WO2023017775A1 - 導波素子 - Google Patents
導波素子 Download PDFInfo
- Publication number
- WO2023017775A1 WO2023017775A1 PCT/JP2022/029941 JP2022029941W WO2023017775A1 WO 2023017775 A1 WO2023017775 A1 WO 2023017775A1 JP 2022029941 W JP2022029941 W JP 2022029941W WO 2023017775 A1 WO2023017775 A1 WO 2023017775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inorganic material
- substrate
- ground electrode
- material substrate
- waveguide
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 365
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 161
- 239000011147 inorganic material Substances 0.000 claims abstract description 161
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 53
- 235000012431 wafers Nutrition 0.000 description 66
- 229910021417 amorphous silicon Inorganic materials 0.000 description 41
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 40
- 229910052710 silicon Inorganic materials 0.000 description 40
- 239000010703 silicon Substances 0.000 description 40
- 239000004020 conductor Substances 0.000 description 39
- 239000010410 layer Substances 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 27
- 239000002184 metal Substances 0.000 description 27
- 239000000463 material Substances 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 14
- 238000004544 sputter deposition Methods 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 11
- 239000002131 composite material Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000001902 propagating effect Effects 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 5
- 230000000644 propagated effect Effects 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 229910052596 spinel Inorganic materials 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910026161 MgAl2O4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000001328 terahertz time-domain spectroscopy Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/16—Dielectric waveguides, i.e. without a longitudinal conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/003—Coplanar lines
- H01P3/006—Conductor backed coplanar waveguides
Definitions
- the present invention relates to waveguide elements.
- Waveguide devices are being developed. Waveguide devices are expected to be applied and developed in a wide range of fields such as optical waveguides, next-generation high-speed communication, sensors, laser processing, and photovoltaic power generation.
- An example of such a waveguide element is a grounding device composed of a glass substrate having a thickness of 300 ⁇ m, a coplanar conductor provided on the glass substrate, and a ground electrode provided on the opposite side of the glass substrate to the coplanar conductor.
- Patent Document 1 A technique using a coplanar waveguide has been proposed (Patent Document 1).
- the waveguide element When employing a waveguide element based on such technology in various industrial products, it is considered to mount the waveguide element on a support substrate such as an IC substrate or a printed circuit board.
- a support substrate such as an IC substrate or a printed circuit board.
- the range in which low propagation loss performance at a practical level can be secured is narrow in the millimeter wave to terahertz wave frequency range (especially in the frequency range of 300 GHz or higher), and excellent performance over a wide frequency range is achieved. Achieving low propagation loss performance is difficult.
- a main object of the present invention is to provide a waveguide element that achieves excellent low propagation loss performance over a wide frequency range in a high frequency range of 30 GHz or higher while having a configuration in which an inorganic material substrate is mounted (supported) on a support substrate. is to provide
- a waveguide element comprises a waveguide member capable of guiding an electromagnetic wave having a frequency of 30 GHz or more and 20 THz or less; a support substrate for supporting the waveguide member; and a low dielectric constant portion.
- the waveguide member includes an inorganic material substrate; and a coplanar electrode provided on the inorganic material substrate.
- the support substrate is provided below the inorganic material substrate.
- the low dielectric constant portion is provided under the inorganic material substrate and has a dielectric constant smaller than that of the inorganic material substrate.
- the thickness t of the inorganic material substrate satisfies the following formula (1). (In the formula, t represents the thickness of the inorganic material substrate.
- ⁇ represents the wavelength of the electromagnetic wave guided by the waveguide member.
- ⁇ represents the dielectric constant of the inorganic material substrate. represents a numerical value.
- the support substrate has a recess, a cavity is defined by the lower surface of the inorganic material substrate and the recess of the support substrate, and the cavity functions as the low dielectric constant portion.
- the coplanar electrode includes a signal electrode extending in a predetermined direction; and a ground electrode spaced apart from the signal electrode in a direction intersecting the predetermined direction. Where g is the dimension of the gap between the signal electrode and the ground electrode in the direction intersecting the predetermined direction, the dimension of the cavity in the thickness direction of the inorganic material substrate is g or more.
- the waveguide element comprises a ground electrode located between the inorganic material substrate and the support substrate.
- the dielectric constant ⁇ and the dielectric loss tangent (dielectric loss) tan ⁇ of the inorganic material substrate at 300 GHz are 3.5 or more and 12 or less and 0.003 or less, respectively.
- the inorganic material substrate is a quartz glass substrate.
- a waveguide having excellent low propagation loss performance over a wide frequency range in a high frequency range of 30 GHz or higher while having a configuration in which an inorganic material substrate is mounted (supported) on a support substrate. device can be realized.
- FIG. 1 is a schematic perspective view of a waveguide element according to an embodiment of the invention
- FIG. FIG. 2 is a cross-sectional view of the waveguide element of FIG. 1 taken along the line II-II'
- FIG. 5 is a schematic perspective view of a waveguide element according to another embodiment of the invention
- FIG. 5 is a schematic perspective view of a waveguide element according to yet another embodiment of the invention
- FIG. 5 is a cross-sectional view of the waveguide element of FIG. 4 taken along the line VV'
- FIG. 3 is a schematic cross-sectional view for explaining a modification of the waveguide element of FIG. 2
- FIG. 5 is a schematic perspective view of a waveguide element according to yet another embodiment of the invention
- FIG. 8 is a cross-sectional view of the waveguide element of FIG. 7 taken along line VIII-VIII';
- FIG. 8 is a cross-sectional view of the waveguide element of FIG. 7 taken along line IX-IX';
- FIG. 8 is a cross-sectional view of the waveguide element of FIG. 7 taken along the line XX';
- FIG. 8 is a schematic cross-sectional view for explaining a modification of the shape of vias in the waveguide element of FIG. 7;
- 12A and 12B are schematic cross-sectional views illustrating a modification of the arrangement of vias in the waveguide element of FIG. 11;
- FIG. 8 is a schematic cross-sectional view for explaining a modification of the arrangement of vias in the waveguide element of FIG. 7;
- FIG. 12 is a schematic cross-sectional view for explaining a modification of the configuration of vias in the waveguide element of FIG. 11;
- FIG. 5 is a schematic perspective view of a waveguide element according to yet another embodiment of the invention; 16 is an XVI-XVI' sectional view of the waveguide element of FIG. 15; FIG. FIG. 16 is an exploded perspective view of the waveguide element of FIG. 15; 17 is a schematic cross-sectional view illustrating a state in which the conductor pins of FIG. 16 are covered with an insulating material;
- FIG. FIG. 5 is a schematic perspective view of a waveguide element according to yet another embodiment of the invention;
- FIG. 4 is a schematic cross-sectional view illustrating an example of arrangement of joints in the waveguide element of FIG. 3 ;
- FIG. 3 is a schematic cross-sectional view illustrating an example of arrangement of joints in the waveguide element of FIG. 2 ;
- FIG. 1 is a schematic perspective view of a waveguide device according to one embodiment of the present invention
- FIG. 2 is a II-II' sectional view of the waveguide device of FIG.
- a waveguide element 100 in the illustrated example includes a waveguide member 10 , a support substrate 20 , and a low dielectric constant portion 50 .
- the waveguide member 10 can guide electromagnetic waves having a frequency of 30 GHz or more and 20 THz or less, in other words, electromagnetic waves of millimeter waves to terahertz waves.
- millimeter waves are typically electromagnetic waves with a frequency of about 30 GHz to 300 GHz; terahertz waves are typically electromagnetic waves with a frequency of about 300 GHz to 20 THz.
- the waveguide member 10 can guide an electromagnetic wave with a frequency of 30 GHz or more and 2 THz or less (especially an electromagnetic wave with a frequency of 30 GHz or more and 1 THz or less) while ensuring excellent low propagation loss.
- the waveguide member 10 constitutes a coplanar line, and includes an inorganic material substrate 1; a coplanar electrode 2 provided on the inorganic material substrate 1;
- the support substrate 20 is provided below the inorganic material substrate 1 and supports the waveguide member 10 .
- the low dielectric constant portion 50 is provided under the inorganic material substrate 1 and has a dielectric constant smaller than that of the inorganic material substrate 1 .
- the low dielectric constant portion 50 is typically a low refractive index portion having a refractive index smaller than that of the inorganic material substrate 1 .
- the waveguide element can ensure excellent low propagation loss performance over a wide frequency range in the above-described high frequency region.
- waveguide members line structures
- waveguide members since waveguide devices are being developed for miniaturization, and it is expected that circuits will be integrated in the future, it is expected that waveguide members (line structures) will also be required to be miniaturized accordingly.
- the waveguide element described above since the waveguide member (line structure) is supported by the support substrate, the thickness of the inorganic material substrate included in the waveguide member can be reduced. As a result, it is possible to meet the demand for miniaturization while ensuring excellent low propagation loss performance over a wide frequency range in the high frequency region described above.
- the thickness of the inorganic material substrate 1 satisfies the following formula (1).
- t represents the thickness of the inorganic material substrate.
- ⁇ represents the wavelength of the electromagnetic wave guided by the waveguide member.
- ⁇ represents the dielectric constant of the inorganic material substrate. represents a numerical value.
- the dielectric constant ⁇ of the inorganic material substrate 1 at 300 GHz is typically 3.5 or more, typically 12.0 or less, preferably 10.0 or less, more preferably 5. .0 or less.
- the dielectric loss tangent (dielectric loss) tan ⁇ of the inorganic material substrate 1 at 300 GHz is typically 0.0030 or less, preferably 0.0020 or less, more preferably 0.0015 or less.
- the dielectric constant ⁇ and dielectric loss tangent (dielectric loss) tan ⁇ can be measured by terahertz time domain spectroscopy. Moreover, in this specification, when there is no mention of the measurement frequency with respect to the dielectric constant and the dielectric loss tangent, it means the dielectric constant and the dielectric loss tangent at 300 GHz.
- the thickness of the inorganic material substrate 1 is 1 ⁇ m or more, preferably 2 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, for example 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 100 ⁇ m or less. Preferably, it is 70 ⁇ m or less. From the viewpoint of miniaturization by reducing the size of the electrodes, the thickness of the inorganic material substrate 1 is particularly preferably 60 ⁇ m or less. When the thickness of the inorganic material substrate 1 is within the above range, excellent low propagation loss performance can be more stably secured over a wide frequency range of the high frequency range.
- the waveguide member 10 constitutes a grounded coplanar line and has a ground electrode 3 .
- the ground electrode 3 is positioned between the inorganic material substrate 1 and the support substrate 20 .
- the waveguide member 10 of the illustrated example constitutes a coplanar line with a ground, but the waveguide member of the present invention does not have to have a ground electrode like the waveguide member 11 shown in FIG.
- the coplanar electrode 2 comprises a signal electrode 2a, a first ground electrode 2b and a second ground electrode 2c.
- the signal electrode 2a has a linear shape extending in a predetermined direction (waveguide direction of the waveguide member).
- the width (dimension in the direction orthogonal to the waveguide direction) w of the signal electrode 2a is, for example, 2 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 150 ⁇ m or less.
- the first ground electrode 2b is spaced apart from the signal electrode 2a in a direction crossing (preferably orthogonal to) the longitudinal direction of the signal electrode 2a.
- the second ground electrode 2c is positioned opposite to the first ground electrode 2b with respect to the signal electrode 2a in a direction intersecting (preferably orthogonal) to the longitudinal direction of the signal electrode 2a, and is spaced from the signal electrode 2a. are placed vacantly. As a result, a space (gap) extending in the longitudinal direction of the signal electrode 2a is formed between the signal electrode 2a and the ground electrodes 2b and 2c.
- the width (dimension in the direction intersecting the longitudinal direction) g of the gap (gap) is, for example, 2 ⁇ m or more, preferably 5 ⁇ m or more, for example, 100 ⁇ m or less, preferably 80 ⁇ m or less.
- the ground electrodes 2b, 2c and the ground electrode 3 may be electrically connected. If the ground electrodes 2b, 2c and the ground electrode 3 are electrically connected, the ground can be strengthened and the stray capacitance due to the surrounding lines and elements can be suppressed.
