WO2023017775A1 - 導波素子 - Google Patents

導波素子 Download PDF

Info

Publication number
WO2023017775A1
WO2023017775A1 PCT/JP2022/029941 JP2022029941W WO2023017775A1 WO 2023017775 A1 WO2023017775 A1 WO 2023017775A1 JP 2022029941 W JP2022029941 W JP 2022029941W WO 2023017775 A1 WO2023017775 A1 WO 2023017775A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic material
substrate
ground electrode
material substrate
waveguide
Prior art date
Application number
PCT/JP2022/029941
Other languages
English (en)
French (fr)
Inventor
健太郎 谷
順悟 近藤
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to DE112022002926.9T priority Critical patent/DE112022002926T5/de
Priority to JP2023541423A priority patent/JP7556155B2/ja
Priority to CN202280045282.XA priority patent/CN117561648A/zh
Publication of WO2023017775A1 publication Critical patent/WO2023017775A1/ja
Priority to US18/422,061 priority patent/US20240162592A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/003Coplanar lines
    • H01P3/006Conductor backed coplanar waveguides

Definitions

  • the present invention relates to waveguide elements.
  • Waveguide devices are being developed. Waveguide devices are expected to be applied and developed in a wide range of fields such as optical waveguides, next-generation high-speed communication, sensors, laser processing, and photovoltaic power generation.
  • An example of such a waveguide element is a grounding device composed of a glass substrate having a thickness of 300 ⁇ m, a coplanar conductor provided on the glass substrate, and a ground electrode provided on the opposite side of the glass substrate to the coplanar conductor.
  • Patent Document 1 A technique using a coplanar waveguide has been proposed (Patent Document 1).
  • the waveguide element When employing a waveguide element based on such technology in various industrial products, it is considered to mount the waveguide element on a support substrate such as an IC substrate or a printed circuit board.
  • a support substrate such as an IC substrate or a printed circuit board.
  • the range in which low propagation loss performance at a practical level can be secured is narrow in the millimeter wave to terahertz wave frequency range (especially in the frequency range of 300 GHz or higher), and excellent performance over a wide frequency range is achieved. Achieving low propagation loss performance is difficult.
  • a main object of the present invention is to provide a waveguide element that achieves excellent low propagation loss performance over a wide frequency range in a high frequency range of 30 GHz or higher while having a configuration in which an inorganic material substrate is mounted (supported) on a support substrate. is to provide
  • a waveguide element comprises a waveguide member capable of guiding an electromagnetic wave having a frequency of 30 GHz or more and 20 THz or less; a support substrate for supporting the waveguide member; and a low dielectric constant portion.
  • the waveguide member includes an inorganic material substrate; and a coplanar electrode provided on the inorganic material substrate.
  • the support substrate is provided below the inorganic material substrate.
  • the low dielectric constant portion is provided under the inorganic material substrate and has a dielectric constant smaller than that of the inorganic material substrate.
  • the thickness t of the inorganic material substrate satisfies the following formula (1). (In the formula, t represents the thickness of the inorganic material substrate.
  • represents the wavelength of the electromagnetic wave guided by the waveguide member.
  • represents the dielectric constant of the inorganic material substrate. represents a numerical value.
  • the support substrate has a recess, a cavity is defined by the lower surface of the inorganic material substrate and the recess of the support substrate, and the cavity functions as the low dielectric constant portion.
  • the coplanar electrode includes a signal electrode extending in a predetermined direction; and a ground electrode spaced apart from the signal electrode in a direction intersecting the predetermined direction. Where g is the dimension of the gap between the signal electrode and the ground electrode in the direction intersecting the predetermined direction, the dimension of the cavity in the thickness direction of the inorganic material substrate is g or more.
  • the waveguide element comprises a ground electrode located between the inorganic material substrate and the support substrate.
  • the dielectric constant ⁇ and the dielectric loss tangent (dielectric loss) tan ⁇ of the inorganic material substrate at 300 GHz are 3.5 or more and 12 or less and 0.003 or less, respectively.
  • the inorganic material substrate is a quartz glass substrate.
  • a waveguide having excellent low propagation loss performance over a wide frequency range in a high frequency range of 30 GHz or higher while having a configuration in which an inorganic material substrate is mounted (supported) on a support substrate. device can be realized.
  • FIG. 1 is a schematic perspective view of a waveguide element according to an embodiment of the invention
  • FIG. FIG. 2 is a cross-sectional view of the waveguide element of FIG. 1 taken along the line II-II'
  • FIG. 5 is a schematic perspective view of a waveguide element according to another embodiment of the invention
  • FIG. 5 is a schematic perspective view of a waveguide element according to yet another embodiment of the invention
  • FIG. 5 is a cross-sectional view of the waveguide element of FIG. 4 taken along the line VV'
  • FIG. 3 is a schematic cross-sectional view for explaining a modification of the waveguide element of FIG. 2
  • FIG. 5 is a schematic perspective view of a waveguide element according to yet another embodiment of the invention
  • FIG. 8 is a cross-sectional view of the waveguide element of FIG. 7 taken along line VIII-VIII';
  • FIG. 8 is a cross-sectional view of the waveguide element of FIG. 7 taken along line IX-IX';
  • FIG. 8 is a cross-sectional view of the waveguide element of FIG. 7 taken along the line XX';
  • FIG. 8 is a schematic cross-sectional view for explaining a modification of the shape of vias in the waveguide element of FIG. 7;
  • 12A and 12B are schematic cross-sectional views illustrating a modification of the arrangement of vias in the waveguide element of FIG. 11;
  • FIG. 8 is a schematic cross-sectional view for explaining a modification of the arrangement of vias in the waveguide element of FIG. 7;
  • FIG. 12 is a schematic cross-sectional view for explaining a modification of the configuration of vias in the waveguide element of FIG. 11;
  • FIG. 5 is a schematic perspective view of a waveguide element according to yet another embodiment of the invention; 16 is an XVI-XVI' sectional view of the waveguide element of FIG. 15; FIG. FIG. 16 is an exploded perspective view of the waveguide element of FIG. 15; 17 is a schematic cross-sectional view illustrating a state in which the conductor pins of FIG. 16 are covered with an insulating material;
  • FIG. FIG. 5 is a schematic perspective view of a waveguide element according to yet another embodiment of the invention;
  • FIG. 4 is a schematic cross-sectional view illustrating an example of arrangement of joints in the waveguide element of FIG. 3 ;
  • FIG. 3 is a schematic cross-sectional view illustrating an example of arrangement of joints in the waveguide element of FIG. 2 ;
  • FIG. 1 is a schematic perspective view of a waveguide device according to one embodiment of the present invention
  • FIG. 2 is a II-II' sectional view of the waveguide device of FIG.
  • a waveguide element 100 in the illustrated example includes a waveguide member 10 , a support substrate 20 , and a low dielectric constant portion 50 .
  • the waveguide member 10 can guide electromagnetic waves having a frequency of 30 GHz or more and 20 THz or less, in other words, electromagnetic waves of millimeter waves to terahertz waves.
  • millimeter waves are typically electromagnetic waves with a frequency of about 30 GHz to 300 GHz; terahertz waves are typically electromagnetic waves with a frequency of about 300 GHz to 20 THz.
  • the waveguide member 10 can guide an electromagnetic wave with a frequency of 30 GHz or more and 2 THz or less (especially an electromagnetic wave with a frequency of 30 GHz or more and 1 THz or less) while ensuring excellent low propagation loss.
  • the waveguide member 10 constitutes a coplanar line, and includes an inorganic material substrate 1; a coplanar electrode 2 provided on the inorganic material substrate 1;
  • the support substrate 20 is provided below the inorganic material substrate 1 and supports the waveguide member 10 .
  • the low dielectric constant portion 50 is provided under the inorganic material substrate 1 and has a dielectric constant smaller than that of the inorganic material substrate 1 .
  • the low dielectric constant portion 50 is typically a low refractive index portion having a refractive index smaller than that of the inorganic material substrate 1 .
  • the waveguide element can ensure excellent low propagation loss performance over a wide frequency range in the above-described high frequency region.
  • waveguide members line structures
  • waveguide members since waveguide devices are being developed for miniaturization, and it is expected that circuits will be integrated in the future, it is expected that waveguide members (line structures) will also be required to be miniaturized accordingly.
  • the waveguide element described above since the waveguide member (line structure) is supported by the support substrate, the thickness of the inorganic material substrate included in the waveguide member can be reduced. As a result, it is possible to meet the demand for miniaturization while ensuring excellent low propagation loss performance over a wide frequency range in the high frequency region described above.
  • the thickness of the inorganic material substrate 1 satisfies the following formula (1).
  • t represents the thickness of the inorganic material substrate.
  • represents the wavelength of the electromagnetic wave guided by the waveguide member.
  • represents the dielectric constant of the inorganic material substrate. represents a numerical value.
  • the dielectric constant ⁇ of the inorganic material substrate 1 at 300 GHz is typically 3.5 or more, typically 12.0 or less, preferably 10.0 or less, more preferably 5. .0 or less.
  • the dielectric loss tangent (dielectric loss) tan ⁇ of the inorganic material substrate 1 at 300 GHz is typically 0.0030 or less, preferably 0.0020 or less, more preferably 0.0015 or less.
  • the dielectric constant ⁇ and dielectric loss tangent (dielectric loss) tan ⁇ can be measured by terahertz time domain spectroscopy. Moreover, in this specification, when there is no mention of the measurement frequency with respect to the dielectric constant and the dielectric loss tangent, it means the dielectric constant and the dielectric loss tangent at 300 GHz.
  • the thickness of the inorganic material substrate 1 is 1 ⁇ m or more, preferably 2 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, for example 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 100 ⁇ m or less. Preferably, it is 70 ⁇ m or less. From the viewpoint of miniaturization by reducing the size of the electrodes, the thickness of the inorganic material substrate 1 is particularly preferably 60 ⁇ m or less. When the thickness of the inorganic material substrate 1 is within the above range, excellent low propagation loss performance can be more stably secured over a wide frequency range of the high frequency range.
  • the waveguide member 10 constitutes a grounded coplanar line and has a ground electrode 3 .
  • the ground electrode 3 is positioned between the inorganic material substrate 1 and the support substrate 20 .
  • the waveguide member 10 of the illustrated example constitutes a coplanar line with a ground, but the waveguide member of the present invention does not have to have a ground electrode like the waveguide member 11 shown in FIG.
  • the coplanar electrode 2 comprises a signal electrode 2a, a first ground electrode 2b and a second ground electrode 2c.
  • the signal electrode 2a has a linear shape extending in a predetermined direction (waveguide direction of the waveguide member).
  • the width (dimension in the direction orthogonal to the waveguide direction) w of the signal electrode 2a is, for example, 2 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 150 ⁇ m or less.
  • the first ground electrode 2b is spaced apart from the signal electrode 2a in a direction crossing (preferably orthogonal to) the longitudinal direction of the signal electrode 2a.
  • the second ground electrode 2c is positioned opposite to the first ground electrode 2b with respect to the signal electrode 2a in a direction intersecting (preferably orthogonal) to the longitudinal direction of the signal electrode 2a, and is spaced from the signal electrode 2a. are placed vacantly. As a result, a space (gap) extending in the longitudinal direction of the signal electrode 2a is formed between the signal electrode 2a and the ground electrodes 2b and 2c.
  • the width (dimension in the direction intersecting the longitudinal direction) g of the gap (gap) is, for example, 2 ⁇ m or more, preferably 5 ⁇ m or more, for example, 100 ⁇ m or less, preferably 80 ⁇ m or less.
  • the ground electrodes 2b, 2c and the ground electrode 3 may be electrically connected. If the ground electrodes 2b, 2c and the ground electrode 3 are electrically connected, the ground can be strengthened and the stray capacitance due to the surrounding lines and elements can be suppressed.
  • a plurality of via holes 9 are formed in the inorganic material substrate 1, and vias 6 positioned in each via hole 9 short-circuit the ground electrode and the ground electrode. Arrangement of the plurality of vias 6 (via holes) is not particularly limited. In the illustrated example, a plurality of vias 6 (via holes) are arranged in the longitudinal direction of the signal electrode 2a. The via 6 is typically a conductive film formed on the entire inner surface of the via hole.
  • the vias 6 are made of a conductive material, typically made of the same metal as the coplanar electrode 2 (described later).
  • the via hole may be entirely filled with a conductive material.
  • the via is formed of a metal film, the interior thereof may be filled with a conductive material.
  • the conductive material may be the same metal as the vias or a different material such as a conductive paste.
  • the waveguide element 100 may further include a second ground electrode 4 .
  • the ground electrode 3 may be referred to as the first ground electrode 3 .
  • the ground electrode 3 may be referred to as a first metal layer, and the second ground electrode 4 may be referred to as a second metal layer.
  • the second ground electrode 4 is located on the opposite side of the support substrate 20 from the first ground electrode 3 .
  • the second ground electrode 4 is formed on the surface of the support substrate 20 opposite to the first ground electrode 3 and is in direct contact with the support substrate 20 .
  • the first ground electrode is arranged between the inorganic material substrate and the support substrate, and the second ground electrode is arranged on the side opposite to the first ground electrode with respect to the support substrate. Therefore, leakage of electromagnetic waves to the support substrate can be further suppressed.
  • the waveguide element 100 may have a through-substrate via 22 that electrically connects the first ground electrode 3 and the second ground electrode 4 .
  • a waveguide element 100 shown in FIG. A through via 22 is provided separately. As a result, the ground can be further strengthened, and the stray capacitance due to the surrounding lines and elements can be stably suppressed.
  • low dielectric constant portion 50 is hollow.
  • the cavity functions as the low dielectric constant portion 50 (low refractive index portion).
  • the support substrate 20 has a recess 21 , and the cavity is defined by the bottom surface of the inorganic material substrate 1 and the recess 21 of the support substrate 20 .
  • Recess 21 is typically recessed downward from the upper surface of support substrate 20 and extends in the same direction as signal electrode 2a.
  • the ground electrode 3 is provided on the inner surface of the recess 21
  • the cavity may be defined by the lower surface of the inorganic material substrate 1 and the ground electrode 3 provided on the inner surface of the recess 21 .
  • the cavity (low dielectric constant portion) 50 is arranged so as to overlap at least a portion of the signal electrode in the thickness direction of the inorganic material substrate 1 .
  • the low dielectric constant portion preferably has a dielectric constant of less than 3.5 . (trademark)-based polymer).
  • the low dielectric constant portion is hollow, leakage of electromagnetic waves propagating through the waveguide member from the waveguide member can be suppressed more stably than when the low dielectric constant portion is made of another material. , the propagation loss (dielectric loss) in the low dielectric constant portion can be further suppressed.
  • the lower limit of the dimension d of the cavity in the thickness direction of the inorganic material substrate 1 is at least the width g of the void (gap), preferably at least 2 g.
  • the upper limit of the dimension d of the cavity in the thickness direction of the inorganic material substrate 1 is 20 g or less, preferably 5 g or less. If the dimension of the cavity is equal to or greater than the above lower limit, it is possible to further reduce the propagation loss when guiding the above-described high-frequency electromagnetic waves.
  • the lower limit of the dimension of the cavity in the width direction (direction perpendicular to the waveguide direction) of the inorganic material substrate 1 is equal to or greater than the width w of the signal electrode, preferably the width w of the signal electrode + the gap (gap) width g ⁇ 2 or more.
  • the upper limit of the dimension of the cavity in the width direction of the inorganic material substrate 1 is the signal electrode width w+the gap width g ⁇ 40 or less, preferably the signal electrode width w+the gap width g ⁇ 20. It is below.
  • the low dielectric constant portion formed of the above materials may be arranged in the recess 21 of the support substrate 20 . Further, as shown in FIGS. 4 and 5, the support substrate 20 does not have the concave portion 21, and the low dielectric constant portion 51 formed of the material described above is arranged between the inorganic material substrate 1 and the support substrate 20. may be In the illustrated example, the low dielectric constant portion 51 is formed in layers and sandwiched between the inorganic material substrate 1 and the ground electrode 3 . The range of the dimension d of the low dielectric constant portion 51 in the thickness direction of the inorganic material substrate 1 is the same as the range of the dimension d of the cavity in the thickness direction of the inorganic material substrate 1 described above.
  • FIG. 7 is a schematic perspective view of a waveguide device according to another embodiment of the present invention.
  • FIG. 8 is a VIII-VIII′ cross-sectional view of the waveguide device of FIG. 7; 9 is an IX-IX' cross-sectional view of the waveguide element of FIG. 7;
  • FIG. 10 is an XX' cross-sectional view of the waveguide element of FIG.
  • the waveguide element 101 of the illustrated example includes: , a first via 5 and a second via 6 .
  • the waveguide element 101 may be provided with a joint portion, which will be described later.
  • the first via 5 electrically connects the ground electrode of the coplanar electrode 2 and the second ground electrode 4, and is electrically connected to the first ground electrode 3. .
  • the waveguide element 101 includes a plurality of first vias 5 described above.
  • the second via 6 electrically connects the first ground electrode 3 and the ground electrode.
  • the second vias 6 are arranged between the first vias 5 adjacent to each other among the plurality of first vias 5 . According to such a configuration, the first via electrically connects the first ground electrode, the second ground electrode, and the ground electrode of the coplanar electrode. Therefore, the ground can be further strengthened, and the stray capacitance due to the surrounding lines and elements can be suppressed more stably.
  • the relative positional accuracy between the portion located between the first ground electrode and the ground electrode and the portion located between the first ground electrode and the second ground electrode is It can be easily secured. Therefore, compared to the case where the via connecting the first ground electrode and the ground electrode and the via connecting the first ground electrode and the second ground electrode are provided separately (see FIG. 6), It is possible to suppress the occurrence of ripples.
  • the waveguide element 101 having the first vias 5 can be manufactured smoothly compared to the waveguide element 100 shown in FIG.
  • the pitch of the first vias and the second vias in the inorganic material substrate can be made smaller than the pitch of the first vias in the supporting substrate. can. Therefore, even if the thickness of the inorganic material substrate is reduced, sufficient strength of the inorganic material substrate can be ensured.
  • the first vias 5 are provided on both sides of the signal electrode 2a in a direction crossing (preferably orthogonal to) the longitudinal direction of the signal electrode 2a.
  • a first via for electrically connecting the first ground electrode 2b and the second ground electrode 4 will be referred to as a first via 5a
  • a second ground electrode 2c and the second ground electrode 4 will be electrically connected.
  • the first via 5b is distinguished from each other as a first via 5b.
  • the first via 5a is in contact with the first ground electrode 2b and the second ground electrode 4, and continuously connects the first ground electrode 2b and the second ground electrode 4. extended.
  • the first via 5 b is in contact with the second ground electrode 2 c and the second ground electrode 4 and extends continuously between the second ground electrode 2 c and the second ground electrode 4 .
  • Each of the first vias 5 a and 5 b penetrates the first ground electrode 3 and is in contact with the first ground electrode 3 .
  • the waveguide element may have only one of the first vias 5a and 5b.
  • the first via 5 is typically a conductive film.
  • the first via 5 is made of a conductive material, typically made of the same metal as the coplanar electrode 2 (described later).
  • the shape of the first via 5 corresponds to the shape of the first via hole 8 in which it is arranged. That is, the waveguide element 101 has a plurality of first via holes 8 corresponding to the plurality of first via holes 5 .
  • the first via hole 8 penetrates the inorganic material substrate 1 , the first ground electrode 3 and the support substrate 20 .
  • the first via hole 8 typically has a circular shape when viewed from above the inorganic material substrate 1 .
  • the inner diameter of the first via hole is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and is, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the first via hole 8 has a circular shape when viewed from above the inorganic material substrate 1 , and extends linearly in the thickness direction of the inorganic material substrate 1 through the inorganic material substrate 1 and the first ground electrode 3 . and the support substrate 20 .
  • the first via hole is circular and linear
  • the first via 5 has a columnar or cylindrical shape extending in the thickness direction of the inorganic material substrate 1 .
  • the range of the outer diameter of the first via 5 is the same as the range of the inner diameter of the first via hole.
