WO2023017656A1 - Metal-resin composite body - Google Patents

Metal-resin composite body Download PDF

Info

Publication number
WO2023017656A1
WO2023017656A1 PCT/JP2022/016256 JP2022016256W WO2023017656A1 WO 2023017656 A1 WO2023017656 A1 WO 2023017656A1 JP 2022016256 W JP2022016256 W JP 2022016256W WO 2023017656 A1 WO2023017656 A1 WO 2023017656A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal
resin member
metal plate
rectangular
Prior art date
Application number
PCT/JP2022/016256
Other languages
French (fr)
Japanese (ja)
Inventor
慎 青柳
基貴 若松
良聡 小林
康則 佐々木
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2023017656A1 publication Critical patent/WO2023017656A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads

Definitions

  • This specification discloses a technique related to a metal-resin composite comprising a metal plate and a resin member fixed to the metal plate.
  • a first punch having a first predetermined curvature and having a plurality of grid-like first protrusions is used to form a first punch on a flat metal plate.
  • an internal space is partitioned by a sealing member including the resin member, for example, by providing another resin member on the resin member fixed to the metal plate.
  • a sealing member including the resin member for example, by providing another resin member on the resin member fixed to the metal plate.
  • This specification discloses a metal-resin composite that can improve the sealing of the internal space by the resin member.
  • One metal-resin composite disclosed in this specification includes a metal plate and a resin member fixed to the metal plate, and an internal space is partitioned by a sealing member containing the resin member,
  • the resin member has a frame shape extending on the metal plate so as to surround the inner space, and weld lines are present at one or two places in the circumferential direction of the frame-shaped resin member, and the metal plate
  • a resin-coated surface covered with a resin member has a roughened uneven surface formed by rectangular concave portions and rectangular convex portions that are alternately arranged in one direction and in each of the orthogonal directions in a plan view of the resin-coated surface. is.
  • Another metal-resin composite disclosed in this specification includes a metal plate and a resin member fixed to the metal plate, and an internal space is partitioned by a sealing member including the resin member,
  • the resin member has a frame shape extending on the metal plate so as to surround the inner space, and weld lines are present at one or two places in the circumferential direction of the frame-shaped resin member, and the metal plate A roughened plating layer is included on the resin-coated surface covered with the resin member.
  • FIG. 1 is a plan view showing a metal-resin composite of one embodiment
  • FIG. FIG. 2 is a plan view showing a metal plate included in the metal-resin composite of FIG. 1; 2 is a plan view showing the metal-resin composite of FIG. 1 with a semiconductor chip mounted thereon;
  • FIG. 3 is a partially enlarged plan view of the metal plate of FIG. 2;
  • FIG. 3 is a perspective view showing a part of the uneven surface of the metal plate of FIG. 2;
  • FIG. FIG. 3 is a plan view of an uneven surface of the metal plate of FIG. 2 and a modification thereof;
  • FIG. 4 is a plan view showing an example of forming an uneven surface on a resin-coated surface of a metal plate;
  • FIG. 7 is a cross-sectional view taken along line VII-VII of FIG. 6(a);
  • FIG. 10 is a plan view showing a metal plate included in a metal-resin composite of another embodiment;
  • FIG. 2 is a bottom view of the metal-resin composite of FIG. 1;
  • FIG. 10 is a plan view showing a metal-resin composite of still another embodiment;
  • FIG. 2 is a cross-sectional view and a plan view showing a specimen produced using a metal-resin composite in an example.
  • a metal-resin composite 1 illustrated in FIG. 1 includes a metal plate 2 having an out-of-plane contour shape such as a rectangular shape, and a resin member 3 fixed to the metal plate 2 .
  • the illustrated metal plate 2 has a substantially rectangular through hole 4 penetrating in the plate thickness direction in the center.
  • a frame-shaped resin member 3 having, for example, rectangular inner and outer contour shapes in a plan view is provided around the through hole 4 of the metal plate 2, and inside thereof, for example, A semiconductor chip 51 as shown in FIG. 3 is arranged.
  • the metal plate 2 functions as a lead frame that supports the semiconductor chip 51 and connects with external wiring, and the metal-resin composite 1 is used for a semiconductor device.
  • Metal plate 2 is made of, for example, copper, aluminum, iron, or an alloy thereof.
  • the space inside the frame-shaped resin member 3 is surrounded by the resin member 3 and a sealing member such as another resin member (not shown) to define an internal space in which the semiconductor chip 51 is arranged and enclosed.
  • a sealing member such as another resin member (not shown) to define an internal space in which the semiconductor chip 51 is arranged and enclosed.
  • an internal space partly formed by a through-hole 4 is defined by a sealing member containing a resin member 3, and the resin member 3 extends so as to surround the internal space.
  • the through hole 4 provided in the metal plate 2 is not limited to a rectangular shape as shown in the drawing, but may have a square shape, other polygonal shape, or a circular shape depending on conditions such as the shape and configuration of the semiconductor chip 51 arranged therein. etc. can be used. Also, the out-of-plane contour shape of the metal plate 2 may be changed to a shape other than the rectangular shape shown in the drawing. The inner and outer contours of the frame-shaped resin member 3 in plan view can also be appropriately changed to a shape other than a rectangular shape.
  • the internal space that is subsequently partitioned by the metal-resin composite 1 be sufficiently sealed.
  • moisture-containing air may permeate into the internal space from the outside, causing the semiconductor chip 51 to malfunction.
  • the resin-coated surface of the metal plate 2 covered with the resin member 3 is provided with an uneven surface 5 as illustrated in the enlarged view of FIG.
  • the uneven surfaces 5 are arranged alternately in one direction and in the orthogonal direction, which is the direction orthogonal to the one direction, in plan view of the resin-coated surface. It is formed by a rectangular concave portion 5a and a rectangular convex portion 5b.
  • the uneven surface 5 presents a so-called checkered pattern in plan view.
  • the uneven surface 5 allows air to pass from the outside to the internal space. is blocked. This effectively suppresses permeation of moisture between the resin member 3 and the resin-coated surface, and as a result, it is possible to greatly improve the hermeticity of the internal space.
  • the “one direction” is the direction along the long side of the rectangular metal plate 2 (horizontal direction in FIGS. 2 and 4), and the “perpendicular direction” is the metal plate 2 (in FIGS. 2 and 4, the vertical direction).
  • the "one direction” and the “perpendicular direction” are directions that are inclined with respect to the long side or the short side, respectively, and the rectangular concave portions 5a and the rectangular convex portions 5b are arranged side by side obliquely with respect to the long side or the short side.
  • the uneven surface 5 can also be formed.
  • the planar shape of the rectangular concave portion 5a and the rectangular convex portion 5b that form the uneven surface 5 may be rectangular as shown in the drawing, or may be square.
  • the dimensions and shapes of the rectangular recesses 5a and the rectangular projections 5b can be different from each other.
  • the shapes and dimensions may be different from each other.
  • the concave-convex surface 5 is formed by a rectangular concave portion 5a and a rectangular convex portion 5b, which have substantially the same shape and dimensions in plan view.
  • the rectangular concave portions 5a and rectangular convex portions 5b of the concave-convex surface 5 are provided side by side in each of the one direction and the orthogonal direction, if the rectangular concave portions 5a and the rectangular convex portions 5b are shifted even slightly in the direction orthogonal to the direction in which they are arranged, they are alternately arranged in each direction. can be regarded as lined up. In other words, if the forming positions of the mutually adjacent rectangular recesses 5a and the mutually adjacent rectangular protrusions 5b do not match each other in one direction and the orthogonal direction, the rectangular recesses 5a and the rectangular protrusions 5b are not aligned. It is assumed that they are arranged alternately in each direction.
  • the rectangular concave portions 5a and the rectangular convex portions 5b are arranged in one direction (horizontal direction in FIG. 6) and in an orthogonal direction (vertical direction in FIG. 6). They are arranged alternately without overlapping each other in the orthogonal direction.
  • the rectangular concave portions 15a and the rectangular convex portions 15b are arranged alternately, partially overlapping each other in a direction perpendicular to the one direction, when viewed in the same direction. It is However, from the viewpoint of improving the airtightness of the internal space, as shown in FIG. are arranged alternately without overlapping each other in a direction orthogonal to the arranging direction. This is because the relatively flat rectangular protrusions 5b do not continue in the path of air entering the internal space from the outside.
  • the long side length La of each of the rectangular concave portion 5a and the rectangular convex portion 5b is 0.17 mm to 0.25 mm
  • the short side length Lb is 0.17 mm to 0.25 mm. is preferably 0.04 mm to 0.10 mm. If the length of the long side or short side is too long, the number of unevenness will decrease, and the sealing of the internal space may decrease. There is concern that the amount of resin that enters 5a will decrease, the strength of the resin will decrease, and the hermeticity will deteriorate.
  • the pitch Pa in the long side direction of the rectangular concave portions 5a is 0.38 mm to 0.46 mm, and the pitch Pb in the short side direction is 0.11 mm to 0.17 mm. If the pitches Pa and Pb are too large, the rectangular protrusions 5b sandwiched between the adjacent rectangular recesses 5a will not have enough bulges, leaving a large number of flat surfaces, possibly degrading the airtightness. On the other hand, if the pitches Pa and Pb are too small, the adjacent rectangular recessed portion 5a is crushed and deformed, and the strength of the resin there may be reduced, resulting in poor sealing performance.
  • the pitches Pa and Pb mean the distances between the central points of the rectangular concave portions 5a adjacent to each other across the rectangular convex portion 5b in one direction or in the orthogonal direction.
  • the concave-convex surface 5 formed by the rectangular concave portions 5a and the rectangular convex portions 5b can be formed on the resin-coated surface by, for example, pressing the resin-coated surface.
  • a punch having a plurality of protrusions having shapes corresponding to the rectangular recesses 5a arranged side by side on the tip surface can be used.
  • a first pressing step is performed by pressing a punch having a plurality of protrusions on the tip surface against the resin-coated surface.
  • the first concave portion group R1 is formed on the resin-coated surface.
  • a punch having a plurality of protrusions on the tip surface is pressed against positions shifted in a predetermined direction such as one direction and an orthogonal direction on the resin-coated surface to obtain a second punch. Two pressing steps are performed.
  • the punch used in the second pressing step may be the same as the punch in the first pressing step, but may have a different shape.
  • the second recess group R2 overlaps the first recess group R1 at least partially on the resin-coated surface, and the second recess group R2 is formed between the rectangular recesses 5a of the first recess group R1. is formed.
  • the rectangular convex portion 5b is provided between adjacent rectangular concave portions 5a. As a result, the rectangular concave portions 5a and the rectangular convex portions 5b can be densely formed on the resin-coated surface.
  • the top surface 5c of the portion of the rectangular convex portion 5b that protrudes most toward the resin member 3 may be a flat surface.
  • the shear strength in the plane direction of the resin is improved, and the deterioration of the sealing property due to exposure to repeated temperature changes is alleviated.
  • the flat rectangular projections 5b do not continue along the path for air to enter the internal space from the outside, the airtightness of the internal space can be improved.
  • Such a rectangular projection 5b having a convex curved surface on the resin member 3 side can be obtained by forming the uneven surface 5 using a punch having a plurality of projections on the tip surface as described above.
  • the thickness between the rectangular recesses 5a rises outward (upper side in FIG. 8) in the plate thickness direction due to the formation of the depressions corresponding to the recesses 5a.
  • the depth (recess depth) of the rectangular recess 5a is preferably 0.20 mm or less, more preferably 0.10 mm or less. If the depth of the concave portion is too large, the extension in the plate thickness direction becomes large, and there is a possibility that the deformation will be so great as to affect the subsequent process (molding).
  • the recess depth refers to the distance from the deepest position of the bottom surface of the rectangular recess 5a to the highest position of the top surface 5c of the rectangular protrusion 5b adjacent to the rectangular recess 5a in the plate thickness direction.
  • the depth of the recess is preferably 0.02 mm to 0.20 mm, more preferably 0.04 mm to 0.10 mm.
  • the uneven surface 5 provided on the resin-coated surface is roughened by etching, plating, or the like to increase the surface roughness Ra.
  • the uneven surface 5 becomes a roughened uneven surface, and the anchor effect of the resin on the roughened uneven surface and the rectangular concave portions 5a and the rectangular convex portions 5b formed thereon combine to reduce the internal space. Airtightness is greatly improved.
  • the surface roughness Ra of the roughened uneven surface is preferably 0.2 ⁇ m or more.
  • This surface roughness Ra means arithmetic mean roughness based on JIS B0601:2001.
  • the surface roughness Ra of the roughened uneven surface is the arithmetic mean roughness measured at the position of the top surface 5c of the rectangular convex portion 5b forming the roughened uneven surface.
  • the roughened surface of the roughened uneven surface can be confirmed with a stereomicroscope, SEM, or laser microscope. If the roughening conditions are the same, the surface roughness of the roughened uneven surface and the surface roughness of the roughened surface without the uneven surface 5 are equivalent. When the surface is not roughened, the surface becomes glossy, and when the surface is roughened, the surface becomes non-glossy.
  • a roughening plated layer 6 can be provided on the resin-coated surface as in the embodiment shown in FIG.
  • the resin member 3 is sufficiently adhered to the resin-coated surface through the roughened plating layer 6.
  • the uneven surface 5 is provided on the resin-coated surface and the roughened plating layer 6 is further provided thereon to form a roughened uneven surface, it is possible to further improve the hermeticity of the internal space.
  • the presence or absence of the roughened plating layer 6 can be confirmed with an optical microscope.
  • the plating thickness of the roughened plating layer 6 provided on the resin-coated surface is preferably 2.0 ⁇ m to 6.0 ⁇ m, more preferably 3.0 ⁇ m to 5.0 ⁇ m. If the plating thickness of the roughening plating layer 6 is too thin, there is concern that the adhesion of the resin member 3 to the resin-coated surface will be insufficient. On the other hand, if the plating thickness of the roughening plating layer 6 is too thick, the cost may increase.
  • the roughened plated layer 6 can be made of copper, silver, or the like, but is preferably nickel plated and may contain nickel. In the case of the roughening plated layer 6 containing nickel, there is an advantage that the roughening shape and the degree of roughening can be easily controlled. Moreover, the roughening plated layer 6 may contain at least one selected from the group consisting of nickel, copper and silver.
  • the roughened plating layer 6 is formed on the resin-coated surface of the metal plate 2, for example, although not shown, roughening is performed while the surface of the metal plate 2 on which the roughened plating layer 6 is not formed is covered with a mask. It can be carried out by electroplating the metal plate 2 in a plating solution containing the plating metal of the plating layer 6 . In another embodiment, the rough plating layer 6 may be formed on the entire surface of the metal plate 2 without using a mask.
  • the uneven surface 5 and / or the roughened plating layer 6 may not exist in a part of the resin coated surface, the uneven surface 5 and / or the roughened plating layer 6 is covered over the entire resin coated surface. It is preferable to provide it from the viewpoint of ensuring sufficient adhesion between the resin member 3 and the metal plate 2 .
  • frame-shaped resin member 3 is provided on the metal plate 2 provided with the roughened plating layer 6 or the roughened uneven surface as described above, insert molding can be performed.
  • the metal plate 2 is placed in an injection mold having a cavity corresponding to the shape of the resin member 3, and the resin material is injected into the cavity from the gate of the injection mold.
  • the resin material that has flowed into the cavity from the gate flows through the cavity having a shape corresponding to the frame-shaped resin member 3, joins along the way, and fills the cavity.
  • the resin material is cooled and solidified in the cavity. Thereby, a metal-resin composite 1 in which the resin member 3 is fixed to the metal plate 2 is obtained.
  • a weld line 7 is formed at a position where the resin material flowing through the cavity during injection joins.
  • two gates are provided at respective positions of the cavity corresponding to the central positions of the two long sides of the frame-shaped resin member 3 whose inner and outer contours are both rectangular in plan view.
  • the resin material flows bifurcated into the cavity from each gate and merges, and as a result, two weld lines 7 are formed at the central positions of the two short sides of the resin member 3. .
  • the weld line 7 can be formed at one position in the circumferential direction of the frame-shaped resin member 3 at the position furthest from the gate.
  • the weld line 7 may be formed in a linear shape such as a straight line or a curved line that crosses the frame-shaped resin member 3 in the width direction, and can be confirmed by observing the outer surface of the resin member 3 with the naked eye or an optical microscope. be.
  • the weld line 7 is preferably one or two in the circumferential direction of the frame-shaped resin member 3 . This is because, in addition to providing the roughened uneven surface or the roughened plating layer 6 on the metal plate 2, by setting the number of weld lines 7 to two or less, the hermeticity of the internal space is greatly improved. In other words, if there are three or more weld lines 7, the airtightness of the internal space is reduced, increasing the possibility that moisture-containing air can easily permeate the internal space.
  • the material of the resin member 3 is not particularly limited, for example, liquid crystal polymer, acrylonitrile-butadiene-styrene copolymer synthetic resin (ABS), polyamide (PA), polypropylene (PP), polyester thermoplastic elastomer (TPC), ), polyacetal (POM), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS) and the like can be used.
  • ABS acrylonitrile-butadiene-styrene copolymer synthetic resin
  • PA polyamide
  • PP polypropylene
  • TPC polyester thermoplastic elastomer
  • POM polyacetal
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide
  • the illustrated metal plate 2 is provided with cutouts 8a to 8c at a plurality of locations extending toward the outside of the through hole 4.
  • the resin member 3 is connected to the through hole 4 and directed outward through the position where the resin member 3 is arranged on each of the outer sides of the rectangular metal plate 2 in the longitudinal direction (horizontal direction in FIG. 1).
  • a rectangular notch 8a extending and widening, a polygonal notch 8b having a larger area than the rectangular notch 8a, and the outer side of the metal plate 2 in the width direction (vertical direction in FIG. 1) at the center position in the longitudinal direction of the metal plate 2. are connected to the through-hole 4 and extend outward to form a notch 8c that widens into a slightly elongated rectangular shape.
  • Each notch 8a to 8c is formed through the metal plate 2 in the plate thickness direction.
  • the resin member 3 connects the cutouts 8a to 8c and the through holes 4 not only on the surface Sf side of the metal plate 2 but also on both sides of the back surface Sb side of the metal plate 2 as shown in FIG. It is provided in the shape of a frame around the through-hole 4 through a space that is a part. As a result, in a part of the frame-shaped resin member 3 in the circumferential direction, the metal plate 2 is sandwiched from both sides by the resin member 3 , but in the remaining part having the above-mentioned space, the metal plate 2 is inside the resin member 3 . Metal plate 2 does not exist.
  • the weld line 7 described above is formed by the frame-shaped resin member 3 is preferably formed at a location where the metal plate 2 does not exist inside the resin member 3 in the circumferential direction of .
  • the presence of the weld line 7 at the place where the metal plate 2 does not exist inside the resin member 3 and the resin member 3 is not supported by the metal plate 2 can further improve the hermeticity of the internal space. If the weld line 7 exists inside the resin member 3 where the metal plate 2 exists, moisture-containing air enters the interior from the interface between the metal plate 2 and the portion of the resin member 3 where the weld line 7 is formed. It can permeate the space.
  • the metal plate 2 has an inner edge portion 2a on the surface Sf side that protrudes further toward the through hole 4 than the resin member 3, and is connected to the semiconductor chip 51 by bonding wires 52 at the inner edge portion 2a.
  • FIG. 11 shows a metal-resin composite 1 of another embodiment.
  • a protruding portion 9 that protrudes outward from the resin member 3 is provided at a location where the weld line 7 is formed in the circumferential direction of the frame-shaped resin member 3 .
  • the protrusion 9 protrudes from the resin member 3 in a direction substantially parallel to the surface of the metal plate 2 .
  • the protruding portion 9 may be provided so as to protrude inside the resin member 3 (toward the through hole), or may be provided so as to protrude from the resin member 3 in the plate thickness direction.
  • the resin member 3 When the resin member 3 is molded using an injection mold having a cavity in which the protrusion 9 is provided in the resin member 3, the resin material injected into the cavity merges at the location where the protrusion 9 is formed. The flow is changed to the side and the layers of the weld are slightly destroyed. As a result, the strength of the resin member 3 is improved, and the sealing performance of the internal space is accordingly improved.
  • the protrusion 9 may then be cut and removed. In this case, a cut mark is formed and exists in the place where the weld line 7 of the resin member 3 is formed. The cut marks can be visually confirmed. If there is a cut mark at the location where the weld line 7 of the resin member 3 is formed, it is presumed that the protruding portion 9 was previously formed there, thereby reinforcing the weak portion caused by the weld line 7. can do.
  • a metal-resin composite as shown in FIG. 1 was produced.
  • Examples 1 to 4 and Comparative Examples 3 and 4 as described with reference to FIG.
  • a pressing step and a second pressing step were performed to form rectangular concave portions and rectangular convex portions that were alternately arranged in one direction and each direction perpendicular thereto, thereby providing an uneven surface (rectangular uneven surface).
  • the long side length La of each rectangular recess was 0.21 mm
  • the short side length Lb was 0.07 mm
  • the pitch Pa in the long side direction was 0.42 mm
  • the pitch Pb in the short side direction was 0.14 mm.
  • Table 1 shows the depth of the rectangular recess (recess depth).
  • the resin-coated surface of the metal plate was provided with an uneven surface (linear uneven surface) in which a plurality of linear recesses extending in one direction were formed at intervals in a direction orthogonal to the straight line direction.
  • the width of the linear recesses was 0.04 mm, and the pitch of the linear recesses was 0.1 mm. Linear protrusions were formed between adjacent linear recesses.
  • nickel roughening plating was applied to the resin-coated surface of the metal plate.
  • Plating bath composition Ni metal content 130 g/L, boric acid 25 g/L, pH 3.3.
  • the plating solution temperature was 60° C., and the current density was 10 A/dm 2 .
  • the treatment time was adjusted so that the surface roughness Ra in Table 1 was achieved.
  • the surface roughness Ra shown in Table 1 was measured with a non-contact surface texture measuring device (PF-60) manufactured by Mitaka Kohki Co., Ltd. In the case of a roughened uneven surface with an uneven surface, a rectangular convex portion or a line The position of the top surface of the convex portion was observed. The observation magnification was 1000 times, the spot diameter was ⁇ 1.0 ⁇ m, the resolution was 0.1 ⁇ m on the X axis, 0.1 ⁇ m on the Y axis, and 0.01 ⁇ m on the Z1 axis (Z axis for measurement).
  • the measurement settings are as follows.
  • Measurement pitch 1 ⁇ m Measurement range: 8.0 mm (scanning in a straight line) (In the case of measurement of the convex part of the uneven surface, the part is extracted later) Measurement accuracy: X-axis 2 ⁇ m, Y-axis 2 ⁇ m, Z1-axis 0.3 ⁇ m Measurement method: Scan Scanning speed: 100 ⁇ m/s AF gain: Standard Objective lens: SL100x (100x)
  • injection molding A liquid crystal polymer (M-350B manufactured by ENEOS Liquid Crystal Co., Ltd.) was used as the resin material, and the resin member was fixed to the metal plate by insert molding using an injection mold.
  • the injection pressure was 150 MPa, and except for comparative example 5, the sprue bushing temperature was 360°C. In Comparative Example 5, the sprue bushing temperature was set to 170°C.
  • Example 1 to 6 and Comparative Examples 1 and 3 two gates were provided in the circumferential direction in the cavity of the injection molding die, so that two weld lines in the circumferential direction of the resin member were not present in the metal plate. was formed in places.
  • Comparative Examples 2, 4 and 5 four gates were provided, and thus four weld lines were formed in the resin member in the circumferential direction.
  • the resin member was provided with two protrusions as shown in FIG. 11 at positions where weld lines are formed.
  • Red check test A red check test was performed on the metal-resin composite to verify whether or not the red test liquid permeated between the resin member and the metal plate. Specifically, a small amount of the test solution was applied to the inner edge portion inside the resin member around the through-hole of the metal plate of the metal-resin composite with the tip of a wire, and left for 0.5 hours. If the test liquid does not leak outside the resin member after standing, the test liquid has not permeated the resin member, and it can be evaluated that the sealing property is good.
  • the test was conducted on an unheated metal-resin composite and a metal-resin composite after heating at 260°C for 2 hours.
  • the unheated metal-resin composites and the heated metal-resin composites in Examples 1 to 6 and Comparative Examples 2 and 4, five pieces each were subjected to the test.
  • Comparative Examples 1, 3 and 5 tests were performed on one unheated metal-resin composite.
  • Table 1 shows the ratio (n/5 or n/1) of the number (n) of the total number (5 or 1) subjected to the test that did not leak the test liquid.
  • lids 81a and 81b were adhered to both sides of the resin member 73 of the metal-resin composite 71 with an adhesive 82 to simulate a semiconductor device.
  • a test piece 91 was produced. However, this specimen 91 does not have a semiconductor chip in its internal cavity.
  • the resin member 73 and the lids 81a and 81b are made of a liquid crystal polymer (M-350B manufactured by ENEOS Liquid Crystal Co., Ltd.).
  • Table 1 shows the results. Table 1 shows the ratio of the number of specimens 91 with no air leakage to the total number of specimens 91 subjected to the test for each of the cases where the heat cycle test was performed 100 times, 200 times, and 500 times. is shown.
  • Examples 1 to 6 As shown in Table 1, in Examples 1 to 6, the number of weld lines in the resin member is set to two or less, and a roughened uneven surface or a roughened plating layer is provided on the resin-coated surface. It can be seen that the airtightness of the internal space was high in comparison. In addition to Examples 1 to 4 where the rectangular uneven surface was subjected to etching or roughening plating to form a roughened uneven surface, Examples 1 to 4 in which roughening plating was performed without forming an uneven surface on the resin-coated surface and 6 also ensured high airtightness of the internal space.
  • Comparative Example 1 since neither the uneven surface nor the roughened plating layer was provided on the resin-coated surface, the sealing performance was low. From Comparative Example 3, it can be seen that even if the resin-coated surface is provided with a rectangular concave-convex surface, sufficient sealing performance cannot be ensured unless roughening treatment is performed. Moreover, from Comparative Examples 2, 4, and 5, it can be seen that as the number of weld lines formed in the resin member increases, the hermeticity deteriorates.
  • the untreated metal plate has a higher shear strength, although the surface roughness Rz of the resin-coated surface is about the same.
  • This surface roughness Rz means the maximum height conforming to JIS B0601:2001. It is also known that nickel plating generally has low resin adhesion.
  • the surface roughness Rz was measured with a laser microscope (VK-X150) manufactured by Keyence Corporation at a magnification of 1000 and a spot diameter of ⁇ 0.8 mm. The objective lens was 100 times.
  • the measurement range (measurement area) was set to 105.737 ⁇ m ⁇ 141.029 ⁇ m, which is the size of the image captured after the measurement with the laser microscope. Analysis was performed by drawing a horizontal line (vertical line) in the line roughness measurement.

