 냉각을 하게 되는데, 이 때 냉각속도와 냉각정지온도는 각각 3~20℃/s와 350~550℃인 것이 바람직하다. 강도가 목표에 비해 지나치게 높으면 취성균열 발생이 쉬워지기 때문에, 지나치게 높은 강도를 갖지 않도록 하는 것이 중요하다. 이런 관점에서 냉각속도와 냉각정지온도는 각각 20℃/s 이하, 350℃ 이상이 되어야 하나, 냉각이 충분하지 않으면 본 발명에서 목표로 하는 강도가 얻어지지 않으므로, 이를 위해서 냉각속도는 3℃/s 이상이고, 냉각종료온도는 550℃ 이하가 되는 것이 바람직하다.After the control rolling is cooled, wherein the cooling rate and the cooling stop temperature is preferably 3 ~ 20 ℃ / s and 350 ~ 550 ℃. If the strength is too high compared to the target, brittle cracking is easy to occur, so it is important not to have too high strength. From this point of view, the cooling rate and the cooling stop temperature should be 20 ° C / s or less and 350 ° C or more, respectively. However, if the cooling is not sufficient, the target strength of the present invention cannot be obtained. For this purpose, the cooling rate is 3 ° C / s. The cooling end temperature is preferably 550 ° C. or lower.
이하, 본 발명의 실시예에 대하여 상세히 설명한다. 다만 본 발명은 하기 실시예에 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following examples.
(실시예)(Example)
표 1에서 나타낸 조성에 따라 300톤 전로에서 용강을 만들고 연속주조법을 통해 300mm 슬라브를 만들었다. 이렇게 만든 슬라브를 표 2에 나타낸 것과 같이 슬라브를 가열하고 조압연과 마무리 압연을 거쳐 강판을 최종적으로 가속냉각하여 강판을 제조하였다.According to the composition shown in Table 1, a molten steel was made in a 300 ton converter and a 300 mm slab was made by continuous casting. As shown in Table 2, the slabs were heated, and the steel sheets were finally accelerated and cooled by rough rolling and finish rolling to prepare steel sheets.
제조된 강판에서 유효 결정립 크기를 측정하기 위해서 주사전자현미경(SEM)에 장착된 전자후방산란패턴(EBSP) 장비를 이용하였다. 사용된 배율은 300배에서 500배 내외였고, 스텝크기(step size)는 0.75㎛였으며, 강판 압연방향과 두께 방향으로 이루어진 단면의 두께중심부를 관찰하였다. 통계적으로 의미 있는 값을 얻기 위해 결정방위차가 15도 이상인 경계로 정의되는 결정립들이 최소 5000개 이상 포함되도록 하였다. 전자후방산란패턴법으로 측정된 방위차를 해석할 수 있는 소프트웨어를 이용해 본 발명에서 정의한 유효 결정립 크기를 계산하였다.In order to measure the effective grain size in the manufactured steel sheet, an electronic backscattering pattern (EBSP) device mounted on a scanning electron microscope (SEM) was used. The magnification used was about 300 to 500 times, the step size was 0.75 μm, and the thickness center of the cross section consisting of the rolling direction and the thickness direction of the steel sheet was observed. In order to obtain a statistically significant value, at least 5000 grains defined as boundaries having a crystal orientation difference of 15 degrees or more are included. The effective grain size defined in the present invention was calculated using software capable of analyzing the orientation difference measured by the electronic backscattering pattern method.
표 1과 2에 나타난 방법으로 제조된 강판에서 시편을 채취해 인장시험을 실시하였고, 모재부의 취성파괴 저항성을 평가하기 위해 CTOD 시험을 수행하였다. 인장시편은 표면으로부터 강판 두께의 1/4 지점에서 압연방향에 수직인 방향이 시편의 길이가 되도록 시편을 채취하여 봉상 시편으로 가공하였다. CTOD 시편은 BS7448 규격에 의거해 전두께 시편으로 가공하였고, 시편의 길이가 압연방향에 수직이 되도록 하였다. CTOD 시편에 방전가공으로 노치를 부여한 뒤 피로균열을 시편폭의 50%까지 생성시킨 후 -60℃의 온도에서 3번씩 CTOD 시험을 수행하고, 그 중 최소값으로 평가하였다.Specimens were taken from steel sheets prepared by the methods shown in Tables 1 and 2, and tensile tests were performed. CTOD tests were performed to evaluate the brittle fracture resistance of the base material. Tensile specimens were processed into rod-shaped specimens by taking the specimens from the surface at a quarter of the thickness of the steel sheet so that the direction perpendicular to the rolling direction was the length of the specimens. CTOD specimens were machined to full thickness specimens in accordance with BS7448 specifications and the lengths of the specimens were perpendicular to the rolling direction. After the notch was given to the CTOD specimen by the discharge machining, the fatigue crack was generated to 50% of the specimen width, and the CTOD test was performed three times at a temperature of -60 ° C, and the minimum value was evaluated.