  • the first via hole 8 has a circular shape when viewed from above the inorganic material substrate 1, and has a tapered shape that decreases in diameter as it approaches the first ground electrode 3. good. Also, although not shown, the first via hole 8 may have a circular shape when viewed from above the inorganic material substrate 1 and may have a tapered shape that increases in diameter as it approaches the ground electrode 3 . When the first via hole has a tapered shape, it is possible to provide characteristics such as easy formation of the conductive film in the first via and easy securing of the strength of the support substrate. Also, the first via may be formed such that a conductive material is embedded in the first via hole.
  • the first via 5 When the first via hole is circular and tapered, the first via 5 preferably has an hourglass shape with a smaller diameter at the portion in contact with the first ground electrode 3 and a larger diameter away from the first ground electrode 3. have In other words, the first via 5 preferably has a shape in which the vertices of two cones are connected. In this case, the maximum outer diameter of the first via 5 is within the above range. In one embodiment, the outer diameter of one end of the first via 5 that contacts the ground electrode is smaller than the outer diameter of the other end of the first via 5 that contacts the second ground electrode. In the first via 5, the taper angle on the coplanar electrode 2 side with respect to the first ground electrode is smaller than the taper angle on the second ground electrode side with respect to the first ground electrode.
  • each of the ground electrode and the second ground electrode of the coplanar electrode is formed so as to close the first via hole.
  • Each of the ground electrode and the second ground electrode may be electrically connected to the first via, and may be open without blocking the first via hole.
  • the pitch P1 of the plurality of first vias 5a (the distance between the centers of the first vias 5 adjacent to each other) is, for example, 40 ⁇ m or more, preferably 60 ⁇ m or more, and is, for example, 600 ⁇ m or less, preferably 400 ⁇ m or less, more preferably 200 ⁇ m or less. is.
  • a plurality of first vias 5 are arranged in the longitudinal direction of the signal electrode 2a at intervals.
  • the direction in which the plurality of first vias 5 are arranged is not limited to the longitudinal direction of the signal electrode 2a.
  • the plurality of first vias 5 may be arranged at intervals in a direction crossing (preferably orthogonal to) the longitudinal direction of the signal electrode 2a.
  • the waveguide element may have a plurality of rows of the first vias 5 arranged in the longitudinal direction of the signal electrode 2a in a direction intersecting (perpendicular to) the longitudinal direction of the signal electrode 2a.
  • the second vias 6 are provided on both sides of the signal electrode 2a in a direction crossing (preferably orthogonal to) the longitudinal direction of the signal electrode 2a.
  • the second via electrically connecting the first ground electrode 2b and the first ground electrode 3 is referred to as the second via 6a
  • the second ground electrode 2c and the first ground electrode 3 are electrically connected.
  • the second vias to be connected are distinguished from each other as the second vias 6b.
  • the second via 6 a is in contact with the first ground electrode 2 b and the first ground electrode 3 and is not in contact with the second ground electrode 4 .
  • the second via 6 b is in contact with the second ground electrode 2 c and the first ground electrode 3 and is not in contact with the second ground electrode 4 .
  • the waveguide element may have only one of the second vias 6a and 6b.
  • the second via 6 is typically a conductive film.
  • the second vias 6 are made of a conductive material, and are typically made of the same metal (described later) as the first vias 5 .
  • the shape of the second via 6 corresponds to the shape of the second via hole 9 in which it is arranged. That is, waveguide element 101 has second via hole 9 corresponding to second via 6 .
  • the second via hole 9 penetrates at least the inorganic material substrate 1 and does not penetrate the support substrate 20 .
  • the second via hole 9 typically has a circular shape when viewed from above the inorganic material substrate 1 .
  • the range of the inner diameter of the second via hole is, for example, the same as the range of the inner diameter of the first via hole.
  • the second via hole 9 in the illustrated example penetrates the inorganic material substrate 1 linearly in the thickness direction of the inorganic material substrate 1 and does not penetrate the first ground electrode 3 .
  • second via hole 9 is circular and linear
  • second via 6 has a columnar or cylindrical shape extending in the thickness direction of inorganic material substrate 1 .
  • the range of the outer diameter of the second via 6 is the same as the range of the inner diameter of the second via hole.
  • the second via hole 9 may have a conical shape that tapers away from the coplanar electrode 2 .
  • the second via hole 9 in the illustrated example penetrates the inorganic material substrate 1 and the first ground electrode 3 and its tip reaches the support substrate 20 .
  • the second via hole 9 has a conical shape
  • the second via 6 preferably has a similar conical shape as the second via hole 9 .
  • the maximum outer diameter of the second via 6 is within the range of the inner diameter of the second via hole.
  • the vertex of the second via 6 (the end of the second via 6 opposite to the coplanar electrode 2 ) may reach the support substrate 20 .
  • the ground electrode is formed so as to close the second via hole, but the configuration of the ground electrode is not limited to this.
  • the ground electrode may be electrically connected to the second via, and may be left open without blocking the second via hole.
  • the second vias 6 are arranged between adjacent first vias 5 among a plurality of first vias 5 arranged in a predetermined direction.
  • the second vias 6 are typically located in the center of the spacing between the adjacent first vias 5 .
  • the waveguide element 101 in the illustrated example has a plurality of second vias 6 (a plurality of second vias 6a and a plurality of second vias 6b).
  • the second vias 6 shown in FIGS. 7 to 12 are arranged between the first vias 5 adjacent to each other in the longitudinal direction of the signal electrode 2a.
  • the second vias 6 shown in FIG. 13 are arranged between the first vias 5 adjacent to each other in a direction crossing (preferably orthogonal to) the longitudinal direction of the signal electrode 2a.
  • the second vias 6 can be arranged at any appropriate position between the first vias 5 adjacent to each other.
  • the second via 6 may be arranged every n first vias 5 in the direction in which the plurality of first vias are arranged. n is, for example, 1 or more and 5 or less, preferably 1 or 2. More preferably, the first vias 5 and the second vias 6 are alternately arranged. 10 and 11, all of the plurality of second vias 6 may be arranged between adjacent first vias 5, and at least one of the plurality of second vias 6 may Second vias 6 that are not arranged between first vias 5 may be included as long as they are arranged between adjacent first vias 5 .
  • the pitch P2 between the first vias 5 and the second vias 6 adjacent to each other is substantially the pitch P1 It is 1/2 of (the distance between the centers of the first vias 5 adjacent to each other), which is, for example, 25 ⁇ m or more, preferably 60 ⁇ m or more, and is, for example, 600 ⁇ m or less, preferably 400 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the pitch P2 between the first vias 5 and the second vias 6 in the inorganic material substrate 1 is equal to that of the first vias in the support substrate 20 .
  • 5 can be smaller than the pitch P1. Therefore, even if the thickness of the inorganic material substrate is reduced, the strength of the inorganic material substrate can be sufficiently secured.
  • the waveguide element 101 may include the first via 5 but not the second via 6 .
  • the first via hole 8 has a tapered shape with a diameter that increases with increasing distance from the first ground electrode 3, and the thickness of the support substrate 20 is greater than that of the inorganic material substrate 1,
  • the outer diameter of the other end of the first via 5 contacting the second ground electrode 4 may be larger than the outer diameter of one end of the first via 5 contacting the ground electrode.
  • the waveguide element 101 includes the first vias 5 and the second vias 6, and the second vias 6 are arranged between the adjacent first vias 5, thereby suppressing the interference between the first vias 5. Therefore, it is preferable.
  • FIG. 15 is a schematic perspective view of a waveguide element according to yet another embodiment of the present invention
  • FIG. 16 is an XVI-XVI′ cross-sectional view of the waveguide element of FIG. 15
  • 17 is an exploded perspective view of the waveguide element of FIG. 15.
  • the waveguide element 102 of the illustrated example includes the above-described inorganic material substrate 1, the above-described coplanar electrode 2, the above-described first ground electrode 3, the above-described support substrate 20, and the above-described second ground electrode 4. and further includes a plurality of through-substrate vias 22 .
  • the waveguide element 102 may be provided with a joint portion, which will be described later.
  • Each of the substrate through vias 22 electrically connects the first ground electrode 3 and the second ground electrode 4 .
  • the first ground electrode 3 , the second ground electrode 4 , and the plurality of through-substrate vias 22 constitute a substrate integrated waveguide (hereinafter referred to as SIW) capable of propagating electromagnetic waves.
  • SIW substrate integrated waveguide
  • the SIW can be provided on the support substrate, and the support substrate can be effectively used as a waveguide.
  • the coplanar electrode 2 further includes a third ground electrode 2d in addition to the signal electrode 2a, first ground electrode 2b and second ground electrode 2c described above.
  • one end of the signal electrode 2a is located between the first ground electrode 2b and the second ground electrode 2c which are spaced apart from each other.
  • the first ground electrode 2b and the second ground electrode 2c may be electrically connectable to an external element (not shown).
  • the third ground electrode 2d is arranged at a predetermined distance from the other end of the signal electrode 2a.
  • the third ground electrode 2d has a substantially C-shape when viewed from above, and surrounds the other end of the signal electrode 2a.
  • the coplanar electrode 2 may not have the third ground electrode 2d.
  • the waveguide element 102 may further include the vias 6 described above.
  • grounding can be strengthened, and stray capacitance due to surrounding lines and elements can be suppressed.
  • each of the ground electrodes 2b, 2c, and 2d is electrically connected to the first ground electrode 3 through a plurality of vias 6.
  • Each of the plurality of substrate through vias 22 penetrates the support substrate 20 in the thickness direction and is periodically arranged on the support substrate 20 .
  • the plurality of through-substrate vias 22 includes a first via row 22a and a second via row 22b.
  • Each of the first via row 22a and the second via row 22b is composed of a plurality of through-substrate vias 22 arranged in a predetermined direction at intervals.
  • the second via row 22b is positioned apart from the first via row 22a in a direction orthogonal to the direction in which the first via row 22a extends.
  • a region surrounded by the first ground electrode 3, the second ground electrode 4, the first via row 22a, and the second via row 22b functions as an SIW.
  • the cavity (low dielectric constant portion) 50 is aligned with the SIW in the extending direction of the first via row 22a.
  • the substrate through via 22 is made of a conductive material, typically made of the same metal as the coplanar electrode 2 (described later).
  • Through-substrate vias 22 are disposed within substrate via holes 24 . That is, the waveguide element 103 has a plurality of substrate via holes 24 corresponding to the plurality of substrate through vias 22 .
  • the substrate via hole 24 penetrates the first ground electrode 3, the supporting substrate 20 and the second ground electrode 4 collectively.
  • the substrate through via 22 is typically a conductive film formed on the entire inner surface of the substrate via hole 24 .
  • the substrate via hole 24 may penetrate only the support substrate without penetrating the first ground electrode and the second ground electrode.
  • the through-substrate via is filled in the second via hole so as to be in contact with the first ground electrode and the second ground electrode.
  • the through-substrate via 22 that electrically connects the first ground electrode 3 and the second ground electrode 4 is formed of a conductive film, the interior thereof may be filled with a material such as resin.
  • the transmission line formed by the signal electrode 2a and the SIW may be independent of each other, or may be coupled together so that electromagnetic waves can propagate.
  • the transmission line formed by the coplanar electrode 2 (coplanar transmission line) and the SIW are coupled by a conductor pin 25 .
  • the propagation mode of electromagnetic waves can be converted into a transmission line mode and a waveguide mode.
  • a transmission line mode electromagnetic wave (signal) propagating through an inorganic material substrate can be converted into a waveguide mode electromagnetic wave propagating through a support substrate via a conductor pin.
  • the support substrate can function as an antenna that spatially radiates electromagnetic waves propagating in waveguide mode in the in-plane direction of the substrate.
  • the conductor pin 25 extends from the signal electrode 2 a through the inorganic material substrate 1 and reaches the SIW on the support substrate 20 .
  • the conductor pin 25 can serve as a propagation medium for electromagnetic waves.
  • the conductor pin 25 is made of a conductive material, typically the same metal as the coplanar electrode 2 (described later). In the illustrated example, the conductor pins 25 extend in the thickness direction of the inorganic material substrate 1 .
  • the conductor pin 25 may have a columnar shape such as a cylindrical shape, or may have a tubular shape (hollow shape) such as a cylindrical shape.
  • the base end of the conductor pin 25 is connected to the end of the signal electrode 2a.
  • a free end of the conductor pin 25 is inserted into an insertion hole 26 formed in the support substrate 20 (see FIG. 17).
  • the insertion hole 26 is located between the first via row 22 a and the second via row 22 b and is aligned with the recess 21 .
  • a portion of the conductor pin 25 between the base end and the free end is inserted through the opening 31 of the first ground electrode 3 .
  • Conductor pin 25 is preferably insulated from first ground electrode 3 .
  • the openings 31 form an air layer around the conductor pins 25, as shown in FIG.
  • the opening 31 is larger than the outer shape of the conductor pin 25 , and the entire periphery of the opening 31 is separated from the conductor pin 25 .
  • the conductor pin can be insulated from the first ground electrode, and thus the signal electrode and the first ground electrode can be stably insulated. Further, substrate resonance due to electric field leakage to the support substrate can be further suppressed. Furthermore, the effect of dielectric loss can be suppressed compared to a structure in which an air layer is filled with resin.
  • the periphery of the conductor pin 25 may be covered with an insulating material 15 .
  • This also allows the conductor pin to be insulated from the first ground electrode.
  • insulating materials include resin and SiO 2 .
  • FIG. 19 is a schematic perspective view of a waveguide element according to still another embodiment of the present invention. Note that the ground electrodes and vias are omitted in FIG. 19 for the sake of convenience.
  • Waveguide element 103 comprises a plurality of signal electrodes spaced apart from each other. Therefore, the waveguide element 103 has a plurality of transmission lines corresponding to the signal electrodes. More specifically, the waveguide element 103 includes a coplanar electrode 2 including a first signal electrode 2a and a second signal electrode 2e, and a first conductor pin and a second conductor pin (not shown).
  • the waveguide element 103 also has a first cavity (first low dielectric constant portion) 50 and a second cavity (second low dielectric constant portion) 51 .
  • the first cavity 50 is arranged in the thickness direction of the inorganic material substrate 1 so as to overlap at least a portion of the first signal electrode 2a.
  • the second cavity 51 is arranged in the thickness direction of the inorganic material substrate 1 so as to overlap at least a portion of the second signal electrode 2e.
  • the first signal electrode 2a forms a first transmission line together with a ground electrode (not shown), and the second signal electrode 2e forms a second transmission line together with a ground electrode (not shown).
  • the first conductor pin couples the SIW composed of the first ground electrode 3, the second ground electrode 4 and the plurality of through-substrate vias 22 and the first transmission line.
  • the second conductor pin couples the SIW composed of the first ground electrode 3, the second ground electrode 4 and the plurality of through-substrate vias 22 and the second transmission line. Accordingly, in one embodiment, after the transmission line mode electromagnetic wave (signal) propagating through the inorganic material substrate is converted into the SIW mode via the first conductor pin, the support substrate is propagated in the SIW mode, and then It can be converted into a transmission line mode propagating through the inorganic material substrate again via the second conductor pin. In this embodiment, the electromagnetic wave propagated through the inorganic material substrate can be emitted from the antenna element provided on the inorganic material substrate.
  • Each waveguide element described above includes one support substrate 20, but the number of support substrates 20 is not particularly limited.
  • a plurality of supporting substrates may be arranged at intervals in the thickness direction of the inorganic material substrate, and a substrate integrated waveguide (SIW) may be provided for each of the plurality of supporting substrates.
  • SIW substrate integrated waveguide
  • the antenna portion that radiates electromagnetic waves in the SIW mode can be arrayed in the thickness direction.
  • Such waveguide elements can therefore be used as phased array antennas in wireless communications.
  • the second ground electrode may be arranged between adjacent supporting substrates among the plurality of supporting substrates.
  • the SIW provided on each support substrate consists of metal layers (i.e., a first ground electrode and a second ground electrode, or two second ground electrodes) disposed on both sides of the support substrate, and a plurality of through-substrate vias penetrating through the supporting substrate.
  • a plurality of waveguide units including SIW may be arranged at intervals in the thickness direction of the inorganic material substrate.
  • Each of the plurality of waveguide units includes a first ground electrode, a supporting substrate, a second ground electrode and a plurality of through-substrate vias.
  • a spacer substrate may be provided between adjacent supporting substrates among the plurality of supporting substrates. Spacer substrates may be disposed between waveguide units adjacent to each other.
  • waveguide elements comprising a plurality of SIWs preferably comprise as many signal electrodes and conductor pins as SIWs. Each conductor pin couples the transmission path formed by each signal electrode and the corresponding SIW. According to such a configuration, while being relatively easy to fabricate, signals (electromagnetic waves) from an external signal source placed on the inorganic material substrate can be easily propagated to the SIW of each supporting substrate.
  • waveguide element includes both a wafer on which at least one waveguide element is formed (waveguide element wafer) and chips obtained by cutting the waveguide element wafer.
  • the inorganic material substrate 1 has an upper surface on which the coplanar electrode 2 is provided and a lower surface located within the composite substrate.
  • the inorganic material substrate 1 is made of an inorganic material. Any appropriate material can be used as the inorganic material as long as the effects of the embodiments of the present invention can be obtained.
  • Typical examples of such materials include single crystal quartz (dielectric constant 4.5, dielectric loss tangent 0.0013), amorphous quartz (quartz glass, dielectric constant 3.8, dielectric loss tangent 0.0010), Spinel (relative dielectric constant 8.3, dielectric loss tangent 0.0020), AlN (relative dielectric constant 8.5, dielectric loss tangent 0.0015), sapphire (relative dielectric constant 9.4, dielectric loss tangent 0.0030), SiC ( dielectric constant 9.8, dielectric loss tangent 0.0022), magnesium oxide (relative dielectric constant 10.0, dielectric loss tangent 0.0012), and silicon (relative dielectric constant 11.7, dielectric loss tangent 0.0016).
  • the inorganic material substrate 1 is preferably a quartz glass substrate made of amorphous quartz.
  • the inorganic material substrate 1 is a quartz glass substrate, it is possible to stably suppress an increase in propagation loss even when the high-frequency electromagnetic wave is guided.
  • the dielectric constant is larger than that of a resin-based substrate, the size of the substrate can be reduced, and since the dielectric constant is relatively small among inorganic materials, it is advantageous in reducing the delay.
  • quartz glass has a low dielectric loss (tan ⁇ ), and unlike resin substrates, quartz glass has the characteristic that a conductor layer (metal layer) for forming a line can be formed without surface roughening or surface treatment. . Therefore, propagation loss can be further reduced.
  • the coplanar electrode 2 is typically provided on the upper surface of the inorganic material substrate 1 and is in direct contact with the inorganic material substrate 1 .
  • the coplanar electrode 2 is typically made of metal. Examples of metals include chromium (Cr), nickel (Ni), copper (Cu), and gold (Au). Metals can be used alone or in combination.
  • the coplanar electrode 2 may be a single layer, or may be formed by stacking two or more layers.
  • the coplanar electrode 2 is formed on the inorganic material substrate 1 by a known film forming method such as sputtering (otherwise, vapor deposition and printing).
  • the thickness of the coplanar electrode 2 is, for example, 1 ⁇ m or more, preferably 4 ⁇ m or more, and is, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less.
  • the first ground electrode 3 is provided on the upper surface of the support substrate 20 .
  • the first ground electrode 3 can be made of the same metal as the coplanar electrode 2 .
  • the metal of the first ground electrode 3 may be the same as the metal of the coplanar electrode 2 or may be different from the metal of the conductor layer 2 .
  • the thickness range of the first ground electrode 3 is the same as the thickness range of the coplanar electrode 2 .
  • the first ground electrode 3 is formed on the surface of the support substrate 20 by sputtering or plating, for example.
  • the second ground electrode 4 is formed on the surface of the support substrate 20 opposite to the first ground electrode 3, for example by sputtering or plating.