- a plurality of via holes 9 are formed in the inorganic material substrate 1, and vias 6 positioned in each via hole 9 short-circuit the ground electrode and the ground electrode. Arrangement of the plurality of vias 6 (via holes) is not particularly limited. In the illustrated example, a plurality of vias 6 (via holes) are arranged in the longitudinal direction of the signal electrode 2a. The via 6 is typically a conductive film formed on the entire inner surface of the via hole.
- the vias 6 are made of a conductive material, typically made of the same metal as the coplanar electrode 2 (described later).
- the via hole may be entirely filled with a conductive material.
- the via is formed of a metal film, the interior thereof may be filled with a conductive material.
- the conductive material may be the same metal as the vias or a different material such as a conductive paste.
- the waveguide element 100 may further include a second ground electrode 4 .
- the ground electrode 3 may be referred to as the first ground electrode 3 .
- the ground electrode 3 may be referred to as a first metal layer, and the second ground electrode 4 may be referred to as a second metal layer.
- the second ground electrode 4 is located on the opposite side of the support substrate 20 from the first ground electrode 3 .
- the second ground electrode 4 is formed on the surface of the support substrate 20 opposite to the first ground electrode 3 and is in direct contact with the support substrate 20 .
- the first ground electrode is arranged between the inorganic material substrate and the support substrate, and the second ground electrode is arranged on the side opposite to the first ground electrode with respect to the support substrate. Therefore, leakage of electromagnetic waves to the support substrate can be further suppressed.
- the waveguide element 100 may have a through-substrate via 22 that electrically connects the first ground electrode 3 and the second ground electrode 4 .
- a waveguide element 100 shown in FIG. A through via 22 is provided separately. As a result, the ground can be further strengthened, and the stray capacitance due to the surrounding lines and elements can be stably suppressed.
- low dielectric constant portion 50 is hollow.
- the cavity functions as the low dielectric constant portion 50 (low refractive index portion).
- the support substrate 20 has a recess 21 , and the cavity is defined by the bottom surface of the inorganic material substrate 1 and the recess 21 of the support substrate 20 .
- Recess 21 is typically recessed downward from the upper surface of support substrate 20 and extends in the same direction as signal electrode 2a.
- the ground electrode 3 is provided on the inner surface of the recess 21
- the cavity may be defined by the lower surface of the inorganic material substrate 1 and the ground electrode 3 provided on the inner surface of the recess 21 .
- the cavity (low dielectric constant portion) 50 is arranged so as to overlap at least a portion of the signal electrode in the thickness direction of the inorganic material substrate 1 .
- the low dielectric constant portion preferably has a dielectric constant of less than 3.5 . (trademark)-based polymer).
- the low dielectric constant portion is hollow, leakage of electromagnetic waves propagating through the waveguide member from the waveguide member can be suppressed more stably than when the low dielectric constant portion is made of another material. , the propagation loss (dielectric loss) in the low dielectric constant portion can be further suppressed.
- the lower limit of the dimension d of the cavity in the thickness direction of the inorganic material substrate 1 is at least the width g of the void (gap), preferably at least 2 g.
- the upper limit of the dimension d of the cavity in the thickness direction of the inorganic material substrate 1 is 20 g or less, preferably 5 g or less. If the dimension of the cavity is equal to or greater than the above lower limit, it is possible to further reduce the propagation loss when guiding the above-described high-frequency electromagnetic waves.
- the lower limit of the dimension of the cavity in the width direction (direction perpendicular to the waveguide direction) of the inorganic material substrate 1 is equal to or greater than the width w of the signal electrode, preferably the width w of the signal electrode + the gap (gap) width g ⁇ 2 or more.
- the upper limit of the dimension of the cavity in the width direction of the inorganic material substrate 1 is the signal electrode width w+the gap width g ⁇ 40 or less, preferably the signal electrode width w+the gap width g ⁇ 20. It is below.
- the low dielectric constant portion formed of the above materials may be arranged in the recess 21 of the support substrate 20 . Further, as shown in FIGS. 4 and 5, the support substrate 20 does not have the concave portion 21, and the low dielectric constant portion 51 formed of the material described above is arranged between the inorganic material substrate 1 and the support substrate 20. may be In the illustrated example, the low dielectric constant portion 51 is formed in layers and sandwiched between the inorganic material substrate 1 and the ground electrode 3 . The range of the dimension d of the low dielectric constant portion 51 in the thickness direction of the inorganic material substrate 1 is the same as the range of the dimension d of the cavity in the thickness direction of the inorganic material substrate 1 described above.
- FIG. 7 is a schematic perspective view of a waveguide device according to another embodiment of the present invention.
- FIG. 8 is a VIII-VIII′ cross-sectional view of the waveguide device of FIG. 7; 9 is an IX-IX' cross-sectional view of the waveguide element of FIG. 7;
- FIG. 10 is an XX' cross-sectional view of the waveguide element of FIG.
- the waveguide element 101 of the illustrated example includes: , a first via 5 and a second via 6 .
- the waveguide element 101 may be provided with a joint portion, which will be described later.
- the first via 5 electrically connects the ground electrode of the coplanar electrode 2 and the second ground electrode 4, and is electrically connected to the first ground electrode 3. .
- the waveguide element 101 includes a plurality of first vias 5 described above.
- the second via 6 electrically connects the first ground electrode 3 and the ground electrode.
- the second vias 6 are arranged between the first vias 5 adjacent to each other among the plurality of first vias 5 . According to such a configuration, the first via electrically connects the first ground electrode, the second ground electrode, and the ground electrode of the coplanar electrode. Therefore, the ground can be further strengthened, and the stray capacitance due to the surrounding lines and elements can be suppressed more stably.
- the relative positional accuracy between the portion located between the first ground electrode and the ground electrode and the portion located between the first ground electrode and the second ground electrode is It can be easily secured. Therefore, compared to the case where the via connecting the first ground electrode and the ground electrode and the via connecting the first ground electrode and the second ground electrode are provided separately (see FIG. 6), It is possible to suppress the occurrence of ripples.
- the waveguide element 101 having the first vias 5 can be manufactured smoothly compared to the waveguide element 100 shown in FIG.
- the pitch of the first vias and the second vias in the inorganic material substrate can be made smaller than the pitch of the first vias in the supporting substrate. can. Therefore, even if the thickness of the inorganic material substrate is reduced, sufficient strength of the inorganic material substrate can be ensured.
- the first vias 5 are provided on both sides of the signal electrode 2a in a direction crossing (preferably orthogonal to) the longitudinal direction of the signal electrode 2a.
- a first via for electrically connecting the first ground electrode 2b and the second ground electrode 4 will be referred to as a first via 5a
- a second ground electrode 2c and the second ground electrode 4 will be electrically connected.
- the first via 5b is distinguished from each other as a first via 5b.
- the first via 5a is in contact with the first ground electrode 2b and the second ground electrode 4, and continuously connects the first ground electrode 2b and the second ground electrode 4. extended.
- the first via 5 b is in contact with the second ground electrode 2 c and the second ground electrode 4 and extends continuously between the second ground electrode 2 c and the second ground electrode 4 .
- Each of the first vias 5 a and 5 b penetrates the first ground electrode 3 and is in contact with the first ground electrode 3 .
- the waveguide element may have only one of the first vias 5a and 5b.
- the first via 5 is typically a conductive film.
- the first via 5 is made of a conductive material, typically made of the same metal as the coplanar electrode 2 (described later).
- the shape of the first via 5 corresponds to the shape of the first via hole 8 in which it is arranged. That is, the waveguide element 101 has a plurality of first via holes 8 corresponding to the plurality of first via holes 5 .
- the first via hole 8 penetrates the inorganic material substrate 1 , the first ground electrode 3 and the support substrate 20 .
- the first via hole 8 typically has a circular shape when viewed from above the inorganic material substrate 1 .
- the inner diameter of the first via hole is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and is, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
- the first via hole 8 has a circular shape when viewed from above the inorganic material substrate 1 , and extends linearly in the thickness direction of the inorganic material substrate 1 through the inorganic material substrate 1 and the first ground electrode 3 . and the support substrate 20 .
- the first via hole is circular and linear
- the first via 5 has a columnar or cylindrical shape extending in the thickness direction of the inorganic material substrate 1 .
- the range of the outer diameter of the first via 5 is the same as the range of the inner diameter of the first via hole.
- the first via hole 8 has a circular shape when viewed from above the inorganic material substrate 1, and has a tapered shape that decreases in diameter as it approaches the first ground electrode 3. good. Also, although not shown, the first via hole 8 may have a circular shape when viewed from above the inorganic material substrate 1 and may have a tapered shape that increases in diameter as it approaches the ground electrode 3 . When the first via hole has a tapered shape, it is possible to provide characteristics such as easy formation of the conductive film in the first via and easy securing of the strength of the support substrate. Also, the first via may be formed such that a conductive material is embedded in the first via hole.
- the first via 5 When the first via hole is circular and tapered, the first via 5 preferably has an hourglass shape with a smaller diameter at the portion in contact with the first ground electrode 3 and a larger diameter away from the first ground electrode 3. have In other words, the first via 5 preferably has a shape in which the vertices of two cones are connected. In this case, the maximum outer diameter of the first via 5 is within the above range. In one embodiment, the outer diameter of one end of the first via 5 that contacts the ground electrode is smaller than the outer diameter of the other end of the first via 5 that contacts the second ground electrode. In the first via 5, the taper angle on the coplanar electrode 2 side with respect to the first ground electrode is smaller than the taper angle on the second ground electrode side with respect to the first ground electrode.
- each of the ground electrode and the second ground electrode of the coplanar electrode is formed so as to close the first via hole.
- Each of the ground electrode and the second ground electrode may be electrically connected to the first via, and may be open without blocking the first via hole.
- the pitch P1 of the plurality of first vias 5a (the distance between the centers of the first vias 5 adjacent to each other) is, for example, 40 ⁇ m or more, preferably 60 ⁇ m or more, and is, for example, 600 ⁇ m or less, preferably 400 ⁇ m or less, more preferably 200 ⁇ m or less. is.
- a plurality of first vias 5 are arranged in the longitudinal direction of the signal electrode 2a at intervals.
- the direction in which the plurality of first vias 5 are arranged is not limited to the longitudinal direction of the signal electrode 2a.
- the plurality of first vias 5 may be arranged at intervals in a direction crossing (preferably orthogonal to) the longitudinal direction of the signal electrode 2a.
- the waveguide element may have a plurality of rows of the first vias 5 arranged in the longitudinal direction of the signal electrode 2a in a direction intersecting (perpendicular to) the longitudinal direction of the signal electrode 2a.
- the second vias 6 are provided on both sides of the signal electrode 2a in a direction crossing (preferably orthogonal to) the longitudinal direction of the signal electrode 2a.
- the second via electrically connecting the first ground electrode 2b and the first ground electrode 3 is referred to as the second via 6a
- the second ground electrode 2c and the first ground electrode 3 are electrically connected.
- the second vias to be connected are distinguished from each other as the second vias 6b.
- the second via 6 a is in contact with the first ground electrode 2 b and the first ground electrode 3 and is not in contact with the second ground electrode 4 .
- the second via 6 b is in contact with the second ground electrode 2 c and the first ground electrode 3 and is not in contact with the second ground electrode 4 .
- the waveguide element may have only one of the second vias 6a and 6b.
- the second via 6 is typically a conductive film.
- the second vias 6 are made of a conductive material, and are typically made of the same metal (described later) as the first vias 5 .
- the shape of the second via 6 corresponds to the shape of the second via hole 9 in which it is arranged. That is, waveguide element 101 has second via hole 9 corresponding to second via 6 .
- the second via hole 9 penetrates at least the inorganic material substrate 1 and does not penetrate the support substrate 20 .
- the second via hole 9 typically has a circular shape when viewed from above the inorganic material substrate 1 .
- the range of the inner diameter of the second via hole is, for example, the same as the range of the inner diameter of the first via hole.