제조된 후강판의 용접 열영향부에서의 취성균열 발생 저항성을 평가하기 위해 API RP 2Z 규칙에 의거해 평가를 진행하였다. API RP 2Z 규칙에 따라 단일 개선을 낸 후 0.8 과 4.5 kJ/mm의 용접 입열량으로 각각 플럭스 코어드 아크 용접법(Flux Cored Arc Welding)와 잠호 아크 용접법(Submerged Arc Welding)으로 용접하였다. 용접된 시편을 모재부와 마찬가지로 BS7448 규격에 의거해 전두께 시편으로 가공하고 용접 용융선 근처의 결정립 조대화 영역에 피로균열을 삽입한 후 -40℃에서 3번씩 CTOD 시험을 수행하고, 그 중 최소값으로 평가하였다. In order to evaluate the resistance to brittle crack generation in the weld heat affected zone of the manufactured thick steel sheet, evaluation was performed according to the API RP 2Z rule. A single improvement was made according to the API RP 2Z rule and then welded by Flux Cored Arc Welding and Submerged Arc Welding with weld heat inputs of 0.8 and 4.5 kJ / mm, respectively. Welded specimens are processed into full thickness specimens in accordance with BS7448 standards, and the fatigue cracks are inserted in the grain coarsening area near the weld melting line, and CTOD tests are performed three times at -40 ℃. Evaluated.
인장시험을 통해 얻어진 강판의 항복강도와 인장강도, 그리고 모재부와 용접부에 대해 각각 -60℃와 -40℃에서 평가된 한계 CTOD 값을 표 3에 나타내었다. 여기서, 표 3에 나타난 한계 CTOD 값은 3개의 시험값 중에서 가장 낮은 값을 나타내며, CTOD-60은 모재부에 대해 평가된 -60℃ CTOD 시험값을, CTOD-40은 용접 열영향부에 대해 평가된 -40℃ CTOD 시험값을 의미한다.The yield strength and tensile strength of the steel sheet obtained through the tensile test, and the limit CTOD values evaluated at -60 ° C and -40 ° C for the base metal part and the welded part, respectively, are shown in Table 3. Here, the limit CTOD value shown in Table 3 represents the lowest value among the three test values, CTOD-60 is the -60 ℃ CTOD test value evaluated for the base material portion, CTOD-40 is evaluated for the weld heat affected zone Mean -40 ° C CTOD test value.
표 1
구분 C Si Mn P S Ni Al Ti Nb N Cu C+0.5Si-0.1Ni+6Al+3Nb
발명예1 0.039 0.05 1.57 0.003 0.003 1.30 0.007 0.012 0.013 0.0058 - 0.014
발명예2 0.045 0.04 1.80 0.004 0.002 0.68 0.012 0.008 0.006 0.0036 - 0.086
발명예3 0.023 0.07 1.75 0.005 0.003 1.14 0.010 0.006 0.013 0.0051 - 0.045
발명예4 0.046 0.04 1.73 0.003 0.003 1.41 0.012 0.007 0.006 0.0055 - 0.015
발명예5 0.045 0.10 1.59 0.006 0.002 1.14 0.003 0.005 0.014 0.0022 0.15 0.039
발명예6 0.024 0.03 1.82 0.003 0.001 1.12 0.013 0.010 0.014 0.0056 - 0.047
발명예7 0.046 0.08 1.77 0.006 0.002 0.82 0.009 0.009 0.010 0.0043 - 0.087
발명예8 0.025 0.04 1.73 0.006 0.001 1.02 0.006 0.007 0.011 0.0029 0.29 0.014
발명예9 0.044 0.09 1.76 0.004 0.001 1.45 0.014 0.011 0.005 0.0050 - 0.044
발명예10 0.037 0.05 1.77 0.003 0.002 0.84 0.009 0.009 0.009 0.0052 - 0.058
발명예11 0.044 0.07 1.78 0.007 0.002 1.09 0.014 0.007 0.007 0.0031 - 0.077
발명예12 0.042 0.03 1.55 0.004 0.002 1.31 0.009 0.012 0.012 0.0059 - 0.014
발명예13 0.050 0.03 1.65 0.003 0.002 1.05 0.006 0.016 0.015 0.0049 - 0.038
발명예14 0.056 0.07 1.52 0.003 0.002 1.44 0.013 0.010 0.013 0.0029 - 0.064
발명예15 0.040 0.06 1.71 0.005 0.001 0.83 0.013 0.007 0.009 0.0047 0.23 0.092
발명예16 0.020 0.07 1.85 0.005 0.002 1.30 0.011 0.014 0.014 0.0034 - 0.034
비교예1 0.047 0.07 1.77 0.006 0.001 0.78 0.013 0.009 0.015 0.0041 - 0.127
비교예2 0.056 0.15 1.88 0.003 0.002 0.85 0.021 0.009 0.009 0.0047 - 0.199
비교예3 0.047 0.08 1.71 0.003 0.003 0.71 0.013 0.013 0.021 0.0050 - 0.160