Abstract

A metal-resin composite body 1 is provided with a metal plate 2, and a resin member 3 affixed to the metal plate 2, and has an internal space which is partitioned by means of a sealing member that includes the resin member 3, wherein: the resin member 3 has a frame-like shape extending on the metal plate 2 so as to enclose the perimeter of the internal space; there are weld lines 7 in one or two locations in the circumferential direction of the frame-shaped resin member 3; and, on a resin-covered surface in which the metal plate 2 is covered by the resin member 3, there is a rough undulating surface formed by means of rectangular recessed portions 5a and rectangular protruding portions 5b that are aligned alternately in each of one direction and a direction perpendicular thereto, in a plan view of the resin-covered surface.

Description

金属樹脂複合体metal-resin composite
 この明細書は、金属板と、金属板に固着した樹脂部材とを備える金属樹脂複合体に関する技術を開示するものである。 This specification discloses a technique related to a metal-resin composite comprising a metal plate and a resin member fixed to the metal plate.
 インサート成形等により製造される金属樹脂複合体では、金属板と樹脂部材との密着性を高めることが求められる。 For metal-resin composites manufactured by insert molding, etc., it is required to improve the adhesion between the metal plate and the resin member.
 これに関連して、たとえば特許文献1には、「平板状の金属に対し、第1の所定の曲率を有し、格子状の複数の第1の凸部を備える第1のパンチによって第1のプレスを行う工程と、前記第1のプレスと交差する方向に、前記第1のパンチによって第2のプレスを行う工程と、第2の所定の曲率を有し、格子状の複数の第2の凸部を備える第2のパンチによって第3のプレスを行う工程と、前記第3のプレスと交差する方向に、前記第2のパンチによって第4のプレスを行う工程と、を有し、前記第3のプレス及び前記第4のプレスは、前記第1のプレス及び前記第2のプレスがなされていない箇所に対して行われる、表面に凹凸を有する金属部材の製造方法」及び、「第1の凹部と、前記第1の凹部とは異なる位置に配置され、前記第1の凹部とは異なる形状の第2の凹部と、が格子状に配列した凹凸面を有するヒートスプレッダ」が記載されている。 In this regard, for example, in Patent Document 1, "A first punch having a first predetermined curvature and having a plurality of grid-like first protrusions is used to form a first punch on a flat metal plate. a step of performing a second press with the first punch in a direction intersecting with the first press; and a step of performing a fourth press with the second punch in a direction intersecting the third press, wherein the The third pressing and the fourth pressing are performed on a portion where the first pressing and the second pressing are not performed, a method for manufacturing a metal member having unevenness on the surface” and “the first and second recesses arranged in a different position from the first recesses and having a different shape from the first recesses are arranged in a grid pattern. .
特開2017-208486号公報JP 2017-208486 A
 ところで、金属樹脂複合体には、金属板に固着した樹脂部材にさらに他の樹脂部材を設けること等により、当該樹脂部材を含む封止部材で内部スペースが区画されるものがある。たとえば、金属板をリードフレームとし、半導体デバイスに用いられる金属樹脂複合体では、その内部スペースに半導体チップが封入される。 By the way, in some metal-resin composites, an internal space is partitioned by a sealing member including the resin member, for example, by providing another resin member on the resin member fixed to the metal plate. For example, in a metal-resin composite used for a semiconductor device using a metal plate as a lead frame, a semiconductor chip is enclosed in the internal space.
 樹脂部材等による内部スペースの密閉性が十分に確保されていない場合、外部から内部スペースに水分を含んだ空気が浸透し、発熱している半導体チップの水分との接触による動作不良等の不具合が発生し得る。特に、半導体デバイスに用いられる金属樹脂複合体においては内部スペースに封入された半導体チップのオンオフだけでなく、外部環境の変化により繰り返しの温度変化にさらされる。特許文献1に記載された技術は、内部スペースの密閉性の更なる向上の観点から改善の余地がある。 If airtightness of the internal space is not sufficiently secured by a resin member, etc., moisture-containing air may permeate the internal space from the outside, causing problems such as malfunction due to contact with the moisture of the heat-generating semiconductor chip. can occur. In particular, metal-resin composites used in semiconductor devices are exposed to repeated temperature changes due to changes in the external environment as well as turning on and off the semiconductor chip enclosed in the internal space. The technique described in Patent Literature 1 has room for improvement from the viewpoint of further improving the hermeticity of the internal space.
 この明細書では、樹脂部材による内部スペースの密閉性を向上させることができる金属樹脂複合体を開示する。 This specification discloses a metal-resin composite that can improve the sealing of the internal space by the resin member.
 この明細書で開示する一の金属樹脂複合体は、金属板と、前記金属板に固着した樹脂部材を備え、前記樹脂部材を含む封止部材により内部スペースが区画されるものであって、前記樹脂部材が、前記金属板上で内部スペースの周囲を取り囲んで延びる枠状を有し、枠状の当該樹脂部材の周方向に一箇所又は二箇所のウェルドラインが存在し、前記金属板が前記樹脂部材で覆われた樹脂被覆面に、該樹脂被覆面の平面視にて一方向及びその直交方向の各方向で交互に並ぶ矩形凹部及び矩形凸部により形成される粗化凹凸面を有するものである。 One metal-resin composite disclosed in this specification includes a metal plate and a resin member fixed to the metal plate, and an internal space is partitioned by a sealing member containing the resin member, The resin member has a frame shape extending on the metal plate so as to surround the inner space, and weld lines are present at one or two places in the circumferential direction of the frame-shaped resin member, and the metal plate A resin-coated surface covered with a resin member has a roughened uneven surface formed by rectangular concave portions and rectangular convex portions that are alternately arranged in one direction and in each of the orthogonal directions in a plan view of the resin-coated surface. is.
 この明細書で開示する他の金属樹脂複合体は、金属板と、前記金属板に固着した樹脂部材を備え、前記樹脂部材を含む封止部材により内部スペースが区画されるものであって、前記樹脂部材が、前記金属板上で内部スペースの周囲を取り囲んで延びる枠状を有し、枠状の当該樹脂部材の周方向に一箇所又は二箇所のウェルドラインが存在し、前記金属板が前記樹脂部材で覆われた樹脂被覆面に、粗化めっき層を含むものである。 Another metal-resin composite disclosed in this specification includes a metal plate and a resin member fixed to the metal plate, and an internal space is partitioned by a sealing member including the resin member, The resin member has a frame shape extending on the metal plate so as to surround the inner space, and weld lines are present at one or two places in the circumferential direction of the frame-shaped resin member, and the metal plate A roughened plating layer is included on the resin-coated surface covered with the resin member.
 上述した金属樹脂複合体によれば、樹脂部材による内部スペースの密閉性を向上させることができる。 According to the metal-resin composite described above, it is possible to improve the sealing of the internal space by the resin member.
一の実施形態の金属樹脂複合体を示す平面図である。1 is a plan view showing a metal-resin composite of one embodiment; FIG. 図1の金属樹脂複合体が備える金属板を示す平面図である。FIG. 2 is a plan view showing a metal plate included in the metal-resin composite of FIG. 1; 図1の金属樹脂複合体を、半導体チップを搭載した状態で示す平面図である。2 is a plan view showing the metal-resin composite of FIG. 1 with a semiconductor chip mounted thereon; FIG. 図2の金属板の部分拡大平面図である。3 is a partially enlarged plan view of the metal plate of FIG. 2; FIG. 図2の金属板の凹凸面の一部を示す斜視図である。3 is a perspective view showing a part of the uneven surface of the metal plate of FIG. 2; FIG. 図2の金属板の凹凸面及び、その変形例の平面図である。FIG. 3 is a plan view of an uneven surface of the metal plate of FIG. 2 and a modification thereof; 金属板の樹脂被覆面上への凹凸面の形成例を示す平面図である。FIG. 4 is a plan view showing an example of forming an uneven surface on a resin-coated surface of a metal plate; 図6(a)のVII-VII線に沿う断面図である。FIG. 7 is a cross-sectional view taken along line VII-VII of FIG. 6(a); 他の実施形態の金属樹脂複合体が備える金属板を示す平面図である。FIG. 10 is a plan view showing a metal plate included in a metal-resin composite of another embodiment; 図1の金属樹脂複合体の底面図である。FIG. 2 is a bottom view of the metal-resin composite of FIG. 1; さらに他の実施形態の金属樹脂複合体を示す平面図である。FIG. 10 is a plan view showing a metal-resin composite of still another embodiment; 実施例で金属樹脂複合体を用いて作製した供試体を示す断面図及び平面図である。FIG. 2 is a cross-sectional view and a plan view showing a specimen produced using a metal-resin composite in an example.
 以下に、上述した金属樹脂複合体の実施の形態について詳細に説明する。
 図1に例示する金属樹脂複合体1は、たとえば長方形状等の平面外輪郭形状を有する金属板2と、金属板2に固着した樹脂部材3とを備える。
Embodiments of the metal-resin composite described above will be described in detail below.
A metal-resin composite 1 illustrated in FIG. 1 includes a metal plate 2 having an out-of-plane contour shape such as a rectangular shape, and a resin member 3 fixed to the metal plate 2 .
 図示の金属板2は、図1、2に示すように、中央に板厚方向に貫通するほぼ長方形状の貫通孔4が形成されている。金属樹脂複合体1では、金属板2の貫通孔4の周囲に、一例として平面視の内外輪郭形状がともに長方形状等である枠状の樹脂部材3が設けられており、その内側に、たとえば図3に示すような半導体チップ51が配置される。この場合、金属板2は、半導体チップ51を支持して外部配線と接続するリードフレームとして機能し、金属樹脂複合体1は、半導体デバイスに用いられる。金属板2は、たとえば、銅、アルミニウムもしくは鉄又はそれらの合金等で構成される。 As shown in FIGS. 1 and 2, the illustrated metal plate 2 has a substantially rectangular through hole 4 penetrating in the plate thickness direction in the center. In the metal-resin composite 1, a frame-shaped resin member 3 having, for example, rectangular inner and outer contour shapes in a plan view is provided around the through hole 4 of the metal plate 2, and inside thereof, for example, A semiconductor chip 51 as shown in FIG. 3 is arranged. In this case, the metal plate 2 functions as a lead frame that supports the semiconductor chip 51 and connects with external wiring, and the metal-resin composite 1 is used for a semiconductor device. Metal plate 2 is made of, for example, copper, aluminum, iron, or an alloy thereof.
 枠状の樹脂部材3の内側の空間は、当該樹脂部材3及び図示しない他の樹脂部材等の封止部材で取り囲まれ、半導体チップ51が配置されて封入される内部スペースが区画される。この金属樹脂複合体1は、樹脂部材3を含む封止部材により、貫通孔4が一部を形成する内部スペースが区画されるものであり、樹脂部材3は、その内部スペースを取り囲んで延びるように設けられている。 The space inside the frame-shaped resin member 3 is surrounded by the resin member 3 and a sealing member such as another resin member (not shown) to define an internal space in which the semiconductor chip 51 is arranged and enclosed. In this metal-resin composite 1, an internal space partly formed by a through-hole 4 is defined by a sealing member containing a resin member 3, and the resin member 3 extends so as to surround the internal space. is provided in
 なお、金属板2に設ける貫通孔4は、図示のような長方形状に限らず、そこに配置される半導体チップ51の形状、構成等の条件に応じて、正方形もしくはその他の多角形状又は円形状等といった様々な形状とすることができる。また、金属板2の平面外輪郭形状も、図示のような長方形状以外の形状に変更され得る。枠状の樹脂部材3の平面視の内外輪郭形状についても、長方形状以外の形状に適宜変更することができる。 The through hole 4 provided in the metal plate 2 is not limited to a rectangular shape as shown in the drawing, but may have a square shape, other polygonal shape, or a circular shape depending on conditions such as the shape and configuration of the semiconductor chip 51 arranged therein. etc. can be used. Also, the out-of-plane contour shape of the metal plate 2 may be changed to a shape other than the rectangular shape shown in the drawing. The inner and outer contours of the frame-shaped resin member 3 in plan view can also be appropriately changed to a shape other than a rectangular shape.
 ここで、金属樹脂複合体1にその後に区画される内部スペースは、密閉性を十分に確保することが求められることがある。たとえば、内部スペースに半導体チップ51が封入される場合、内部スペースが十分に密閉されていなければ、外部から内部スペースに水分を含む空気が浸透し、これが半導体チップ51の動作不良を引き起こすおそれがある。 Here, it may be required that the internal space that is subsequently partitioned by the metal-resin composite 1 be sufficiently sealed. For example, when the semiconductor chip 51 is enclosed in the internal space, if the internal space is not sufficiently sealed, moisture-containing air may permeate into the internal space from the outside, causing the semiconductor chip 51 to malfunction. .