  • the second ground electrode 4 can be made of the same metal as the coplanar electrode 2 .
  • the metal of the second ground electrode 4 may be the same as the metal of the coplanar electrode 2 or may be different from the metal of the coplanar electrode 2 .
  • the thickness range of the second ground electrode 4 is the same as the thickness range of the coplanar electrode 2 .
  • the second ground electrode 4 does not necessarily have to be formed on the entire surface of the support substrate 20 opposite to the first ground electrode.
  • the support substrate 20 has an upper surface located within the composite substrate and a lower surface exposed to the outside.
  • the upper surface of the support substrate 20 may be formed with the recesses 21 described above.
  • the support substrate 20 is provided to increase the strength of the composite substrate, thereby making it possible to reduce the thickness of the inorganic material substrate as described above. Any appropriate configuration can be adopted as the support substrate 20 .
  • Specific examples of materials constituting the support substrate 20 include indium phosphide (InP), silicon (Si), glass, sialon (Si 3 N 4 —Al 2 O 3 ), mullite (3Al 2 O 3.2SiO 2 , 2Al).
  • Support substrate 20 preferably comprises at least one selected from the group consisting of indium phosphide, silicon, aluminum nitride, silicon carbide and silicon nitride, and more preferably comprises silicon.
  • the inorganic material substrate may be heated, degrading the characteristics of other active elements and mounted parts.
  • a material with high thermal conductivity can be used for the support substrate.
  • the thermal conductivity is preferably 150 W/Km or more, and from this point of view, the support substrate 20 is composed of silicon (Si), aluminum nitride (AlN), gallium nitride (GaN), silicon carbide (SiC), silicon night Ride (Si 3 N 4 ) can be mentioned.
  • the material of the support substrate is preferably selected from monocrystalline quartz, amorphous quartz, spinel, AlN, sapphire, aluminum oxide, SiC, magnesium oxide or silicon. Among the materials for such a support substrate, silicon is more preferable.
  • the thickness of the support substrate 20 is, for example, ⁇ /4 ⁇ b or more, preferably ⁇ /2 ⁇ , where ⁇ b is the dielectric constant of the support substrate 20 and ⁇ is the wavelength of the electromagnetic wave guided by the waveguide element. b or more, for example, 2 ⁇ / ⁇ b or less, preferably 3 ⁇ / 2 ⁇ b or less, more preferably ⁇ / ⁇ b or less. If the thickness of the support substrate is equal to or more than the above lower limit, the mechanical strength of the waveguide element can be stably improved. If the thickness of the support substrate is equal to or less than the above upper limit, it is possible to suppress slab mode propagation, reduce the thickness of the waveguide element (maintain the mechanical strength of the waveguide element), and suppress substrate resonance.
  • the interval between the support substrates adjacent to each other should be approximately ⁇ /2, which is suitable for the antenna pitch. is desirable.
  • the thickness of the support substrate is less than the above-mentioned interval, a suitable antenna pitch can be ensured by providing a spacer substrate between the adjacent support substrates.
  • the coefficient of linear expansion of the material forming the support substrate 20 is closer to the coefficient of linear expansion of the material forming the inorganic material substrate 1 .
  • thermal deformation typically, warpage
  • the coefficient of linear expansion of the material forming the support substrate 20 is in the range of 50% to 150% of the coefficient of linear expansion of the material forming the inorganic material substrate 1 .
  • the support substrate 20 supports the waveguide member 10 by directly bonding to the waveguide member 10 , typically.
  • the inorganic material substrate 1 and the support substrate 20 are directly bonded.
  • direct bonding means that two layers or substrates are bonded without interposing an adhesive (for example, an organic adhesive such as resin).
  • the form of direct bonding can be appropriately set according to the configuration of the layers or substrates to be bonded together.
  • the interfaces bonded by direct bonding are typically amorphous. Therefore, the thermal resistance of the bonding interface can be dramatically reduced compared to resin bonding (resin bonding) using an organic adhesive.
  • the form of direct bonding can also include bonding of the support substrate and the inorganic material substrate via the ground electrode 3 described above and/or the bonding portion 60 described later.
  • delamination in the waveguide element can be well suppressed, and as a result, damage (for example, cracks) to the inorganic material substrate caused by such delamination can be effectively prevented. can be suppressed.
  • the waveguide element 100 may further include a bonding portion 60 provided between the waveguide member 11 and the support substrate 20 to bond the waveguide member 11 and the support substrate 20 together.
  • the joint 60 is typically provided between the waveguide member 11 and the portion of the support substrate 20 other than the recess 21 .
  • only the joint portion 60 is provided between the inorganic material substrate 1 and the support substrate 20 .
  • the inorganic material substrate 1 and the support substrate 20 are directly bonded only via the bonding portion 60 .
  • the joint 60 is positioned between the inorganic material substrate 1 and the ground electrode 3 located in a portion other than the recess 21 of the support substrate 20 to integrate them.
  • the ground electrode 3 is formed on the surface of the support substrate 20 on the inorganic material substrate side and is in direct contact with the support substrate 20 .
  • the joint portion 60 is positioned between the inorganic material substrate 1 and the ground electrode 3 and joins the inorganic material substrate 1 and the ground electrode 3 .
  • a ground electrode 3 and a joint portion 60 are provided between the inorganic material substrate 1 and the support substrate 20 . As a result, the inorganic material substrate 1 and the support substrate 20 are directly bonded via the ground electrode 3 and the bonding portion 60 .
  • the ground electrode 3 is in direct contact with portions of the inorganic material substrate 1 and the support substrate 20 other than the concave portion 21, and serves as a joint portion for joining the inorganic material substrate 1 and the support substrate 20. may function.
  • the ground electrode 3 is provided between the inorganic material substrate 1 and the support substrate 20 .
  • the inorganic material substrate 1 and the support substrate 20 are directly bonded via the ground electrode 3 .
  • the ground electrode 3 may be formed by forming metal layers on both the inorganic material substrate 1 and the support substrate 20 and directly bonding the metal layers. In this case, the bonding interface is formed inside the ground electrode.
  • the joint portion may be located between the low dielectric constant portion 51 and the inorganic material substrate 1, and may be located between the low dielectric constant portion 51 and the ground electrode 3. It may be located in between or they may be integrated.
  • an organic material such as an adhesive for bonding is not interposed between the coplanar electrode 2 and the support substrate 20 .
  • the thermal resistance at the interface between the inorganic material substrate 1 and the support substrate 20 can be reduced, and deterioration of the characteristics of active elements and mounted components can be suppressed.
  • the low dielectric constant portion is composed of an organic material such as a low dielectric constant polymer
  • the organic material as the low dielectric constant portion may be arranged between the coplanar electrode 2 and the support substrate 20. .
  • the structure in which no organic material (adhesive, etc.) other than the low dielectric constant part intervenes is formed by forming a ground electrode on the inorganic material substrate 1 and the support substrate 20 (one or both of the inorganic material substrate 1 and the support substrate 20). may or may not be used.) can be obtained by directly joining them.
  • the joint portion may be one layer, or two or more layers may be laminated.
  • the joint is typically composed of an inorganic material.
  • Examples of the bonding layer that forms the bonding portion include SiO 2 , amorphous silicon, and tantalum oxide.
  • the junction is a metal film selected from gold (Au), titanium (Ti), platinum (Pt), chromium (Cr), copper (Cu), tin (Sn), or combinations (alloys) thereof.
  • Au gold
  • Ti titanium
  • platinum platinum
  • Cr chromium
  • Cu copper
  • Sn tin
  • alloys amorphous silicon layer
  • the thickness of the joint portion is, for example, 0.001 ⁇ m or more and 10 ⁇ m or less, preferably 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the bonding layer is preferably formed only in the bonding portion, it may be formed in the concave portion since the effect on the propagation of electromagnetic waves is small within the thickness range described above.
  • Direct bonding can be realized, for example, by the following procedure.
  • a neutralizing beam is applied to each bonding surface of the components (layers or substrates) to be bonded. Thereby, each joint surface is activated.
  • the activated bonding surfaces are brought into contact with each other and bonded at room temperature.
  • the load during this joining may be, for example, 100N to 20000N.
  • an inert gas is introduced into the chamber, and a high voltage is applied from a DC power supply to the electrodes arranged in the chamber.
  • the atomic species that make up the beam are preferably inert gas elements (eg, argon (Ar), nitrogen (N)).
  • the voltage during activation by beam irradiation is, for example, 0.5 kV to 2.0 kV, and the current is, for example, 50 mA to 200 mA.
  • the direct bonding method is not limited to this, and FAB (Fast Atom Beam), a surface activation method using an ion gun, an atomic diffusion method, a plasma bonding method, or the like can also be applied.
  • Examples 1 and 2 > 1-1. Fabrication of Waveguide Device (Coplanar Line with Ground) The waveguide device shown in FIGS. 1 and 2 was fabricated.
  • a silicon wafer (support substrate) with a thickness of 525 ⁇ m was prepared.
  • a resist film was patterned on the upper surface of the silicon wafer so as to expose a region corresponding to the width of the signal electrode+gap g ⁇ 20 of the space directly below the signal electrode of the coplanar electrode described later.
  • the portion of the silicon wafer exposed from the resist film was dry-etched by reactive ion etching to form a concave portion (hollow structure).
  • the etching depth of the concave portion was the value shown in Table 1 (the thickness of the low dielectric constant portion).
  • a Cr film with a thickness of 50 nm and a Ni film with a thickness of 100 nm were formed by sputtering on the silicon wafer on which the concave portions were formed, thereby forming the base electrode.
  • a copper film was formed on the base electrode by electroplating to form a ground electrode.
  • an amorphous silicon film of 0.2 ⁇ m was formed on the ground electrode by sputtering. After the film formation, the amorphous silicon film was polished and planarized.
  • the arithmetic mean roughness of the surface of the amorphous silicon film of 10 ⁇ m square (10 ⁇ m square area; hereinafter the same) was measured to be 0.2 nm.
  • a 0.5 mm thick quartz glass wafer (quartz glass substrate, inorganic material substrate) was prepared, and a 0.2 ⁇ m amorphous silicon film was formed on the quartz glass wafer by sputtering.
  • a resist was applied to the surface of the amorphous silicon film, and a portion corresponding to the concave portion (non-bonding portion) of the silicon wafer was exposed by photolithography and developed (etched) to form a resist mask.
  • the amorphous silicon was removed by dry etching.
  • the amorphous silicon film was polished and planarized. Using an atomic force microscope, the arithmetic mean roughness of the surface of the amorphous silicon film of square 10 ⁇ m was measured to be 0.2 nm.
  • the amorphous silicon surface on the quartz glass wafer and the amorphous silicon surface on the ground electrode were bonded as follows. First, a quartz glass wafer and a silicon wafer were placed in a vacuum chamber, and in a vacuum of the order of 10 ⁇ 6 Pa, both bonding surfaces (the amorphous silicon surface of the quartz glass wafer and the amorphous silicon surface on the ground electrode) were exposed to high-speed Ar. A reactive atom beam (accelerating voltage of 1 kV, Ar flow rate of 60 sccm) was applied for 70 seconds. After the irradiation, the quartz glass wafer and the silicon wafer were allowed to stand for 10 minutes to cool. The quartz glass wafer and the silicon wafer were bonded by pressing for 2 minutes.
  • the quartz glass wafer and the silicon wafer were directly bonded via the amorphous silicon layer (bonding portion). After bonding, the quartz glass wafer was polished until the thickness thereof reached the value shown in Table 1 to form a composite wafer. In the resulting quartz glass/ground electrode/silicon composite substrate, no defect such as peeling was observed at the bonded interface.
  • a resist was applied to the surface (polished surface) of the quartz glass wafer on the side opposite to the silicon wafer, and patterning was performed by photolithography so as to expose the portion where the coplanar electrode pattern was to be formed. Thereafter, a Cr film of 50 nm thickness and a Ni film of 100 nm thickness were formed by sputtering on the upper surface of the quartz glass wafer exposed from the resist to form a base electrode. Furthermore, a coplanar electrode pattern was formed by depositing a copper film on the base electrode by electroplating. The length of the signal electrode in the waveguide direction was 10 mm. A gap g between the signal electrode and the ground electrode was 13 ⁇ m.
  • the amorphous silicon layer in the concave portion (hollow structure) of the silicon wafer was removed by wet etching.
  • BHF buffered hydrofluoric acid
  • Propagation loss (dB/cm) was calculated from the measurement results of three waveguide elements having different signal electrode lengths and evaluated according to the following criteria. Table 1 shows the results. ⁇ (excellent): less than 0.5 dB/cm ⁇ (good): 0.5 dB/cm or more and less than 1 dB/cm ⁇ (acceptable): 1 dB/cm or more and less than 2 dB/cm ⁇ (improper): 2 dB/cm or more
  • a silicon wafer (support substrate) having recesses was prepared in the same manner as in Example 1. However, no ground electrode was formed on the silicon wafer having the recesses. Using an atomic force microscope, the arithmetic mean roughness of the surface of the silicon wafer with a square of 10 ⁇ m was measured and found to be 0.2 nm.
  • a quartz glass wafer (quartz glass substrate, inorganic material substrate) with a thickness of 0.5 mm was prepared, and in the same manner as in Example 1, a patterned amorphous silicon film was formed on the quartz glass wafer. After the formation, the amorphous silicon film was polished and planarized. Using an atomic force microscope, the arithmetic mean roughness of the surface of the amorphous silicon film of square 10 ⁇ m was measured to be 0.2 nm.
  • the amorphous silicon surface on the quartz glass wafer and the silicon wafer were directly bonded. Direct bonding was carried out as in Example 1. In the resulting quartz glass/silicon composite substrate, no defect such as peeling was observed at the bonding interface. Then, the quartz glass wafer was polished to the thickness shown in Table 1.
  • a coplanar electrode pattern was formed on the surface (polished surface) of the quartz glass wafer opposite to the silicon wafer.
  • the length of the signal electrode in the waveguide direction was 10 mm.
  • a gap g between the signal electrode and the ground electrode was 13 ⁇ m.
  • Example 5 A silicon wafer (supporting substrate) with a thickness of 525 ⁇ m and a quartz glass wafer (quartz glass substrate, inorganic material substrate) with a thickness of 0.5 mm are prepared, and a waveguide member having a coplanar electrode and an inorganic material substrate, and a polymer layer. , a waveguide element having a ground electrode and a supporting substrate having a concave portion was obtained. First, silicon wafers (supporting substrates) having recesses and ground electrodes were prepared in the same manner as in Example 1.
  • a Teflon (registered trademark) polymer resin with a dielectric constant of 2.3 was spin-coated and cured to form a polymer layer in the recesses of the support substrate.
  • CMP polishing was performed to remove the polymer outside the recess and planarize the polymer layer on the support substrate.
  • an amorphous silicon film was formed by sputtering. After the film formation, a resist was applied to the surface of the amorphous silicon film, and portions corresponding to the concave portions were exposed by photolithography and developed (etched) to form a resist mask. After that, the amorphous silicon was removed by dry etching. Next, the amorphous silicon film was polished and planarized. Using an atomic force microscope, the arithmetic mean roughness of the surface of the amorphous silicon film of square 10 ⁇ m was measured to be 0.2 nm.
  • an amorphous silicon film of 0.2 ⁇ m was formed on the quartz glass wafer by sputtering. After the film formation, a resist was applied to the surface of the amorphous silicon film, and portions corresponding to the concave portions (non-bonding portions) of the silicon wafer were exposed and etched by photolithography to form a resist mask. After that, the amorphous silicon was removed by dry etching.
  • the amorphous silicon surface on the quartz glass wafer and the silicon wafer were directly bonded. Direct bonding was carried out as in Example 1. In the resulting quartz glass/silicon composite substrate, no defect such as peeling was observed at the bonded interface. Then, the quartz glass wafer was polished to the thickness shown in Table 1.
  • Example 1 a coplanar electrode pattern was formed on the surface (polished surface) of the quartz glass wafer opposite to the silicon wafer.
  • the length of the signal electrode in the waveguide direction was 10 mm.
  • a gap g between the signal electrode and the ground electrode was 13 ⁇ m.
  • a waveguide element including a waveguide member including a coplanar electrode and an inorganic material substrate, a polymer layer, a ground electrode, and a supporting substrate having recesses was obtained.
  • the propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 6 A waveguide element was produced in the same manner as in Example 1, except that the etching depth of the recess was changed and the thickness of the cavity was changed to the value shown in Table 1. The propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 7 Except for changing the silica glass wafer as the inorganic material substrate to a single crystal silicon wafer, and changing the etching depth of the concave portion to change the thickness of the cavity to the value shown in Table 1, the same as in Example 1.
  • a waveguide device was fabricated in the same manner.
  • Example 8 The procedure was the same as in Example 1, except that the quartz glass wafer as the inorganic material substrate was changed to a sapphire wafer, and the depth of etching of the concave portion was changed to change the thickness of the cavity to the value shown in Table 1. Then, a waveguide element was produced. The propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 9 Example 1, except that the silica glass wafer as the inorganic material substrate was changed to a polycrystalline AlN wafer, and the depth of etching of the concave portion was changed to change the thickness of the cavity to the value shown in Table 1.
  • a waveguide device was fabricated in the same manner. The propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
  • a waveguide device shown in FIGS. 4 and 5 was produced.
  • a silicon wafer (supporting substrate) with a thickness of 525 ⁇ m and a quartz glass wafer (quartz glass substrate, inorganic material substrate) with a thickness of 0.5 mm are prepared, and a waveguide member having a coplanar electrode and an inorganic material substrate, and a polymer layer.
  • a waveguide element having a ground electrode and a support substrate having no recess was obtained.
  • a silicon wafer (support substrate) with a thickness of 525 ⁇ m was prepared. Thereafter, a Cr film of 50 nm thickness and a Ni film of 100 nm thickness were formed on a silicon wafer by sputtering to form a base electrode. Further, a copper film was formed on the base electrode by electroplating to form a ground electrode.
  • thermosetting Teflon (registered trademark) film with a dielectric constant of 2.3 was adhered and cured to form a polymer layer with a thickness of 100 ⁇ m on the ground electrode.
  • an amorphous silicon film was formed by sputtering. After film formation, a resist is applied to the surface of the amorphous silicon film, and a region corresponding to the width of the signal electrode directly below the coplanar electrode + gap g x 20 is exposed by photolithography and developed (etched). A resist mask was formed. After that, the amorphous silicon was removed by dry etching. Next, the amorphous silicon film was polished and planarized. Using an atomic force microscope, the arithmetic mean roughness of the surface of the amorphous silicon film of square 10 ⁇ m was measured to be 0.2 nm.
  • an amorphous silicon film of 0.2 ⁇ m was formed on the quartz glass wafer by sputtering. After film formation, a resist is applied to the surface of the amorphous silicon film, and photolithography is used to expose and etch a region corresponding to the width of the signal electrode directly below the coplanar electrode + gap g ⁇ 20 to form a resist mask. bottom. After that, the amorphous silicon was removed by dry etching. The amorphous silicon film was polished and planarized. Using an atomic force microscope, the arithmetic mean roughness of the surface of the amorphous silicon film of square 10 ⁇ m was measured to be 0.2 nm.
  • the amorphous silicon surface on the quartz glass wafer and the amorphous silicon surface on the polymer layer were directly bonded. Direct bonding was carried out as in Example 1. In the resulting quartz glass/silicon composite substrate, no defect such as peeling was observed at the bonding interface. Then, the quartz glass wafer was polished to the thickness shown in Table 1.
  • Example 1 a coplanar electrode pattern was formed on the surface (polished surface) of the quartz glass wafer opposite to the silicon wafer.
  • the length of the signal electrode in the waveguide direction was 10 mm.
  • a gap g between the signal electrode and the ground electrode was 13 ⁇ m.
  • a waveguide element including a waveguide member including a coplanar electrode and an inorganic material substrate, a polymer layer, a ground electrode, and a supporting substrate having no concave portion was obtained.
  • the propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 11 A waveguide element was obtained in the same manner as in Example 1, except that the thickness of the polished quartz glass wafer (quartz glass substrate, inorganic material substrate) was changed to 10 ⁇ m. The propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
  • the waveguide device can be used in a wide range of fields such as waveguides, next-generation high-speed communications, sensors, laser processing, and solar power generation, and is particularly suitable for use as waveguides for millimeter waves to terahertz waves.
  • waveguide elements can be used, for example, in antennas, bandpass filters, couplers, delay lines (phase shifters), or isolators.