비교예4 0.069 0.05 1.67 0.004 0.001 0.69 0.005 0.008 0.012 0.0051 - 0.093
비교예5 0.038 0.09 1.72 0.005 0.001 0.38 0.013 0.008 0.012 0.0033 - 0.158
비교예6 0.037 0.09 1.77 0.007 0.002 1.47 0.007 0.009 0.013 0.0037 - 0.014
비교예7 0.045 0.03 1.69 0.003 0.003 1.33 0.008 0.009 0.012 0.0059 - 0.012
비교예8 0.043 0.09 1.70 0.003 0.003 1.08 0.004 0.011 0.014 0.0049 - 0.048
비교예9 0.055 0.08 1.82 0.006 0.002 0.92 0.015 0.005 0.014 0.0031 - 0.135
Table 1
division C Si Mn P S Ni Al Ti Nb N Cu C + 0.5Si-0.1Ni + 6Al + 3Nb
Inventive Example 1 0.039 0.05 1.57 0.003 0.003 1.30 0.007 0.012 0.013 0.0058 - 0.014
Inventive Example 2 0.045 0.04 1.80 0.004 0.002 0.68 0.012 0.008 0.006 0.0036 - 0.086
Inventive Example 3 0.023 0.07 1.75 0.005 0.003 1.14 0.010 0.006 0.013 0.0051 - 0.045
Inventive Example 4 0.046 0.04 1.73 0.003 0.003 1.41 0.012 0.007 0.006 0.0055 - 0.015
Inventive Example 5 0.045 0.10 1.59 0.006 0.002 1.14 0.003 0.005 0.014 0.0022 0.15 0.039
Inventive Example 6 0.024 0.03 1.82 0.003 0.001 1.12 0.013 0.010 0.014 0.0056 - 0.047
Inventive Example 7 0.046 0.08 1.77 0.006 0.002 0.82 0.009 0.009 0.010 0.0043 - 0.087
Inventive Example 8 0.025 0.04 1.73 0.006 0.001 1.02 0.006 0.007 0.011 0.0029 0.29 0.014
Inventive Example 9 0.044 0.09 1.76 0.004 0.001 1.45 0.014 0.011 0.005 0.0050 - 0.044
Inventive Example 10 0.037 0.05 1.77 0.003 0.002 0.84 0.009 0.009 0.009 0.0052 - 0.058
Inventive Example 11 0.044 0.07 1.78 0.007 0.002 1.09 0.014 0.007 0.007 0.0031 - 0.077
Inventive Example 12 0.042 0.03 1.55 0.004 0.002 1.31 0.009 0.012 0.012 0.0059 - 0.014
Inventive Example 13 0.050 0.03 1.65 0.003 0.002 1.05 0.006 0.016 0.015 0.0049 - 0.038
Inventive Example 14 0.056 0.07 1.52 0.003 0.002 1.44 0.013 0.010 0.013 0.0029 - 0.064
Inventive Example 15 0.040 0.06 1.71 0.005 0.001 0.83 0.013 0.007 0.009 0.0047 0.23 0.092
Inventive Example 16 0.020 0.07 1.85 0.005 0.002 1.30 0.011 0.014 0.014 0.0034 - 0.034
Comparative Example 1 0.047 0.07 1.77 0.006 0.001 0.78 0.013 0.009 0.015 0.0041 - 0.127
Comparative Example 2 0.056 0.15 1.88 0.003 0.002 0.85 0.021 0.009 0.009 0.0047 - 0.199
Comparative Example 3 0.047 0.08 1.71 0.003 0.003 0.71 0.013 0.013 0.021 0.0050 - 0.160
Comparative Example 4 0.069 0.05 1.67 0.004 0.001 0.69 0.005 0.008 0.012 0.0051 - 0.093
Comparative Example 5 0.038 0.09 1.72 0.005 0.001 0.38 0.013 0.008 0.012 0.0033 - 0.158
Comparative Example 6 0.037 0.09 1.77 0.007 0.002 1.47 0.007 0.009 0.013 0.0037 - 0.014
Comparative Example 7 0.045 0.03 1.69 0.003 0.003 1.33 0.008 0.009 0.012 0.0059 - 0.012
Comparative Example 8 0.043 0.09 1.70 0.003 0.003 1.08 0.004 0.011 0.014 0.0049 - 0.048
Comparative Example 9 0.055 0.08 1.82 0.006 0.002 0.92 0.015 0.005 0.014 0.0031 - 0.135
표 2
구분 슬라브 가열온도(℃) 조압연 누적압하율(%) 마무리 압연온도(℃) 마무리압연 누적압하율(%) 가속냉각 정지온도(℃) 냉각속도(℃/s) 강판두께(㎜)
발명예1 1075 55 751 52 493 4.4 92
발명예2 1074 41 713 53 394 6.0 76
발명예3 1057 50 715 54 501 4.0 76
발명예4 1049 48 782 42 522 7.9 70
발명예5 1050 50 765 42 443 7.3 72
발명예6 1095 45 759 48 522 6.6 79
발명예7 1043 49 734 48 411 5.7 83
발명예8 1048 51 703 42 500 3.7 94
발명예9 1075 45 736 47 504 6.9 71
발명예10 1094 47 770 48 411 5.1 72
발명예11 1090 59 749 44 456 4.0 87
발명예12 1079 57 755 55 533 4.2 85
발명예13 1088 42 789 43 474 3.1 83
발명예14 1078 52 793 50 397 4.6 71
발명예15 1063 46 760 43 408 7.1 82
발명예16 1071 41 768 42 391 4.5 95
비교예1 1057 41 744 54 396 5.0 81
비교예2 1096 43 775 47 519 4.8 87
비교예3 1096 59 775 42 527 5.1 82
비교예4 1048 48 727 50 380 4.9 92
비교예5 1057 50 744 48 440 7.3 87