- the second via hole 9 in the illustrated example penetrates the inorganic material substrate 1 linearly in the thickness direction of the inorganic material substrate 1 and does not penetrate the first ground electrode 3 .
- second via hole 9 is circular and linear
- second via 6 has a columnar or cylindrical shape extending in the thickness direction of inorganic material substrate 1 .
- the range of the outer diameter of the second via 6 is the same as the range of the inner diameter of the second via hole.
- the second via hole 9 may have a conical shape that tapers away from the coplanar electrode 2 .
- the second via hole 9 in the illustrated example penetrates the inorganic material substrate 1 and the first ground electrode 3 and its tip reaches the support substrate 20 .
- the second via hole 9 has a conical shape
- the second via 6 preferably has a similar conical shape as the second via hole 9 .
- the maximum outer diameter of the second via 6 is within the range of the inner diameter of the second via hole.
- the vertex of the second via 6 (the end of the second via 6 opposite to the coplanar electrode 2 ) may reach the support substrate 20 .
- the ground electrode is formed so as to close the second via hole, but the configuration of the ground electrode is not limited to this.
- the ground electrode may be electrically connected to the second via, and may be left open without blocking the second via hole.
- the second vias 6 are arranged between adjacent first vias 5 among a plurality of first vias 5 arranged in a predetermined direction.
- the second vias 6 are typically located in the center of the spacing between the adjacent first vias 5 .
- the waveguide element 101 in the illustrated example has a plurality of second vias 6 (a plurality of second vias 6a and a plurality of second vias 6b).
- the second vias 6 shown in FIGS. 7 to 12 are arranged between the first vias 5 adjacent to each other in the longitudinal direction of the signal electrode 2a.
- the second vias 6 shown in FIG. 13 are arranged between the first vias 5 adjacent to each other in a direction crossing (preferably orthogonal to) the longitudinal direction of the signal electrode 2a.
- the second vias 6 can be arranged at any appropriate position between the first vias 5 adjacent to each other.
- the second via 6 may be arranged every n first vias 5 in the direction in which the plurality of first vias are arranged. n is, for example, 1 or more and 5 or less, preferably 1 or 2. More preferably, the first vias 5 and the second vias 6 are alternately arranged. 10 and 11, all of the plurality of second vias 6 may be arranged between adjacent first vias 5, and at least one of the plurality of second vias 6 may Second vias 6 that are not arranged between first vias 5 may be included as long as they are arranged between adjacent first vias 5 .
- the pitch P2 between the first vias 5 and the second vias 6 adjacent to each other is substantially the pitch P1 It is 1/2 of (the distance between the centers of the first vias 5 adjacent to each other), which is, for example, 25 ⁇ m or more, preferably 60 ⁇ m or more, and is, for example, 600 ⁇ m or less, preferably 400 ⁇ m or less, more preferably 200 ⁇ m or less.
- the pitch P2 between the first vias 5 and the second vias 6 in the inorganic material substrate 1 is equal to that of the first vias in the support substrate 20 .
- 5 can be smaller than the pitch P1. Therefore, even if the thickness of the inorganic material substrate is reduced, the strength of the inorganic material substrate can be sufficiently secured.
- the waveguide element 101 may include the first via 5 but not the second via 6 .
- the first via hole 8 has a tapered shape with a diameter that increases with increasing distance from the first ground electrode 3, and the thickness of the support substrate 20 is greater than that of the inorganic material substrate 1,
- the outer diameter of the other end of the first via 5 contacting the second ground electrode 4 may be larger than the outer diameter of one end of the first via 5 contacting the ground electrode.
- the waveguide element 101 includes the first vias 5 and the second vias 6, and the second vias 6 are arranged between the adjacent first vias 5, thereby suppressing the interference between the first vias 5. Therefore, it is preferable.
- FIG. 15 is a schematic perspective view of a waveguide element according to yet another embodiment of the present invention
- FIG. 16 is an XVI-XVI′ cross-sectional view of the waveguide element of FIG. 15
- 17 is an exploded perspective view of the waveguide element of FIG. 15.
- the waveguide element 102 of the illustrated example includes the above-described inorganic material substrate 1, the above-described coplanar electrode 2, the above-described first ground electrode 3, the above-described support substrate 20, and the above-described second ground electrode 4. and further includes a plurality of through-substrate vias 22 .
- the waveguide element 102 may be provided with a joint portion, which will be described later.
- Each of the substrate through vias 22 electrically connects the first ground electrode 3 and the second ground electrode 4 .
- the first ground electrode 3 , the second ground electrode 4 , and the plurality of through-substrate vias 22 constitute a substrate integrated waveguide (hereinafter referred to as SIW) capable of propagating electromagnetic waves.
- SIW substrate integrated waveguide
- the SIW can be provided on the support substrate, and the support substrate can be effectively used as a waveguide.
- the coplanar electrode 2 further includes a third ground electrode 2d in addition to the signal electrode 2a, first ground electrode 2b and second ground electrode 2c described above.
- one end of the signal electrode 2a is located between the first ground electrode 2b and the second ground electrode 2c which are spaced apart from each other.
- the first ground electrode 2b and the second ground electrode 2c may be electrically connectable to an external element (not shown).
- the third ground electrode 2d is arranged at a predetermined distance from the other end of the signal electrode 2a.
- the third ground electrode 2d has a substantially C-shape when viewed from above, and surrounds the other end of the signal electrode 2a.
- the coplanar electrode 2 may not have the third ground electrode 2d.
- the waveguide element 102 may further include the vias 6 described above.
- grounding can be strengthened, and stray capacitance due to surrounding lines and elements can be suppressed.
- each of the ground electrodes 2b, 2c, and 2d is electrically connected to the first ground electrode 3 through a plurality of vias 6.
- Each of the plurality of substrate through vias 22 penetrates the support substrate 20 in the thickness direction and is periodically arranged on the support substrate 20 .
- the plurality of through-substrate vias 22 includes a first via row 22a and a second via row 22b.
- Each of the first via row 22a and the second via row 22b is composed of a plurality of through-substrate vias 22 arranged in a predetermined direction at intervals.
- the second via row 22b is positioned apart from the first via row 22a in a direction orthogonal to the direction in which the first via row 22a extends.
- a region surrounded by the first ground electrode 3, the second ground electrode 4, the first via row 22a, and the second via row 22b functions as an SIW.
- the cavity (low dielectric constant portion) 50 is aligned with the SIW in the extending direction of the first via row 22a.
- the substrate through via 22 is made of a conductive material, typically made of the same metal as the coplanar electrode 2 (described later).
- Through-substrate vias 22 are disposed within substrate via holes 24 . That is, the waveguide element 103 has a plurality of substrate via holes 24 corresponding to the plurality of substrate through vias 22 .
- the substrate via hole 24 penetrates the first ground electrode 3, the supporting substrate 20 and the second ground electrode 4 collectively.
- the substrate through via 22 is typically a conductive film formed on the entire inner surface of the substrate via hole 24 .
- the substrate via hole 24 may penetrate only the support substrate without penetrating the first ground electrode and the second ground electrode.
- the through-substrate via is filled in the second via hole so as to be in contact with the first ground electrode and the second ground electrode.
- the through-substrate via 22 that electrically connects the first ground electrode 3 and the second ground electrode 4 is formed of a conductive film, the interior thereof may be filled with a material such as resin.
- the transmission line formed by the signal electrode 2a and the SIW may be independent of each other, or may be coupled together so that electromagnetic waves can propagate.
- the transmission line formed by the coplanar electrode 2 (coplanar transmission line) and the SIW are coupled by a conductor pin 25 .
- the propagation mode of electromagnetic waves can be converted into a transmission line mode and a waveguide mode.
- a transmission line mode electromagnetic wave (signal) propagating through an inorganic material substrate can be converted into a waveguide mode electromagnetic wave propagating through a support substrate via a conductor pin.
- the support substrate can function as an antenna that spatially radiates electromagnetic waves propagating in waveguide mode in the in-plane direction of the substrate.
- the conductor pin 25 extends from the signal electrode 2 a through the inorganic material substrate 1 and reaches the SIW on the support substrate 20 .
- the conductor pin 25 can serve as a propagation medium for electromagnetic waves.
- the conductor pin 25 is made of a conductive material, typically the same metal as the coplanar electrode 2 (described later). In the illustrated example, the conductor pins 25 extend in the thickness direction of the inorganic material substrate 1 .
- the conductor pin 25 may have a columnar shape such as a cylindrical shape, or may have a tubular shape (hollow shape) such as a cylindrical shape.
- the base end of the conductor pin 25 is connected to the end of the signal electrode 2a.
- a free end of the conductor pin 25 is inserted into an insertion hole 26 formed in the support substrate 20 (see FIG. 17).
- the insertion hole 26 is located between the first via row 22 a and the second via row 22 b and is aligned with the recess 21 .
- a portion of the conductor pin 25 between the base end and the free end is inserted through the opening 31 of the first ground electrode 3 .
- Conductor pin 25 is preferably insulated from first ground electrode 3 .
- the openings 31 form an air layer around the conductor pins 25, as shown in FIG.
- the opening 31 is larger than the outer shape of the conductor pin 25 , and the entire periphery of the opening 31 is separated from the conductor pin 25 .
- the conductor pin can be insulated from the first ground electrode, and thus the signal electrode and the first ground electrode can be stably insulated. Further, substrate resonance due to electric field leakage to the support substrate can be further suppressed. Furthermore, the effect of dielectric loss can be suppressed compared to a structure in which an air layer is filled with resin.
- the periphery of the conductor pin 25 may be covered with an insulating material 15 .
- This also allows the conductor pin to be insulated from the first ground electrode.
- insulating materials include resin and SiO 2 .
- FIG. 19 is a schematic perspective view of a waveguide element according to still another embodiment of the present invention. Note that the ground electrodes and vias are omitted in FIG. 19 for the sake of convenience.
- Waveguide element 103 comprises a plurality of signal electrodes spaced apart from each other. Therefore, the waveguide element 103 has a plurality of transmission lines corresponding to the signal electrodes. More specifically, the waveguide element 103 includes a coplanar electrode 2 including a first signal electrode 2a and a second signal electrode 2e, and a first conductor pin and a second conductor pin (not shown).
- the waveguide element 103 also has a first cavity (first low dielectric constant portion) 50 and a second cavity (second low dielectric constant portion) 51 .
- the first cavity 50 is arranged in the thickness direction of the inorganic material substrate 1 so as to overlap at least a portion of the first signal electrode 2a.
- the second cavity 51 is arranged in the thickness direction of the inorganic material substrate 1 so as to overlap at least a portion of the second signal electrode 2e.
- the first signal electrode 2a forms a first transmission line together with a ground electrode (not shown), and the second signal electrode 2e forms a second transmission line together with a ground electrode (not shown).
- the first conductor pin couples the SIW composed of the first ground electrode 3, the second ground electrode 4 and the plurality of through-substrate vias 22 and the first transmission line.
- the second conductor pin couples the SIW composed of the first ground electrode 3, the second ground electrode 4 and the plurality of through-substrate vias 22 and the second transmission line. Accordingly, in one embodiment, after the transmission line mode electromagnetic wave (signal) propagating through the inorganic material substrate is converted into the SIW mode via the first conductor pin, the support substrate is propagated in the SIW mode, and then It can be converted into a transmission line mode propagating through the inorganic material substrate again via the second conductor pin. In this embodiment, the electromagnetic wave propagated through the inorganic material substrate can be emitted from the antenna element provided on the inorganic material substrate.
- Each waveguide element described above includes one support substrate 20, but the number of support substrates 20 is not particularly limited.
- a plurality of supporting substrates may be arranged at intervals in the thickness direction of the inorganic material substrate, and a substrate integrated waveguide (SIW) may be provided for each of the plurality of supporting substrates.
- SIW substrate integrated waveguide
- the antenna portion that radiates electromagnetic waves in the SIW mode can be arrayed in the thickness direction.
- Such waveguide elements can therefore be used as phased array antennas in wireless communications.