Landscapes

  • Waveguides (AREA)

Abstract

無機材料基板が支持基板に実装(支持)される構成でありながら、30GHzを超える高周波数の領域で、広い周波数範囲にわたって優れた低伝搬損失性能を有する導波素子が提供される。本発明の実施形態による導波素子は、周波数が30GHz以上20THz以下である電磁波を導波可能な導波部材と、前記導波部材を支持する支持基板と、低誘電率部と、を備えている。この導波部材は、無機材料基板と、前記無機材料基板の上部に設けられるコプレーナ型電極と、を備えている。支持基板は、前記無機材料基板の下部に設けられている。低誘電率部は、前記無機材料基板の下部に設けられ、前記無機材料基板の誘電率よりも小さい誘電率を有している。

Description

導波素子
 本発明は、導波素子に関する。
 ミリ波~テラヘルツ波を導波する素子の1つとして、導波素子の開発が進められている。導波素子は、光導波路、次世代高速通信、センサ、レーザー加工、太陽光発電等の幅広い分野への応用および展開が期待されている。このような導波素子の一例として、厚み300μmのガラス基板と、ガラス基板上に設けられるコプレーナ型導体と、ガラス基板におけるコプレーナ型導体と反対側の面に設けられる接地電極とから構成される接地コプレーナ導波路を用いた技術が提案されている(特許文献1)。
 このような技術による導波素子を各種産業製品に採用する場合、導波素子を、IC基板やプリント基板などの支持基板に実装することが検討される。しかし、導波素子を支持基板に実装すると、ミリ波~テラヘルツ波の周波数域(とりわけ300GHz以上の周波数域)において、実用レベルの低伝搬損失性能を確保できる範囲が狭く、広い周波数範囲にわたる優れた低伝搬損失性能を実現することが困難である。
特表2021-509767号公報
 本発明の主たる目的は、無機材料基板が支持基板に実装(支持)される構成でありながら、30GHz以上の高周波数の領域で、広い周波数範囲にわたって優れた低伝搬損失性能を実現できる導波素子を提供することにある。
 本発明の実施形態による導波素子は、周波数が30GHz以上20THz以下である電磁波を導波可能な導波部材と;前記導波部材を支持する支持基板と;低誘電率部と、を備えている。前記導波部材は、無機材料基板と;前記無機材料基板の上部に設けられるコプレーナ型電極と;を備えている。前記支持基板は、前記無機材料基板の下部に設けられている。前記低誘電率部は、前記無機材料基板の下部に設けられ、前記無機材料基板の誘電率よりも小さい誘電率を有している。
 1つの実施形態においては、上記無機材料基板の厚みtは、下記式(1)を満たす。
Figure JPOXMLDOC01-appb-M000002
(式中、tは、無機材料基板の厚みを表す。λは、導波部材に導波される電磁波の波長を表す。εは、無機材料基板の比誘電率を表す。aは、2の数値を表す。)
 1つの実施形態においては、上記支持基板は、凹部を有し、上記無機材料基板の下面と上記支持基板の凹部とにより空洞が規定され、上記空洞が前記低誘電率部として機能する。
 1つの実施形態においては、上記コプレーナ型電極は、所定方向に延びる信号電極と;前記所定方向と交差する方向に前記信号電極に対して間隔を空けて位置するグランド電極と;を備えている。前記所定方向と交差する方向における前記信号電極と前記グランド電極との間のギャップの寸法をgとした場合において、上記無機材料基板の厚み方向における空洞の寸法は、g以上である。
 1つの実施形態においては、上記導波素子は、前記無機材料基板と前記支持基板との間に位置する接地電極を備えている。
 1つの実施形態においては、上記無機材料基板の300GHzにおける比誘電率εと誘電正接(誘電体損失)tanδは、それぞれ3.5以上12以下、0.003以下である。
 1つの実施形態においては、上記無機材料基板は、石英ガラス基板である。
 本発明の実施形態によれば、無機材料基板が支持基板に実装(支持)される構成でありながら、30GHz以上の高周波数の領域で、広い周波数範囲にわたって優れた低伝搬損失性能を有する導波素子を実現することができる。
本発明の実施形態による導波素子の概略斜視図である。 図1の導波素子のII-II´断面図である。 本発明の別の実施形態による導波素子の概略斜視図である。 本発明のさらに別の実施形態による導波素子の概略斜視図である。 図4の導波素子のV-V´断面図である。 図2の導波素子の変形例を説明する概略断面図である。 本発明のさらに別の実施形態による導波素子の概略斜視図である。 図7の導波素子のVIII-VIII´断面図である。 図7の導波素子のIX-IX´断面図である。 図7の導波素子のX-X´断面図である。 図7の導波素子におけるビアの形状の変形例を説明する概略断面図である。 図11の導波素子におけるビアの配置の変形例を説明する概略断面図である。 図7の導波素子におけるビアの配置の変形例を説明する概略断面図である。 図11の導波素子におけるビアの構成の変形例を説明する概略断面図である。 本発明のさらに別の実施形態による導波素子の概略斜視図である。 図15の導波素子のXVI-XVI´断面図である。 図15の導波素子の分解斜視図である。 図16の導体ピンを絶縁材料によって覆った状態を説明する概略断面図である。 本発明のさらに別の実施形態による導波素子の概略斜視図である。 図3の導波素子における接合部の配置の一例を説明する概略断面図である。 図2の導波素子における接合部の配置の一例を説明する概略断面図である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.導波素子の全体構成
A-1.導波素子100の全体構成
 図1は、本発明の1つの実施形態による導波素子の概略斜視図であり;図2は、図1の導波素子のII-II´断面図である。
 図示例の導波素子100は、導波部材10と、支持基板20と、低誘電率部50とを備えている。導波部材10は、周波数が30GHz以上20THz以下である電磁波、言い換えれば、ミリ波~テラヘルツ波の電磁波を導波可能である。なお、ミリ波とは、代表的には周波数が30GHz~300GHz程度の電磁波であり;テラヘルツ波とは、代表的には周波数が300GHz~20THz程度の電磁波である。とりわけ、導波部材10は、周波数が30GHz以上2THz以下である電磁波(特に周波数が30GHz以上1THz以下である電磁波)を、優れた低伝搬損失性を確保しつつ導波できる。
 導波部材10は、コプレーナ線路を構成しており、無機材料基板1と;無機材料基板1の上部に設けられるコプレーナ型電極2と;を備えている。
 支持基板20は、無機材料基板1の下部に設けられ、導波部材10を支持している。低誘電率部50は、無機材料基板1の下部に設けられ、無機材料基板1の誘電率よりも小さい誘電率を有している。低誘電率部50は、代表的には、無機材料基板1の屈折率よりも小さい屈折率を有する低屈折率部である。
 詳しくは後述するが、コプレーナ線路を構成する導波部材では、コプレーナ型電極に電圧が印加されると電界が生じ、上記した高周波数の電磁波は電界と結合して伝搬される。
 このような導波部材が支持基板に支持された構成で上記した高周波数の電磁波(とりわけ300GHz以上の電磁波)を導波すると、スラブモードの誘起および/または基板共振が発生して、伝搬損失が顕著に増大する場合がある。
 スラブモードや基板共振による伝搬損失の増大を抑制するためには、コプレーナ型電極が設けられる無機材料基板の厚さを十分に薄くする構造が有効であるが、この場合、伝搬する電磁波が無機材料基板の下部にある支持基板に漏洩し、支持基板の誘電体損失による伝搬損失が大きくなるという新たな問題が生じる。
 一方、コプレーナ型電極が設けられる無機材料基板の下部に低誘電率部を設けることにより、上記した高周波数の領域で広い周波数範囲にわたって、電界が支持基板に漏洩することを抑制しつつ、スラブモードの誘起および基板共振の発生を抑制できる。そのため、上記導波素子は、上記した高周波数の領域で、広い周波数範囲にわたって優れた低伝搬損失性能を確保できる。
 また、導波素子は小型化の開発が進められており、将来的には回路の集積化が見込まれるため、導波部材(線路構造)もそれに伴う小型化が求められると予想される。上記の導波素子では、導波部材(線路構造)が支持基板に支持されているので、導波部材が備える無機材料基板の薄板化を図ることができる。その結果、上記した高周波数の領域で広い周波数範囲にわたって優れた低伝搬損失性能を確保しながら、小型化の要望にも対応することができる。
 1つの実施形態において、無機材料基板1の厚みは、下記式(1)を満たす。
Figure JPOXMLDOC01-appb-M000003
(式中、tは、無機材料基板の厚みを表す。λは、導波部材に導波される電磁波の波長を表す。εは、無機材料基板の比誘電率を表す。aは、2の数値を表す。)
 無機材料基板の厚みが、上記式(1)を満足すると、上記した高周波数の電磁波を導波する場合の伝搬損失の低減を図ることができる。
 1つの実施形態において、無機材料基板1の300GHzにおける比誘電率εは、代表的には3.5以上であり、代表的には12.0以下、好ましくは10.0以下、より好ましくは5.0以下である。
 無機材料基板1の300GHzにおける誘電正接(誘電体損失)tanδは、代表的には0.0030以下、好ましくは0.0020以下、より好ましくは0.0015以下である。
 無機材料基板の比誘電率εおよび誘電正接(誘電体損失)tanδが上記の範囲であると、上記した高周波数域の広い周波数範囲にわたって優れた低伝搬損失性能を安定して確保できる。なお、比誘電率εおよび誘電正接(誘電体損失)tanδは、テラヘルツ時間領域分光法によって測定できる。また、本明細書において、比誘電率および誘電正接に関して測定周波数の言及がない場合、300GHzにおける比誘電率および誘電正接を意味する。
 無機材料基板1の厚みは、具体的には1μm以上、好ましくは2μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上であり、例えば300μm以下、好ましくは200μm以下、より好ましくは100μm以下、さらに好ましくは、70μm以下である。電極のサイズを小さくすることによる小型化の観点から、無機材料基板1の厚みは、60μm以下がとりわけ好ましい。
 無機材料基板1の厚みが上記範囲であると、上記した高周波数域の広い周波数範囲にわたって優れた低伝搬損失性能をより一層安定して確保できる。
 1つの実施形態において、導波部材10は、グランド付きコプレーナ線路を構成しており、接地電極3を備えている。接地電極3は、無機材料基板1と支持基板20との間に位置する。
 導波部材が接地電極を備えていると、コプレーナ型電極に電圧を印加したときに生じる電界が、支持基板に漏洩することを安定して抑制できるとともに、基板共振の発生も抑制できる。
 なお、図示例の導波部材10は、グランド付きコプレーナ線路を構成するが、本発明の導波部材は、図3に示す導波部材11のように、接地電極を備えなくてもよい。
 1つの実施形態において、コプレーナ型電極2は、信号電極2aと、第1グランド電極2bと、第2グランド電極2cとを備えている。信号電極2aは、所定方向(導波部材の導波方向)に延びる線形状を有している。信号電極2aの幅(導波方向と直交する方向の寸法)wは、例えば2μm以上、好ましくは20μm以上、例えば200μm以下、好ましくは150μm以下である。第1グランド電極2bは、信号電極2aの長手方向と交差(好ましくは直交)する方向に信号電極2aに対して間隔を空けて配置されている。第2グランド電極2cは、信号電極2aの長手方向と交差(好ましくは直交)する方向において、信号電極2aに対して第1グランド電極2bの反対側に位置し、信号電極2aに対して間隔を空けて配置されている。これによって、信号電極2aと、グランド電極2b、2cとの間には、信号電極2aの長手方向に延びる空隙部(ギャップ)が形成される。当該空隙部(ギャップ)の幅(長手方向と交差する方向の寸法)gは、例えば2μm以上、好ましくは5μm以上、例えば100μm以下、好ましくは80μm以下である。
 また、図6に示すように、グランド電極2b、2cと接地電極3とは導通していてもよい。グランド電極2b、2cと接地電極3とが導通していると、グランドを強化でき、周囲の線路や素子による浮遊容量を抑制できる。
 図示例では、無機材料基板1に複数のビアホール9が形成されており、各ビアホール9内に位置するビア6によって、グランド電極と接地電極とが、短絡されている。複数のビア6(ビアホール)の配置は特に制限されない。図示例では、複数のビア6(ビアホール)は、信号電極2aの長手方向に並んでいる。ビア6は、代表的には、ビアホールの内面全体に形成される導電膜である。ビア6は、導電性材料から構成され、代表的にはコプレーナ型電極2と同様の金属(後述)で構成される。ビアホールには、ホール内全体に導電性材料が充填されていてもよい。ビアが金属膜で形成される場合、その内部は導電性材料で充填されていてもよい。導電性材料は、ビアと同じ金属であってもよく、導電性ペーストなどの異なる材料であってもよい。
 導波素子100は、第2の接地電極4をさらに備えていてもよい。以下では、接地電極3を第1の接地電極3と称する場合がある。また、接地電極3を第1の金属層と称してもよく、第2の接地電極4を第2の金属層と称してもよい。第2の接地電極4は、支持基板20に対して第1の接地電極3と反対側に位置している。図示例では、第2の接地電極4は、支持基板20における第1の接地電極3と反対側の表面上に形成されて、支持基板20と直接接触している。このような構成によれば、第1の接地電極が無機材料基板と支持基板との間に配置され、第2の接地電極が支持基板に対して第1の接地電極と反対側に配置されているので、電磁波が支持基板に漏洩することをより一層抑制できる。
 導波素子100は、第1の接地電極3と第2の接地電極4とを電気的に接続する基板貫通ビア22を備えていてもよい。図6に示す導波素子100は、第1の接地電極3とコプレーナ型電極2のグランド電極とを接続するビア6と、第1の接地電極3と第2の接地電極4とを接続する基板貫通ビア22とを別々に備えている。これによって、グランドをさらに強化でき、周囲の線路や素子による浮遊容量を安定して抑制できる。
 図1および図2に示すように、1つの実施形態において、低誘電率部50は、空洞である。言い換えれば、空洞は、低誘電率部50(低屈折率部)として機能する。より詳しくは、支持基板20は、凹部21を有し、空洞は、無機材料基板1の下面と支持基板20の凹部21とにより規定される。凹部21は、代表的には、支持基板20の上面から下方に凹んでおり、信号電極2aと同じ方向に延びている。凹部21の内面に上記接地電極3が設けられている場合、空洞は、無機材料基板1の下面と、凹部21の内面に設けられる接地電極3とにより規定されてもよい。1つの実施形態において、空洞(低誘電率部)50は、無機材料基板1の厚み方向において、信号電極の少なくとも一部と重なるように配置されている。
 なお、低誘電率部は、誘電率が3.5未満のものが好ましく、例えば、SiO、フッ化マグネシウム、フッ化カルシウム、低誘電率ポリマー(例えば、比誘電率2.3のテフロン(登録商標)系ポリマー)であってもよい。
 低誘電率部が空洞であると、低誘電率部がその他の材料から構成される場合よりも、導波部材を伝搬する電磁波が、導波部材から漏れ出すことをより安定して抑制できるとともに、低誘電率部における伝搬損失(誘電体損失)をより抑制できる。
 1つの実施形態において、無機材料基板1の厚み方向における空洞の寸法dの下限値は、空隙部(ギャップ)の幅g以上、好ましくは、2g以上である。無機材料基板1の厚み方向における空洞の寸法dの上限値は、20g以下、好ましくは5g以下である。
 空洞の寸法が上記下限以上であると、上記した高周波数の電磁波を導波する場合の伝搬損失のさらなる低減を図ることができる。
 また、1つの実施形態において、無機材料基板1の幅方向(導波方向と直交する方向)における空洞の寸法の下限値は、信号電極の幅w以上、好ましくは、信号電極の幅w+空隙部(ギャップ)の幅g×2以上である。無機材料基板1の幅方向における空洞の寸法の上限値は、信号電極の幅w+空隙部(ギャップ)の幅g×40以下、好ましくは信号電極の幅w+空隙部(ギャップ)の幅g×20以下である。
 低誘電率部が空洞以外である場合、上記した材料から形成される低誘電率部は、支持基板20の凹部21に配置されてもよい。
 また、図4および図5に示すように、支持基板20が凹部21を有さず、上記した材料から形成される低誘電率部51が無機材料基板1と支持基板20との間に配置されていてもよい。図示例では、低誘電率部51は、層状に形成されており、無機材料基板1と接地電極3との間に挟まれている。無機材料基板1の厚み方向における低誘電率部51の寸法dの範囲は、上記した無機材料基板1の厚み方向における空洞の寸法dの範囲と同様である。
A-2.導波素子101の全体構成