비교예6 1087 30 734 50 422 3.6 83
비교예7 1071 42 790 31 642 7.5 85
비교예8 1156 42 756 45 435 4.1 91
비교예9 1091 41 709 49 537 2.1 76
TABLE 2
division Slab heating temperature (℃) Rough rolling cumulative reduction rate (%) Finish rolling temperature (℃) Finish rolling cumulative reduction rate (%) Accelerated cooling stop temperature (℃) Cooling rate (℃ / s) Steel plate thickness (mm)
Inventive Example 1 1075 55 751 52 493 4.4 92
Inventive Example 2 1074 41 713 53 394 6.0 76
Inventive Example 3 1057 50 715 54 501 4.0 76
Inventive Example 4 1049 48 782 42 522 7.9 70
Inventive Example 5 1050 50 765 42 443 7.3 72
Inventive Example 6 1095 45 759 48 522 6.6 79
Inventive Example 7 1043 49 734 48 411 5.7 83
Inventive Example 8 1048 51 703 42 500 3.7 94
Inventive Example 9 1075 45 736 47 504 6.9 71
Inventive Example 10 1094 47 770 48 411 5.1 72
Inventive Example 11 1090 59 749 44 456 4.0 87
Inventive Example 12 1079 57 755 55 533 4.2 85
Inventive Example 13 1088 42 789 43 474 3.1 83
Inventive Example 14 1078 52 793 50 397 4.6 71
Inventive Example 15 1063 46 760 43 408 7.1 82
Inventive Example 16 1071 41 768 42 391 4.5 95
Comparative Example 1 1057 41 744 54 396 5.0 81
Comparative Example 2 1096 43 775 47 519 4.8 87
Comparative Example 3 1096 59 775 42 527 5.1 82
Comparative Example 4 1048 48 727 50 380 4.9 92
Comparative Example 5 1057 50 744 48 440 7.3 87
Comparative Example 6 1087 30 734 50 422 3.6 83
Comparative Example 7 1071 42 790 31 642 7.5 85
Comparative Example 8 1156 42 756 45 435 4.1 91
Comparative Example 9 1091 41 709 49 537 2.1 76
표 3
구분 모재부 용접열영향부
유효결정립크기(㎛) 항복강도(MPa) 인장강도(MPa) CTOD-60(㎜) 0.8kJ/㎜ CTOD-40(㎜) 4.5kJ/㎜ CTOD-40(㎜)
발명예1 17 435 533 0.89 0.88 0.64
발명예2 26 453 557 0.45 0.43 0.28
발명예3 21 441 558 0.57 0.60 0.41
발명예4 12 432 547 1.02 0.61 0.57
발명예5 26 458 551 0.49 0.67 0.55
발명예6 14 432 539 0.90 0.48 0.50
발명예7 27 456 553 0.35 0.55 0.26
발명예8 11 439 547 0.99 0.70 0.56
발명예9 15 449 548 0.86 0.49 0.34
발명예10 29 458 566 0.28 0.68 0.42
발명예11 11 447 543 1.08 0.44 0.41
발명예12 29 429 531 0.31 0.72 0.62
발명예13 25 441 547 0.45 0.68 0.46
발명예14 13 458 566 0.89 0.58 0.41
발명예15 15 444 553 0.81 0.31 0.30
발명예16 13 437 536 0.92 0.44 0.47
비교예1 20 442 549 0.42 0.29 0.14
비교예2 21 431 528 0.43 0.09 0.05
비교예3 19 427 532 0.75 0.12 0.07
비교예4 22 439 541 0.54 0.17 0.10
비교예5 35 401 487 0.23 0.19 0.04
비교예6 42 448 548 0.14 0.40 0.60
비교예7 39 395 509 0.18 0.37 0.43
비교예8 45 437 535 0.11 0.42 0.29
비교예9 16 388 491 0.71 0.31 0.14
TABLE 3
division Mother and child department Welding heat affected zone
Effective grain size (㎛) Yield strength (MPa) Tensile Strength (MPa) CTOD-60 (mm) 0.8 kJ / mm CTOD-40 (mm) 4.5kJ / mm CTOD-40 (mm)
Inventive Example 1 17 435 533 0.89 0.88 0.64
Inventive Example 2 26 453 557 0.45 0.43 0.28
Inventive Example 3 21 441 558 0.57 0.60 0.41
Inventive Example 4 12 432 547 1.02 0.61 0.57
Inventive Example 5 26 458 551 0.49 0.67 0.55
Inventive Example 6 14 432 539 0.90 0.48 0.50
Inventive Example 7 27 456 553 0.35 0.55 0.26
Inventive Example 8 11 439 547 0.99 0.70 0.56
Inventive Example 9 15 449 548 0.86 0.49 0.34
Inventive Example 10 29 458 566 0.28 0.68 0.42
Inventive Example 11 11 447 543 1.08 0.44 0.41
Inventive Example 12 29 429 531 0.31 0.72 0.62
Inventive Example 13 25 441 547 0.45 0.68 0.46
Inventive Example 14 13 458 566 0.89 0.58 0.41
Inventive Example 15 15 444 553 0.81 0.31 0.30
Inventive Example 16 13 437 536 0.92 0.44 0.47
Comparative Example 1 20 442 549 0.42 0.29 0.14