- the second ground electrode may be arranged between adjacent supporting substrates among the plurality of supporting substrates.
- the SIW provided on each support substrate consists of metal layers (i.e., a first ground electrode and a second ground electrode, or two second ground electrodes) disposed on both sides of the support substrate, and a plurality of through-substrate vias penetrating through the supporting substrate.
- a plurality of waveguide units including SIW may be arranged at intervals in the thickness direction of the inorganic material substrate.
- Each of the plurality of waveguide units includes a first ground electrode, a supporting substrate, a second ground electrode and a plurality of through-substrate vias.
- a spacer substrate may be provided between adjacent supporting substrates among the plurality of supporting substrates. Spacer substrates may be disposed between waveguide units adjacent to each other.
- waveguide elements comprising a plurality of SIWs preferably comprise as many signal electrodes and conductor pins as SIWs. Each conductor pin couples the transmission path formed by each signal electrode and the corresponding SIW. According to such a configuration, while being relatively easy to fabricate, signals (electromagnetic waves) from an external signal source placed on the inorganic material substrate can be easily propagated to the SIW of each supporting substrate.
- waveguide element includes both a wafer on which at least one waveguide element is formed (waveguide element wafer) and chips obtained by cutting the waveguide element wafer.
- the inorganic material substrate 1 has an upper surface on which the coplanar electrode 2 is provided and a lower surface located within the composite substrate.
- the inorganic material substrate 1 is made of an inorganic material. Any appropriate material can be used as the inorganic material as long as the effects of the embodiments of the present invention can be obtained.
- Typical examples of such materials include single crystal quartz (dielectric constant 4.5, dielectric loss tangent 0.0013), amorphous quartz (quartz glass, dielectric constant 3.8, dielectric loss tangent 0.0010), Spinel (relative dielectric constant 8.3, dielectric loss tangent 0.0020), AlN (relative dielectric constant 8.5, dielectric loss tangent 0.0015), sapphire (relative dielectric constant 9.4, dielectric loss tangent 0.0030), SiC ( dielectric constant 9.8, dielectric loss tangent 0.0022), magnesium oxide (relative dielectric constant 10.0, dielectric loss tangent 0.0012), and silicon (relative dielectric constant 11.7, dielectric loss tangent 0.0016).
- the inorganic material substrate 1 is preferably a quartz glass substrate made of amorphous quartz.
- the inorganic material substrate 1 is a quartz glass substrate, it is possible to stably suppress an increase in propagation loss even when the high-frequency electromagnetic wave is guided.
- the dielectric constant is larger than that of a resin-based substrate, the size of the substrate can be reduced, and since the dielectric constant is relatively small among inorganic materials, it is advantageous in reducing the delay.
- quartz glass has a low dielectric loss (tan ⁇ ), and unlike resin substrates, quartz glass has the characteristic that a conductor layer (metal layer) for forming a line can be formed without surface roughening or surface treatment. . Therefore, propagation loss can be further reduced.
- the coplanar electrode 2 is typically provided on the upper surface of the inorganic material substrate 1 and is in direct contact with the inorganic material substrate 1 .
- the coplanar electrode 2 is typically made of metal. Examples of metals include chromium (Cr), nickel (Ni), copper (Cu), and gold (Au). Metals can be used alone or in combination.
- the coplanar electrode 2 may be a single layer, or may be formed by stacking two or more layers.
- the coplanar electrode 2 is formed on the inorganic material substrate 1 by a known film forming method such as sputtering (otherwise, vapor deposition and printing).
- the thickness of the coplanar electrode 2 is, for example, 1 ⁇ m or more, preferably 4 ⁇ m or more, and is, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less.
- the first ground electrode 3 is provided on the upper surface of the support substrate 20 .
- the first ground electrode 3 can be made of the same metal as the coplanar electrode 2 .
- the metal of the first ground electrode 3 may be the same as the metal of the coplanar electrode 2 or may be different from the metal of the conductor layer 2 .
- the thickness range of the first ground electrode 3 is the same as the thickness range of the coplanar electrode 2 .
- the first ground electrode 3 is formed on the surface of the support substrate 20 by sputtering or plating, for example.
- the second ground electrode 4 is formed on the surface of the support substrate 20 opposite to the first ground electrode 3, for example by sputtering or plating.
- the second ground electrode 4 can be made of the same metal as the coplanar electrode 2 .
- the metal of the second ground electrode 4 may be the same as the metal of the coplanar electrode 2 or may be different from the metal of the coplanar electrode 2 .
- the thickness range of the second ground electrode 4 is the same as the thickness range of the coplanar electrode 2 .
- the second ground electrode 4 does not necessarily have to be formed on the entire surface of the support substrate 20 opposite to the first ground electrode.
- the support substrate 20 has an upper surface located within the composite substrate and a lower surface exposed to the outside.
- the upper surface of the support substrate 20 may be formed with the recesses 21 described above.
- the support substrate 20 is provided to increase the strength of the composite substrate, thereby making it possible to reduce the thickness of the inorganic material substrate as described above. Any appropriate configuration can be adopted as the support substrate 20 .
- Specific examples of materials constituting the support substrate 20 include indium phosphide (InP), silicon (Si), glass, sialon (Si 3 N 4 —Al 2 O 3 ), mullite (3Al 2 O 3.2SiO 2 , 2Al).
- Support substrate 20 preferably comprises at least one selected from the group consisting of indium phosphide, silicon, aluminum nitride, silicon carbide and silicon nitride, and more preferably comprises silicon.
- the inorganic material substrate may be heated, degrading the characteristics of other active elements and mounted parts.
- a material with high thermal conductivity can be used for the support substrate.
- the thermal conductivity is preferably 150 W/Km or more, and from this point of view, the support substrate 20 is composed of silicon (Si), aluminum nitride (AlN), gallium nitride (GaN), silicon carbide (SiC), silicon night Ride (Si 3 N 4 ) can be mentioned.
- the material of the support substrate is preferably selected from monocrystalline quartz, amorphous quartz, spinel, AlN, sapphire, aluminum oxide, SiC, magnesium oxide or silicon. Among the materials for such a support substrate, silicon is more preferable.
- the thickness of the support substrate 20 is, for example, ⁇ /4 ⁇ b or more, preferably ⁇ /2 ⁇ , where ⁇ b is the dielectric constant of the support substrate 20 and ⁇ is the wavelength of the electromagnetic wave guided by the waveguide element. b or more, for example, 2 ⁇ / ⁇ b or less, preferably 3 ⁇ / 2 ⁇ b or less, more preferably ⁇ / ⁇ b or less. If the thickness of the support substrate is equal to or more than the above lower limit, the mechanical strength of the waveguide element can be stably improved. If the thickness of the support substrate is equal to or less than the above upper limit, it is possible to suppress slab mode propagation, reduce the thickness of the waveguide element (maintain the mechanical strength of the waveguide element), and suppress substrate resonance.
- the interval between the support substrates adjacent to each other should be approximately ⁇ /2, which is suitable for the antenna pitch. is desirable.
- the thickness of the support substrate is less than the above-mentioned interval, a suitable antenna pitch can be ensured by providing a spacer substrate between the adjacent support substrates.
- the coefficient of linear expansion of the material forming the support substrate 20 is closer to the coefficient of linear expansion of the material forming the inorganic material substrate 1 .
- thermal deformation typically, warpage
- the coefficient of linear expansion of the material forming the support substrate 20 is in the range of 50% to 150% of the coefficient of linear expansion of the material forming the inorganic material substrate 1 .
- the support substrate 20 supports the waveguide member 10 by directly bonding to the waveguide member 10 , typically.
- the inorganic material substrate 1 and the support substrate 20 are directly bonded.
- direct bonding means that two layers or substrates are bonded without interposing an adhesive (for example, an organic adhesive such as resin).
- the form of direct bonding can be appropriately set according to the configuration of the layers or substrates to be bonded together.
- the interfaces bonded by direct bonding are typically amorphous. Therefore, the thermal resistance of the bonding interface can be dramatically reduced compared to resin bonding (resin bonding) using an organic adhesive.
- the form of direct bonding can also include bonding of the support substrate and the inorganic material substrate via the ground electrode 3 described above and/or the bonding portion 60 described later.
- delamination in the waveguide element can be well suppressed, and as a result, damage (for example, cracks) to the inorganic material substrate caused by such delamination can be effectively prevented. can be suppressed.
- the waveguide element 100 may further include a bonding portion 60 provided between the waveguide member 11 and the support substrate 20 to bond the waveguide member 11 and the support substrate 20 together.
- the joint 60 is typically provided between the waveguide member 11 and the portion of the support substrate 20 other than the recess 21 .
- only the joint portion 60 is provided between the inorganic material substrate 1 and the support substrate 20 .
- the inorganic material substrate 1 and the support substrate 20 are directly bonded only via the bonding portion 60 .
- the joint 60 is positioned between the inorganic material substrate 1 and the ground electrode 3 located in a portion other than the recess 21 of the support substrate 20 to integrate them.
- the ground electrode 3 is formed on the surface of the support substrate 20 on the inorganic material substrate side and is in direct contact with the support substrate 20 .
- the joint portion 60 is positioned between the inorganic material substrate 1 and the ground electrode 3 and joins the inorganic material substrate 1 and the ground electrode 3 .
- a ground electrode 3 and a joint portion 60 are provided between the inorganic material substrate 1 and the support substrate 20 . As a result, the inorganic material substrate 1 and the support substrate 20 are directly bonded via the ground electrode 3 and the bonding portion 60 .
- the ground electrode 3 is in direct contact with portions of the inorganic material substrate 1 and the support substrate 20 other than the concave portion 21, and serves as a joint portion for joining the inorganic material substrate 1 and the support substrate 20. may function.
- the ground electrode 3 is provided between the inorganic material substrate 1 and the support substrate 20 .
- the inorganic material substrate 1 and the support substrate 20 are directly bonded via the ground electrode 3 .
- the ground electrode 3 may be formed by forming metal layers on both the inorganic material substrate 1 and the support substrate 20 and directly bonding the metal layers. In this case, the bonding interface is formed inside the ground electrode.
- the joint portion may be located between the low dielectric constant portion 51 and the inorganic material substrate 1, and may be located between the low dielectric constant portion 51 and the ground electrode 3. It may be located in between or they may be integrated.
- an organic material such as an adhesive for bonding is not interposed between the coplanar electrode 2 and the support substrate 20 .
- the thermal resistance at the interface between the inorganic material substrate 1 and the support substrate 20 can be reduced, and deterioration of the characteristics of active elements and mounted components can be suppressed.
- the low dielectric constant portion is composed of an organic material such as a low dielectric constant polymer
- the organic material as the low dielectric constant portion may be arranged between the coplanar electrode 2 and the support substrate 20. .
- the structure in which no organic material (adhesive, etc.) other than the low dielectric constant part intervenes is formed by forming a ground electrode on the inorganic material substrate 1 and the support substrate 20 (one or both of the inorganic material substrate 1 and the support substrate 20). may or may not be used.) can be obtained by directly joining them.
- the joint portion may be one layer, or two or more layers may be laminated.
- the joint is typically composed of an inorganic material.
- Examples of the bonding layer that forms the bonding portion include SiO 2 , amorphous silicon, and tantalum oxide.
- the junction is a metal film selected from gold (Au), titanium (Ti), platinum (Pt), chromium (Cr), copper (Cu), tin (Sn), or combinations (alloys) thereof.
- Au gold
- Ti titanium
- platinum platinum
- Cr chromium
- Cu copper
- Sn tin
- alloys amorphous silicon layer
- the thickness of the joint portion is, for example, 0.001 ⁇ m or more and 10 ⁇ m or less, preferably 0.1 ⁇ m or more and 3 ⁇ m or less.
- the bonding layer is preferably formed only in the bonding portion, it may be formed in the concave portion since the effect on the propagation of electromagnetic waves is small within the thickness range described above.
- Direct bonding can be realized, for example, by the following procedure.