 内部スペースの密閉性を高めるため、この実施形態では、金属板2の、樹脂部材3で覆われる樹脂被覆面に、図4に拡大図で例示するような凹凸面5を設ける。この凹凸面5は、図5に斜視図で示すように、樹脂被覆面の平面視にて、一方向及び、当該一方向に直交する方向である直交方向の各方向で交互に並んで位置する矩形凹部5a及び矩形凸部5bによって形成される。凹凸面5は平面視で、いわゆる市松模様を呈する。 In order to improve the airtightness of the internal space, in this embodiment, the resin-coated surface of the metal plate 2 covered with the resin member 3 is provided with an uneven surface 5 as illustrated in the enlarged view of FIG. As shown in the perspective view of FIG. 5, the uneven surfaces 5 are arranged alternately in one direction and in the orthogonal direction, which is the direction orthogonal to the one direction, in plan view of the resin-coated surface. It is formed by a rectangular concave portion 5a and a rectangular convex portion 5b. The uneven surface 5 presents a so-called checkered pattern in plan view.
 このように樹脂被覆面に凹凸面5を設けた金属板2に対して、一体成形等により当該樹脂被覆面上に樹脂部材3を設けると、凹凸面5によって外部から内部スペースへの空気の通り道が遮断される。それにより、樹脂部材3と樹脂被覆面との間での水分の浸透が有効に抑制され、その結果として、内部スペースの密閉性を大きく向上させることができる。 When the resin member 3 is provided on the resin-coated surface of the metal plate 2 having the uneven surface 5 provided on the resin-coated surface by integral molding or the like, the uneven surface 5 allows air to pass from the outside to the internal space. is blocked. This effectively suppresses permeation of moisture between the resin member 3 and the resin-coated surface, and as a result, it is possible to greatly improve the hermeticity of the internal space.
 凹凸面5の並ぶ方向に関し、この例では、「一方向」は、長方形状の金属板2の長辺に沿う方向(図2、4では左右方向)とし、「直交方向」は、金属板2の短辺に沿う方向(図2、4では上下方向)としている。但し、「一方向」及び「直交方向」をそれぞれ長辺又は短辺に対して傾斜する方向として、矩形凹部5a及び矩形凸部5bを長辺ないし短辺に対して斜め向きで並べて配置することで、凹凸面5を形成することもできる。 Regarding the direction in which the uneven surface 5 is arranged, in this example, the “one direction” is the direction along the long side of the rectangular metal plate 2 (horizontal direction in FIGS. 2 and 4), and the “perpendicular direction” is the metal plate 2 (in FIGS. 2 and 4, the vertical direction). However, the "one direction" and the "perpendicular direction" are directions that are inclined with respect to the long side or the short side, respectively, and the rectangular concave portions 5a and the rectangular convex portions 5b are arranged side by side obliquely with respect to the long side or the short side. , the uneven surface 5 can also be formed.
 凹凸面5を形成する矩形凹部5a及び矩形凸部5bの平面形状は、図示のような長方形状とすることができる他、正方形状としてもよい。平面視にて、矩形凹部5aと矩形凸部5bの寸法ないし形状を互いに相違させることもでき、また複数個の矩形凹部5aどうしの形状ないし寸法、及び/又は、複数個の矩形凸部5bの形状ないし寸法を相互に異なるものとしてもよい。図5に示すところでは、平面視の形状及び寸法がいずれもほぼ同一である矩形凹部5a及び矩形凸部5bにより、凹凸面5を形成している。 The planar shape of the rectangular concave portion 5a and the rectangular convex portion 5b that form the uneven surface 5 may be rectangular as shown in the drawing, or may be square. In plan view, the dimensions and shapes of the rectangular recesses 5a and the rectangular projections 5b can be different from each other. The shapes and dimensions may be different from each other. As shown in FIG. 5, the concave-convex surface 5 is formed by a rectangular concave portion 5a and a rectangular convex portion 5b, which have substantially the same shape and dimensions in plan view.
 凹凸面5の矩形凹部5a及び矩形凸部5bは、一方向及び直交方向のそれぞれについて並べて設けるに当り、その並ぶ方向と直交する方向に少しでもずれて位置していれば、各方向で交互に並んでいるものとみなすことができる。つまり、互いに隣接する矩形凹部5aどうし及び、互いに隣接する矩形凸部5bどうしの、一方向及び直交方向の各方向の形成位置が一致していなければ、それらの矩形凹部5a及び矩形凸部5bは各方向で交互に並んでいるものとする。たとえば、図6(a)の凹凸面5では、矩形凹部5a及び矩形凸部5bを、一方向(図6の左右方向)及び直交方向(図6の上下方向)のそれぞれで、その並ぶ方向と直交する方向に互いに重複せずに交互に並べて設けている。一方、図6(b)の凹凸面15では、矩形凹部15a及び矩形凸部15bはそれぞれ、一方向に並ぶ方向で見て、それと直交する方向に部分的に重複して、交互に並んで設けられている。但し、内部スペースの密閉性向上という観点からは図6(a)のように、矩形凹部5a及び矩形凸部5bを、一方向(図6の左右方向)及び直交方向(図6の上下方向)のそれぞれで、その並ぶ方向と直交する方向に互いに重複せずに交互に並べて設けることが好ましい。これにより、外部から内部スペースへの空気の侵入経路において、比較的平坦な矩形凸部5bが連なることがなくなるためである。 When the rectangular concave portions 5a and rectangular convex portions 5b of the concave-convex surface 5 are provided side by side in each of the one direction and the orthogonal direction, if the rectangular concave portions 5a and the rectangular convex portions 5b are shifted even slightly in the direction orthogonal to the direction in which they are arranged, they are alternately arranged in each direction. can be regarded as lined up. In other words, if the forming positions of the mutually adjacent rectangular recesses 5a and the mutually adjacent rectangular protrusions 5b do not match each other in one direction and the orthogonal direction, the rectangular recesses 5a and the rectangular protrusions 5b are not aligned. It is assumed that they are arranged alternately in each direction. For example, in the uneven surface 5 of FIG. 6A, the rectangular concave portions 5a and the rectangular convex portions 5b are arranged in one direction (horizontal direction in FIG. 6) and in an orthogonal direction (vertical direction in FIG. 6). They are arranged alternately without overlapping each other in the orthogonal direction. On the other hand, in the uneven surface 15 of FIG. 6(b), the rectangular concave portions 15a and the rectangular convex portions 15b are arranged alternately, partially overlapping each other in a direction perpendicular to the one direction, when viewed in the same direction. It is However, from the viewpoint of improving the airtightness of the internal space, as shown in FIG. are arranged alternately without overlapping each other in a direction orthogonal to the arranging direction. This is because the relatively flat rectangular protrusions 5b do not continue in the path of air entering the internal space from the outside.
 矩形凹部5a及び矩形凸部5bの平面形状を長方形状とする場合、矩形凹部5a及び矩形凸部5bのそれぞれの長辺の長さLaは0.17mm~0.25mm、短辺の長さLbは0.04mm~0.10mmとすることが好ましい。長辺や短辺の長さが長すぎると凹凸の数が減り、内部スペースの密閉性低下となるおそれがあり、短すぎるとプレス時のパンチ先端の強度不足による破損リスクの増大と、矩形凹部5aに入り込む樹脂が少なくなり樹脂強度が下がり、密閉性低下となることが懸念される。
 また、矩形凹部5aの長辺方向のピッチPaは0.38mm~0.46mm、短辺方向のピッチPbは0.11mm~0.17mmとすることが好ましい。ピッチPa、Pbが大きすぎると隣接する矩形凹部5aによって挟まれる矩形凸部5bの肉の盛り上がりが足りなくなり、平面が多く残り密閉性低下となる可能性がある。一方、ピッチPa、Pbが小さすぎると隣の矩形凹部5aを押しつぶして変形させ、そこの樹脂強度が低下し密閉性低下となる場合がある。ピッチPa、Pbは、一方向ないし直交方向に矩形凸部5bを隔てて隣り合う矩形凹部5aの、一方向ないし直交方向の中央点間の距離を意味する。
When the planar shape of the rectangular concave portion 5a and the rectangular convex portion 5b is rectangular, the long side length La of each of the rectangular concave portion 5a and the rectangular convex portion 5b is 0.17 mm to 0.25 mm, and the short side length Lb is 0.17 mm to 0.25 mm. is preferably 0.04 mm to 0.10 mm. If the length of the long side or short side is too long, the number of unevenness will decrease, and the sealing of the internal space may decrease. There is concern that the amount of resin that enters 5a will decrease, the strength of the resin will decrease, and the hermeticity will deteriorate.
Further, it is preferable that the pitch Pa in the long side direction of the rectangular concave portions 5a is 0.38 mm to 0.46 mm, and the pitch Pb in the short side direction is 0.11 mm to 0.17 mm. If the pitches Pa and Pb are too large, the rectangular protrusions 5b sandwiched between the adjacent rectangular recesses 5a will not have enough bulges, leaving a large number of flat surfaces, possibly degrading the airtightness. On the other hand, if the pitches Pa and Pb are too small, the adjacent rectangular recessed portion 5a is crushed and deformed, and the strength of the resin there may be reduced, resulting in poor sealing performance. The pitches Pa and Pb mean the distances between the central points of the rectangular concave portions 5a adjacent to each other across the rectangular convex portion 5b in one direction or in the orthogonal direction.
 樹脂被覆面に、矩形凹部5a及び矩形凸部5bで形成される凹凸面5を形成するには、たとえば、樹脂被覆面にプレス加工を施すことにより行うことができる。このプレス加工では、図示は省略するが、先端面に、矩形凹部5aと対応する形状の突起部を複数個並べて設けたパンチを用いることができる。 The concave-convex surface 5 formed by the rectangular concave portions 5a and the rectangular convex portions 5b can be formed on the resin-coated surface by, for example, pressing the resin-coated surface. In this press working, although illustration is omitted, a punch having a plurality of protrusions having shapes corresponding to the rectangular recesses 5a arranged side by side on the tip surface can be used.
 比較的小さいピッチPa及び/又はPbの凹凸面5を形成する場合、第一プレス工程及び第二プレス工程を含む複数段階のプレス工程を行うことが好ましい。具体的には、はじめに、図7(a)に示すように、樹脂被覆面に、先端面に複数個の突起部があるパンチを押し当てて第一プレス工程を行う。これにより、樹脂被覆面上に第一凹部群R1が形成される。次いで、図7(b)に示すように、樹脂被覆面上にて一方向及び直交方向等の所定の方向にずらした位置に、先端面に複数個の突起部があるパンチを押し当てて第二プレス工程を行う。第二プレス工程で用いるパンチは、第一プレス工程のパンチと同一とすることもできるが、異なる形状のものとしてもよい。第二プレス工程では、樹脂被覆面上に、第二凹部群R2が第一凹部群R1と少なくとも一部で重複し、第一凹部群R1の矩形凹部5aの相互間に、第二凹部群R2の矩形凹部5aが形成される。矩形凸部5bは、隣り合う矩形凹部5aの間に設けられる。その結果、樹脂被覆面上に、矩形凹部5a及び矩形凸部5bを密集させて形成することができる。 When forming the uneven surface 5 with a relatively small pitch Pa and/or Pb, it is preferable to perform a plurality of pressing steps including a first pressing step and a second pressing step. Specifically, first, as shown in FIG. 7(a), a first pressing step is performed by pressing a punch having a plurality of protrusions on the tip surface against the resin-coated surface. Thereby, the first concave portion group R1 is formed on the resin-coated surface. Next, as shown in FIG. 7(b), a punch having a plurality of protrusions on the tip surface is pressed against positions shifted in a predetermined direction such as one direction and an orthogonal direction on the resin-coated surface to obtain a second punch. Two pressing steps are performed. The punch used in the second pressing step may be the same as the punch in the first pressing step, but may have a different shape. In the second pressing step, the second recess group R2 overlaps the first recess group R1 at least partially on the resin-coated surface, and the second recess group R2 is formed between the rectangular recesses 5a of the first recess group R1. is formed. The rectangular convex portion 5b is provided between adjacent rectangular concave portions 5a. As a result, the rectangular concave portions 5a and the rectangular convex portions 5b can be densely formed on the resin-coated surface.
 凹凸面5を設ける場合、矩形凸部5bの、最も樹脂部材3側(金属板2の板厚方向の外側)に突出する部分の頂面5cは、平坦面とすることも可能であるが、図8に板厚方向に沿う断面図で示すように、樹脂部材3側に凸状の曲面とすることが好ましい。それにより、樹脂の平面方向のせん断強度が向上し、繰り返しの温度変化にさらされることによる密閉性悪化を緩和する。また、外部から内部スペースへの空気の侵入経路において、平坦な矩形凸部5bが連なることがなくなることで、内部スペースの密閉性を向上することが出来る。このような樹脂部材3側に凸状の曲面を有する矩形凸部5bは、上述したように、先端面に複数個の突起部を設けたパンチを用いて凹凸面5を形成した場合に、矩形凹部5aに相当する窪みの形成に伴って当該矩形凹部5a間の肉が板厚方向の外側(図8の上方側)に盛り上がることにより得られることがある。
 ここで、矩形凹部5aの深さ(凹部深さ)は0.20mm以下が好ましく、0.10mm以下がより好ましい。凹部深さが大きすぎると板厚方向への延びが大きくなり後工程(成形)で影響が出るほど歪んでしまうおそれがある。凹部深さは、板厚方向で、当該矩形凹部5aの底面の最も深い位置から、その矩形凹部5aと隣り合う矩形凸部5bの頂面5cの最も高い位置までの距離を指す。矩形凹部5aを設ける場合、凹部深さは0.02mm~0.20mmが好ましく、0.04mm~0.10mmがより好ましい。