Comparative Example 2 21 431 528 0.43 0.09 0.05
Comparative Example 3 19 427 532 0.75 0.12 0.07
Comparative Example 4 22 439 541 0.54 0.17 0.10
Comparative Example 5 35 401 487 0.23 0.19 0.04
Comparative Example 6 42 448 548 0.14 0.40 0.60
Comparative Example 7 39 395 509 0.18 0.37 0.43
Comparative Example 8 45 437 535 0.11 0.42 0.29
Comparative Example 9 16 388 491 0.71 0.31 0.14
본 발명의 조성 및 제조방법에 해당하는 발명예 1~16은 본 발명에서 정의한 유효 결정립 크기가 30㎛이하로, -60℃에서 평가된 모재부의 한계 CTOD 값이 0.25mm 이상이며 저입열, 중입열 조건하에서 용접 열영향부의 -40℃ CTOD 최소값도 0.25mm 이상으로 매우 우수한 취성균열 발생 저항성을 나타내었다.Inventive Examples 1 to 16, which correspond to the composition and preparation method of the present invention, have an effective grain size defined in the present invention of 30 µm or less, and a limit CTOD value of 0.25 mm or more of the base metal part evaluated at -60 ° C. Under the conditions, the minimum value of -40 ℃ CTOD of the welded heat affected zone was 0.25mm or more, indicating very good brittle cracking resistance.
이에 반해, 비교예 1은 C+0.5Si-0.1Ni+6Al+3Nb 값이 0.1%을 상회하는 것으로 인해 용접 열영향부의 CTOD 값이 0.25 mm를 넘지 못했다. 비교예 2는 Si과 Al이 본 발명의 범위를 만족하지 못하고, C+0.5Si-0.1Ni+6Al+3Nb 값도 0.199%로 높아 -40℃에서 용접 열영향부의 CTOD 특성이 매우 좋지 않았다. On the contrary, in Comparative Example 1, since the C + 0.5Si-0.1Ni + 6Al + 3Nb value exceeded 0.1%, the CTOD value of the weld heat affected zone did not exceed 0.25 mm. In Comparative Example 2, Si and Al did not satisfy the scope of the present invention, and the C + 0.5Si-0.1Ni + 6Al + 3Nb value was also high as 0.199%, and the CTOD characteristics of the weld heat affected zone at -40 ° C were not very good.
비교예 3은 Nb가 본 발명의 범위를 벗어나고 C+0.5Si-0.1Ni+6Al+3Nb 값도 0.1% 이상이며, 비교예 4는 C+0.5Si-0.1Ni+6Al+3Nb 값이 0.1% 이하로 본 발명의 목표를 만족하나, C 함량이 본 발명에서 규정한 범위보다 높아 용접 열영향부의 인성이 부족하였다. 비교예 5는 Ni 함량의 부족으로 강판의 강도가 부족하고, 모재부와 용접 열영향부 인성 모두 충분치 않았다. In Comparative Example 3, Nb is out of the scope of the present invention, and the C + 0.5Si-0.1Ni + 6Al + 3Nb value is 0.1% or more, and in Comparative Example 4, the C + 0.5Si-0.1Ni + 6Al + 3Nb value is 0.1% or less. As satisfies the object of the present invention, but the C content is higher than the range specified in the present invention, the toughness of the weld heat affected zone was insufficient. In Comparative Example 5, the strength of the steel sheet was insufficient due to the lack of Ni content, and both the base material portion and the weld heat affected zone toughness were not sufficient.
비교예 6 내지 8은 합금 성분이 본 발명의 범위에 속해 있고, C+0.5Si-0.1Ni+6Al+3Nb 값도 0.1% 이하로 용접 열영향부의 인성은 나쁘지 않았으나, 본 발명에서 요구하는 제조조건을 만족하지 못해 유효 결정립 크기가 30㎛ 이상을 나타내었고, 또한 비교예 7은 강도 또한 본 발명의 수준에도 미치지 못했다. 비교예 9는 C+0.5Si-0.1Ni+6Al+3Nb 값이 0.1%를 상회하여 용접 열영향부 인성이 떨어지고, 제조조건 중에서 냉각속도가 부족하여 강판의 항복강도가 420MPa에 미치지 못했다.In Comparative Examples 6 to 8, the alloy component is in the scope of the present invention, the C + 0.5 Si-0.1 Ni + 6 Al + 3 Nb value is also 0.1% or less, the toughness of the weld heat affected zone was not bad, but the manufacturing conditions required by the present invention It was not satisfied that the effective grain size was 30㎛ or more, and Comparative Example 7 also did not reach the strength of the present invention. In Comparative Example 9, the C + 0.5Si-0.1Ni + 6Al + 3Nb value exceeded 0.1%, so that the toughness of the welded heat affected zone fell, and the cooling rate was insufficient in the manufacturing conditions, so that the yield strength of the steel sheet did not reach 420 MPa.