 図7は、本発明の別の実施形態による導波素子の概略斜視図であり;図8は、図7の導波素子のVIII-VIII´断面図であり;図9は、図7の導波素子のIX-IX´断面図であり;図10は、図7の導波素子のX-X´断面図である。
 図示例の導波素子101は、上記した無機材料基板1、上記したコプレーナ型電極2、上記した第1の接地電極3、上記した支持基板20および、上記した第2の接地電極4に加えて、第1ビア5と、第2ビア6と、をさらに備えている。なお、図示しないが、導波素子101は、後述する接合部を備えていてもよい。
 1つの実施形態において、第1ビア5は、コプレーナ型電極2のグランド電極と第2の接地電極4とを電気的に接続し、かつ、第1の接地電極3と電気的に接続されている。導波素子101は、上記した第1ビア5を複数備えている。第2ビア6は、第1の接地電極3とグランド電極とを電気的に接続している。第2ビア6は、複数の第1ビア5のうち互いに隣り合う第1ビア5の間に配置されている。このような構成によれば、第1ビアが第1の接地電極と第2の接地電極とコプレーナ型電極のグランド電極とを電気的に接続している。そのため、グランドをより一層強化でき、周囲の線路や素子による浮遊容量をより安定して抑制できる。また、支持基板に優れた放熱機能を付加することができ、かつ、高次モードでの伝送を抑制することができる。また、第1ビアにおいて、第1の接地電極とグランド電極との間に位置する部分と、第1の接地電極と第2の接地電極との間に位置する部分との相対的な位置精度を簡便に確保することができる。そのため、第1の接地電極とグランド電極とを接続するビアと、第1の接地電極と第2の接地電極とを接続するビアとが別々に設けられる場合(図6参照)と比較して、リップルの発生を抑制することができる。また、第1ビア5を備える導波素子101は、図6に示す導波素子100と比較して、円滑に製造し得る。
 さらに、第2ビアが互いに隣り合う第1ビアの間に配置されているので、無機材料基板における第1ビアおよび第2ビアのピッチを、支持基板における第1ビアのピッチよりも小さくすることができる。そのため、無機材料基板を薄厚化しても、無機材料基板の強度を十分に確保することができる。
A-2-1.第1ビア
 図7に示すように、導波素子101において、第1ビア5は、信号電極2aの長手方向と交差(好ましくは直交)する方向において、信号電極2aの両側に設けられている。以下では、第1グランド電極2bと第2の接地電極4とを電気的に接続する第1ビアを第1ビア5aとし、第2グランド電極2cと第2の接地電極4とを電気的に接続する第1ビアを第1ビア5bとして互いに区別する場合がある。
 図8に示すように、第1ビア5aは、第1グランド電極2bおよび第2の接地電極4と接触しており、第1グランド電極2bと第2の接地電極4との間を連続的に延びている。第1ビア5bは、第2グランド電極2cおよび第2の接地電極4と接触しており、第2グランド電極2cと第2の接地電極4との間を連続的に延びている。第1ビア5a,5bのそれぞれは、第1の接地電極3を貫通しており、第1の接地電極3と接触している。なお、導波素子は、第1ビア5a,5bのうちいずれか一方のみを備えていてもよい。
 第1ビア5は、代表的には導電膜である。第1ビア5は、導電性材料から構成され、代表的にはコプレーナ型電極2と同様の金属(後述)で構成される。第1ビア5の形状は、それが配置される第1ビアホール8の形状に対応する。つまり、導波素子101は、複数の第1ビア5に対応して、複数の第1ビアホール8を有している。第1ビアホール8は、無機材料基板1、第1の接地電極3および支持基板20を貫通している。第1ビアホール8は、代表的には、無機材料基板1の上方から見て円形状を有する。第1ビアホールが円形状を有する場合、第1ビアホールの内径は、例えば10μm以上、好ましくは20μm以上であり、例えば200μm以下、好ましくは100μm以下、より好ましくは80μm以下である。
 図8では、第1ビアホール8は、無機材料基板1の上方から見て円形状を有し、かつ、無機材料基板1の厚み方向に直線的に、無機材料基板1、第1の接地電極3および支持基板20を貫通している。第1ビアホールが円形かつ直線的である場合、第1ビア5は、無機材料基板1の厚み方向に延びる円柱形状または円筒形状を有する。この場合、第1ビア5の外径の範囲は、上記第1ビアホールの内径の範囲と同様である。
 図11に示すように、第1ビアホール8は、無機材料基板1の上方から見て円形状を有し、かつ、第1の接地電極3に近づくにつれて小径となるテーパ形状を有していてもよい。また、図示しないが、第1ビアホール8は、無機材料基板1の上方から見て円形状を有し、かつ、接地電極3に近づくにつれて大径となるテーパ形状であってもよい。
 第1ビアホールがテーパ形状であると、第1ビア内の導電膜を形成しやすくなる、支持基板の強度が確保しやすくなる、という特徴を持たすことができる。また、第1ビアは、導電性材料が第1ビアホールに埋め込まれるように形成されていてもよい。
 第1ビアホールが円形かつテーパ形状である場合、第1ビア5は、好ましくは、第1の接地電極3との接触部分が小径となり、第1の接地電極3から離れるにつれて大径となる砂時計形状を有する。言い換えれば、第1ビア5は、好ましくは、2つの円錐の頂点同士が連結された形状を有する。この場合、第1ビア5の最大外径が上記の範囲内となる。1つの実施形態において、グランド電極と接触する第1ビア5の一端部の外径は、第2の接地電極と接触する第1ビア5の他端部の外径よりも小さい。第1ビア5において、第1接地電極に対してコプレーナ型電極2側のテーパ角は、第1接地電極に対して第2の接地電極側のテーパ角よりも小さい。
 なお、図示例では、コプレーナ型電極のグランド電極および第2の接地電極のそれぞれが、第1ビアホールを塞ぐように形成されているが、グランド電極および第2の接地電極のそれぞれの構成はこれに限定されない。グランド電極および第2の接地電極のそれぞれは、第1ビアと導通されていればよく、第1ビアホールを塞ぐことなく開放していてもよい。
 複数の第1ビア5aのピッチP1(互いに隣り合う第1ビア5の中心間の距離)は、例えば40μm以上、好ましくは60μm以上であり、例えば600μm以下、好ましくは400μm以下、より好ましくは200μm以下である。
 また、図7~図11に示す導波素子101では、複数の第1ビア5が、信号電極2aの長手方向に互いに間隔を空けて並んでいる。複数の第1ビア5が並ぶ方向は、信号電極2aの長手方向に限定されない。図13に示すように、複数の第1ビア5は、信号電極2aの長手方向と交差(好ましくは直交)する方向に互いに間隔を空けて並んでいてもよい。また、導波素子は、信号電極2aの長手方向に並ぶ第1ビア5の列を、信号電極2aの長手方向と交差(直交)する方向に複数有してもよい。
A-2-2.第2ビア
 図7に示すように、導波素子101において、第2ビア6は、信号電極2aの長手方向と交差(好ましくは直交)する方向において、信号電極2aの両側に設けられている。以下では、第1グランド電極2bと第1の接地電極3とを電気的に接続する第2ビアを第2ビア6aとし、第2グランド電極2cと第1の接地電極3とを電気的に接続する第2ビアを第2ビア6bとして互いに区別する場合がある。第2ビア6aは、第1グランド電極2bおよび第1の接地電極3と接触しており、かつ、第2の接地電極4と接触していない。第2ビア6bは、第2グランド電極2cおよび第1の接地電極3と接触しており、かつ、第2の接地電極4と接触していない。なお、導波素子は、第2ビア6a,6bのうちいずれか一方のみを備えていてもよい。
 第2ビア6は、代表的には導電膜である。第2ビア6は、導電性材料からから構成され、代表的には第1ビア5と同様の金属(後述)で構成される。第2ビア6の形状は、それが配置される第2ビアホール9の形状に対応する。つまり、導波素子101は、第2ビア6に対応する第2ビアホール9を有している。
 図9に示すように、第2ビアホール9は、少なくとも無機材料基板1を貫通し、かつ、支持基板20を貫通しない。第2ビアホール9は、代表的には、無機材料基板1の上方から見て円形状を有する。第2ビアホールが円形状を有する場合、第2ビアホールの内径の範囲は、例えば、上記した第1ビアホールの内径の範囲と同様である。
 図示例の第2ビアホール9は、無機材料基板1の厚み方向に直線的に無機材料基板1を貫通し、第1の接地電極3を貫通しない。第2ビアホール9が円形状かつ直線的である場合、第2ビア6は、無機材料基板1の厚み方向に延びる円柱形状または円筒形状を有する。この場合、第2ビア6の外径の範囲は、上記第2ビアホールの内径の範囲と同様である。
 図11に示すように、第2ビアホール9は、コプレーナ型電極2から離れるにつれて先細りとなる円錐形状を有していてもよい。図示例の第2ビアホール9は、無機材料基板1および第1の接地電極3を貫通し、その先端が支持基板20に到達している。第2ビアホール9が円錐形状である場合、第2ビア6は、好ましくは、第2ビアホール9と同様の円錐形状を有する。この場合、第2ビア6の最大外径が、上記第2ビアホールの内径の範囲内となる。また、第2ビア6の頂点部(第2ビア6におけるコプレーナ型電極2と反対側の端部)は、支持基板20に到達していてもよい。
 なお、図示例では、グランド電極が、第2ビアホールを塞ぐように形成されているが、グランド電極の構成はこれに限定されない。グランド電極は、第2ビアと導通されていればよく、第2ビアホールを塞ぐことなく開放していてもよい。
 図10~図13に示すように、第2ビア6は、所定方向に並ぶ複数の第1ビア5のうち、互いに隣り合う第1ビア5の間に配置されている。第2ビア6は、代表的には、互いに隣り合う第1ビア5の間の間隔の中央に位置している。
 図示例の導波素子101は、複数の第2ビア6(複数の第2ビア6a、および、複数の第2ビア6b)を有している。図7~図12に示す第2ビア6は、信号電極2aの長手方向に互いに隣り合う第1ビア5の間に配置されている。図13に示す第2ビア6は、信号電極2aの長手方向と交差(好ましくは直交)する方向に互いに隣り合う第1ビア5の間に配置されている。
 また、第2ビア6は、互いに隣り合う第1ビア5の間であれば、任意の適切な位置に配置できる。第2ビア6は、複数の第1ビアが並ぶ方向において、n個の第1ビア5毎に配置されてもよい。nは、例えば1以上5以下であり、好ましくは1または2である。より好ましくは、第1ビア5と第2ビア6とは交互に配置される。また、複数の第2ビア6は、図10および図11に示すように、そのすべてが互いに隣り合う第1ビア5の間に配置されてもよく、図12に示すように、少なくとも1つが互いに隣り合う第1ビア5の間に配置されていれば、第1ビア5の間に配置されていない第2ビア6を含んでいてもよい。
 図11に示すように、互いに隣り合う第1ビア5と第2ビア6とのピッチP2(互いに隣り合う第1ビア5と第2ビア6との中心間の距離)は、実質的にピッチP1(互いに隣り合う第1ビア5の中心間の距離)の1/2であって、例えば25μm以上、好ましくは60μm以上であり、例えば600μm以下、好ましくは400μm以下、より好ましくは200μm以下である。
 このように、第2ビア6を互いに隣り合う第1ビア5の間に配置することで、無機材料基板1における第1ビア5および第2ビア6のピッチP2を、支持基板20における第1ビア5のピッチP1よりも小さくすることができる。そのため、無機材料基板を薄厚化しても、無機材料基板の強度を十分に確保できる。
A-2-3.導波素子101の変形例
 また、図14に示すように、導波素子101は、第1ビア5を備える一方、第2ビア6を備えなくてもよい。しかし、図14に示すように、第1ビアホール8が第1の接地電極3から離れるにつれて大径となるテーパ形状を有し、かつ、支持基板20の厚みが無機材料基板1よりも大きいと、グランド電極と接触する第1ビア5の一端部の外径よりも、第2の接地電極4と接触する第1ビア5の他端部の外径が大きくなる場合がある。この場合、第2ビア6を設けずに複数の第1ビア5のピッチPを上記したピッチP2のように狭くすると、第1ビア5の他端部同士が干渉するおそれがある。そのため、導波素子101は、第1ビア5および第2ビア6を備え、第2ビア6を互いに隣り合う第1ビア5の間に配置することが、第1ビア5同士の干渉を抑制できるので好ましい。
A-3.導波素子102の全体構成
 図15は、本発明のさらに別の実施形態による導波素子の概略斜視図であり;図16は、図15の導波素子のXVI-XVI´断面図であり;図17は、図15の導波素子の分解斜視図である。
 図示例の導波素子102は、上記した無機材料基板1、上記したコプレーナ型電極2、上記した第1の接地電極3、上記した支持基板20、および、上記した第2の接地電極4に加えて、複数の基板貫通ビア22をさらに備えている。なお、図示しないが、導波素子102は、後述する接合部を備えていてもよい。
 複数の基板貫通ビア22のそれぞれは、第1の接地電極3と第2の接地電極4とを電気的に接続している。第1の接地電極3と第2の接地電極4と複数の基板貫通ビア22とは、電磁波を伝搬可能な基板集積導波管(以下、SIWとする。)を構成する。これによって、支持基板にSIWを設けることができ、支持基板を導波管として有効に利用できる。
 1つの実施形態において、コプレーナ型電極2は、上記した信号電極2a、第1グランド電極2bおよび第2グランド電極2cに加えて、第3グランド電極2dをさらに含んでいる。本実施形態において、互いに間隔を空けて配置される第1グランド電極2bおよび第2グランド電極2cの間には、信号電極2aの一端部が位置している。第1グランド電極2bおよび第2グランド電極2cは、図示しない外部素子と電気的に接続可能であってもよい。第3グランド電極2dは、信号電極2aの他端部に対して所定の間隔を空けて配置されている。第3グランド電極2dは、上方から見て略C字形状を有しており、信号電極2aの他端部を囲んでいる。コプレーナ型電極2は、第3グランド電極2dを備えなくてもよい。
 また、導波素子102は、上記したビア6をさら備えていてもよい。これによって、グランドを強化でき、周囲の線路や素子による浮遊容量を抑制できる。図示例では、グランド電極2b,2c,2dのそれぞれが、複数のビア6により、第1の接地電極3と電気的に接続されている。
 複数の基板貫通ビア22のそれぞれは、支持基板20を厚み方向に貫通しており、支持基板20において周期的に配置されている。代表的には、複数の基板貫通ビア22は、第1ビア列22aと第2ビア列22bとを含んでいる。第1ビア列22aおよび第2ビア列22bのそれぞれは、所定方向に互いに間隔を空けて並ぶ複数の基板貫通ビア22からなる。第2ビア列22bは、第1ビア列22aの延びる方向と直交する方向において、第1ビア列22aから離れて位置している。1つの実施形態では、支持基板20において、第1の接地電極3と第2の接地電極4と第1ビア列22aと第2ビア列22bとによって囲まれる領域が、SIWとして機能する。図示例では、空洞(低誘電率部)50は、第1ビア列22aの延びる方向において、SIWと並んでいる。
 図16に示すように、基板貫通ビア22は、導体材料から構成され、代表的にはコプレーナ型電極2と同様の金属(後述)で構成されている。基板貫通ビア22は、基板ビアホール24内に配置される。つまり、導波素子103は、複数の基板貫通ビア22に対応して、複数の基板ビアホール24を有している。図示例では、基板ビアホール24は、第1の接地電極3、支持基板20および第2の接地電極4を一括して貫通している。基板貫通ビア22は、代表的には、基板ビアホール24の内面全体に形成される導電膜である。なお、基板ビアホール24は、第1の接地電極および第2の接地電極を貫通せずに支持基板のみを貫通していてもよい。この場合、基板貫通ビアは、第1の接地電極および第2の接地電極と接触するように、第2ビアホールに充填される。また、第1の接地電極3と第2の接地電極4とを導通する基板貫通ビア22が導電膜で形成される場合、その内部は樹脂などの材料で充填されていてもよい。
 導波素子102において、信号電極2aが構成する伝送線路とSIWとは、互いに独立していてもよく、電磁波が伝搬可能となるように結合されていてもよい。1つの実施形態では、コプレーナ型電極2が構成する伝送線路(コプレーナー型伝送線路)とSIWとは、導体ピン25によって結合されている。これによって、電磁波の伝搬モードを、伝送線路モードと導波管モードとに変換可能である。例えば、無機材料基板を伝搬する伝送線路モードの電磁波(信号)を、導体ピンを介して、支持基板を伝搬する導波管モードの電磁波に変換できる。支持基板は、導波管モードで伝搬する電磁波を基板面内方向に空間放射するアンテナとして機能し得る。