When the uneven surface 5 is provided, the top surface 5c of the portion of the rectangular convex portion 5b that protrudes most toward the resin member 3 (the outer side of the metal plate 2 in the plate thickness direction) may be a flat surface. As shown in the cross-sectional view along the plate thickness direction in FIG. As a result, the shear strength in the plane direction of the resin is improved, and the deterioration of the sealing property due to exposure to repeated temperature changes is alleviated. In addition, since the flat rectangular projections 5b do not continue along the path for air to enter the internal space from the outside, the airtightness of the internal space can be improved. Such a rectangular projection 5b having a convex curved surface on the resin member 3 side can be obtained by forming the uneven surface 5 using a punch having a plurality of projections on the tip surface as described above. In some cases, the thickness between the rectangular recesses 5a rises outward (upper side in FIG. 8) in the plate thickness direction due to the formation of the depressions corresponding to the recesses 5a.
Here, the depth (recess depth) of the rectangular recess 5a is preferably 0.20 mm or less, more preferably 0.10 mm or less. If the depth of the concave portion is too large, the extension in the plate thickness direction becomes large, and there is a possibility that the deformation will be so great as to affect the subsequent process (molding). The recess depth refers to the distance from the deepest position of the bottom surface of the rectangular recess 5a to the highest position of the top surface 5c of the rectangular protrusion 5b adjacent to the rectangular recess 5a in the plate thickness direction. When the rectangular recess 5a is provided, the depth of the recess is preferably 0.02 mm to 0.20 mm, more preferably 0.04 mm to 0.10 mm.
 内部スペースの密閉性を高めるため、樹脂被覆面に設けた凹凸面5は、エッチング又はめっき等により、表面粗さRaを粗くする粗化処理を施すことが望ましい。これにより、凹凸面5は粗化凹凸面になり、その粗化凹凸面での樹脂のアンカー効果と、そこに形成された矩形凹部5a及び矩形凸部5bとが相俟って、内部スペースの密閉性が大きく向上する。 In order to improve the hermeticity of the internal space, it is desirable that the uneven surface 5 provided on the resin-coated surface is roughened by etching, plating, or the like to increase the surface roughness Ra. As a result, the uneven surface 5 becomes a roughened uneven surface, and the anchor effect of the resin on the roughened uneven surface and the rectangular concave portions 5a and the rectangular convex portions 5b formed thereon combine to reduce the internal space. Airtightness is greatly improved.
 具体的には、粗化凹凸面の表面粗さRaは、0.2μm以上であることが好適である。この表面粗さRaは、JIS B0601:2001に準拠する算術平均粗さを意味する。粗化凹凸面の表面粗さRaは、当該粗化凹凸面を構成する矩形凸部5bの頂面5cの位置で測定した算術平均粗さとする。なお、粗化凹凸面の粗化面は、実体顕微鏡やSEM、レーザー顕微鏡により確認可能である。粗化条件が同じならば、粗化凹凸面の表面粗さと、凹凸面5が無い粗化面の表面粗さとは同等である。粗化処理が施されていない場合は光沢面になり、粗化処理を施すと非光沢面になるので、目視でも判別可能である場合がある。 Specifically, the surface roughness Ra of the roughened uneven surface is preferably 0.2 μm or more. This surface roughness Ra means arithmetic mean roughness based on JIS B0601:2001. The surface roughness Ra of the roughened uneven surface is the arithmetic mean roughness measured at the position of the top surface 5c of the rectangular convex portion 5b forming the roughened uneven surface. The roughened surface of the roughened uneven surface can be confirmed with a stereomicroscope, SEM, or laser microscope. If the roughening conditions are the same, the surface roughness of the roughened uneven surface and the surface roughness of the roughened surface without the uneven surface 5 are equivalent. When the surface is not roughened, the surface becomes glossy, and when the surface is roughened, the surface becomes non-glossy.
 樹脂被覆面には、上述した凹凸面5を設けることに代えて又は加えて、図9に示す実施形態のように、粗化めっき層6を設けることができる。樹脂被覆面に粗化めっき層6を設けることで、樹脂部材3が粗化めっき層6を介して樹脂被覆面に十分に密着するので、この場合、樹脂被覆面に凹凸面5を設けることは必ずしも必要ではない。但し、樹脂被覆面に凹凸面5を設け、その上にさらに粗化めっき層6を設けて粗化凹凸面としたときは、内部スペースの密閉性をより一層高めることが可能になる。粗化めっき層6の有無は、光学顕微鏡により確認することができる。 Instead of or in addition to providing the uneven surface 5 described above, a roughening plated layer 6 can be provided on the resin-coated surface as in the embodiment shown in FIG. By providing the roughened plating layer 6 on the resin-coated surface, the resin member 3 is sufficiently adhered to the resin-coated surface through the roughened plating layer 6. Not necessarily. However, when the uneven surface 5 is provided on the resin-coated surface and the roughened plating layer 6 is further provided thereon to form a roughened uneven surface, it is possible to further improve the hermeticity of the internal space. The presence or absence of the roughened plating layer 6 can be confirmed with an optical microscope.
 樹脂被覆面に設ける粗化めっき層6のめっき厚みは、好ましくは2.0μm~6.0μmであり、より好ましくは3.0μm~5.0μmである。粗化めっき層6のめっき厚みが薄すぎる場合は、樹脂被覆面への樹脂部材3の密着が不十分になることが懸念される。一方、粗化めっき層6のめっき厚みが厚すぎる場合は、コストアップとなるおそれがある。 The plating thickness of the roughened plating layer 6 provided on the resin-coated surface is preferably 2.0 μm to 6.0 μm, more preferably 3.0 μm to 5.0 μm. If the plating thickness of the roughening plating layer 6 is too thin, there is concern that the adhesion of the resin member 3 to the resin-coated surface will be insufficient. On the other hand, if the plating thickness of the roughening plating layer 6 is too thick, the cost may increase.
 粗化めっき層6は、銅又は銀等とすることも可能であるが、好ましくはニッケルめっきであり、ニッケルが含まれ得る。ニッケルを含む粗化めっき層6の場合、粗化形状、粗化度合いを制御しやすいという利点がある。また、粗化めっき層6には、ニッケル、銅及び銀からなる群から選択される少なくとも一種を含むことがある。 The roughened plated layer 6 can be made of copper, silver, or the like, but is preferably nickel plated and may contain nickel. In the case of the roughening plated layer 6 containing nickel, there is an advantage that the roughening shape and the degree of roughening can be easily controlled. Moreover, the roughening plated layer 6 may contain at least one selected from the group consisting of nickel, copper and silver.
 金属板2の樹脂被覆面に粗化めっき層6を形成するには、たとえば、図示は省略するが、金属板2の粗化めっき層6を形成しない表面をマスクで覆った状態で、粗化めっき層6のめっき金属を含むめっき液中にて、金属板2に対して電気めっきを施すことにより行うことができる。他の実施形態において、マスクを用いることなく金属板2全面に粗化めっき層6を形成してもよい。 In order to form the roughened plating layer 6 on the resin-coated surface of the metal plate 2, for example, although not shown, roughening is performed while the surface of the metal plate 2 on which the roughened plating layer 6 is not formed is covered with a mask. It can be carried out by electroplating the metal plate 2 in a plating solution containing the plating metal of the plating layer 6 . In another embodiment, the rough plating layer 6 may be formed on the entire surface of the metal plate 2 without using a mask.
 なお、樹脂被覆面の一部に凹凸面5及び/又は粗化めっき層6が存在しない箇所があってもよいが、凹凸面5及び/又は粗化めっき層6は、樹脂被覆面の全体に設けることが、樹脂部材3と金属板2との密着性を十分に確保するとの観点から好ましい。 In addition, although there may be a part where the uneven surface 5 and / or the roughened plating layer 6 does not exist in a part of the resin coated surface, the uneven surface 5 and / or the roughened plating layer 6 is covered over the entire resin coated surface. It is preferable to provide it from the viewpoint of ensuring sufficient adhesion between the resin member 3 and the metal plate 2 .
 以上に述べたような粗化めっき層6又は粗化凹凸面を設けた金属板2に、枠状の樹脂部材3を設けるため、インサート成形を行うことができる。 Since the frame-shaped resin member 3 is provided on the metal plate 2 provided with the roughened plating layer 6 or the roughened uneven surface as described above, insert molding can be performed.
 インサート成形では、金属板2を、その樹脂部材3の形状に応じたキャビティを有する射出成形金型内に配置し、射出成形金型のゲートから当該キャビティに樹脂材料を射出する。ゲートからキャビティに流入した樹脂材料は、枠状の樹脂部材3に対応する形状を有するキャビティを流れ、その途中で合流してキャビティに充填される。その後、キャビティで樹脂材料を冷却して固化させる。それにより、金属板2に樹脂部材3が固着した金属樹脂複合体1が得られる。 In insert molding, the metal plate 2 is placed in an injection mold having a cavity corresponding to the shape of the resin member 3, and the resin material is injected into the cavity from the gate of the injection mold. The resin material that has flowed into the cavity from the gate flows through the cavity having a shape corresponding to the frame-shaped resin member 3, joins along the way, and fills the cavity. After that, the resin material is cooled and solidified in the cavity. Thereby, a metal-resin composite 1 in which the resin member 3 is fixed to the metal plate 2 is obtained.
 ここで、成形後の樹脂部材3では、射出時にキャビティを流れる樹脂材料が合流した位置に、ウェルドライン7が形成される。図示の実施形態では、一例として、平面視の内外輪郭形状がともに長方形状である枠状の樹脂部材3の二つの長辺の中央位置に対応するキャビティの各位置に、二箇所のゲートを設けたことに起因して、樹脂材料が各ゲートからキャビティで二股に分かれて流れて合流した結果として、樹脂部材3の二つの短辺の中央位置に、二箇所のウェルドライン7が形成されている。あるいは、ゲートが一箇所である場合、枠状の樹脂部材3の周方向で、そのゲートから最も離れた位置に、一箇所のウェルドライン7が形成され得る。ウェルドライン7は、枠状の樹脂部材3を幅方向に横断する直線もしくは曲線等の線状に形成されることがあり、樹脂部材3の外面を目視あるいは光学顕微鏡で観察することにより確認可能である。 Here, in the resin member 3 after molding, a weld line 7 is formed at a position where the resin material flowing through the cavity during injection joins. In the illustrated embodiment, as an example, two gates are provided at respective positions of the cavity corresponding to the central positions of the two long sides of the frame-shaped resin member 3 whose inner and outer contours are both rectangular in plan view. As a result of this, the resin material flows bifurcated into the cavity from each gate and merges, and as a result, two weld lines 7 are formed at the central positions of the two short sides of the resin member 3. . Alternatively, when there is only one gate, the weld line 7 can be formed at one position in the circumferential direction of the frame-shaped resin member 3 at the position furthest from the gate. The weld line 7 may be formed in a linear shape such as a straight line or a curved line that crosses the frame-shaped resin member 3 in the width direction, and can be confirmed by observing the outer surface of the resin member 3 with the naked eye or an optical microscope. be.
 上記のウェルドライン7は、枠状の樹脂部材3の周方向に一箇所又は二箇所であることが好ましい。金属板2に先述した粗化凹凸面又は粗化めっき層6を設けることに加えて、ウェルドライン7を二箇所以下とすることにより、内部スペースの密閉性が大きく高まるからである。言い換えれば、三箇所以上のウェルドライン7が存在すると、内部スペースの密閉性が低下し、そこから水分を含む空気が内部スペースに浸透しやすくなる可能性が高まる。 The weld line 7 is preferably one or two in the circumferential direction of the frame-shaped resin member 3 . This is because, in addition to providing the roughened uneven surface or the roughened plating layer 6 on the metal plate 2, by setting the number of weld lines 7 to two or less, the hermeticity of the internal space is greatly improved. In other words, if there are three or more weld lines 7, the airtightness of the internal space is reduced, increasing the possibility that moisture-containing air can easily permeate the internal space.
 なお、樹脂部材3の材料としては、特に限定されないが、たとえば、液晶ポリマー、アクリロニトリル・ブタジエン・スチレン共重合合成樹脂(ABS)、ポリアミド(PA)、ポリプロピレン(PP)、ポリエステル系熱可塑性エラストマー(TPC)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。 Although the material of the resin member 3 is not particularly limited, for example, liquid crystal polymer, acrylonitrile-butadiene-styrene copolymer synthetic resin (ABS), polyamide (PA), polypropylene (PP), polyester thermoplastic elastomer (TPC), ), polyacetal (POM), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS) and the like can be used.