Claims (9)

  1. 중량%로, C: 0.02~0.06%, Si: 0.1% 이하, Mn: 1.5~2.0%, P: 0.012%이하, S: 0.003% 이하, Ni: 0.5~1.5%, Al: 0.003~0.015%, Ti: 0.005~0.02%, Nb: 0.005~0.015%, N: 0.002~0.006%, 나머지는 Fe 및 불가피한 불순물을 포함하며,By weight%, C: 0.02-0.06%, Si: 0.1% or less, Mn: 1.5-2.0%, P: 0.012% or less, S: 0.003% or less, Ni: 0.5-1.5%, Al: 0.003-0.015%, Ti: 0.005% to 0.02%, Nb: 0.005% to 0.015%, N: 0.002% to 0.006%, the rest includes Fe and unavoidable impurities,
    C+0.5Si-0.1Ni+6Al+3Nb 값이 0.1% 이하인 취성 균열 발생 저항성이 우수한 고강도 강판. High strength steel sheet with excellent brittle cracking resistance with C + 0.5Si-0.1Ni + 6Al + 3Nb value of 0.1% or less.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 강판은 Cu: 0.35% 이하를 추가적으로 포함하는 취성 균열 발생 저항성이 우수한 고강도 강판.The steel sheet is a high strength steel sheet excellent in brittle cracking resistance further comprising Cu: 0.35% or less.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 강판의 두께 중심부에서 전자후방산란패턴법으로 측정한 결정방위차가 15도 이상인 경계로 정의되는 최소 5000개 이상의 결정립 가운데 그 크기가 상위 5%에 속하는 결정립들의 평균 원 상당 지름이 30㎛이하를 갖는 취성 균열 발생 저항성이 우수한 고강도 강판.The average circle equivalent diameter of the crystal grains belonging to the upper 5% among the at least 5000 crystal grains defined by the boundary of the crystal orientation difference measured by the electron rear scattering pattern method at the center of the thickness of the steel sheet is 15 degrees or more has a diameter of 30 μm or less High strength steel sheet with excellent brittle cracking resistance.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 강판의 두께 중심부 조직은 페라이트, 베이나이트 및 이들의 복합조직 중 어느 하나인 취성 균열 발생 저항성이 우수한 고강도 강판.The thick central structure of the steel sheet is a high strength steel sheet having excellent resistance to brittle cracking, which is any one of ferrite, bainite, and a composite structure thereof.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 강판의 모재부는 -60℃ 한계 CTOD 값이 0.25㎜ 이상을 만족하고, 용접 열영향부(HAZ)는 -40℃ 한계 CTOD 값이 0.25㎜ 이상을 만족하는 취성 균열 발생 저항성이 우수한 고강도 강판.A high strength steel sheet having excellent brittle crack generation resistance in which a base material portion of the steel sheet satisfies a -60 ° C limit CTOD value of 0.25 mm or more, and a welded heat affected zone (HAZ) satisfies a -40 ° C limit CTOD value of 0.25 mm or more.
  6. 중량%로, C: 0.02~0.06%, Si: 0.1% 이하, Mn: 1.5~2.0%, P: 0.012%이하, S: 0.003% 이하, Ni: 0.5~1.5%, Al: 0.003~0.015%, Ti: 0.005~0.02%, Nb: 0.005~0.015%, N: 0.002~0.006%, 나머지는 Fe 및 불가피한 불순물을 포함하며,By weight%, C: 0.02-0.06%, Si: 0.1% or less, Mn: 1.5-2.0%, P: 0.012% or less, S: 0.003% or less, Ni: 0.5-1.5%, Al: 0.003-0.015%, Ti: 0.005% to 0.02%, Nb: 0.005% to 0.015%, N: 0.002% to 0.006%, the rest includes Fe and unavoidable impurities,
    C+0.5Si-0.1Ni+6Al+3Nb 값이 0.1% 이하을 만족하는 강 슬라브를 1000~1100℃의 온도범위로 가열하는 단계; Heating a steel slab having a C + 0.5Si-0.1Ni + 6Al + 3Nb value satisfying 0.1% or less in a temperature range of 1000 to 1100 ° C;
    상기 가열된 슬라브를 950℃ 이상의 온도에서 누적 압하율 40% 이상으로 조압연하는 단계;Roughly rolling the heated slab with a cumulative reduction ratio of 40% or more at a temperature of 950 ° C. or higher;
    상기 조압연 후 700~800℃의 온도범위에서 마무리 압연하는 단계; 및 Finishing rolling in a temperature range of 700 to 800 ° C. after the rough rolling; And
    상기 압연된 강판을 냉각하는 단계Cooling the rolled steel sheet
    를 포함하는 취성 균열 발생 저항성이 우수한 고강도 강판의 제조방법.Method for producing a high strength steel sheet having excellent brittle crack generation resistance comprising a.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 강 슬라브는 Cu: 0.35% 이하를 추가적으로 포함하는 취성 균열 발생 저항성이 우수한 고강도 강판의 제조방법.The steel slab is a method of producing a high strength steel sheet excellent in brittle cracking resistance further comprises Cu: 0.35% or less.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 마무리 압연은 누적 압하율 40% 이상으로 행하는 취성 균열 발생 저항성이 우수한 고강도 강판의 제조방법.The finish rolling is a method of producing a high strength steel sheet excellent in brittle cracking resistance is performed at a cumulative reduction of 40% or more.
  9. 청구항 6에 있어서,The method according to claim 6,
    상기 냉각단계에서 냉각속도와 냉각정지온도는 각각 3~20℃/s와 350~550℃인 취성 균열 발생 저항성이 우수한 고강도 강판의 제조방법.In the cooling step, the cooling rate and the cooling stop temperature is 3 ~ 20 ℃ / s and 350 ~ 550 ℃ the method of producing a high strength steel sheet excellent resistance to brittle cracking.
PCT/KR2010/009222 2009-12-28 2010-12-22 High strength steel sheet having excellent brittle crack resistance and method for manufacturing same WO2011081349A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10841181.0A EP2520683B1 (en) 2009-12-28 2010-12-22 High strength steel sheet having excellent brittle crack resistance and method for manufacturing same
CN201080063862.9A CN102753719B (en) 2009-12-28 2010-12-22 There is high tensile steel plate and the manufacture method thereof of excellent resistance to brittle fracture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0131740 2009-12-28
KR1020090131740A KR101360737B1 (en) 2009-12-28 2009-12-28 High strength steel plate having excellent resistance to brittle crack initiation and method for manufacturing the same