- a neutralizing beam is applied to each bonding surface of the components (layers or substrates) to be bonded. Thereby, each joint surface is activated.
- the activated bonding surfaces are brought into contact with each other and bonded at room temperature.
- the load during this joining may be, for example, 100N to 20000N.
- an inert gas is introduced into the chamber, and a high voltage is applied from a DC power supply to the electrodes arranged in the chamber.
- the atomic species that make up the beam are preferably inert gas elements (eg, argon (Ar), nitrogen (N)).
- the voltage during activation by beam irradiation is, for example, 0.5 kV to 2.0 kV, and the current is, for example, 50 mA to 200 mA.
- the direct bonding method is not limited to this, and FAB (Fast Atom Beam), a surface activation method using an ion gun, an atomic diffusion method, a plasma bonding method, or the like can also be applied.
- Examples 1 and 2 > 1-1. Fabrication of Waveguide Device (Coplanar Line with Ground) The waveguide device shown in FIGS. 1 and 2 was fabricated.
- a silicon wafer (support substrate) with a thickness of 525 ⁇ m was prepared.
- a resist film was patterned on the upper surface of the silicon wafer so as to expose a region corresponding to the width of the signal electrode+gap g ⁇ 20 of the space directly below the signal electrode of the coplanar electrode described later.
- the portion of the silicon wafer exposed from the resist film was dry-etched by reactive ion etching to form a concave portion (hollow structure).
- the etching depth of the concave portion was the value shown in Table 1 (the thickness of the low dielectric constant portion).
- a Cr film with a thickness of 50 nm and a Ni film with a thickness of 100 nm were formed by sputtering on the silicon wafer on which the concave portions were formed, thereby forming the base electrode.
- a copper film was formed on the base electrode by electroplating to form a ground electrode.
- an amorphous silicon film of 0.2 ⁇ m was formed on the ground electrode by sputtering. After the film formation, the amorphous silicon film was polished and planarized.
- the arithmetic mean roughness of the surface of the amorphous silicon film of 10 ⁇ m square (10 ⁇ m square area; hereinafter the same) was measured to be 0.2 nm.
- a 0.5 mm thick quartz glass wafer (quartz glass substrate, inorganic material substrate) was prepared, and a 0.2 ⁇ m amorphous silicon film was formed on the quartz glass wafer by sputtering.
- a resist was applied to the surface of the amorphous silicon film, and a portion corresponding to the concave portion (non-bonding portion) of the silicon wafer was exposed by photolithography and developed (etched) to form a resist mask.
- the amorphous silicon was removed by dry etching.
- the amorphous silicon film was polished and planarized. Using an atomic force microscope, the arithmetic mean roughness of the surface of the amorphous silicon film of square 10 ⁇ m was measured to be 0.2 nm.
- the amorphous silicon surface on the quartz glass wafer and the amorphous silicon surface on the ground electrode were bonded as follows. First, a quartz glass wafer and a silicon wafer were placed in a vacuum chamber, and in a vacuum of the order of 10 ⁇ 6 Pa, both bonding surfaces (the amorphous silicon surface of the quartz glass wafer and the amorphous silicon surface on the ground electrode) were exposed to high-speed Ar. A reactive atom beam (accelerating voltage of 1 kV, Ar flow rate of 60 sccm) was applied for 70 seconds. After the irradiation, the quartz glass wafer and the silicon wafer were allowed to stand for 10 minutes to cool. The quartz glass wafer and the silicon wafer were bonded by pressing for 2 minutes.
- the quartz glass wafer and the silicon wafer were directly bonded via the amorphous silicon layer (bonding portion). After bonding, the quartz glass wafer was polished until the thickness thereof reached the value shown in Table 1 to form a composite wafer. In the resulting quartz glass/ground electrode/silicon composite substrate, no defect such as peeling was observed at the bonded interface.
- a resist was applied to the surface (polished surface) of the quartz glass wafer on the side opposite to the silicon wafer, and patterning was performed by photolithography so as to expose the portion where the coplanar electrode pattern was to be formed. Thereafter, a Cr film of 50 nm thickness and a Ni film of 100 nm thickness were formed by sputtering on the upper surface of the quartz glass wafer exposed from the resist to form a base electrode. Furthermore, a coplanar electrode pattern was formed by depositing a copper film on the base electrode by electroplating. The length of the signal electrode in the waveguide direction was 10 mm. A gap g between the signal electrode and the ground electrode was 13 ⁇ m.
- the amorphous silicon layer in the concave portion (hollow structure) of the silicon wafer was removed by wet etching.
- BHF buffered hydrofluoric acid
- Propagation loss (dB/cm) was calculated from the measurement results of three waveguide elements having different signal electrode lengths and evaluated according to the following criteria. Table 1 shows the results. ⁇ (excellent): less than 0.5 dB/cm ⁇ (good): 0.5 dB/cm or more and less than 1 dB/cm ⁇ (acceptable): 1 dB/cm or more and less than 2 dB/cm ⁇ (improper): 2 dB/cm or more
- a silicon wafer (support substrate) having recesses was prepared in the same manner as in Example 1. However, no ground electrode was formed on the silicon wafer having the recesses. Using an atomic force microscope, the arithmetic mean roughness of the surface of the silicon wafer with a square of 10 ⁇ m was measured and found to be 0.2 nm.
- a quartz glass wafer (quartz glass substrate, inorganic material substrate) with a thickness of 0.5 mm was prepared, and in the same manner as in Example 1, a patterned amorphous silicon film was formed on the quartz glass wafer. After the formation, the amorphous silicon film was polished and planarized. Using an atomic force microscope, the arithmetic mean roughness of the surface of the amorphous silicon film of square 10 ⁇ m was measured to be 0.2 nm.
- the amorphous silicon surface on the quartz glass wafer and the silicon wafer were directly bonded. Direct bonding was carried out as in Example 1. In the resulting quartz glass/silicon composite substrate, no defect such as peeling was observed at the bonding interface. Then, the quartz glass wafer was polished to the thickness shown in Table 1.
- a coplanar electrode pattern was formed on the surface (polished surface) of the quartz glass wafer opposite to the silicon wafer.
- the length of the signal electrode in the waveguide direction was 10 mm.
- a gap g between the signal electrode and the ground electrode was 13 ⁇ m.
- Example 5 A silicon wafer (supporting substrate) with a thickness of 525 ⁇ m and a quartz glass wafer (quartz glass substrate, inorganic material substrate) with a thickness of 0.5 mm are prepared, and a waveguide member having a coplanar electrode and an inorganic material substrate, and a polymer layer. , a waveguide element having a ground electrode and a supporting substrate having a concave portion was obtained. First, silicon wafers (supporting substrates) having recesses and ground electrodes were prepared in the same manner as in Example 1.
- a Teflon (registered trademark) polymer resin with a dielectric constant of 2.3 was spin-coated and cured to form a polymer layer in the recesses of the support substrate.
- CMP polishing was performed to remove the polymer outside the recess and planarize the polymer layer on the support substrate.
- an amorphous silicon film was formed by sputtering. After the film formation, a resist was applied to the surface of the amorphous silicon film, and portions corresponding to the concave portions were exposed by photolithography and developed (etched) to form a resist mask. After that, the amorphous silicon was removed by dry etching. Next, the amorphous silicon film was polished and planarized. Using an atomic force microscope, the arithmetic mean roughness of the surface of the amorphous silicon film of square 10 ⁇ m was measured to be 0.2 nm.
- an amorphous silicon film of 0.2 ⁇ m was formed on the quartz glass wafer by sputtering. After the film formation, a resist was applied to the surface of the amorphous silicon film, and portions corresponding to the concave portions (non-bonding portions) of the silicon wafer were exposed and etched by photolithography to form a resist mask. After that, the amorphous silicon was removed by dry etching.
- the amorphous silicon surface on the quartz glass wafer and the silicon wafer were directly bonded. Direct bonding was carried out as in Example 1. In the resulting quartz glass/silicon composite substrate, no defect such as peeling was observed at the bonded interface. Then, the quartz glass wafer was polished to the thickness shown in Table 1.
- Example 1 a coplanar electrode pattern was formed on the surface (polished surface) of the quartz glass wafer opposite to the silicon wafer.
- the length of the signal electrode in the waveguide direction was 10 mm.
- a gap g between the signal electrode and the ground electrode was 13 ⁇ m.
- a waveguide element including a waveguide member including a coplanar electrode and an inorganic material substrate, a polymer layer, a ground electrode, and a supporting substrate having recesses was obtained.
- the propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
- Example 6 A waveguide element was produced in the same manner as in Example 1, except that the etching depth of the recess was changed and the thickness of the cavity was changed to the value shown in Table 1. The propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
- Example 7 Except for changing the silica glass wafer as the inorganic material substrate to a single crystal silicon wafer, and changing the etching depth of the concave portion to change the thickness of the cavity to the value shown in Table 1, the same as in Example 1.
- a waveguide device was fabricated in the same manner.
- Example 8 The procedure was the same as in Example 1, except that the quartz glass wafer as the inorganic material substrate was changed to a sapphire wafer, and the depth of etching of the concave portion was changed to change the thickness of the cavity to the value shown in Table 1. Then, a waveguide element was produced. The propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
- Example 9 Example 1, except that the silica glass wafer as the inorganic material substrate was changed to a polycrystalline AlN wafer, and the depth of etching of the concave portion was changed to change the thickness of the cavity to the value shown in Table 1.
- a waveguide device was fabricated in the same manner. The propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
- a waveguide device shown in FIGS. 4 and 5 was produced.
- a silicon wafer (supporting substrate) with a thickness of 525 ⁇ m and a quartz glass wafer (quartz glass substrate, inorganic material substrate) with a thickness of 0.5 mm are prepared, and a waveguide member having a coplanar electrode and an inorganic material substrate, and a polymer layer.
- a waveguide element having a ground electrode and a support substrate having no recess was obtained.
- a silicon wafer (support substrate) with a thickness of 525 ⁇ m was prepared. Thereafter, a Cr film of 50 nm thickness and a Ni film of 100 nm thickness were formed on a silicon wafer by sputtering to form a base electrode. Further, a copper film was formed on the base electrode by electroplating to form a ground electrode.
- thermosetting Teflon (registered trademark) film with a dielectric constant of 2.3 was adhered and cured to form a polymer layer with a thickness of 100 ⁇ m on the ground electrode.
- an amorphous silicon film was formed by sputtering. After film formation, a resist is applied to the surface of the amorphous silicon film, and a region corresponding to the width of the signal electrode directly below the coplanar electrode + gap g x 20 is exposed by photolithography and developed (etched). A resist mask was formed. After that, the amorphous silicon was removed by dry etching. Next, the amorphous silicon film was polished and planarized. Using an atomic force microscope, the arithmetic mean roughness of the surface of the amorphous silicon film of square 10 ⁇ m was measured to be 0.2 nm.
- an amorphous silicon film of 0.2 ⁇ m was formed on the quartz glass wafer by sputtering. After film formation, a resist is applied to the surface of the amorphous silicon film, and photolithography is used to expose and etch a region corresponding to the width of the signal electrode directly below the coplanar electrode + gap g ⁇ 20 to form a resist mask. bottom. After that, the amorphous silicon was removed by dry etching. The amorphous silicon film was polished and planarized. Using an atomic force microscope, the arithmetic mean roughness of the surface of the amorphous silicon film of square 10 ⁇ m was measured to be 0.2 nm.
- the amorphous silicon surface on the quartz glass wafer and the amorphous silicon surface on the polymer layer were directly bonded. Direct bonding was carried out as in Example 1. In the resulting quartz glass/silicon composite substrate, no defect such as peeling was observed at the bonding interface. Then, the quartz glass wafer was polished to the thickness shown in Table 1.
- Example 1 a coplanar electrode pattern was formed on the surface (polished surface) of the quartz glass wafer opposite to the silicon wafer.
- the length of the signal electrode in the waveguide direction was 10 mm.
- a gap g between the signal electrode and the ground electrode was 13 ⁇ m.