 ところで、図示の金属板2は、貫通孔4の外側に向けて延びる複数箇所の切欠き部8a~8cが設けられている。より詳細には、この例では、長方形状の金属板2の長手方向(図1では左右方向)の外側のそれぞれに、貫通孔4につながって樹脂部材3の配置箇所を通って外側に向けて延びて拡幅する長方形状の切欠き部8a及び、それよりも大きな面積を有する多角形状の切欠き部8bと、金属板2の長手方向の中央位置で幅方向(図1で上下方向)の外側のそれぞれに、貫通孔4につながって外側に向けて延びてやや細長い長方形状に拡幅する切欠き部8cとの、計六箇所の切欠き部8a~8cがある。各切欠き部8a~8cは、金属板2の板厚方向に貫通して形成されている。 By the way, the illustrated metal plate 2 is provided with cutouts 8a to 8c at a plurality of locations extending toward the outside of the through hole 4. As shown in FIG. More specifically, in this example, the resin member 3 is connected to the through hole 4 and directed outward through the position where the resin member 3 is arranged on each of the outer sides of the rectangular metal plate 2 in the longitudinal direction (horizontal direction in FIG. 1). A rectangular notch 8a extending and widening, a polygonal notch 8b having a larger area than the rectangular notch 8a, and the outer side of the metal plate 2 in the width direction (vertical direction in FIG. 1) at the center position in the longitudinal direction of the metal plate 2. are connected to the through-hole 4 and extend outward to form a notch 8c that widens into a slightly elongated rectangular shape. Each notch 8a to 8c is formed through the metal plate 2 in the plate thickness direction.
 そして、樹脂部材3は、金属板2の表面Sf側のみならず、図10に示すように金属板2の裏面Sb側の両面側で、各切欠き部8a~8cと貫通孔4との連結箇所である空所を通って貫通孔4の周囲に枠状に設けられている。それにより、枠状の樹脂部材3の周方向の一部では、当該樹脂部材3で金属板2が両側から挟み込まれているが、上記の空所がある残部では、当該樹脂部材3の内側に金属板2が存在しないことになる。 The resin member 3 connects the cutouts 8a to 8c and the through holes 4 not only on the surface Sf side of the metal plate 2 but also on both sides of the back surface Sb side of the metal plate 2 as shown in FIG. It is provided in the shape of a frame around the through-hole 4 through a space that is a part. As a result, in a part of the frame-shaped resin member 3 in the circumferential direction, the metal plate 2 is sandwiched from both sides by the resin member 3 , but in the remaining part having the above-mentioned space, the metal plate 2 is inside the resin member 3 . Metal plate 2 does not exist.
 このように枠状の樹脂部材3が、周方向の一部で金属板2を板厚方向の両側から挟み込んで設けられている場合、先に述べたウェルドライン7は、枠状の樹脂部材3の周方向で、当該樹脂部材3の内側に金属板2が存在しない箇所に形成されていることが好ましい。樹脂部材3の内側に金属板2が存在せず樹脂部材3が金属板2で支持されていない箇所に、ウェルドライン7が存在することにより、内部スペースの密閉性をさらに向上させることができる。樹脂部材3の内側に金属板2が存在する箇所にウェルドライン7が存在すると、樹脂部材3の当該ウェルドライン7が形成された箇所と金属板2との界面から、水分を含んだ空気が内部スペースに浸透するおそれがある。 In this way, when the frame-shaped resin member 3 is provided by sandwiching the metal plate 2 from both sides in the plate thickness direction at a part in the circumferential direction, the weld line 7 described above is formed by the frame-shaped resin member 3 is preferably formed at a location where the metal plate 2 does not exist inside the resin member 3 in the circumferential direction of . The presence of the weld line 7 at the place where the metal plate 2 does not exist inside the resin member 3 and the resin member 3 is not supported by the metal plate 2 can further improve the hermeticity of the internal space. If the weld line 7 exists inside the resin member 3 where the metal plate 2 exists, moisture-containing air enters the interior from the interface between the metal plate 2 and the portion of the resin member 3 where the weld line 7 is formed. It can permeate the space.
 なお、金属板2は、表面Sf側に樹脂部材3よりも貫通孔4側に突出する内縁部2aを有し、その内縁部2aで、半導体チップ51とボンディングワイヤ52によって接続される。 The metal plate 2 has an inner edge portion 2a on the surface Sf side that protrudes further toward the through hole 4 than the resin member 3, and is connected to the semiconductor chip 51 by bonding wires 52 at the inner edge portion 2a.
 図11に、他の実施形態の金属樹脂複合体1を示す。図11の金属樹脂複合体1では、枠状の樹脂部材3の周方向でウェルドライン7が形成された箇所に、その樹脂部材3の外側に突出する突出部9が設けられていることを除いて、図1に示すものとほぼ同様の構成を有する。この突出部9は、金属板2の表面とほぼ平行な方向に樹脂部材3から突出している。図示は省略するが、突出部9は、樹脂部材3の内側(貫通孔側)に突出するように設けることもできる他、樹脂部材3上に板厚方向に突出させて設けてもよい。 FIG. 11 shows a metal-resin composite 1 of another embodiment. In the metal-resin composite 1 of FIG. 11 , except that a protruding portion 9 that protrudes outward from the resin member 3 is provided at a location where the weld line 7 is formed in the circumferential direction of the frame-shaped resin member 3 . , and has substantially the same configuration as that shown in FIG. The protrusion 9 protrudes from the resin member 3 in a direction substantially parallel to the surface of the metal plate 2 . Although not shown, the protruding portion 9 may be provided so as to protrude inside the resin member 3 (toward the through hole), or may be provided so as to protrude from the resin member 3 in the plate thickness direction.
 樹脂部材3に突出部9が設けられるキャビティを有する射出成形金型を用いて、樹脂部材3を成形すると、キャビティに射出された樹脂材料は、突出部9が形成される箇所で合流する際に側方へ流れが変更され、ウェルドの層が若干破壊される。その結果、樹脂部材3の強度が向上し、それに伴って内部スペースの密閉性も高まる。 When the resin member 3 is molded using an injection mold having a cavity in which the protrusion 9 is provided in the resin member 3, the resin material injected into the cavity merges at the location where the protrusion 9 is formed. The flow is changed to the side and the layers of the weld are slightly destroyed. As a result, the strength of the resin member 3 is improved, and the sealing performance of the internal space is accordingly improved.
 突出部9はその後、切断されて除去されることがある。この場合、樹脂部材3のウェルドライン7が形成された箇所に、切断跡が形成されて存在する。切断跡は、目視により確認可能である。樹脂部材3のウェルドライン7が形成された箇所に切断跡が存在すれば、以前はそこに突出部9が形成されていて、それによってウェルドライン7に起因する脆弱部分の補強が行われたと推認することができる。 The protrusion 9 may then be cut and removed. In this case, a cut mark is formed and exists in the place where the weld line 7 of the resin member 3 is formed. The cut marks can be visually confirmed. If there is a cut mark at the location where the weld line 7 of the resin member 3 is formed, it is presumed that the protruding portion 9 was previously formed there, thereby reinforcing the weak portion caused by the weld line 7. can do.
 次に、上述したような金属樹脂複合体を試作し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、これに限定されることを意図するものではない。 Next, we made a prototype of the metal-resin composite as described above and confirmed its effect, which will be described below. However, the description herein is for illustrative purposes only and is not intended to be limiting.
(凹凸面)
 図1に示すような金属樹脂複合体を作製した。
 実施例1~4並びに比較例3及び4では、図6を用いて説明したように、金属板の樹脂被覆面に、それぞれ先端面に複数個の突起部を設けた各パンチを用いて第一プレス工程及び第二プレス工程を行い、一方向及びその直交方向の各方向で交互に並ぶ長方形状の矩形凹部及び矩形凸部を形成し、凹凸面(矩形凹凸面)を設けた。各矩形凹部の長辺の長さLaは0.21mm、短辺の長さLbは0.07mm、長辺方向のピッチPaは0.42mm、短辺方向のピッチPbは0.14mmとした。矩形凹部と矩形凸部の平面視の寸法は実質的に同じとした。矩形凹部の深さ(凹部深さ)は、表1に示すとおりである。
(Uneven surface)
A metal-resin composite as shown in FIG. 1 was produced.
In Examples 1 to 4 and Comparative Examples 3 and 4, as described with reference to FIG. A pressing step and a second pressing step were performed to form rectangular concave portions and rectangular convex portions that were alternately arranged in one direction and each direction perpendicular thereto, thereby providing an uneven surface (rectangular uneven surface). The long side length La of each rectangular recess was 0.21 mm, the short side length Lb was 0.07 mm, the pitch Pa in the long side direction was 0.42 mm, and the pitch Pb in the short side direction was 0.14 mm. The dimensions of the rectangular concave portion and the rectangular convex portion in plan view were substantially the same. Table 1 shows the depth of the rectangular recess (recess depth).
 比較例2では、金属板の樹脂被覆面に、一方向に延びる線状凹部を直線方向に直交する方向に間隔をおいて複数本形成した凹凸面(線状凹凸面)を設けた。線状凹部の幅は0.04mm、線状凹部のピッチは0.1mmとした。隣り合う線状凹部間には、線状凸部が形成された。 In Comparative Example 2, the resin-coated surface of the metal plate was provided with an uneven surface (linear uneven surface) in which a plurality of linear recesses extending in one direction were formed at intervals in a direction orthogonal to the straight line direction. The width of the linear recesses was 0.04 mm, and the pitch of the linear recesses was 0.1 mm. Linear protrusions were formed between adjacent linear recesses.
 実施例5及び6並びに比較例1及び5では、金属板の樹脂被覆面に凹凸面を設けなかった。 In Examples 5 and 6 and Comparative Examples 1 and 5, the uneven surface was not provided on the resin-coated surface of the metal plate.
(表面処理)
 実施例1及び2並びに比較例2及び4では、表1に示す表面粗さRaになるように、樹脂被覆面ないし凹凸面に対し、メック株式会社社製のCZ-8101を用いて、処理温度30℃の条件にて粗化処理(エッチング)を施した。
(surface treatment)
In Examples 1 and 2 and Comparative Examples 2 and 4, CZ-8101 manufactured by MEC Co., Ltd. was used to treat the resin-coated surface or uneven surface so that the surface roughness Ra shown in Table 1 was obtained. A roughening treatment (etching) was performed at 30°C.
 実施例3~6及び比較例5では、金属板の樹脂被覆面にニッケル粗化めっきを施した。めっき浴組成:Niメタル分130g/L、ホウ酸25g/LでpH3.3であった。ここで、Niメタル分は、Ni塩としてスルファミン酸ニッケル四水和物及び塩化Niで構成されたものとした。より具体的には、スルファミン酸ニッケル四水和物:Ni(NH2SO32・4H2O=294g/L(約300g/L)、Ni量で53.5g/L、塩化ニッケル六水和物:NiCl2・6H2O=約310g/L、Ni量で76.5g/Lとした。めっき液温度は60℃とし、電流密度は10A/dm2とした。処理時間は、表1の表面粗さRaになるように調整した。 In Examples 3 to 6 and Comparative Example 5, nickel roughening plating was applied to the resin-coated surface of the metal plate. Plating bath composition: Ni metal content 130 g/L, boric acid 25 g/L, pH 3.3. Here, the Ni metal component was composed of nickel sulfamate tetrahydrate and Ni chloride as Ni salts. More specifically, nickel sulfamate tetrahydrate: Ni(NH 2 SO 3 ) 2.4H 2 O=294 g/L (about 300 g/L), Ni amount 53.5 g/L, nickel chloride hexahydrate Hydrate: NiCl 2 .6H 2 O=approximately 310 g/L, Ni content was 76.5 g/L. The plating solution temperature was 60° C., and the current density was 10 A/dm 2 . The treatment time was adjusted so that the surface roughness Ra in Table 1 was achieved.
 比較例1及び3では、金属板の樹脂被覆面に表面処理を施さなかった。 In Comparative Examples 1 and 3, no surface treatment was applied to the resin-coated surface of the metal plate.
 なお、表1に示す表面粗さRaの測定は三鷹光器株式会社製の非接触表面性状測定装置(PF-60)で行い、凹凸面がある粗化凹凸面の場合は矩形凸部又は線状凸部の頂面の位置を観察した。観察倍率は1000倍、スポット径はφ1.0μm、分解能はX軸0.1μmm、Y軸0.1μmm、Z1軸(測定用のZ軸)0.01μmとした。測定設定は次のとおりである。
測定ピッチ:1μm
測定範囲:8.0mm(直線での走査)(凹凸面の凸部の測定の場合には後からその部分を抽出)
測定精度:X軸2μm、Y軸2μm、Z1軸0.3μm
測定方式:スキャン
スキャン速度:100μm/s
AFゲイン:Standard
対物レンズ:SL100×(100倍)
The surface roughness Ra shown in Table 1 was measured with a non-contact surface texture measuring device (PF-60) manufactured by Mitaka Kohki Co., Ltd. In the case of a roughened uneven surface with an uneven surface, a rectangular convex portion or a line The position of the top surface of the convex portion was observed. The observation magnification was 1000 times, the spot diameter was φ1.0 μm, the resolution was 0.1 μm on the X axis, 0.1 μm on the Y axis, and 0.01 μm on the Z1 axis (Z axis for measurement). The measurement settings are as follows.
Measurement pitch: 1 μm
Measurement range: 8.0 mm (scanning in a straight line) (In the case of measurement of the convex part of the uneven surface, the part is extracted later)
Measurement accuracy: X-axis 2 μm, Y-axis 2 μm, Z1-axis 0.3 μm
Measurement method: Scan Scanning speed: 100 μm/s
AF gain: Standard
Objective lens: SL100x (100x)
(射出成形)
 樹脂材料を液晶ポリマー(ENEOS液晶株式会社製のM-350B)とし、射出成形金型を用いたインサート成形により、金属板に樹脂部材を固着させて形成した。いずれの実施例及び比較例でも射出圧力は150MPaとし、比較例5を除き、スプルーブッシュ温度は360℃とした。比較例5では、スプルーブッシュ温度を170℃とした。
(injection molding)
A liquid crystal polymer (M-350B manufactured by ENEOS Liquid Crystal Co., Ltd.) was used as the resin material, and the resin member was fixed to the metal plate by insert molding using an injection mold. In all examples and comparative examples, the injection pressure was 150 MPa, and except for comparative example 5, the sprue bushing temperature was 360°C. In Comparative Example 5, the sprue bushing temperature was set to 170°C.