Publications (2)

Publication Number Publication Date
WO2011081349A2 true WO2011081349A2 (en) 2011-07-07
WO2011081349A3 WO2011081349A3 (en) 2011-11-10

Family

ID=44226970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009222 WO2011081349A2 (en) 2009-12-28 2010-12-22 High strength steel sheet having excellent brittle crack resistance and method for manufacturing same

Country Status (4)

Country Link
EP (1) EP2520683B1 (en)
KR (1) KR101360737B1 (en)
CN (1) CN102753719B (en)
WO (1) WO2011081349A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774395B2 (en) 2015-05-22 2020-09-15 Outokumpu Oyj Method for manufacturing a component made of austenitic steel
US20220025491A1 (en) * 2018-11-30 2022-01-27 Posco Ultra-thick steel excellent in brittle crack arrestability and manufacturing method therefor
US11247252B2 (en) 2015-07-16 2022-02-15 Outokumpu Oyj Method for manufacturing a component of austenitic TWIP or TRIP/TWIP steel

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695807B (en) * 2013-12-13 2016-01-20 莱芜钢铁集团有限公司 Strong X100 Pipeline Steel Plate of superelevation that crack arrest is excellent and preparation method thereof
CN103882312B (en) * 2014-03-04 2016-04-27 南京钢铁股份有限公司 The manufacture method of low-cost high-toughness-140 DEG C of Steel Plates For Low Temperature Service
EP3239332B1 (en) * 2014-12-24 2019-11-20 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
EP3239331B1 (en) * 2014-12-24 2020-10-28 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
CN107109590A (en) 2014-12-24 2017-08-29 Posco公司 The high strength steel and its manufacture method for the resistant expansibility excellent of resistance to brittle crack
KR101657827B1 (en) * 2014-12-24 2016-09-20 주식회사 포스코 Steel having excellent in resistibility of brittle crack arrestbility and manufacturing method thereof
KR101736611B1 (en) * 2015-12-04 2017-05-17 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
KR101726082B1 (en) * 2015-12-04 2017-04-12 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
KR101758520B1 (en) * 2015-12-23 2017-07-17 주식회사 포스코 High strength structural steel sheet having excellent heat treatment resistance and method of manufacturing the same
KR102192969B1 (en) * 2016-02-24 2020-12-18 제이에프이 스틸 가부시키가이샤 High-strength ultra-thick steel sheet with excellent brittle crack propagation stopping properties and its manufacturing method
KR101917456B1 (en) 2016-12-22 2018-11-09 주식회사 포스코 Extremely thick steel having excellent surface part naval research laboratory-drop weight test property
KR102220739B1 (en) * 2018-12-19 2021-03-02 주식회사 포스코 Manufacturing mehtod for ultra thick steel plate having excellent toughness at the center of thickness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060090287A (en) 2003-11-27 2006-08-10 수미도모 메탈 인더스트리즈, 리미티드 High tensile steel excellent in toughness of welded zone and offshore structure
KR20080067957A (en) 2006-12-20 2008-07-22 신닛뽄세이테쯔 카부시키카이샤 A steel having excellent tenacity in the portion affected by welding-heat