- a waveguide element including a waveguide member including a coplanar electrode and an inorganic material substrate, a polymer layer, a ground electrode, and a supporting substrate having no concave portion was obtained.
- the propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
- Example 11 A waveguide element was obtained in the same manner as in Example 1, except that the thickness of the polished quartz glass wafer (quartz glass substrate, inorganic material substrate) was changed to 10 ⁇ m. The propagation loss of the obtained waveguide element was calculated and evaluated in the same manner as in Example 1. Table 1 shows the results.
- the waveguide device can be used in a wide range of fields such as waveguides, next-generation high-speed communications, sensors, laser processing, and solar power generation, and is particularly suitable for use as waveguides for millimeter waves to terahertz waves.
- waveguide elements can be used, for example, in antennas, bandpass filters, couplers, delay lines (phase shifters), or isolators.
Landscapes
- Waveguides (AREA)
Abstract
Description
このような技術による導波素子を各種産業製品に採用する場合、導波素子を、IC基板やプリント基板などの支持基板に実装することが検討される。しかし、導波素子を支持基板に実装すると、ミリ波~テラヘルツ波の周波数域(とりわけ300GHz以上の周波数域)において、実用レベルの低伝搬損失性能を確保できる範囲が狭く、広い周波数範囲にわたる優れた低伝搬損失性能を実現することが困難である。
1つの実施形態においては、上記無機材料基板の厚みtは、下記式(1)を満たす。
1つの実施形態においては、上記支持基板は、凹部を有し、上記無機材料基板の下面と上記支持基板の凹部とにより空洞が規定され、上記空洞が前記低誘電率部として機能する。
1つの実施形態においては、上記コプレーナ型電極は、所定方向に延びる信号電極と;前記所定方向と交差する方向に前記信号電極に対して間隔を空けて位置するグランド電極と;を備えている。前記所定方向と交差する方向における前記信号電極と前記グランド電極との間のギャップの寸法をgとした場合において、上記無機材料基板の厚み方向における空洞の寸法は、g以上である。
1つの実施形態においては、上記導波素子は、前記無機材料基板と前記支持基板との間に位置する接地電極を備えている。
1つの実施形態においては、上記無機材料基板の300GHzにおける比誘電率εと誘電正接(誘電体損失)tanδは、それぞれ3.5以上12以下、0.003以下である。
1つの実施形態においては、上記無機材料基板は、石英ガラス基板である。
A.導波素子の全体構成
A-1.導波素子100の全体構成
図1は、本発明の1つの実施形態による導波素子の概略斜視図であり;図2は、図1の導波素子のII-II´断面図である。
図示例の導波素子100は、導波部材10と、支持基板20と、低誘電率部50とを備えている。導波部材10は、周波数が30GHz以上20THz以下である電磁波、言い換えれば、ミリ波~テラヘルツ波の電磁波を導波可能である。なお、ミリ波とは、代表的には周波数が30GHz~300GHz程度の電磁波であり;テラヘルツ波とは、代表的には周波数が300GHz~20THz程度の電磁波である。とりわけ、導波部材10は、周波数が30GHz以上2THz以下である電磁波(特に周波数が30GHz以上1THz以下である電磁波)を、優れた低伝搬損失性を確保しつつ導波できる。
導波部材10は、コプレーナ線路を構成しており、無機材料基板1と;無機材料基板1の上部に設けられるコプレーナ型電極2と;を備えている。
支持基板20は、無機材料基板1の下部に設けられ、導波部材10を支持している。低誘電率部50は、無機材料基板1の下部に設けられ、無機材料基板1の誘電率よりも小さい誘電率を有している。低誘電率部50は、代表的には、無機材料基板1の屈折率よりも小さい屈折率を有する低屈折率部である。
詳しくは後述するが、コプレーナ線路を構成する導波部材では、コプレーナ型電極に電圧が印加されると電界が生じ、上記した高周波数の電磁波は電界と結合して伝搬される。
このような導波部材が支持基板に支持された構成で上記した高周波数の電磁波(とりわけ300GHz以上の電磁波)を導波すると、スラブモードの誘起および/または基板共振が発生して、伝搬損失が顕著に増大する場合がある。
スラブモードや基板共振による伝搬損失の増大を抑制するためには、コプレーナ型電極が設けられる無機材料基板の厚さを十分に薄くする構造が有効であるが、この場合、伝搬する電磁波が無機材料基板の下部にある支持基板に漏洩し、支持基板の誘電体損失による伝搬損失が大きくなるという新たな問題が生じる。
一方、コプレーナ型電極が設けられる無機材料基板の下部に低誘電率部を設けることにより、上記した高周波数の領域で広い周波数範囲にわたって、電界が支持基板に漏洩することを抑制しつつ、スラブモードの誘起および基板共振の発生を抑制できる。そのため、上記導波素子は、上記した高周波数の領域で、広い周波数範囲にわたって優れた低伝搬損失性能を確保できる。
また、導波素子は小型化の開発が進められており、将来的には回路の集積化が見込まれるため、導波部材(線路構造)もそれに伴う小型化が求められると予想される。上記の導波素子では、導波部材(線路構造)が支持基板に支持されているので、導波部材が備える無機材料基板の薄板化を図ることができる。その結果、上記した高周波数の領域で広い周波数範囲にわたって優れた低伝搬損失性能を確保しながら、小型化の要望にも対応することができる。
無機材料基板の厚みが、上記式(1)を満足すると、上記した高周波数の電磁波を導波する場合の伝搬損失の低減を図ることができる。
無機材料基板1の300GHzにおける誘電正接(誘電体損失)tanδは、代表的には0.0030以下、好ましくは0.0020以下、より好ましくは0.0015以下である。
無機材料基板の比誘電率εおよび誘電正接(誘電体損失)tanδが上記の範囲であると、上記した高周波数域の広い周波数範囲にわたって優れた低伝搬損失性能を安定して確保できる。なお、比誘電率εおよび誘電正接(誘電体損失)tanδは、テラヘルツ時間領域分光法によって測定できる。また、本明細書において、比誘電率および誘電正接に関して測定周波数の言及がない場合、300GHzにおける比誘電率および誘電正接を意味する。
無機材料基板1の厚みが上記範囲であると、上記した高周波数域の広い周波数範囲にわたって優れた低伝搬損失性能をより一層安定して確保できる。
導波部材が接地電極を備えていると、コプレーナ型電極に電圧を印加したときに生じる電界が、支持基板に漏洩することを安定して抑制できるとともに、基板共振の発生も抑制できる。
なお、図示例の導波部材10は、グランド付きコプレーナ線路を構成するが、本発明の導波部材は、図3に示す導波部材11のように、接地電極を備えなくてもよい。
図示例では、無機材料基板1に複数のビアホール9が形成されており、各ビアホール9内に位置するビア6によって、グランド電極と接地電極とが、短絡されている。複数のビア6(ビアホール)の配置は特に制限されない。図示例では、複数のビア6(ビアホール)は、信号電極2aの長手方向に並んでいる。ビア6は、代表的には、ビアホールの内面全体に形成される導電膜である。ビア6は、導電性材料から構成され、代表的にはコプレーナ型電極2と同様の金属(後述)で構成される。ビアホールには、ホール内全体に導電性材料が充填されていてもよい。ビアが金属膜で形成される場合、その内部は導電性材料で充填されていてもよい。導電性材料は、ビアと同じ金属であってもよく、導電性ペーストなどの異なる材料であってもよい。
なお、低誘電率部は、誘電率が3.5未満のものが好ましく、例えば、SiO2、フッ化マグネシウム、フッ化カルシウム、低誘電率ポリマー(例えば、比誘電率2.3のテフロン(登録商標)系ポリマー)であってもよい。
低誘電率部が空洞であると、低誘電率部がその他の材料から構成される場合よりも、導波部材を伝搬する電磁波が、導波部材から漏れ出すことをより安定して抑制できるとともに、低誘電率部における伝搬損失(誘電体損失)をより抑制できる。
空洞の寸法が上記下限以上であると、上記した高周波数の電磁波を導波する場合の伝搬損失のさらなる低減を図ることができる。
また、図4および図5に示すように、支持基板20が凹部21を有さず、上記した材料から形成される低誘電率部51が無機材料基板1と支持基板20との間に配置されていてもよい。図示例では、低誘電率部51は、層状に形成されており、無機材料基板1と接地電極3との間に挟まれている。無機材料基板1の厚み方向における低誘電率部51の寸法dの範囲は、上記した無機材料基板1の厚み方向における空洞の寸法dの範囲と同様である。
図7は、本発明の別の実施形態による導波素子の概略斜視図であり;図8は、図7の導波素子のVIII-VIII´断面図であり;図9は、図7の導波素子のIX-IX´断面図であり;図10は、図7の導波素子のX-X´断面図である。
さらに、第2ビアが互いに隣り合う第1ビアの間に配置されているので、無機材料基板における第1ビアおよび第2ビアのピッチを、支持基板における第1ビアのピッチよりも小さくすることができる。そのため、無機材料基板を薄厚化しても、無機材料基板の強度を十分に確保することができる。
図7に示すように、導波素子101において、第1ビア5は、信号電極2aの長手方向と交差(好ましくは直交)する方向において、信号電極2aの両側に設けられている。以下では、第1グランド電極2bと第2の接地電極4とを電気的に接続する第1ビアを第1ビア5aとし、第2グランド電極2cと第2の接地電極4とを電気的に接続する第1ビアを第1ビア5bとして互いに区別する場合がある。
図8に示すように、第1ビア5aは、第1グランド電極2bおよび第2の接地電極4と接触しており、第1グランド電極2bと第2の接地電極4との間を連続的に延びている。第1ビア5bは、第2グランド電極2cおよび第2の接地電極4と接触しており、第2グランド電極2cと第2の接地電極4との間を連続的に延びている。第1ビア5a,5bのそれぞれは、第1の接地電極3を貫通しており、第1の接地電極3と接触している。なお、導波素子は、第1ビア5a,5bのうちいずれか一方のみを備えていてもよい。
第1ビアホールがテーパ形状であると、第1ビア内の導電膜を形成しやすくなる、支持基板の強度が確保しやすくなる、という特徴を持たすことができる。また、第1ビアは、導電性材料が第1ビアホールに埋め込まれるように形成されていてもよい。
第1ビアホールが円形かつテーパ形状である場合、第1ビア5は、好ましくは、第1の接地電極3との接触部分が小径となり、第1の接地電極3から離れるにつれて大径となる砂時計形状を有する。言い換えれば、第1ビア5は、好ましくは、2つの円錐の頂点同士が連結された形状を有する。この場合、第1ビア5の最大外径が上記の範囲内となる。1つの実施形態において、グランド電極と接触する第1ビア5の一端部の外径は、第2の接地電極と接触する第1ビア5の他端部の外径よりも小さい。第1ビア5において、第1接地電極に対してコプレーナ型電極2側のテーパ角は、第1接地電極に対して第2の接地電極側のテーパ角よりも小さい。
なお、図示例では、コプレーナ型電極のグランド電極および第2の接地電極のそれぞれが、第1ビアホールを塞ぐように形成されているが、グランド電極および第2の接地電極のそれぞれの構成はこれに限定されない。グランド電極および第2の接地電極のそれぞれは、第1ビアと導通されていればよく、第1ビアホールを塞ぐことなく開放していてもよい。
図7に示すように、導波素子101において、第2ビア6は、信号電極2aの長手方向と交差(好ましくは直交)する方向において、信号電極2aの両側に設けられている。以下では、第1グランド電極2bと第1の接地電極3とを電気的に接続する第2ビアを第2ビア6aとし、第2グランド電極2cと第1の接地電極3とを電気的に接続する第2ビアを第2ビア6bとして互いに区別する場合がある。第2ビア6aは、第1グランド電極2bおよび第1の接地電極3と接触しており、かつ、第2の接地電極4と接触していない。第2ビア6bは、第2グランド電極2cおよび第1の接地電極3と接触しており、かつ、第2の接地電極4と接触していない。なお、導波素子は、第2ビア6a,6bのうちいずれか一方のみを備えていてもよい。
なお、図示例では、グランド電極が、第2ビアホールを塞ぐように形成されているが、グランド電極の構成はこれに限定されない。グランド電極は、第2ビアと導通されていればよく、第2ビアホールを塞ぐことなく開放していてもよい。
図示例の導波素子101は、複数の第2ビア6(複数の第2ビア6a、および、複数の第2ビア6b)を有している。図7~図12に示す第2ビア6は、信号電極2aの長手方向に互いに隣り合う第1ビア5の間に配置されている。図13に示す第2ビア6は、信号電極2aの長手方向と交差(好ましくは直交)する方向に互いに隣り合う第1ビア5の間に配置されている。