 導体ピン25は、信号電極2aから、無機材料基板1を貫通して、支持基板20におけるSIWに到達している。導体ピン25は、電磁波の伝搬媒質となり得る。導体ピン25は、導体材料から構成され、代表的にはコプレーナ型電極2と同様の金属(後述)で構成されている。図示例では、導体ピン25は、無機材料基板1の厚み方向に延びている。導体ピン25は、円柱形状などの柱形状であってもよく、円筒形状などの筒形状(中空形状)であってもよい。導体ピン25の基端部は、信号電極2aの端部に接続されている。導体ピン25の遊端部は、支持基板20に形成される挿入穴26に挿入されている(図17参照)。挿入穴26は、第1ビア列22aと第2ビア列22bとの間に位置しており、凹部21と並んでいる。導体ピン25における基端部と遊端部との間の部分は、第1の接地電極3が有する開口部31に挿通されている。
 導体ピン25は、好ましくは、第1の接地電極3から絶縁されている。1つの実施形態において、図17に示すように、開口部31は、導体ピン25の周囲に空気層を形成している。開口部31は導体ピン25の外形よりも大きく、開口部31の周縁部の全体が導体ピン25から離れている。これによって、導体ピンを第1の接地電極から絶縁でき、ひいては、信号電極と第1の接地電極とを安定して絶縁できる。また、支持基板への電界の漏れによる基板共振をより一層抑制できる。さらに、空気層に樹脂が充填されている構造と比較して誘電体損失の影響を抑制できる。
 なお、図18に示すように、導体ピン25の周囲を絶縁材料15で覆ってもよい。これによっても、導体ピンを第1の接地電極から絶縁できる。絶縁材料としては、例えば、樹脂、SiOが挙げられる。
A-4.導波素子103の全体構成
 図19は、本発明のさらに別の実施形態による導波素子の概略斜視図である。なお、図19では、便宜上、グランド電極およびビアを省略している。
 導波素子103は、互いに離れて位置する複数の信号電極を備えている。そのため、導波素子103は、信号電極に対応する伝送線路を複数備えている。より具体的には、導波素子103は、第1信号電極2aおよび第2信号電極2eを含むコプレーナ型電極2と、図示しない第1導体ピンおよび第2導体ピンと、を備えている。また、導波素子103は、第1空洞(第1低誘電率部)50と、第2空洞(第2低誘電率部)51とを有している。第1空洞50は、無機材料基板1の厚み方向に、第1信号電極2aの少なくとも一部と重なるように配置されている。第2空洞51は、無機材料基板1の厚み方向に、第2信号電極2eの少なくとも一部と重なるように配置されている。
 第1信号電極2aは、図示しないグランド電極とともに第1の伝送線路を構成し、第2信号電極2eは、図示しないグランド電極ととも第2の伝送線路を構成している。第1導体ピンは、第1の接地電極3、第2の接地電極4および複数の基板貫通ビア22から構成されるSIWと、第1の伝送線路とを結合している。第2導体ピンは、第1の接地電極3、第2の接地電極4および複数の基板貫通ビア22から構成されるSIWと、第2の伝送線路とを結合している。
 これによって、1つの実施形態では、無機材料基板を伝搬する伝送線路モードの電磁波(信号)を、第1導体ピンを介してSIWモードに変換した後、SIWモードで支持基板を伝搬させ、次いで、第2導体ピンを介して再び無機材料基板を伝搬する伝送線路モードに変換することができる。本実施形態では、無機材料基板を伝搬した電磁波は、無機材料基板に設けられたアンテナ素子から放出され得る。
 上記した各導波素子は、1つの支持基板20を備えるが、支持基板20の個数は特に制限されない。図示しないが、導波素子において、支持基板が無機材料基板の厚み方向において互いに間隔を空けて複数配置され、複数の支持基板のそれぞれに基板集積導波管(SIW)が設けられていてもよい。このような構成によれば、SIWモードで電磁波を放射するアンテナ部分を厚み方向にアレイ化できる。そのため、このような導波素子は、無線通信においてフェーズドアレイアンテナとして用いることができる。
 また、導波素子が複数の支持基板を備える場合、複数の支持基板のうち互いに隣り合う支持基の間に、第2の接地電極を配置してもよい。これによって、各支持基板に設けられるSIWは、当該支持基板の両側に配置される金属層(すなわち、第1の接地電極および第2の接地電極、または、2つの第2の接地電極)と、当該支持基板を貫通する複数の基板貫通ビアとによって構成される。
 また、導波素子では、SIWを含む導波管ユニットが、無機材料基板の厚み方向において互いに間隔を空けて複数配置されていてもよい。複数の導波管ユニットのそれぞれは、第1の接地電極と支持基板と第2の接地電極と複数の基板貫通ビアとを備えている。
 また、複数の支持基板のうち互いに隣り合う支持基板の間には、スペーサー基板が設けられていてもよい。スペーサー基板は、互いに隣り合う導波管ユニットの間に配置され得る。スペーサー基板を設けることにより、複数の支持基板におけるアンテナ部分の間隔を調整できる。とりわけ、複数のアンテナ部分の間隔をλ/2に調整すれば、電磁波の放射角を十分に走査できる。スペーサー基板の材料として、代表的には、無機材料基板と同様の樹脂材料(後述)が挙げられる。
 また、複数のSIWを備える導波素子は、好ましくは、SIWと同数の信号電極および導体ピンを備える。各導体ピンは、各信号電極が構成する伝送経路と、対応するSIWとを結合する。このような構成によれば、比較的容易に作製可能でありながら、無機材料基板上に設置した外部信号源からの信号(電磁波)を、各支持基板のSIWに容易に伝搬することができる。
 本明細書において「導波素子」は、少なくとも1つの導波素子が形成されたウエハー(導波素子ウエハー)および当該導波素子ウエハーを切断して得られるチップの両方を包含する。
B.無機材料基板
 無機材料基板1は、コプレーナ型電極2が設けられる上面と、複合基板内に位置する下面と、を有する。
 無機材料基板1は、無機材料で構成されている。無機材料として、本発明の実施形態による効果が得られる限りにおいて任意の適切な材料が用いられ得る。そのような材料としては、代表的には、単結晶石英(比誘電率4.5、誘電正接0.0013)、アモルファス石英(石英ガラス、比誘電率3.8、誘電正接0.0010)、スピネル(比誘電率8.3、誘電正接0.0020)、AlN(比誘電率8.5、誘電正接0.0015)、サファイア(比誘電率9.4、誘電正接0.0030)、SiC(比誘電率9.8、誘電正接0.0022)、酸化マグネシウム(比誘電率10.0、誘電正接0.0012)、および、シリコン(比誘電率11.7、誘電正接0.0016)が挙げられる(()内の比誘電率と誘電正接は周波数300GHzでの数値を示す。)。無機材料基板1は、好ましくはアモルファス石英から構成される石英ガラス基板である。
 無機材料基板1が石英ガラス基板であると、上記した高周波数の電磁波を導波する場合であっても、伝搬損失が増大することを安定して抑制できる。さらに樹脂系の基板と比較して誘電率が大きいので基板サイズが小さくできる、また無機材料の中で比較的に誘電率が小さいので低遅延化で有利である。
 また、石英ガラスは、誘電体損失(tanδ)が小さく、さらに、樹脂系基板とは異なり、線路を形成するための導体層(金属層)を粗面化や表面処理なしに形成できる特徴をもつ。このため、伝搬損失を一層低減できる。
C.コプレーナ型電極および接地電極
 コプレーナ型電極2は、代表的には、無機材料基板1の上面に設けられており、無機材料基板1と直接接触している。コプレーナ型電極2は、代表的には金属で構成される。金属として、例えば、クロム(Cr)、ニッケル(Ni)、銅(Cu)、金(Au)が挙げられる。金属は、単独でまたは組み合わせて使用できる。コプレーナ型電極2は、単一層であってもよく、2層以上が積層されて形成されてもよい。コプレーナ型電極2は、例えばスパッタリングなどの公知の成膜方法(他には、蒸着、印刷)によって無機材料基板1上に形成される。
 コプレーナ型電極2の厚みは、例えば1μm以上、好ましくは4μm以上であり、例えば20μm以下、好ましくは10μm以下である。
 第1の接地電極3は、支持基板20の上面に設けられている。第1の接地電極3は、コプレーナ型電極2と同様の金属で構成可能である。また、第1の接地電極3の金属は、コプレーナ型電極2の金属と同じであってもよく、導体層2の金属と異なっていてもよい。第1の接地電極3の厚みの範囲は、コプレーナ型電極2の厚みの範囲と同様である。第1の接地電極3は、支持基板20の表面上に、例えばスパッタリングまたはめっきによって形成される。
 第2の接地電極4は、支持基板20における第1の接地電極3と反対側の表面上に、例えばスパッタリングまたはめっきによって形成される。第2の接地電極4は、コプレーナ型電極2と同様の金属で構成可能である。また、第2の接地電極4の金属は、コプレーナ型電極2の金属と同じであってもよく、コプレーナ型電極2の金属と異なっていてもよい。第2の接地電極4の厚みの範囲は、コプレーナ型電極2の厚みの範囲と同様である。第2の接地電極4は、必ずしも支持基板20における第1の接地電極と反対側の表面全体に形成されなくてもよい。
D.支持基板
 支持基板20は、複合基板内に位置する上面と、外部に露出する下面と、を有する。支持基板20の上面には、上記した凹部21が形成されていてもよい。支持基板20は、複合基板の強度を高めるために設けられており、これにより、無機材料基板の厚みを上記のように薄くすることができる。支持基板20としては、任意の適切な構成が採用され得る。支持基板20を構成する材料の具体例としては、インジウムリン(InP)、シリコン(Si)、ガラス、サイアロン(Si-Al)、ムライト(3Al・2SiO,2Al・3SiO)、窒化アルミニウム(AlN)、酸化マグネシウム(MgO)、酸化アルミニウム(Al)、スピネル(MgAl)、サファイア、石英、水晶、窒化ガリウム(GaN)、シリコンカーバイド(SiC)、シリコンナイトライド(Si)、酸化ガリウム(Ga)が挙げられる。
 支持基板20は、好ましくはインジウムリン、シリコン、窒化アルミニウム、シリコンカーバイドおよびシリコンナイトライドからなる群から選択される少なくとも1種から構成され、より好ましくはシリコンから構成される。
 導波素子100に発振器や受信器等の能動素子を実装する場合、無機材料基板が加熱し、その他の能動素子や実装部品の特性が劣化してしまう恐れがある。これを防ぐために、支持基板には熱伝導率の高い材料を使用することができる。この場合、熱伝導率は150W/Km以上であることが好ましく、この観点において支持基板20は、シリコン(Si)、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、シリコンカーバイド(SiC)、シリコンナイトライド(Si)が挙げられる。
 また、支持基板20にSIWが形成される場合、SIWを伝搬する電磁波の損失を低減するために、誘電体損失tanδの小さい材料が好ましい。この場合、支持基板の材料は、好ましくは、単結晶石英、アモルファス石英、スピネル、AlN、サファイア、酸化アルミニウム、SiC、酸化マグネシウム、または、シリコンから選択される。
 このような支持基板の材料のなかでは、より好ましくはシリコンが挙げられる。
 支持基板20の厚みは、支持基板20の比誘電率をε、導波素子に導波される電磁波の波長をλとすると、例えばλ/4√ε以上、好ましくはλ/2√ε以上であり、例えば2λ/√ε以下、好ましくは3λ/2√ε以下、より好ましくはλ/√ε以下である。支持基板の厚みが上記下限以上であれば、導波素子の機械強度の向上を安定して図ることができる。支持基板の厚みが上記上限以下であれば、スラブモード伝搬の抑制、導波素子の薄型化(導波素子の機械強度保持)、および基板共振の抑制を図ることができる。
 支持基板が無機材料基板の厚み方向において互いに間隔を空けて複数配置される場合、フェーズドアレイアンテナとして用いるのであれば、互いに隣り合う支持基板の間隔はアンテナピッチに適したλ/2程度であることが望ましい。支持基板の厚みが前記間隔に満たない場合、隣り合う支持基板の間にスペーサー基板を設けることで、適切なアンテナピッチを確保することができる。
 なお、支持基板20を構成する材料の線膨張係数は、無機材料基板1を構成する材料の線膨張係数に近いほど好ましい。このような構成であれば、複合基板の熱変形(代表的には、反り)を抑制することができる。好ましくは、支持基板20を構成する材料の線膨張係数は、無機材料基板1を構成する材料の線膨張係数に対して50%~150%の範囲内である。
 支持基板20は、代表的には、導波部材10と直接接合することにより、導波部材10を支持している。1つの実施形態におい、無機材料基板1と支持基板20とは直接接合されている。本明細書において「直接接合」とは、接着剤(例えば、樹脂などの有機系接着剤)を介在させることなく2つの層または基板が接合していることを意味する。直接接合の形態は、互いに接合される層または基板の構成に応じて適切に設定され得る。さらに、直接接合により接合された界面は、代表的には、アモルファス化している。そのため、接合界面の熱抵抗を、有機系接着剤を用いた樹脂接着(樹脂接合)と比較して飛躍的に小さくできる。これにより導波素子に能動素子(例えば、発振器、受信器など)を実装する場合、能動素子から生じた熱が無機材料基板に伝達しても、そのような熱を無機材料基板から支持基板を介してパッケージへ円滑に逃がすことができる。その結果、無機材料基板が加熱されることを抑制でき、無機材料基板に接続される他の部材(例えば、その他の能動素子、実装部品)の特性劣化を抑制できる。直接接合の形態は、上記した接地電極3および/または後述する接合部60を介した支持基板と無機材料基板の接合も含むことができる。
 さらに、直接接合によりそれらを一体化することで、導波素子における剥離を良好に抑制することができ、結果として、このような剥離に起因する無機材料基板の損傷(例えば、クラック)を良好に抑制することができる。
 図20に示すように、導波素子100は、導波部材11と支持基板20との間に設けられ、導波部材11と支持基板20とを接合する接合部60をさらに備えていてもよい。支持基板20が凹部21を有する場合、接合部60は、代表的には導波部材11と支持基板20の凹部21以外の部分との間に設けられる。本実施形態では、無機材料基板1と支持基板20との間に、接合部60のみ設けられている。これによって、無機材料基板1と支持基板20とは、接合部60のみを介して直接接合されている。
 図1および図2に示す導波素子100では、接合部60は、無機材料基板1と、支持基板20の凹部21以外の部分に位置する接地電極3との間に位置し、それらを一体化してもよい。図21に示すように、接地電極3は、支持基板20における無機材料基板側の表面上に形成され、支持基板20と直接接触している。本実施形態では、接合部60は、無機材料基板1と接地電極3との間に位置し、無機材料基板1と接地電極3とを接合している。図示例では、無機材料基板1と支持基板20との間に、接地電極3および接合部60が設けられている。これによって、無機材料基板1と支持基板20とは、接地電極3および接合部60を介して直接接合されている。
 また、図2に示すように、接地電極3が、無機材料基板1および支持基板20の凹部21以外の部分と直接接触しており、無機材料基板1と支持基板20とを接合する接合部として機能してもよい。本実施形態では、無機材料基板1と支持基板20との間に、接地電極3のみ設けられている。これによって、無機材料基板1と支持基板20とは、接地電極3を介して直接接合されている。なお、接地電極3が接合部として機能する場合、無機材料基板1および支持基板20の両方に金属層を形成し、それら金属層を直接接合して、接地電極3を形成してもよい。この場合、接合界面は、接地電極の内部に形成される。
 また、図4および図5に示す導波素子100では、接合部は、低誘電率部51と無機材料基板1との間に位置してもよく、低誘電率部51と接地電極3との間に位置してもよく、それらを一体化してもよい。
 これらのように、コプレーナ型電極2と支持基板20の間には、接合に関する接着剤などの有機材料が介在しないことが好ましい。これにより、無機材料基板1と支持基板20の界面における熱抵抗を小さくすることができ、能動素子や実装部品の特性劣化を抑制できる。但し、低誘電率部が低誘電率ポリマーなどの有機材料から構成される場合には、コプレーナ型電極2と支持基板20の間に、低誘電率部としての有機材料が配置されていてもよい。低誘電率部以外の有機材料(接着剤など)が介在しない構造は、無機材料基板1と支持基板20(無機材料基板1と支持基板20のいずれか、または両方に接地電極が形成されていてもよいし、されていなくてもよい。)を直接接合することで得られる。
 接合部は、1層であってもよく、2層以上が積層されていてもよい。接合部は、代表的には、無機材料から構成される。接合部を形成する接合層として、例えば、SiO、アモルファスシリコン、酸化タンタルが挙げられる。接合部は、金(Au)、チタン(Ti)、白金(Pt)、クロム(Cr)、銅(Cu)、スズ(Sn)、または、それらの組み合わせ(合金)から選択される金属膜であってもよい。接合部が金属膜であると、金属からなる接地電極との密着性を安定して確保でき、マイグレーションを抑制することができる。これら接合部のなかでは、好ましくはアモルファスシリコン層が挙げられる。接合部の厚みは、例えば0.001μm以上10μm以下であり、好ましくは0.1μm以上3μm以下である。