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341396B2 (en) * 2003-03-27 2009-10-07 Jfeスチール株式会社 High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability
CN101153370B (en) * 2006-09-27 2012-06-13 鞍钢股份有限公司 Low alloy high-strength steel plate capable of being welded in large energy input and method of producing the same
JP4934505B2 (en) * 2007-05-29 2012-05-16 株式会社神戸製鋼所 Steel sheet with excellent fatigue crack growth suppression characteristics and brittle fracture suppression characteristics
EP2218800B1 (en) * 2007-12-07 2012-05-16 Nippon Steel Corporation Steel with weld heat-affected zone having excellent ctod properties and process for producing the steel
KR100985298B1 (en) * 2008-05-27 2010-10-04 주식회사 포스코 Low Density Gravity and High Strength Hot Rolled Steel, Cold Rolled Steel and Galvanized Steel with Excellent Ridging Resistibility and Manufacturing Method Thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060090287A (en) 2003-11-27 2006-08-10 수미도모 메탈 인더스트리즈, 리미티드 High tensile steel excellent in toughness of welded zone and offshore structure
KR20080067957A (en) 2006-12-20 2008-07-22 신닛뽄세이테쯔 카부시키카이샤 A steel having excellent tenacity in the portion affected by welding-heat

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2520683A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774395B2 (en) 2015-05-22 2020-09-15 Outokumpu Oyj Method for manufacturing a component made of austenitic steel
US11247252B2 (en) 2015-07-16 2022-02-15 Outokumpu Oyj Method for manufacturing a component of austenitic TWIP or TRIP/TWIP steel
US20220025491A1 (en) * 2018-11-30 2022-01-27 Posco Ultra-thick steel excellent in brittle crack arrestability and manufacturing method therefor

Also Published As

Publication number Publication date
CN102753719B (en) 2015-08-19
EP2520683A4 (en) 2015-03-11
CN102753719A (en) 2012-10-24
KR20110075321A (en) 2011-07-06
EP2520683A2 (en) 2012-11-07
EP2520683B1 (en) 2016-11-30
KR101360737B1 (en) 2014-02-07
WO2011081349A3 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2011081349A2 (en) High strength steel sheet having excellent brittle crack resistance and method for manufacturing same
EP2434027B1 (en) Steel material for high heat input welding
WO2017105107A1 (en) High-strength steel material having excellent low-temperature strain aging impact properties and welding heat-affected zone impact properties and method for manufacturing same
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
EP2370608A2 (en) High strength steel plate for nuclear reactor containment vessel and method of manufacturing the same
WO2009145563A2 (en) Ultra high strength steel sheet with an excellent heat treatment property for hot press forming, quenched member, and manufacturing method for same
WO2019124945A1 (en) High-strength steel material for polar region environment having excellent anti-fracture characteristics at low temperatures and method for manufacturing same
WO2018117614A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
KR20070008557A (en) Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
WO2017105109A1 (en) High-strength steel material having excellent low-temperature strain aging impact properties and method for manufacturing same
WO2020111863A1 (en) Ultrahigh-strength steel having excellent cold workability and ssc resistance, and manufacturing method therefor
WO2022139191A1 (en) Highly thick steel material having excellent low-temperature impact toughness and manufacturing method therefor
WO2019074236A1 (en) Thick steel plate having excellent low-temperature strain aging impact property and manufacturing method therefor
WO2018117650A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2017104995A1 (en) High hardness abrasion resistant steel with excellent toughness and cutting crack resistance, and method for manufacturing same
WO2019132179A1 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
WO2019125076A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2013100625A1 (en) Abrasion resistant steel with excellent toughness and weldability
WO2020111547A1 (en) Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
KR100568363B1 (en) Fine Grain Type Steel Having Superior Toughness in Weld Heat Affected Zone and Method for Manufacturing the Same
WO2024058312A1 (en) Ultra-high strength cold-rolled steel sheet and method for manufacturing same
WO2022131540A1 (en) Armored steel having high hardness and excellent low-temperature impact toughness and manufacturing method therefor
KR20120074705A (en) High strength steel plate for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
WO2021054631A1 (en) Chromium steel sheet having excellent creep strength and high temperature ductility and method of manufacturing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063862.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010841181

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010841181

Country of ref document: EP