 実施例1~6並びに比較例1及び3では、射出成形金型のキャビティに周方向に二箇所のゲートを設けたことにより、樹脂部材の周方向に二箇所のウェルドラインが金属板の存在しない箇所に形成されていた。比較例2、4及び5では、ゲートを四箇所としたので、樹脂部材に形成されたウェルドラインは周方向に四箇所であった。実施例2では、樹脂部材に図11に示すような二個の突出部をウェルドラインが形成される位置に設けた。 In Examples 1 to 6 and Comparative Examples 1 and 3, two gates were provided in the circumferential direction in the cavity of the injection molding die, so that two weld lines in the circumferential direction of the resin member were not present in the metal plate. was formed in places. In Comparative Examples 2, 4 and 5, four gates were provided, and thus four weld lines were formed in the resin member in the circumferential direction. In Example 2, the resin member was provided with two protrusions as shown in FIG. 11 at positions where weld lines are formed.
(レッドチェック試験)
 金属樹脂複合体に対し、レッドチェック試験を行い、樹脂部材と金属板との間を赤色の試験液が浸透するかどうかを検証した。具体的には、金属樹脂複合体の金属板の貫通孔の周囲で樹脂部材の内側の内縁部に、試験液を針金の先端で微量塗布し、0.5時間放置した。放置後、試験液が樹脂部材の外側に漏れなければ、試験液が樹脂部材を浸透していないので、密閉性が良好であると評価することができる。
(Red check test)
A red check test was performed on the metal-resin composite to verify whether or not the red test liquid permeated between the resin member and the metal plate. Specifically, a small amount of the test solution was applied to the inner edge portion inside the resin member around the through-hole of the metal plate of the metal-resin composite with the tip of a wire, and left for 0.5 hours. If the test liquid does not leak outside the resin member after standing, the test liquid has not permeated the resin member, and it can be evaluated that the sealing property is good.
 試験は、加熱していない金属樹脂複合体及び、260℃で2時間加熱した後の金属樹脂複合体に対して行った。非加熱の金属樹脂複合体及び加熱後の金属樹脂複合体について、実施例1~6並びに比較例2及び4では各5個を試験に供した。比較例1、3及び5では、1個の非加熱の金属樹脂複合体について試験を行った。表1に、試験に供した総個数(5個又は1個)のうち、試験液の漏れがなかった個数(n個)の割合(n/5又はn/1)を示す。 The test was conducted on an unheated metal-resin composite and a metal-resin composite after heating at 260°C for 2 hours. Regarding the unheated metal-resin composites and the heated metal-resin composites, in Examples 1 to 6 and Comparative Examples 2 and 4, five pieces each were subjected to the test. In Comparative Examples 1, 3 and 5, tests were performed on one unheated metal-resin composite. Table 1 shows the ratio (n/5 or n/1) of the number (n) of the total number (5 or 1) subjected to the test that did not leak the test liquid.
(樹脂剥離試験)
 ブロック治具を使用し、金属樹脂複合体の樹脂部材に対して金属板に水平な方向で外側から内側に向かって力を作用させて金属板から樹脂部材を引き剥がし、樹脂部材を引き剥がした後、金属板上に付着している樹脂の残留を確認した。樹脂が金属板上に残留するということは、剥離の形態が金属板と樹脂部材との界面から剥がれたものではなく、樹脂部材の内部の凝集破壊によって生じたものであることを意味し、金属板と樹脂部材との密着性が良好であると判断することができる。ブロック治具のパンチブロックは、幅8.3mm×厚み1.8mm×長さ26.0mmの寸法とした。この樹脂剥離試験も、非加熱の金属樹脂複合体及び加熱(260℃、2時間)後の金属樹脂複合体のそれぞれについて行った。
(Resin peeling test)
Using a block jig, a force was applied to the resin member of the metal-resin composite from the outside to the inside in the direction horizontal to the metal plate, and the resin member was peeled off from the metal plate. After that, residual resin adhering to the metal plate was confirmed. The fact that the resin remains on the metal plate means that the form of peeling is not peeling off from the interface between the metal plate and the resin member, but is caused by cohesive failure inside the resin member. It can be judged that the adhesion between the plate and the resin member is good. The punch block of the block jig had dimensions of width 8.3 mm×thickness 1.8 mm×length 26.0 mm. This resin peeling test was also performed on each of the unheated metal-resin composite and the metal-resin composite after heating (260° C., 2 hours).
 その結果を表1に示す。ここでは、樹脂の残留が樹脂被覆面の面積の10%未満であった場合を「×」、樹脂の残留が樹脂被覆面の面積の10%以上かつ50%未満、または樹脂の残留が途切れて内側と外側が繋がっている場合を「△」、樹脂の残留が樹脂被覆面の面積の50%以上で、樹脂残りで内側と外側が遮断されている場合を「○」としている。 The results are shown in Table 1. Here, "x" indicates that the residual resin is less than 10% of the area of the resin-coated surface, the residual resin is 10% or more and less than 50% of the area of the resin-coated surface, or the residual resin is interrupted. A case where the inside and the outside are connected is indicated by "Δ", and a case where the resin residue is 50% or more of the area of the resin-coated surface and the inside and the outside are blocked by the remaining resin is indicated by "○".
(ヒートサイクル試験)
 実施例1~6の各金属樹脂複合体について、図12に示すように、金属樹脂複合体71の樹脂部材73の両側に、蓋体81a、81bを接着剤82で接着させ、半導体デバイスを模擬した供試体91を作製した。但し、この供試体91は、内部の空洞に半導体チップを有しないものである。樹脂部材73並びに蓋体81a、81bは、液晶ポリマー(ENEOS液晶株式会社製のM-350B)からなるものとした。
(Heat cycle test)
For each of the metal-resin composites of Examples 1 to 6, as shown in FIG. 12, lids 81a and 81b were adhered to both sides of the resin member 73 of the metal-resin composite 71 with an adhesive 82 to simulate a semiconductor device. A test piece 91 was produced. However, this specimen 91 does not have a semiconductor chip in its internal cavity. The resin member 73 and the lids 81a and 81b are made of a liquid crystal polymer (M-350B manufactured by ENEOS Liquid Crystal Co., Ltd.).
 上記の供試体91を、-65℃~160℃の昇温・降温を繰り返すヒートサイクル試験に供した後に、供試体91を水中に沈めて、空気の漏れの有無を確認した。その結果を表1に示す。表1には、ヒートサイクル試験を100回、200回、500回行った場合のそれぞれについて、試験に供した供試体91の総個数のうち、空気の漏れが無かった供試体91の個数の割合を示している。 After subjecting the specimen 91 to a heat cycle test in which the temperature was repeatedly raised and lowered from -65°C to 160°C, the specimen 91 was submerged in water to check for air leakage. Table 1 shows the results. Table 1 shows the ratio of the number of specimens 91 with no air leakage to the total number of specimens 91 subjected to the test for each of the cases where the heat cycle test was performed 100 times, 200 times, and 500 times. is shown.
(密閉性評価)
 上述したレッドチェック試験、樹脂剥離試験及びヒートサイクル試験の結果より、金属樹脂複合体の内部スペースの密閉性を評価した。その結果を表1に示す。表1中、密閉性について「〇」は、密閉性が良好であることを示し、「△」は、ある程度の密閉性を有することを示し、「×」は、密閉性が不十分であることを示す。
(Evaluation of tightness)
From the results of the above-mentioned red check test, resin peel test and heat cycle test, the sealing property of the internal space of the metal-resin composite was evaluated. Table 1 shows the results. In Table 1, "○" indicates that the airtightness is good, "△" indicates that it has a certain degree of airtightness, and "×" indicates that the airtightness is insufficient. indicates
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(考察)
 表1に示すところから、実施例1~6は、樹脂部材のウェルドラインを二箇所以下とし、樹脂被覆面に粗化凹凸面又は粗化めっき層を設けたことにより、比較例1~5に比して、内部スペースの密閉性が高かったことが解かる。矩形凹凸面に対してエッチング又は粗化めっきを施して粗化凹凸面とした実施例1~4だけでなく、樹脂被覆面に凹凸面を形成せずに粗化めっきを施した実施例5及び6でも、内部スペースの高い密閉性が確保されていた。
(Discussion)
As shown in Table 1, in Examples 1 to 6, the number of weld lines in the resin member is set to two or less, and a roughened uneven surface or a roughened plating layer is provided on the resin-coated surface. It can be seen that the airtightness of the internal space was high in comparison. In addition to Examples 1 to 4 where the rectangular uneven surface was subjected to etching or roughening plating to form a roughened uneven surface, Examples 1 to 4 in which roughening plating was performed without forming an uneven surface on the resin-coated surface and 6 also ensured high airtightness of the internal space.
 一方、比較例1は、樹脂被覆面に凹凸面及び粗化めっき層のいずれも設けなかったことにより、密閉性が低かった。比較例3より、樹脂被覆面に矩形凹凸面を設けても、粗化処理を施さなければ、十分な密閉性が確保されないことが解かる。また、比較例2、4及び5より、樹脂部材に形成されたウェルドラインが多くなると、密閉性が低下することが解かる。 On the other hand, in Comparative Example 1, since neither the uneven surface nor the roughened plating layer was provided on the resin-coated surface, the sealing performance was low. From Comparative Example 3, it can be seen that even if the resin-coated surface is provided with a rectangular concave-convex surface, sufficient sealing performance cannot be ensured unless roughening treatment is performed. Moreover, from Comparative Examples 2, 4, and 5, it can be seen that as the number of weld lines formed in the resin member increases, the hermeticity deteriorates.
 以上より、先述した金属樹脂複合体によれば、樹脂部材による内部スペースの密閉性を向上できることが解かった。 From the above, it was found that according to the metal-resin composite described above, the sealing of the internal space by the resin member can be improved.
(樹脂密着性)
 ニッケルめっき処理を施した銅製の金属板と、何の処理も施さなかった銅製の金属板のそれぞれについて、樹脂部材を固着させた後、樹脂部材を引き剥がしてシェア強度を測定した。その結果を表2に示す。
(resin adhesion)
For each of the nickel-plated copper metal plate and the untreated copper metal plate, after fixing the resin member, the resin member was peeled off and the shear strength was measured. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、樹脂被覆面の表面粗さRzが同程度であるにも関わらず、処理なしの金属板のほうが高いシェア強度を有することが解かる。この表面粗さRzは、JIS B0601:2001に準拠する最大高さを意味する。また、ニッケルめっきは樹脂密着性が一般的に低いことが知られている。なお、表面粗さRzの測定はキーエンス社製レーザー顕微鏡(VK-X150)で行い、観察倍率は1000倍、スポット径はφ0.8mmで測定した。対物レンズは100倍とした。測定範囲(測定面積)は、当該レーザー顕微鏡で測定した後に取り込まれる画像のサイズである105.737μm×141.029μmとした。解析は、線粗さ測定で水平線(垂直線)をひいて算出することにより行った。 From Table 2, it can be seen that the untreated metal plate has a higher shear strength, although the surface roughness Rz of the resin-coated surface is about the same. This surface roughness Rz means the maximum height conforming to JIS B0601:2001. It is also known that nickel plating generally has low resin adhesion. The surface roughness Rz was measured with a laser microscope (VK-X150) manufactured by Keyence Corporation at a magnification of 1000 and a spot diameter of φ0.8 mm. The objective lens was 100 times. The measurement range (measurement area) was set to 105.737 μm×141.029 μm, which is the size of the image captured after the measurement with the laser microscope. Analysis was performed by drawing a horizontal line (vertical line) in the line roughness measurement.
 このことから、樹脂密着性が低いニッケル粗化めっき層を樹脂被覆面に設けた場合であっても、表1に示すように内部スペースの十分な密閉性が確保されるので、樹脂被覆面にニッケル以外の粗化めっき層を設けた場合も、高い密閉性が発揮されるといえる。 For this reason, even when a nickel roughening plating layer with low resin adhesion is provided on the resin-coated surface, the internal space can be sufficiently sealed as shown in Table 1. It can be said that high sealing performance is exhibited even when a roughening plating layer other than nickel is provided.
 1、71 金属樹脂複合体
 2、72 金属板
 2a 内縁部
 3、73 樹脂部材
 4 貫通孔
 5、15 凹凸面
 5a、15a 矩形凹部
 5b、15b 矩形凸部
 5c 頂面
 6 粗化めっき層
 7 ウェルドライン
 8a~8c 切欠き部
 9 突出部
 51 半導体チップ
 52 ボンディングワイヤ
 81a、81b 蓋体
 82 接着剤
 91 供試体
 La 矩形凹部、矩形凸部の長辺の長さ
 Lb 矩形凹部、矩形凸部の短辺の長さ
 Pa 矩形凹部の長辺方向のピッチ
 Pb 矩形凹部の短辺方向のピッチ
 R1 第一凹部群
 R2 第二凹部群
 Sb 裏面
 Sf 表面
Reference Signs List 1, 71 metal- resin composite 2, 72 metal plate 2a inner edge 3, 73 resin member 4 through hole 5, 15 uneven surface 5a, 15a rectangular recess 5b, 15b rectangular protrusion 5c top surface 6 roughened plating layer 7 weld line 8a to 8c Notch 9 Projection 51 Semiconductor chip 52 Bonding wire 81a, 81b Lid 82 Adhesive 91 Specimen La Length of long side of rectangular concave portion and rectangular convex portion Lb Short side length of rectangular concave portion and rectangular convex portion Length Pa Pitch in the long side direction of the rectangular recess Pb Pitch in the short side direction of the rectangular recess R1 First recess group R2 Second recess group Sb Back surface Sf Front surface