また、第2ビア6は、互いに隣り合う第1ビア5の間であれば、任意の適切な位置に配置できる。第2ビア6は、複数の第1ビアが並ぶ方向において、n個の第1ビア5毎に配置されてもよい。nは、例えば1以上5以下であり、好ましくは1または2である。より好ましくは、第1ビア5と第2ビア6とは交互に配置される。また、複数の第2ビア6は、図10および図11に示すように、そのすべてが互いに隣り合う第1ビア5の間に配置されてもよく、図12に示すように、少なくとも1つが互いに隣り合う第1ビア5の間に配置されていれば、第1ビア5の間に配置されていない第2ビア6を含んでいてもよい。
このように、第2ビア6を互いに隣り合う第1ビア5の間に配置することで、無機材料基板1における第1ビア5および第2ビア6のピッチP2を、支持基板20における第1ビア5のピッチP1よりも小さくすることができる。そのため、無機材料基板を薄厚化しても、無機材料基板の強度を十分に確保できる。
また、図14に示すように、導波素子101は、第1ビア5を備える一方、第2ビア6を備えなくてもよい。しかし、図14に示すように、第1ビアホール8が第1の接地電極3から離れるにつれて大径となるテーパ形状を有し、かつ、支持基板20の厚みが無機材料基板1よりも大きいと、グランド電極と接触する第1ビア5の一端部の外径よりも、第2の接地電極4と接触する第1ビア5の他端部の外径が大きくなる場合がある。この場合、第2ビア6を設けずに複数の第1ビア5のピッチPを上記したピッチP2のように狭くすると、第1ビア5の他端部同士が干渉するおそれがある。そのため、導波素子101は、第1ビア5および第2ビア6を備え、第2ビア6を互いに隣り合う第1ビア5の間に配置することが、第1ビア5同士の干渉を抑制できるので好ましい。
図15は、本発明のさらに別の実施形態による導波素子の概略斜視図であり;図16は、図15の導波素子のXVI-XVI´断面図であり;図17は、図15の導波素子の分解斜視図である。
図示例の導波素子102は、上記した無機材料基板1、上記したコプレーナ型電極2、上記した第1の接地電極3、上記した支持基板20、および、上記した第2の接地電極4に加えて、複数の基板貫通ビア22をさらに備えている。なお、図示しないが、導波素子102は、後述する接合部を備えていてもよい。
複数の基板貫通ビア22のそれぞれは、第1の接地電極3と第2の接地電極4とを電気的に接続している。第1の接地電極3と第2の接地電極4と複数の基板貫通ビア22とは、電磁波を伝搬可能な基板集積導波管(以下、SIWとする。)を構成する。これによって、支持基板にSIWを設けることができ、支持基板を導波管として有効に利用できる。
導体ピン25は、好ましくは、第1の接地電極3から絶縁されている。1つの実施形態において、図17に示すように、開口部31は、導体ピン25の周囲に空気層を形成している。開口部31は導体ピン25の外形よりも大きく、開口部31の周縁部の全体が導体ピン25から離れている。これによって、導体ピンを第1の接地電極から絶縁でき、ひいては、信号電極と第1の接地電極とを安定して絶縁できる。また、支持基板への電界の漏れによる基板共振をより一層抑制できる。さらに、空気層に樹脂が充填されている構造と比較して誘電体損失の影響を抑制できる。
図19は、本発明のさらに別の実施形態による導波素子の概略斜視図である。なお、図19では、便宜上、グランド電極およびビアを省略している。
導波素子103は、互いに離れて位置する複数の信号電極を備えている。そのため、導波素子103は、信号電極に対応する伝送線路を複数備えている。より具体的には、導波素子103は、第1信号電極2aおよび第2信号電極2eを含むコプレーナ型電極2と、図示しない第1導体ピンおよび第2導体ピンと、を備えている。また、導波素子103は、第1空洞(第1低誘電率部)50と、第2空洞(第2低誘電率部)51とを有している。第1空洞50は、無機材料基板1の厚み方向に、第1信号電極2aの少なくとも一部と重なるように配置されている。第2空洞51は、無機材料基板1の厚み方向に、第2信号電極2eの少なくとも一部と重なるように配置されている。
第1信号電極2aは、図示しないグランド電極とともに第1の伝送線路を構成し、第2信号電極2eは、図示しないグランド電極ととも第2の伝送線路を構成している。第1導体ピンは、第1の接地電極3、第2の接地電極4および複数の基板貫通ビア22から構成されるSIWと、第1の伝送線路とを結合している。第2導体ピンは、第1の接地電極3、第2の接地電極4および複数の基板貫通ビア22から構成されるSIWと、第2の伝送線路とを結合している。
これによって、1つの実施形態では、無機材料基板を伝搬する伝送線路モードの電磁波(信号)を、第1導体ピンを介してSIWモードに変換した後、SIWモードで支持基板を伝搬させ、次いで、第2導体ピンを介して再び無機材料基板を伝搬する伝送線路モードに変換することができる。本実施形態では、無機材料基板を伝搬した電磁波は、無機材料基板に設けられたアンテナ素子から放出され得る。
また、導波素子が複数の支持基板を備える場合、複数の支持基板のうち互いに隣り合う支持基の間に、第2の接地電極を配置してもよい。これによって、各支持基板に設けられるSIWは、当該支持基板の両側に配置される金属層(すなわち、第1の接地電極および第2の接地電極、または、2つの第2の接地電極)と、当該支持基板を貫通する複数の基板貫通ビアとによって構成される。
また、複数の支持基板のうち互いに隣り合う支持基板の間には、スペーサー基板が設けられていてもよい。スペーサー基板は、互いに隣り合う導波管ユニットの間に配置され得る。スペーサー基板を設けることにより、複数の支持基板におけるアンテナ部分の間隔を調整できる。とりわけ、複数のアンテナ部分の間隔をλ/2に調整すれば、電磁波の放射角を十分に走査できる。スペーサー基板の材料として、代表的には、無機材料基板と同様の樹脂材料(後述)が挙げられる。
また、複数のSIWを備える導波素子は、好ましくは、SIWと同数の信号電極および導体ピンを備える。各導体ピンは、各信号電極が構成する伝送経路と、対応するSIWとを結合する。このような構成によれば、比較的容易に作製可能でありながら、無機材料基板上に設置した外部信号源からの信号(電磁波)を、各支持基板のSIWに容易に伝搬することができる。
無機材料基板1は、コプレーナ型電極2が設けられる上面と、複合基板内に位置する下面と、を有する。
無機材料基板1は、無機材料で構成されている。無機材料として、本発明の実施形態による効果が得られる限りにおいて任意の適切な材料が用いられ得る。そのような材料としては、代表的には、単結晶石英(比誘電率4.5、誘電正接0.0013)、アモルファス石英(石英ガラス、比誘電率3.8、誘電正接0.0010)、スピネル(比誘電率8.3、誘電正接0.0020)、AlN(比誘電率8.5、誘電正接0.0015)、サファイア(比誘電率9.4、誘電正接0.0030)、SiC(比誘電率9.8、誘電正接0.0022)、酸化マグネシウム(比誘電率10.0、誘電正接0.0012)、および、シリコン(比誘電率11.7、誘電正接0.0016)が挙げられる(()内の比誘電率と誘電正接は周波数300GHzでの数値を示す。)。無機材料基板1は、好ましくはアモルファス石英から構成される石英ガラス基板である。
無機材料基板1が石英ガラス基板であると、上記した高周波数の電磁波を導波する場合であっても、伝搬損失が増大することを安定して抑制できる。さらに樹脂系の基板と比較して誘電率が大きいので基板サイズが小さくできる、また無機材料の中で比較的に誘電率が小さいので低遅延化で有利である。
また、石英ガラスは、誘電体損失(tanδ)が小さく、さらに、樹脂系基板とは異なり、線路を形成するための導体層(金属層)を粗面化や表面処理なしに形成できる特徴をもつ。このため、伝搬損失を一層低減できる。
コプレーナ型電極2は、代表的には、無機材料基板1の上面に設けられており、無機材料基板1と直接接触している。コプレーナ型電極2は、代表的には金属で構成される。金属として、例えば、クロム(Cr)、ニッケル(Ni)、銅(Cu)、金(Au)が挙げられる。金属は、単独でまたは組み合わせて使用できる。コプレーナ型電極2は、単一層であってもよく、2層以上が積層されて形成されてもよい。コプレーナ型電極2は、例えばスパッタリングなどの公知の成膜方法(他には、蒸着、印刷)によって無機材料基板1上に形成される。
コプレーナ型電極2の厚みは、例えば1μm以上、好ましくは4μm以上であり、例えば20μm以下、好ましくは10μm以下である。
第1の接地電極3は、支持基板20の上面に設けられている。第1の接地電極3は、コプレーナ型電極2と同様の金属で構成可能である。また、第1の接地電極3の金属は、コプレーナ型電極2の金属と同じであってもよく、導体層2の金属と異なっていてもよい。第1の接地電極3の厚みの範囲は、コプレーナ型電極2の厚みの範囲と同様である。第1の接地電極3は、支持基板20の表面上に、例えばスパッタリングまたはめっきによって形成される。
第2の接地電極4は、支持基板20における第1の接地電極3と反対側の表面上に、例えばスパッタリングまたはめっきによって形成される。第2の接地電極4は、コプレーナ型電極2と同様の金属で構成可能である。また、第2の接地電極4の金属は、コプレーナ型電極2の金属と同じであってもよく、コプレーナ型電極2の金属と異なっていてもよい。第2の接地電極4の厚みの範囲は、コプレーナ型電極2の厚みの範囲と同様である。第2の接地電極4は、必ずしも支持基板20における第1の接地電極と反対側の表面全体に形成されなくてもよい。
支持基板20は、複合基板内に位置する上面と、外部に露出する下面と、を有する。支持基板20の上面には、上記した凹部21が形成されていてもよい。支持基板20は、複合基板の強度を高めるために設けられており、これにより、無機材料基板の厚みを上記のように薄くすることができる。支持基板20としては、任意の適切な構成が採用され得る。支持基板20を構成する材料の具体例としては、インジウムリン(InP)、シリコン(Si)、ガラス、サイアロン(Si3N4-Al2O3)、ムライト(3Al2O3・2SiO2,2Al2O3・3SiO2)、窒化アルミニウム(AlN)、酸化マグネシウム(MgO)、酸化アルミニウム(Al2O3)、スピネル(MgAl2O4)、サファイア、石英、水晶、窒化ガリウム(GaN)、シリコンカーバイド(SiC)、シリコンナイトライド(Si3N4)、酸化ガリウム(Ga2O3)が挙げられる。
支持基板20は、好ましくはインジウムリン、シリコン、窒化アルミニウム、シリコンカーバイドおよびシリコンナイトライドからなる群から選択される少なくとも1種から構成され、より好ましくはシリコンから構成される。
導波素子100に発振器や受信器等の能動素子を実装する場合、無機材料基板が加熱し、その他の能動素子や実装部品の特性が劣化してしまう恐れがある。これを防ぐために、支持基板には熱伝導率の高い材料を使用することができる。この場合、熱伝導率は150W/Km以上であることが好ましく、この観点において支持基板20は、シリコン(Si)、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、シリコンカーバイド(SiC)、シリコンナイトライド(Si3N4)が挙げられる。
このような支持基板の材料のなかでは、より好ましくはシリコンが挙げられる。
支持基板が無機材料基板の厚み方向において互いに間隔を空けて複数配置される場合、フェーズドアレイアンテナとして用いるのであれば、互いに隣り合う支持基板の間隔はアンテナピッチに適したλ/2程度であることが望ましい。支持基板の厚みが前記間隔に満たない場合、隣り合う支持基板の間にスペーサー基板を設けることで、適切なアンテナピッチを確保することができる。
さらに、直接接合によりそれらを一体化することで、導波素子における剥離を良好に抑制することができ、結果として、このような剥離に起因する無機材料基板の損傷(例えば、クラック)を良好に抑制することができる。
接合層は、接合部のみに形成することが好ましいが、上記の厚みの範囲であれば電磁波の伝搬に与える影響は小さいため凹部に形成されていてもよい。
1-1.導波素子(グランド付きコプレーナ線路)の作製
図1および図2に示す導波素子を作製した。
最後に、バッファードフッ酸(BHF)を使用して、シリコンウエハーの凹部(中空構造)におけるアモルファスシリコン層をウェットエッチングして除去した。
以上によって、コプレーナ型電極、無機材料基板および接地電極を備える導波部材と、凹部を有する支持基板とを備える導波素子を得た。
導波素子の伝搬損失を測定するために、上記と同様にして、信号電極の長さが30mm、40mm、および50mmの3つ導波素子を作製した。
次いで、導波部材の入力側にプローブにてRF信号発生機を結合し、導波部材の出力側にプローブを設置してRF信号受信機に電磁波を結合した。
次いで、RF信号発生機に電圧を印加して、RF信号発生機に、表1に示す周波数の電磁波を送信させた。これによって、電磁波が、コプレーナ線路(導波部材)に伝搬された。RF信号受信機は、コプレーナ線路から出力される電磁波のRFパワーを測定した。信号電極の長さが異なる3つの導波素子の測定結果から、伝搬損失(dB/cm)を算出して、下記の基準で評価した。その結果を表1に示す。
◎(優) :0.5dB/cm未満
〇(良) :0.5dB/cm以上1dB/cm未満
△(可) :1dB/cm以上2dB/cm未満
×(不可):2dB/cm以上
2-1.導波素子(コプレーナ線路)の作製
図3に示す導波素子を作製した。
次いで、石英ガラスウエハーを研磨して、厚みを表1に示す値とした。
以上によって、コプレーナ型電極および無機材料基板を備える導波部材と、凹部を有する支持基板とを備える導波素子を得た。
また、導波素子の伝搬損失を測定するために、上記と同様にして、信号電極の長さが30mm、40mm、および50mmの3つの導波素子を作製した。次いで、実施例1と同様に、導波部材の入力側にプローブにてRF信号発生機を結合し、導波部材の出力側にプローブを設置してRF信号受信機に電磁波を結合して、RF信号受信機によって、コプレーナ導波路から出力される電磁波のRFパワーを測定した。実施例3および4の導波素子の伝搬損失を、実施例1と同様に評価した。その結果を表1に示す。
厚み525μmのシリコンウエハー(支持基板)と、0.5mm厚みの石英ガラスウエハー(石英ガラス基板、無機材料基板)とを用意し、コプレーナ型電極、無機材料基板を備える導波部材と、ポリマー層と、接地電極と、凹部を有する支持基板とを備える導波素子を得た。
まずシリコンウエハーについて、実施例1と同様にして、凹部と接地電極を有するシリコンウエハー(支持基板)を準備した。
次いで、石英ガラスウエハーを研磨して、厚みを表1に示す値とした。
以上によって、コプレーナ型電極および無機材料基板を備える導波部材と、ポリマー層と、接地電極と、凹部を有する支持基板とを備える導波素子を得た。
得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
凹部のエッチングの深さを変更して、空洞の厚みを表1に示す値に変更したこと以外は、実施例1と同様にして、導波素子を作製した。
得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
無機材料基板としての石英ガラスウエハーを単結晶シリコンウエハーに変更したこと、および、凹部のエッチングの深さを変更して空洞の厚みを表1に示す値に変更したこと以外は、実施例1と同様にして、導波素子を作製した。
無機材料基板としての石英ガラスウエハーをサファイアウエハーに変更したこと、および、凹部のエッチングの深さを変更して空洞の厚みを表1に示す値に変更したこと以外は、実施例1と同様にして、導波素子を作製した。
得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
無機材料基板としての石英ガラスウエハーを多結晶AlNウエハーに変更したこと、および、凹部のエッチングの深さを変更して空洞の厚みを表1に示す値に変更したこと以外は、実施例1と同様にして、導波素子を作製した。
得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
図4および図5に示す導波素子を作製した。
厚み525μmのシリコンウエハー(支持基板)と、0.5mm厚みの石英ガラスウエハー(石英ガラス基板、無機材料基板)とを用意し、コプレーナ型電極、無機材料基板を備える導波部材と、ポリマー層と、接地電極と、凹部を有しない支持基板とを備える導波素子を得た。
次いで、石英ガラスウエハーを研磨して、厚みを表1に示す値とした。
以上によって、コプレーナ型電極、無機材料基板を備える導波部材と、ポリマー層と、接地電極と、凹部を有しない支持基板とを備える導波素子を得た。
得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
研磨後の石英ガラスウエハー(石英ガラス基板、無機材料基板)の厚みを10μmに変更したこと以外は、実施例1と同様にして、導波素子を得た。得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
シリコンウエハー(支持基板)に凹部を形成しなかったこと、および、研磨後の石英ガラスウエハーの厚みを表1に示す値に変更したこと以外は、実施例1と同様にして、導波素子を作製した。
得られた導波素子について、実施例1と同様にして伝搬損失を算出および評価した。その結果を表1に示す。
2 コプレーナ型電極
3 接地電極
10 導波部材
100 導波素子
Claims (7)
- 無機材料基板と、前記無機材料基板の上部に設けられるコプレーナ型電極と、を備えている導波部材であって、周波数が30GHz以上20THz以下である電磁波を導波可能な導波部材と、
前記無機材料基板の下部に設けられ、前記導波部材を支持する支持基板と、
前記無機材料基板の下部に設けられ、前記無機材料基板の誘電率よりも小さい誘電率を有している低誘電率部と、を備えている、導波素子。 - 前記支持基板は、凹部を有し、
前記無機材料基板の下面と前記支持基板の凹部とにより空洞が規定され、
前記空洞が前記低誘電率部として機能する、請求項1または2に記載の導波素子。 - 前記コプレーナ型電極は、所定方向に延びる信号電極と、前記所定方向と交差する方向に前記信号電極に対して間隔を空けて位置するグランド電極と、を備え、
前記所定方向と交差する方向における前記信号電極と前記グランド電極との間のギャップの寸法をgとした場合において、前記無機材料基板の厚み方向における空洞の寸法は、g以上である、請求項3に記載の導波素子。 - 前記無機材料基板と前記支持基板との間に位置する接地電極を備えている、請求項1から4のいずれかに記載の導波素子。
- 前記無機材料基板の300GHzにおける比誘電率εと誘電正接tanδは、それぞれ3.5以上12以下、0.003以下である、請求項1から5のいずれかに記載の導波素子。
- 前記無機材料基板は、石英ガラス基板である、請求項6に記載の導波素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112022002926.9T DE112022002926T5 (de) | 2021-08-12 | 2022-08-04 | Wellenleiterelement |
JP2023541423A JP7556155B2 (ja) | 2021-08-12 | 2022-08-04 | 導波素子 |
CN202280045282.XA CN117561648A (zh) | 2021-08-12 | 2022-08-04 | 波导元件 |
US18/422,061 US20240162592A1 (en) | 2021-08-12 | 2024-01-25 | Waveguide device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021131758 | 2021-08-12 | ||
JP2021-131758 | 2021-08-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/422,061 Continuation US20240162592A1 (en) | 2021-08-12 | 2024-01-25 | Waveguide device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023017775A1 true WO2023017775A1 (ja) | 2023-02-16 |
Family
ID=85199930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/029941 WO2023017775A1 (ja) | 2021-08-12 | 2022-08-04 | 導波素子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240162592A1 (ja) |
JP (1) | JP7556155B2 (ja) |
CN (1) | CN117561648A (ja) |
DE (1) | DE112022002926T5 (ja) |
WO (1) | WO2023017775A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000277661A (ja) * | 1999-03-23 | 2000-10-06 | Nec Corp | 多層基板 |
JP2004023192A (ja) * | 2002-06-12 | 2004-01-22 | Nippon Telegr & Teleph Corp <Ntt> | マイクロ波伝送線路 |
JP2018023030A (ja) * | 2016-08-04 | 2018-02-08 | 株式会社フジクラ | モード変換器及びモード変換器の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7226832B2 (ja) | 2018-01-04 | 2023-02-21 | スリーディー グラス ソリューションズ,インク | 高効率rf回路のためのインピーダンス整合伝導構造 |
-
2022
- 2022-08-04 CN CN202280045282.XA patent/CN117561648A/zh active Pending
- 2022-08-04 DE DE112022002926.9T patent/DE112022002926T5/de active Pending
- 2022-08-04 WO PCT/JP2022/029941 patent/WO2023017775A1/ja active Application Filing
- 2022-08-04 JP JP2023541423A patent/JP7556155B2/ja active Active
-
2024
- 2024-01-25 US US18/422,061 patent/US20240162592A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000277661A (ja) * | 1999-03-23 | 2000-10-06 | Nec Corp | 多層基板 |
JP2004023192A (ja) * | 2002-06-12 | 2004-01-22 | Nippon Telegr & Teleph Corp <Ntt> | マイクロ波伝送線路 |
JP2018023030A (ja) * | 2016-08-04 | 2018-02-08 | 株式会社フジクラ | モード変換器及びモード変換器の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023017775A1 (ja) | 2023-02-16 |
JP7556155B2 (ja) | 2024-09-25 |
DE112022002926T5 (de) | 2024-03-14 |
US20240162592A1 (en) | 2024-05-16 |
CN117561648A (zh) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7834808B2 (en) | Multilayer electronic component systems and methods of manufacture | |
JP7514228B2 (ja) | ミリ波フィルタアレイ | |
US6307450B2 (en) | Millimeter wave module and radio apparatus | |
EP1496563A2 (en) | Circuit board bonded to ground, "T" branching circuit, waveguide-microstrip transition | |
JP4535640B2 (ja) | 開口面アンテナおよび開口面アンテナ付き基板 | |
US20030206083A1 (en) | Millimeter wave module and radio apparatus | |
Manzillo et al. | A 60-GHz passive broadband multibeam antenna system in fused silica technology | |
WO2023017775A1 (ja) | 導波素子 | |
US20220231390A1 (en) | Mode converter, rf module, and mobile terminal | |
JP7358371B2 (ja) | 薄膜表面実装可能高周波数結合器 | |
US6549105B2 (en) | Millimeter wave module and radio apparatus | |
JP7138257B1 (ja) | 導波素子 | |
WO2024018767A1 (ja) | 導波素子 | |
WO2023017773A1 (ja) | 導波素子 | |
US20160135280A1 (en) | Cooled printed circuit with multi-layer structure and low dielectric losses | |
JP2023026330A (ja) | 導波素子 | |
WO2023017774A1 (ja) | 導波素子および導波素子の製造方法 | |
JP2023026414A (ja) | 導波素子 | |
WO2023017820A1 (ja) | 導波素子 | |
CN117693862A (zh) | 波导元件 | |
CN117693863A (zh) | 波导元件及波导元件的制造方法 | |
Moallem et al. | Optimally designed membrane-supported grounded CPW structure for submillimeter-wave applications | |
JP2000114641A (ja) | 光半導体装置 | |
Singh et al. | Wide band via-less transition from FG-CBCPW to microstrip | |
JP2006013868A (ja) | 導波管−平面伝送線路変換器の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22855837 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280045282.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023541423 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022002926 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22855837 Country of ref document: EP Kind code of ref document: A1 |