 接合層は、接合部のみに形成することが好ましいが、上記の厚みの範囲であれば電磁波の伝搬に与える影響は小さいため凹部に形成されていてもよい。
 直接接合は、例えば、以下の手順で実現され得る。高真空チャンバー内(例えば、1×10-6Pa程度)において、接合される構成要素(層または基板)のそれぞれの接合面に中性化ビームを照射する。これより、各接合面が活性化される。次いで、真空雰囲気で、活性化された接合面同士を接触させ、常温で接合する。この接合時の荷重は、例えば100N~20000Nであり得る。1つの実施形態においては、中性化ビームによる表面活性化を行う際には、チャンバーに不活性ガスを導入し、チャンバー内に配置した電極へ直流電源から高電圧を印加する。このような構成であれば、電極(正極)とチャンバー(負極)との間に生じる電界により電子が運動して、不活性ガスによる原子とイオンのビームが生成される。グリッドに達したビームのうち、イオンビームはグリッドで中和されるので、中性原子のビームが高速原子ビーム源から出射される。ビームを構成する原子種は、好ましくは不活性ガス元素(例えば、アルゴン(Ar)、窒素(N))である。ビーム照射による活性化時の電圧は例えば0.5kV~2.0kVであり、電流は例えば50mA~200mAである。なお、直接接合の方法は、これに限定されることはなく、FAB(Fast Atom Beam)やイオンガンによる表面活性化法、原子拡散法、プラズマ接合法等も適用できる。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。
<実施例1および2>
 1-1.導波素子(グランド付きコプレーナ線路)の作製
 図1および図2に示す導波素子を作製した。
 厚み525μmのシリコンウエハー(支持基板)を用意した。シリコンウエハーにおいて、後述するコプレーナ型電極の信号電極の直下において、信号電極の幅+空隙部ギャップg×20に相当する領域を露出するように、シリコンウエハーの上面にレジスト膜をパターニングした。その後、反応性イオンエッチングにて、レジスト膜から露出するシリコンウエハーの部分をドライエッチングして凹部(中空構造)を形成した。凹部のエッチングの深さは、表1に示す値(低誘電率部の厚み)とした。これによって、凹部を有するシリコンウエハー(支持基板)を準備した。
 その後、凹部を形成したシリコンウエハーに、スパッタによって、Cr膜50nm厚、Ni膜100nm厚を成膜して下地電極を形成した。さらに、下地電極上に電界メッキによって銅を成膜して、接地電極を形成した。次いで、接地電極上に0.2μmのアモルファスシリコン膜をスパッタにて形成した。成膜後、アモルファスシリコン膜を研磨して、平坦化処理をした。ここで、原子間力顕微鏡を用いて、アモルファスシリコン膜の表面の□10μm(10μm四方の領域;以下同様)の算術平均粗さを測定したところ、0.2nmであった。
 また、0.5mm厚みの石英ガラスウエハー(石英ガラス基板、無機材料基板)を用意して、石英ガラスウエハー上に、0.2μmのアモルファスシリコン膜をスパッタにて形成した。成膜後、アモルファスシリコン膜面にレジストを塗布して、フォトリソグラフィーによって前記シリコンウエハーの凹部(非接合部)に対応する部分を露光して、現像(エッチング)してレジストマスクを形成した。その後、ドライエッチングによってアモルファスシリコンを除去した。次に、アモルファスシリコン膜を研磨して、平坦化処理をした。ここで、原子間力顕微鏡を用いて、アモルファスシリコン膜の表面の□10μmの算術平均粗さを測定したところ、0.2nmであった。
 石英ガラスウエハー上のアモルファスシリコン面と、接地電極上のアモルファスシリコン面とを、以下のように接合した。まず石英ガラスウエハーとシリコンウエハーとを真空チャンバーに投入し、10-6Pa台の真空中で、双方の接合面(石英ガラスウエハーのアモルファスシリコン面と接地電極上のアモルファスシリコン面)に高速Ar中性原子ビーム(加速電圧1kV、Ar流量60sccm)を70秒間照射した。照射後、10分間放置して石英ガラスウエハーおよびシリコンウエハーを放冷したのち、石英ガラスウエハーとシリコンウエハーの接合面(石英ガラスウエハーとシリコンウエハーの表面ビーム照射面)を接触させ、4.90kNで2分間加圧して石英ガラスウエハーとシリコンウエハーとを接合した。すなわち、石英ガラスウエハーとシリコンウエハーとを、アモルファスシリコン層(接合部)を介して直接接合した。接合後、石英ガラスウエハーの厚みが表1に示す値となるまで研磨加工し複合ウエハーを形成した。得られた石英ガラス/接地電極/シリコン複合基板においては、接合界面にはがれ等の不良は観察されなかった。
 次いで、石英ガラスウエハーにおけるシリコンウエハーと反対側の表面(研磨面)にレジストを塗布して、フォトリソグラフィーによって、コプレーナ型電極パターンを形成する部分を露出するようにパターニングした。その後、レジストから露出する石英ガラスウエハーの上面に、スパッタによって、Cr膜50nm厚、Ni膜100nm厚を成膜して下地電極を形成した。さらに、下地電極上に電界メッキによって銅を成膜して、コプレーナ型電極パターンを形成した。信号電極の導波方向の長さは、10mmであった。信号電極とグランド電極との間のギャップgは、13μmであった。
 最後に、バッファードフッ酸(BHF)を使用して、シリコンウエハーの凹部(中空構造)におけるアモルファスシリコン層をウェットエッチングして除去した。
 以上によって、コプレーナ型電極、無機材料基板および接地電極を備える導波部材と、凹部を有する支持基板とを備える導波素子を得た。
 1-2.伝搬損失の算出
 導波素子の伝搬損失を測定するために、上記と同様にして、信号電極の長さが30mm、40mm、および50mmの3つ導波素子を作製した。
 次いで、導波部材の入力側にプローブにてRF信号発生機を結合し、導波部材の出力側にプローブを設置してRF信号受信機に電磁波を結合した。
 次いで、RF信号発生機に電圧を印加して、RF信号発生機に、表1に示す周波数の電磁波を送信させた。これによって、電磁波が、コプレーナ線路(導波部材)に伝搬された。RF信号受信機は、コプレーナ線路から出力される電磁波のRFパワーを測定した。信号電極の長さが異なる3つの導波素子の測定結果から、伝搬損失(dB/cm)を算出して、下記の基準で評価した。その結果を表1に示す。
 ◎(優) :0.5dB/cm未満
 〇(良) :0.5dB/cm以上1dB/cm未満
 △(可) :1dB/cm以上2dB/cm未満
 ×(不可):2dB/cm以上
<実施例3および4>
 2-1.導波素子(コプレーナ線路)の作製
 図3に示す導波素子を作製した。
 実施例1と同様にして、凹部を有するシリコンウエハー(支持基板)を準備した。ただし、凹部を形成したシリコンウエハー上には接地電極を形成しなかった。原子間力顕微鏡を用いて、シリコンウエハーの表面の□10μmの表面の算術平均粗さを測定したところ、0.2nmであった。
 また、0.5mm厚みの石英ガラスウエハー(石英ガラス基板、無機材料基板)を用意して、実施例1と同様にして、石英ガラスウエハー上にパターニングされたアモルファスシリコン膜を形成した。形成後、アモルファスシリコン膜を研磨して、平坦化処理をした。ここで、原子間力顕微鏡を用いて、アモルファスシリコン膜の表面の□10μmの算術平均粗さを測定したところ、0.2nmであった。
 その後、石英ガラスウエハー上のアモルファスシリコン面とシリコンウエハーとを直接接合した。直接接合は、実施例1と同様に実施した。得られた石英ガラス/シリコン複合基板においては、接合界面にはがれ等の不良は観察されなかった。
 次いで、石英ガラスウエハーを研磨して、厚みを表1に示す値とした。
 次いで、実施例1と同様にて、石英ガラスウエハーにおけるシリコンウエハーと反対側の表面(研磨面)に、コプレーナ型電極パターンを形成した。信号電極の導波方向の長さは、10mmであった。信号電極とグランド電極との間のギャップgは、13μmであった。
 以上によって、コプレーナ型電極および無機材料基板を備える導波部材と、凹部を有する支持基板とを備える導波素子を得た。
 2-2.伝搬損失の算出
 また、導波素子の伝搬損失を測定するために、上記と同様にして、信号電極の長さが30mm、40mm、および50mmの3つの導波素子を作製した。次いで、実施例1と同様に、導波部材の入力側にプローブにてRF信号発生機を結合し、導波部材の出力側にプローブを設置してRF信号受信機に電磁波を結合して、RF信号受信機によって、コプレーナ導波路から出力される電磁波のRFパワーを測定した。実施例3および4の導波素子の伝搬損失を、実施例1と同様に評価した。その結果を表1に示す。
<実施例5>    
 厚み525μmのシリコンウエハー(支持基板)と、0.5mm厚みの石英ガラスウエハー(石英ガラス基板、無機材料基板)とを用意し、コプレーナ型電極、無機材料基板を備える導波部材と、ポリマー層と、接地電極と、凹部を有する支持基板とを備える導波素子を得た。
 まずシリコンウエハーについて、実施例1と同様にして、凹部と接地電極を有するシリコンウエハー(支持基板)を準備した。
 次に、比誘電率2.3のテフロン(登録商標)系ポリマー樹脂をスピンコートし、硬化させて支持基板の凹部内にポリマー層を形成した。その後、凹部外のポリマー除去と支持基板上のポリマー層の平坦化のためにCMP研磨を行った。CMP研磨後、アモルファスシリコン膜をスパッタにて成膜した。成膜後、アモルファスシリコン膜面にレジストを塗布して、フォトリソグラフィーによって凹部に対応する部分を露光して、現像(エッチング)してレジストマスクを形成した。その後、ドライエッチングによってアモルファスシリコンを除去した。次に、アモルファスシリコン膜を研磨して、平坦化処理をした。ここで、原子間力顕微鏡を用いて、アモルファスシリコン膜の表面の□10μmの算術平均粗さを測定したところ、0.2nmであった。
 また、石英ガラスウエハーについて、ウエハー上に0.2μmのアモルファスシリコン膜をスパッタにて形成した。成膜後、アモルファスシリコン膜面にレジストを塗布して、フォトリソグラフィーによって前記シリコンウエハーの凹部(非接合部)に対応する部分を露光してエッチングしてレジストマスクを形成した。その後、ドライエッチングによってアモルファスシリコンを除去した。
 その後、石英ガラスウエハー上のアモルファスシリコン面とシリコンウエハーとを直接接合した。直接接合は、実施例1と同様に実施した。得られた石英ガラス/シリコン複合基板においては、接合界面にはがれ等の不良は観察されなかった。
 次いで、石英ガラスウエハーを研磨して、厚みを表1に示す値とした。
 次いで、実施例1と同様にて、石英ガラスウエハーにおけるシリコンウエハーと反対側の表面(研磨面)に、コプレーナ型電極パターンを形成した。信号電極の導波方向の長さは、10mmであった。信号電極とグランド電極との間のギャップgは、13μmであった。
 以上によって、コプレーナ型電極および無機材料基板を備える導波部材と、ポリマー層と、接地電極と、凹部を有する支持基板とを備える導波素子を得た。
 得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
<実施例6>
 凹部のエッチングの深さを変更して、空洞の厚みを表1に示す値に変更したこと以外は、実施例1と同様にして、導波素子を作製した。
 得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
<実施例7>
 無機材料基板としての石英ガラスウエハーを単結晶シリコンウエハーに変更したこと、および、凹部のエッチングの深さを変更して空洞の厚みを表1に示す値に変更したこと以外は、実施例1と同様にして、導波素子を作製した。
<実施例8>
 無機材料基板としての石英ガラスウエハーをサファイアウエハーに変更したこと、および、凹部のエッチングの深さを変更して空洞の厚みを表1に示す値に変更したこと以外は、実施例1と同様にして、導波素子を作製した。
 得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
<実施例9>
 無機材料基板としての石英ガラスウエハーを多結晶AlNウエハーに変更したこと、および、凹部のエッチングの深さを変更して空洞の厚みを表1に示す値に変更したこと以外は、実施例1と同様にして、導波素子を作製した。
 得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
<実施例10>
 図4および図5に示す導波素子を作製した。
 厚み525μmのシリコンウエハー(支持基板)と、0.5mm厚みの石英ガラスウエハー(石英ガラス基板、無機材料基板)とを用意し、コプレーナ型電極、無機材料基板を備える導波部材と、ポリマー層と、接地電極と、凹部を有しない支持基板とを備える導波素子を得た。
 まず厚み525μmのシリコンウエハー(支持基板)を用意した。その後、シリコンウエハーに、スパッタによって、Cr膜50nm厚、Ni膜100nm厚を成膜して下地電極を形成した。さらに、下地電極上に電界メッキによって銅を成膜して、接地電極を形成した。
 次に、比誘電率2.3の熱硬化型テフロン(登録商標)フィルムを接着し、硬化させて接地電極上に厚み100μmのポリマー層を形成した。さらにアモルファスシリコン膜をスパッタにて成膜した。成膜後、アモルファスシリコン膜面にレジストを塗布して、フォトリソグラフィーによってコプレーナ型電極の直下の信号電極の幅+空隙部ギャップg×20に相当する領域を露光して、現像(エッチング)してレジストマスクを形成した。その後、ドライエッチングによってアモルファスシリコンを除去した。次に、アモルファスシリコン膜を研磨して、平坦化処理をした。ここで、原子間力顕微鏡を用いて、アモルファスシリコン膜の表面の□10μmの算術平均粗さを測定したところ、0.2nmであった。
 また、石英ガラスウエハーについて、ウエハー上に0.2μmのアモルファスシリコン膜をスパッタにて形成した。成膜後、アモルファスシリコン膜面にレジストを塗布して、フォトリソグラフィーによってコプレーナ型電極の直下の信号電極の幅+空隙部ギャップg×20に相当する領域に露光してエッチングしてレジストマスクを形成した。その後、ドライエッチングによってアモルファスシリコンを除去した。アモルファスシリコン膜を研磨して、平坦化処理をした。ここで、原子間力顕微鏡を用いて、アモルファスシリコン膜の表面の□10μmの算術平均粗さを測定したところ、0.2nmであった。
 その後、石英ガラスウエハー上のアモルファスシリコン面と、ポリマー層上のアモルファスシリコン面とを直接接合した。直接接合は、実施例1と同様に実施した。得られた石英ガラス/シリコン複合基板においては、接合界面にはがれ等の不良は観察されなかった。
 次いで、石英ガラスウエハーを研磨して、厚みを表1に示す値とした。
 次いで、実施例1と同様にて、石英ガラスウエハーにおけるシリコンウエハーと反対側の表面(研磨面)に、コプレーナ型電極パターンを形成した。信号電極の導波方向の長さは、10mmであった。信号電極とグランド電極との間のギャップgは、13μmであった。
 以上によって、コプレーナ型電極、無機材料基板を備える導波部材と、ポリマー層と、接地電極と、凹部を有しない支持基板とを備える導波素子を得た。
 得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
<実施例11>
 研磨後の石英ガラスウエハー(石英ガラス基板、無機材料基板)の厚みを10μmに変更したこと以外は、実施例1と同様にして、導波素子を得た。得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
<比較例1および2>
 シリコンウエハー(支持基板)に凹部を形成しなかったこと、および、研磨後の石英ガラスウエハーの厚みを表1に示す値に変更したこと以外は、実施例1と同様にして、導波素子を作製した。
 得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1から明らかなように、無機材料基板の下部に、無機材料基板の誘電率よりも小さい誘電率を有する低誘電率部(とりわけ空洞)を設けることで、30GHzを超える高周波数の領域において、広い周波数範囲にわたって伝搬損失が小さく、優れた低伝搬損失性能を確保できることがわかる。
 本発明の実施形態による導波素子は、導波路、次世代高速通信、センサ、レーザー加工、太陽光発電等の幅広い分野に用いられ得、特に、ミリ波~テラヘルツ波の導波路として好適に用いられ得る。このような導波素子は、例えば、アンテナ、バンドパスフィルタ、カプラ、遅延線(位相器)、またはアイソレータに用いられ得る。
 1    無機材料基板
 2    コプレーナ型電極
 3    接地電極
 10   導波部材
100   導波素子