Claims (8)

  1.  金属板と、前記金属板に固着した樹脂部材を備え、前記樹脂部材を含む封止部材により内部スペースが区画される金属樹脂複合体であって、
     前記樹脂部材が、前記金属板上で内部スペースの周囲を取り囲んで延びる枠状を有し、枠状の当該樹脂部材の周方向に一箇所又は二箇所のウェルドラインが存在し、
     前記金属板が前記樹脂部材で覆われた樹脂被覆面に、該樹脂被覆面の平面視にて一方向及びその直交方向の各方向で交互に並ぶ矩形凹部及び矩形凸部により形成される粗化凹凸面を有する金属樹脂複合体。
    A metal-resin composite comprising a metal plate and a resin member fixed to the metal plate, wherein an internal space is defined by a sealing member including the resin member,
    The resin member has a frame shape extending on the metal plate so as to surround the inner space, and one or two weld lines are present in the circumferential direction of the frame-shaped resin member,
    The resin-coated surface of the metal plate covered with the resin member is roughened by rectangular concave portions and rectangular convex portions that are alternately arranged in one direction and each direction perpendicular to the resin-coated surface in a plan view of the resin-coated surface. A metal-resin composite having an uneven surface.
  2.  前記粗化凹凸面の表面粗さRaが0.2μm以上である請求項1に記載の金属樹脂複合体。 The metal-resin composite according to claim 1, wherein the roughened uneven surface has a surface roughness Ra of 0.2 µm or more.
  3.  前記矩形凹部及び矩形凸部がそれぞれ、前記樹脂被覆面の平面視で長方形状である請求項1又は2に記載の金属樹脂複合体。 The metal-resin composite according to claim 1 or 2, wherein each of the rectangular concave portion and the rectangular convex portion has a rectangular shape in a plan view of the resin-coated surface.
  4.  前記矩形凸部が、前記樹脂部材側に凸状の曲面を有する請求項1~3のいずれか一項に記載の金属樹脂複合体。 The metal-resin composite according to any one of claims 1 to 3, wherein the rectangular projection has a convex curved surface on the resin member side.
  5.  金属板と、前記金属板に固着した樹脂部材を備え、前記樹脂部材を含む封止部材により内部スペースが区画される金属樹脂複合体であって、
     前記樹脂部材が、前記金属板上で内部スペースの周囲を取り囲んで延びる枠状を有し、枠状の当該樹脂部材の周方向に一箇所又は二箇所のウェルドラインが存在し、
     前記金属板が前記樹脂部材で覆われた樹脂被覆面に、粗化めっき層を含む金属樹脂複合体。
    A metal-resin composite comprising a metal plate and a resin member fixed to the metal plate, wherein an internal space is defined by a sealing member including the resin member,
    The resin member has a frame shape extending on the metal plate so as to surround the inner space, and one or two weld lines are present in the circumferential direction of the frame-shaped resin member,
    A metal-resin composite including a roughened plating layer on the resin-coated surface of the metal plate covered with the resin member.
  6.  前記粗化めっき層がニッケルを含む請求項5に記載の金属樹脂複合体。 The metal-resin composite according to claim 5, wherein the roughened plating layer contains nickel.
  7.  枠状の前記樹脂部材が、周方向の一部で前記金属板を板厚方向の両側から挟み込んで設けられており、
     前記ウェルドラインが、枠状の前記樹脂部材の周方向で、当該樹脂部材の内側に前記金属板の存在しない箇所に形成された請求項1~6のいずれか一項に記載の金属樹脂複合体。
    The frame-shaped resin member is provided by sandwiching the metal plate from both sides in the plate thickness direction at a part in the circumferential direction,
    The metal-resin composite according to any one of claims 1 to 6, wherein the weld line is formed in the circumferential direction of the frame-shaped resin member at a location where the metal plate does not exist inside the resin member. .
  8.  前記樹脂部材のウェルドラインが形成された箇所に、切断跡が存在する請求項1~7のいずれか一項に記載の金属樹脂複合体。 The metal-resin composite according to any one of claims 1 to 7, wherein a cut mark is present at a location where the weld line of the resin member is formed.
PCT/JP2022/016256 2021-08-11 2022-03-30 Metal-resin composite body WO2023017656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021131388A JP7182675B1 (en) 2021-08-11 2021-08-11 metal-resin composite
JP2021-131388 2021-08-11