 

Claims (7)

  1.  無機材料基板と、前記無機材料基板の上部に設けられるコプレーナ型電極と、を備えている導波部材であって、周波数が30GHz以上20THz以下である電磁波を導波可能な導波部材と、
     前記無機材料基板の下部に設けられ、前記導波部材を支持する支持基板と、
     前記無機材料基板の下部に設けられ、前記無機材料基板の誘電率よりも小さい誘電率を有している低誘電率部と、を備えている、導波素子。
  2.  前記無機材料基板の厚みtは、下記式(1)を満たす、請求項1に記載の導波素子。
    Figure JPOXMLDOC01-appb-M000001
    (式中、tは、無機材料基板の厚みを表す。λは、導波部材に導波される電磁波の波長を表す。εは、無機材料基板の比誘電率を表す。aは、2の数値を表す。)
  3.  前記支持基板は、凹部を有し、
     前記無機材料基板の下面と前記支持基板の凹部とにより空洞が規定され、
     前記空洞が前記低誘電率部として機能する、請求項1または2に記載の導波素子。
  4.  前記コプレーナ型電極は、所定方向に延びる信号電極と、前記所定方向と交差する方向に前記信号電極に対して間隔を空けて位置するグランド電極と、を備え、
     前記所定方向と交差する方向における前記信号電極と前記グランド電極との間のギャップの寸法をgとした場合において、前記無機材料基板の厚み方向における空洞の寸法は、g以上である、請求項3に記載の導波素子。
  5.  前記無機材料基板と前記支持基板との間に位置する接地電極を備えている、請求項1から4のいずれかに記載の導波素子。
  6.  前記無機材料基板の300GHzにおける比誘電率εと誘電正接tanδは、それぞれ3.5以上12以下、0.003以下である、請求項1から5のいずれかに記載の導波素子。
  7.  前記無機材料基板は、石英ガラス基板である、請求項6に記載の導波素子。

     
PCT/JP2022/029941 2021-08-12 2022-08-04 導波素子 WO2023017775A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022002926.9T DE112022002926T5 (de) 2021-08-12 2022-08-04 Wellenleiterelement
JP2023541423A JP7556155B2 (ja) 2021-08-12 2022-08-04 導波素子
CN202280045282.XA CN117561648A (zh) 2021-08-12 2022-08-04 波导元件
US18/422,061 US20240162592A1 (en) 2021-08-12 2024-01-25 Waveguide device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021131758 2021-08-12
JP2021-131758 2021-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/422,061 Continuation US20240162592A1 (en) 2021-08-12 2024-01-25 Waveguide device

Publications (1)

Publication Number Publication Date
WO2023017775A1 true WO2023017775A1 (ja) 2023-02-16

Family

ID=85199930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029941 WO2023017775A1 (ja) 2021-08-12 2022-08-04 導波素子

Country Status (5)

Country Link
US (1) US20240162592A1 (ja)
JP (1) JP7556155B2 (ja)
CN (1) CN117561648A (ja)
DE (1) DE112022002926T5 (ja)
WO (1) WO2023017775A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277661A (ja) * 1999-03-23 2000-10-06 Nec Corp 多層基板
JP2004023192A (ja) * 2002-06-12 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> マイクロ波伝送線路
JP2018023030A (ja) * 2016-08-04 2018-02-08 株式会社フジクラ モード変換器及びモード変換器の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226832B2 (ja) 2018-01-04 2023-02-21 スリーディー グラス ソリューションズ,インク 高効率rf回路のためのインピーダンス整合伝導構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277661A (ja) * 1999-03-23 2000-10-06 Nec Corp 多層基板
JP2004023192A (ja) * 2002-06-12 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> マイクロ波伝送線路
JP2018023030A (ja) * 2016-08-04 2018-02-08 株式会社フジクラ モード変換器及びモード変換器の製造方法

Also Published As

Publication number Publication date
JPWO2023017775A1 (ja) 2023-02-16
JP7556155B2 (ja) 2024-09-25
DE112022002926T5 (de) 2024-03-14
US20240162592A1 (en) 2024-05-16
CN117561648A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US7834808B2 (en) Multilayer electronic component systems and methods of manufacture
JP7514228B2 (ja) ミリ波フィルタアレイ
US6307450B2 (en) Millimeter wave module and radio apparatus
EP1496563A2 (en) Circuit board bonded to ground, &#34;T&#34; branching circuit, waveguide-microstrip transition
JP4535640B2 (ja) 開口面アンテナおよび開口面アンテナ付き基板
US20030206083A1 (en) Millimeter wave module and radio apparatus
Manzillo et al. A 60-GHz passive broadband multibeam antenna system in fused silica technology
WO2023017775A1 (ja) 導波素子
US20220231390A1 (en) Mode converter, rf module, and mobile terminal
JP7358371B2 (ja) 薄膜表面実装可能高周波数結合器
US6549105B2 (en) Millimeter wave module and radio apparatus
JP7138257B1 (ja) 導波素子
WO2024018767A1 (ja) 導波素子
WO2023017773A1 (ja) 導波素子
US20160135280A1 (en) Cooled printed circuit with multi-layer structure and low dielectric losses
JP2023026330A (ja) 導波素子
WO2023017774A1 (ja) 導波素子および導波素子の製造方法
JP2023026414A (ja) 導波素子
WO2023017820A1 (ja) 導波素子
CN117693862A (zh) 波导元件
CN117693863A (zh) 波导元件及波导元件的制造方法
Moallem et al. Optimally designed membrane-supported grounded CPW structure for submillimeter-wave applications
JP2000114641A (ja) 光半導体装置
Singh et al. Wide band via-less transition from FG-CBCPW to microstrip
JP2006013868A (ja) 導波管−平面伝送線路変換器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280045282.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023541423

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112022002926

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22855837

Country of ref document: EP

Kind code of ref document: A1