Publications (1)

Publication Number Publication Date
WO2023017656A1 true WO2023017656A1 (en) 2023-02-16

Family

ID=84283996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016256 WO2023017656A1 (en) 2021-08-11 2022-03-30 Metal-resin composite body

Country Status (3)

Country Link
JP (1) JP7182675B1 (en)
TW (1) TWI808728B (en)
WO (1) WO2023017656A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326845A (en) * 1997-03-25 1998-12-08 Mitsui Chem Inc Resin package, semiconductor device and manufacture of resin package
JP2017208486A (en) * 2016-05-19 2017-11-24 株式会社ミスズ工業 Metallic member having irregularity on surface, heat spreader, semiconductor package, and method of manufacturing them
JP2020025145A (en) * 2016-02-17 2020-02-13 株式会社三井ハイテック Lead frame and semiconductor package
JP2021034705A (en) * 2019-08-29 2021-03-01 Jx金属株式会社 Metal plate, metal-resin composite, semiconductor device, and manufacturing method of metal plate
JP2021045863A (en) * 2019-09-17 2021-03-25 Jx金属株式会社 Insert molded product and manufacturing method of insert molded product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326845A (en) * 1997-03-25 1998-12-08 Mitsui Chem Inc Resin package, semiconductor device and manufacture of resin package
JP2020025145A (en) * 2016-02-17 2020-02-13 株式会社三井ハイテック Lead frame and semiconductor package
JP2017208486A (en) * 2016-05-19 2017-11-24 株式会社ミスズ工業 Metallic member having irregularity on surface, heat spreader, semiconductor package, and method of manufacturing them
JP2021034705A (en) * 2019-08-29 2021-03-01 Jx金属株式会社 Metal plate, metal-resin composite, semiconductor device, and manufacturing method of metal plate
JP2021045863A (en) * 2019-09-17 2021-03-25 Jx金属株式会社 Insert molded product and manufacturing method of insert molded product

Also Published As

Publication number Publication date
JP2023025926A (en) 2023-02-24
TW202306753A (en) 2023-02-16
TWI808728B (en) 2023-07-11
JP7182675B1 (en) 2022-12-02

Similar Documents

Publication Publication Date Title
KR20200137032A (en) Deposition mask, method of manufacturing deposition mask and metal plate
CN108029197B (en) System, apparatus and method for utilizing surface mount technology on plastic substrates
US20140305914A1 (en) Composite Molded Body of Metal Member and Molded Resin Member, and Surface Processing Method of Metal Member
JP5669495B2 (en) Resin-encapsulated metal component, lead frame used therefor, and method of manufacturing metal component
KR20170110623A (en) METHOD FOR MANUFACTURING VARIATION MASK
CN105722633A (en) Metal member, metal member surface processing method, semiconductor device, semiconductor device manufacturing method, and composite molded body
JP2008300827A (en) Light emitting diode lead frame and manufacturing method thereof
US20180277799A1 (en) Deposition mask, method of manufacturing deposition mask and metal plate
CN103025137A (en) Electronic component module and manufacture method thereof
JP2017055044A (en) Lead frame
CN110248473A (en) A method of it is small to solve VIA-IN-PAD filling holes with resin PCB printed board crimping hole
WO2023017656A1 (en) Metal-resin composite body
TW201729377A (en) Lead frame, lead frame package, and method for manufacturing same
WO2021039086A1 (en) Metallic plate, metal-resin composite, semiconductor device, and metallic plate production method
JP2010176863A (en) Electrical contact and method of manufacturing the same
JP2019173057A (en) Plated metallic material
JP4556895B2 (en) Resin-sealed semiconductor device
JP2013165125A (en) Semiconductor package and manufacturing method semiconductor package
KR20140076811A (en) Printed circuit board for smart ic, method for manufacturing the same and smart ic chip package
JP2009141180A (en) Substrate for manufacturing semiconductor device and method of manufacturing the same
US20220316069A1 (en) Molded circuit component and electronic device
JP2017109383A (en) Composite molding member, method for producing composite molding member, and electronic component
CN111902889B (en) Bus bar laminate, electronic component mounting module using the same, and method for manufacturing bus bar laminate
CN209981208U (en) Prevent semiconductor lead frame of liquid medicine seepage
TWM613507U (en) Alloy resistor structure with leakage-proof groove and alloy resistor sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE