WO2023016585A1 - 一种使用汞触媒合成氯乙烯的方法 - Google Patents

一种使用汞触媒合成氯乙烯的方法 Download PDF

Info

Publication number
WO2023016585A1
WO2023016585A1 PCT/CN2022/130799 CN2022130799W WO2023016585A1 WO 2023016585 A1 WO2023016585 A1 WO 2023016585A1 CN 2022130799 W CN2022130799 W CN 2022130799W WO 2023016585 A1 WO2023016585 A1 WO 2023016585A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gas
mercury
chloride
mercuric chloride
Prior art date
Application number
PCT/CN2022/130799
Other languages
English (en)
French (fr)
Inventor
李玉强
陈永堂
张华才
马光坡
常永法
李岩金
刘德胜
刘春华
李云霞
Original Assignee
内蒙古圣龙大地科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古圣龙大地科技有限公司 filed Critical 内蒙古圣龙大地科技有限公司
Publication of WO2023016585A1 publication Critical patent/WO2023016585A1/zh
Priority to ZA2023/03160A priority Critical patent/ZA202303160B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G13/00Compounds of mercury
    • C01G13/04Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds

Definitions

  • the invention relates to the technical field of chemical synthesis, in particular to a method for synthesizing vinyl chloride using a mercury catalyst.
  • Vinyl chloride also known as vinyl chloride, has a chemical formula of C 2 H 3 Cl. It is an organic compound and an important monomer in polymer chemical industry. It can be prepared from ethylene or acetylene. Vinyl chloride is a toxic substance, long-term inhalation and exposure to vinyl chloride may cause liver cancer. It forms an explosive mixture with air, the explosion limit is 3.6%-33% (volume), and it is more likely to explode under pressure. During storage and transportation, attention must be paid to the airtightness of the container and nitrogen seal, and a small amount of polymerization inhibitor should be added.
  • the existing vinyl chloride processing technology has poor adaptability to raw materials, and the production is not flexible.
  • the waste gas and waste liquid generated in the production process are not environmentally friendly, and the production process consumes a lot of energy and has low economic benefits.
  • the object of the present invention is to provide a method for synthesizing vinyl chloride using mercury catalysts.
  • the method provided by the present invention can realize strong adaptability, and the smelting process has relatively strong adaptability to raw materials, so that The production is flexible, environmentally friendly, with less smoke and dust leakage, and the raw materials are stored in storage to avoid open-air stacking and pollution by natural water loss.
  • the process is mature, reliable, high-efficiency and energy-saving, and the economic benefits are feasible.
  • the present invention adopts the following technical solutions.
  • a method for synthesizing vinyl chloride using a mercury catalyst comprising soaking raw materials, separating, pickling, washing, drying, recycling waste catalyst, and treating waste gas and waste liquid;
  • the raw material is soaked, and mercuric chloride is added into a steam-heated mechanically stirred dissolving tank as required, then a certain amount of industrial hydrochloric acid and a certain amount of clear water or circulating water in an industrial pool are added, and the stirrer is turned on and heated by steam to 80°C, constant temperature for 20 minutes, to dissolve mercuric chloride into a transparent solution for use; at this time, put the activated carbon into the soaking tank, after repeated pickling and water washing processes, the activated carbon is ready for use, and then open the valve of the dissolving tank to dissolve The finished mercuric chloride solution enters the sealed soaking tank, so that the activated carbon can be fully and uniformly contacted with the mercuric chloride solution quickly and completely impregnated;
  • the raw materials and mass percentages of the mercury catalyst are: 6.5% mercury chloride, 85% activated carbon, 6.5% hydrochloric acid, and 2% water; or the raw materials and mass percentages of the catalyst are: 5.5% mercury chloride, 86% activated carbon , hydrochloric acid 5.5%, water 3%;
  • the preparation method of the mercury catalyst catalyst is as follows: after a few hours, the residual liquid is taken for detection, and after reaching the standard, the residual liquid is first put into the residual liquid pool for circulation; Afterwards, put the prepared auxiliary agent solution into the soaking tank, soak for a certain period of time, generally 4-6 hours, test the concentration of the auxiliary agent solution, and discharge it into the auxiliary agent circulation tank after reaching the standard. The generated mercuric chloride residual liquid and additive residual liquid are all recycled without discharge. After the soaking is completed, the semi-finished catalyst is obtained. At this time, the semi-finished catalyst contains a lot of water.
  • the activated carbon and the mercuric chloride liquid are passed into the solid-liquid separator, and the working time is 15-20 minutes.
  • the activated carbon is first pickled with hydrochloric acid solution to remove iron elements, and then the impurities in the pores of the activated carbon are thoroughly cleaned by ultrasonic cleaning.
  • the working time is 15-20min, and the working temperature is 60°C-90°C under the condition of °C.
  • the flue gas containing a trace amount of mercuric chloride is passed into the water washing tank, and the working time is 20-30 minutes, which is used for gas purification.
  • the semi-finished catalyst is put into a drying tank, and the electric hot air is passed through, and the speed of the electric hot air is 50-80m 3 /h, and the working temperature is 60°C-70°C. .
  • the waste catalyst is first added to the vertical recovery furnace, the charging capacity of the recovery furnace is 12 tons, the recovery furnace is heated by natural gas, and a heat recycling device is provided to heat the recovery furnace to After 800 °C, a certain amount of dry (dew point temperature -300°C) N 2 gas flows into the recovery furnace. Within a certain range, the function of the N2 gas flow is to accelerate the flow of mercuric chloride vapor. After the waste catalyst is evenly heated, the mercuric chloride gas volatilizes into a gas state under high temperature conditions. The mercuric chloride gas released enters the water jet absorption system to form a mercuric chloride solution. After continuous cyclic absorption, the concentration of mercuric chloride in the mercuric chloride solution gradually rises to about 6%.
  • the concentration of mercuric chloride in the mercuric chloride solution gradually rises to about 6%.
  • the airflow containing a small amount of mercuric chloride enters the aqueous solution absorption device.
  • the absorption device is all tanks lined with enamel inside.
  • the temperature of the aqueous solution is controlled at 30-500 °C.
  • the mercuric chloride gas first passes through the absorption liquid and enters the water washing tank. The gas is initially dissolved. At this time, most of the mercuric chloride has been trapped in the aqueous solution.
  • the maximum concentration of mercuric chloride in the liquid collector is controlled at about 5%.
  • the final exhaust gas then enters the alkali cleaning tank to completely absorb and treat the remaining hydrogen chloride in the exhaust gas, and then enters the vacuum pump after being adsorbed by the first-stage activated carbon. To achieve no mercury chloride, hydrogen chloride and other qualified gases.
  • the water sealing process needs to continuously enter deionized water. This part of the water required by the water sealing process is mixed with the gas from the spraying process Exchange and absorb mercuric chloride in the gas, then enter the spraying process to exchange gas from the drying process and absorb mercuric chloride, this part of the water needed for the water sealing process after absorbing mercuric chloride enters the industrial pool to For the configuration of mercuric chloride solution; the second is in the waste mercury catalyst recovery system, the dilute solution of mercuric chloride from the water jet pump dissolving device, the water in the water jet pump device and the mercuric chloride from the recovery furnace Gas exchange and dissolution, when the amount of mercuric chloride reaches 6%, it is used for the production of low-mercury catalyst, and then fresh deionized water is added, and this part of the solution containing mercuric chloride reaches 6% also enters the industrial pool , Prepared for
  • the present invention has the advantages of:
  • the principle of "people-oriented” should be reflected in the selection of methods.
  • the selection system should be airtight, with negative pressure operation, less harmful gas and smoke leakage, and raw materials should be stored in storage to avoid open-air stacking and pollution by natural water loss.
  • Fig. 1 is a production process flow chart of the present invention
  • Fig. 2 is the waste catalyst recycling process flow chart of the present invention
  • Fig. 3 is a flow chart of waste gas and waste liquid treatment in the present invention.
  • Soak raw materials add mercuric chloride as required into a steam-heated mechanically stirred dissolving tank, add a certain amount of industrial hydrochloric acid and a certain amount of clear water or circulating water in industrial pools, turn on the agitator and steam to heat to 80°C , keep the temperature for 20 minutes, and dissolve the mercuric chloride into a transparent solution for use; at this time, put the activated carbon into the soaking tank, and after repeated pickling and water washing processes, the activated carbon is ready for use, and then open the valve of the dissolving tank to dissolve The mercuric chloride solution enters the sealed soaking tank, so that the activated carbon can be fully and uniformly contacted with the mercuric chloride solution quickly and completely impregnated;
  • the raw materials and mass percentages of the mercury catalyst catalyst are: 5.5% mercury chloride, 86% activated carbon, 5.5% hydrochloric acid, and 3% water;
  • the preparation method of the mercury catalyst catalyst is as follows: after a few hours, the residual liquid is taken for detection. After reaching the standard, the residual liquid is first put into the residual liquid pool for circulation; Put the prepared auxiliary agent solution into the soaking tank, soak for a certain period of time, generally 4-6 hours, and test the concentration of the auxiliary agent solution, and discharge it into the auxiliary agent circulation tank after reaching the standard. Mercury chloride residual liquid and additive residual liquid are all recycled without discharge. After the soaking is completed, the semi-finished catalyst is obtained. At this time, the semi-finished catalyst contains a lot of water. First, put the semi-finished catalyst into the semi-finished silo and let it stand for a period of time, then put it into a drying tank, and feed it with electric hot air.
  • Moisture is taken away, so that the semi-finished catalyst is dried to a moisture content of ⁇ 0.3% after several hours and becomes a qualified product packaged for storage.
  • the mercuric chloride-containing waste water generated during the standing process of the semi-finished catalyst in the silo is all collected into the residual liquid circulation pool or the auxiliary agent circulation pool through closed pipes, and the trace amount of mercuric chloride contained in the hot air discharge during the drying process is passed through the subsequent efficient mercury removal. Collectors to ensure that all flue gas emissions meet the standards.
  • the activated carbon and mercuric chloride liquid are passed into the solid-liquid separator, and the working time is 15-20 minutes.
  • pickling first use hydrochloric acid solution to pickle the activated carbon to remove iron elements, then use ultrasonic cleaning to thoroughly clean the impurities in the pores of the activated carbon, the working time is 15-20min, and the working temperature is 60°C-90°C next.
  • the flue gas containing a trace amount of mercuric chloride is passed into the water washing tank, and the working time is 20-30 minutes, which is used for gas purification.
  • the semi-finished catalyst is put into a drying tank, and electric hot air is fed in at a speed of 50-80m 3 /h, and the working temperature is 60°C-70°C.
  • the waste catalyst is recovered.
  • the waste catalyst is first added to the vertical recovery furnace.
  • the charging amount of the recovery furnace is 12 tons.
  • the recovery furnace is heated by natural gas, and it is equipped with a heat recycling device to raise the temperature of the recovery furnace to 800°C.
  • a certain amount of dry (dew point temperature -300°C) N 2 gas flows into the recovery furnace, the temperature of the N 2 gas flow is within a certain range, the pressure range is -50-100Pa (gauge pressure), and the space velocity of the N 2 gas flow is within a certain range ,
  • the effect of the N2 gas flow is to accelerate the flow of mercuric chloride vapor.
  • the mercuric chloride gas is volatilized into a gas state at high temperature.
  • the mercuric chloride gas volatilized by high temperature enters the water jet absorption system to form a mercuric chloride solution.
  • the concentration of mercuric chloride in the mercuric chloride solution gradually increases to reach About 6%, after refined treatment, this mercuric chloride has high purity and no impurities, and can be directly used to configure the mercuric chloride solution used for soaking activated carbon, and is used for the production of low-mercury catalysts;
  • the airflow containing a small amount of mercuric chloride enters the aqueous solution absorption device.
  • the absorption device is all tanks lined with enamel inside.
  • the temperature of the aqueous solution is controlled at 30-500 °C.
  • the mercuric chloride gas first passes through the absorption liquid and enters the water washing tank. The gas is initially dissolved. At this time, most of the mercuric chloride has been trapped in the aqueous solution.
  • the maximum concentration of mercuric chloride in the liquid collector is controlled at about 5%.
  • the tail gas enters the alkali washing tank to completely absorb the remaining hydrogen chloride in the tail gas, and then enters the vacuum pump after being adsorbed by primary activated carbon. After the tank is free of qualified gases such as mercury chloride and hydrogen chloride, it returns to the recovery furnace to realize a closed loop.
  • Exhaust gas treatment the exhaust gas produced by the low-mercury catalyst drying process, after the activated carbon is impregnated with mercury chloride solution, enters the drying process.
  • the drying process uses a high-power fan to dry, and the generated mercury chloride gas passes through the spraying process and After the water sealing process, a small amount of mercuric chloride in the waste gas has been taken away by the water, and the gas from the water sealing process hardly contains mercuric chloride, which meets the national emission standards;
  • Waste liquid treatment in the process of low-mercury catalyst production and waste mercury catalyst recovery, the water cycle can reach a balanced state, and there is only one way to discharge water in the system, which is the amount of water taken away by the gas from the low-mercury catalyst drying process , this part of the gas from the drying process is sprayed and water-sealed, and a certain amount of water is brought out to be emptied. This part of the water is about 400kg/ton of mercury catalyst. For a project that produces 5,000 tons/year, the annual water volume is emptied. 2000 tons/year. There are two ways for water to enter the whole system. One is that the water sealing process needs to continuously enter deionized water.
  • the part of the water required by the water sealing process is exchanged with the gas from the spraying process and absorbs Mercuric chloride, then enter the spraying process to exchange with the gas from the drying process and absorb mercuric chloride, after absorbing mercuric chloride, the water required by the water sealing process enters the industrial pool for the configuration of mercuric chloride solution ,
  • This part of the aqueous solution (the fresh water replenished by the water sealing process) is about 5600 tons per year.
  • the second is the dilute solution of mercury chloride from the water jet pump dissolution device in the waste mercury catalyst recovery system. The water in the water jet pump device is exchanged and dissolved with the mercuric chloride from the recovery furnace.
  • Soak raw materials add mercuric chloride as required into a steam-heated mechanically stirred dissolving tank, add a certain amount of industrial hydrochloric acid and a certain amount of clear water or circulating water in industrial pools, turn on the agitator and steam to heat to 80°C , keep the temperature for 20 minutes, and dissolve the mercuric chloride into a transparent solution for use; at this time, put the activated carbon into the soaking tank, and after repeated pickling and water washing processes, the activated carbon reaches the standby level, and then open the valve of the dissolving tank to make the dissolved The finished mercuric chloride solution enters the sealed soaking tank, so that the activated carbon can be fully and uniformly contacted with the mercuric chloride solution quickly and completely impregnated;
  • the raw materials and mass percentages of the mercury catalyst catalyst are: 6.5% mercury chloride, 85% activated carbon, 6.5% hydrochloric acid, and 2% water;
  • the preparation method of the mercury catalyst catalyst is as follows: after a few hours, the residual liquid is taken for detection. After reaching the standard, the residual liquid is first put into the residual liquid pool for circulation; Put the prepared auxiliary agent solution into the soaking tank, soak for a certain period of time, generally 4-6 hours, and test the concentration of the auxiliary agent solution, and discharge it into the auxiliary agent circulation tank after reaching the standard. Mercury chloride residual liquid and additive residual liquid are all recycled without discharge. After the soaking is completed, the semi-finished catalyst is obtained. At this time, the semi-finished catalyst contains a lot of water. First, put the semi-finished catalyst into the semi-finished silo and let it stand for a period of time, then put it into a drying tank, and feed it with electric hot air.
  • Moisture is taken away, so that the semi-finished catalyst is dried to a moisture content of ⁇ 0.3% after several hours and becomes a qualified product packaged for storage.
  • the mercuric chloride-containing waste water generated during the standing process of the semi-finished catalyst in the silo is all collected into the residual liquid circulation pool or the auxiliary agent circulation pool through closed pipes, and the trace amount of mercuric chloride contained in the hot air discharge during the drying process is passed through the subsequent efficient mercury removal. Collectors to ensure that all flue gas emissions meet the standards.
  • the activated carbon and mercuric chloride liquid are passed into the solid-liquid separator, and the working time is 15-20 minutes.
  • pickling first use hydrochloric acid solution to pickle the activated carbon to remove iron elements, then use ultrasonic cleaning to thoroughly clean the impurities in the pores of the activated carbon, the working time is 15-20min, and the working temperature is 60°C-90°C next.
  • the flue gas containing a trace amount of mercuric chloride is passed into the water washing tank, and the working time is 20-30 minutes, which is used for gas purification.
  • the semi-finished catalyst is put into a drying tank, and electric hot air is fed in at a speed of 50-80m3/h, and the working temperature is 60°C-70°C.
  • the waste catalyst is recovered.
  • the waste catalyst is first added to the vertical recovery furnace.
  • the charging capacity of the recovery furnace is 12 tons.
  • the recovery furnace is heated by natural gas, and it is equipped with a heat recycling device to raise the temperature of the recovery furnace to 800°C.
  • a certain amount of dry (dew point temperature -300°C) N 2 gas flows into the recovery furnace, the temperature of the N 2 gas flow is within a certain range, the pressure range is -50-100Pa (gauge pressure), and the space velocity of the N 2 gas flow is within a certain range ,
  • the effect of N2 gas flow is to accelerate the flow of mercuric chloride vapor.
  • the mercuric chloride gas is volatilized into a gas state at high temperature.
  • the mercuric chloride gas volatilized by high temperature enters the water jet absorption system to form a mercuric chloride solution.
  • the concentration of mercuric chloride in the mercuric chloride solution gradually increases to reach About 6%, after refined treatment, this mercuric chloride has high purity and no impurities, and can be directly used to configure the mercuric chloride solution used for soaking activated carbon, and is used for the production of low-mercury catalysts;
  • the airflow containing a small amount of mercuric chloride enters the aqueous solution absorption device.
  • the absorption device is all tanks lined with enamel inside.
  • the temperature of the aqueous solution is controlled at 30-500 °C.
  • the mercuric chloride gas first passes through the absorption liquid and enters the water washing tank. The gas is initially dissolved. At this time, most of the mercuric chloride has been trapped in the aqueous solution.
  • the maximum concentration of mercuric chloride in the liquid collector is controlled at about 5%.
  • the tail gas enters the alkali washing tank to completely absorb the remaining hydrogen chloride in the tail gas, and then enters the vacuum pump after being adsorbed by primary activated carbon. After the tank is free of qualified gases such as mercury chloride and hydrogen chloride, it returns to the recovery furnace to realize a closed loop.
  • Exhaust gas treatment the exhaust gas produced by the low-mercury catalyst drying process, after the activated carbon is impregnated with mercury chloride solution, enters the drying process.
  • the drying process uses a high-power fan to dry, and the generated mercury chloride gas passes through the spraying process and After the water sealing process, a small amount of mercuric chloride in the waste gas has been taken away by the water, and the gas from the water sealing process hardly contains mercuric chloride, which meets the national emission standards;
  • Waste liquid treatment in the process of low-mercury catalyst production and waste mercury catalyst recovery, the water cycle can reach a balanced state, and there is only one way to discharge water in the system, which is the amount of water taken away by the gas from the low-mercury catalyst drying process , this part of the gas from the drying process is sprayed and water-sealed, and a certain amount of water is brought out to be emptied. This part of the water is about 400kg/ton of mercury catalyst. For a project that produces 5,000 tons/year, the annual water volume is emptied. 2000 tons/year. There are two ways for water to enter the whole system. One is that the water sealing process needs to continuously enter deionized water.
  • the part of the water required by the water sealing process is exchanged with the gas from the spraying process and absorbs Mercuric chloride, then enter the spraying process to exchange with the gas from the drying process and absorb mercuric chloride, after absorbing mercuric chloride, the water required by the water sealing process enters the industrial pool for the configuration of mercuric chloride solution , this part of the aqueous solution (fresh water supplemented by the water sealing process) is about 5600 tons per year.
  • the second is the dilute solution of mercury chloride from the water jet pump dissolution device in the waste mercury catalyst recovery system. The water in the water jet pump device is exchanged and dissolved with the mercuric chloride from the recovery furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种使用汞触媒合成氯乙烯的方法,属于化工合成技术领域,一种使用汞触媒合成氯乙烯的方法,包括原料浸泡、分离、酸洗、水洗、干燥、废触媒回收和废气、废液处理;所述原料浸泡,将氯化汞按需量加入蒸汽加热的机械搅拌的溶解罐中,再加一定量的工业盐酸和一定量清水或工业池中的循环用水,开启搅拌器和通蒸汽加热至80℃,恒温20分钟,使氯化汞溶解成透明溶液待用,本发明提供的方法可以实现,适应能力强,冶炼工艺流程对原料有比较强的适应能力,使生产具有灵活性,环保、烟尘泄漏少,原料进行仓贮,避免露天堆放和被自然水流失污染,工艺成熟,可靠,高效节能,经济效益可行。

Description

一种使用汞触媒合成氯乙烯的方法
本申请要求于2022年04月11日提交中国专利局、申请号为CN202210373229.4、发明名称为“一种使用无汞触媒合成氯乙烯的工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及化工合成技术领域,更具体地说,涉及一种使用汞触媒合成氯乙烯的方法。
背景技术
氯乙烯,又名乙烯基氯,化学式是C 2H 3Cl,是一种有机化合物,是高分子化工的重要的单体,可由乙烯或乙炔制得。氯乙烯是有毒物质,长期吸入和接触氯乙烯可能引发肝癌。它与空气形成爆炸混合物,爆炸极限3.6%~33%(体积),在加压下更易爆炸,贮运时必须注意容器的密闭及氮封,并应添加少量阻聚剂。
现有的氯乙烯的加工工艺对原料的适应能力较差,生产不具备灵活性,在生产过程中产生的废气与废液环保性不佳,而且生产过程中能耗大,经济效益低。
发明内容
1.要解决的技术问题
针对现有技术中存在的问题,本发明的目的在于提供一种使用汞触媒合成氯乙烯的方法,本发明提供的方法可以实现适应能力强,冶炼工艺流程对原料有比较强的适应能力,使生产具有灵活性,环保、烟尘泄漏少,原料进行仓贮,避免露天堆放和被自然水流失污染,工艺成熟,可靠,高效节能,经济效益可行。
2.技术方案
为解决上述问题,本发明采用如下的技术方案。
一种使用汞触媒合成氯乙烯的方法,包括原料浸泡、分离、酸洗、水洗、干燥、废触媒回收和废气、废液处理;
所述原料浸泡,将氯化汞按需量加入蒸汽加热的机械搅拌的溶解罐中,再加一定量的工业盐酸和一定量清水或工业池中的循环用水,开启搅 拌器和通蒸汽加热至80℃,恒温20分钟,使氯化汞溶解成透明溶液待用;此时将活性炭放入浸泡罐中,经过多次重复的酸洗、水洗工序以后,活性炭备用,然后打开溶解罐阀门使溶好了的氯化汞溶液进入密封式浸泡罐中,使活性炭快速与氯化汞溶液充分、均匀的接触而被完全浸渍;
所述汞触媒触媒的原材料及其质量百分数为:氯化汞6.5%,活性炭85%,盐酸6.5%,水2%;或触媒的原材料及其质量百分数为:氯化汞5.5%,活性炭86%,盐酸5.5%,水3%;
所述汞触媒触媒的制备方法为:经数小时后取残液检测,达标后,先放残液入残液池循环;然后配制助剂溶液到相应浓度备用,浸泡罐内的残液排净以后,将配制好的助剂溶液放入浸泡罐,浸泡一定时间,一般为4-6小时,化验助剂液浓度,达标后排入助剂循环罐,活性炭在吸附氯化汞的浸泡过程中产生的氯化汞残液、助剂残液全部循环使用无外排。浸泡完成后得到半成品触媒,此时半成品触媒含大量水分,首先将半成品触媒放入半成品料仓静置一段时间,然后放入干燥罐中,通入电热风,在对流作用下将半成品触媒中的水分带走,使半成品触媒经数小时达到干燥至含水≤0.3%成为合格产品包装入库。半成品触媒在料仓静置过程中产生的含氯化汞废水全部通过密闭管道收集到残液循环池或者助剂循环池中,干燥过程中热风排放含有的微量氯化汞通过后续的高效除汞器进行收集,确保烟气排放全部达标。
进一步的,所述分离,将活性炭与氯化汞液体通入至固液分离器中,工作时间为15-20min。
进一步的,所述酸洗,首先利用盐酸溶液将活性炭进行酸洗,去除铁元素,然后利用超声波清洗,将活性炭孔隙中的杂质清洗彻底,工作时间为15-20min,工作温度在60℃-90℃条件下进行。
进一步的,所述水洗,将含有微量氯化汞的烟气通入到水洗罐中,工作时间为20-30min,用于气体净化。
进一步的,所述干燥,将所述半成品触媒置入到干燥罐中,通入电热风,所述电热风通入速度为50-80m 3/h,工作温度在60℃-70℃条件下进行。
进一步的,所述废触媒回收,废触媒首先加入到立式回收炉中,回收 炉的加料量为12吨,利用天然气对回收炉进行加热,并配套有热量重复利用装置,将回收炉升温到800℃以后,将一定量干燥(露点温度-300℃)N 2气流入回收炉,N 2气流的温度在一定范围内,压力范围-50-100Pa(表压),N 2气流的空速在一定范围,N 2气流的作用是加速氯化汞蒸气的流动,废触媒经过均匀受热以后,氯化汞气体在高温情况下挥发为气体状态,在负压溶液吸收装置的作用下,经高温挥发出的氯化汞气体进入水射流吸收系统,形成氯化汞溶液,经过持续的循环吸收,氯化汞溶液中氯化汞浓度逐渐上升,达到6%左右;
含有少量氯化汞的气流进入水溶液吸收装置,吸收装置全部为内部衬搪瓷的罐,水溶液温度控制在30-500℃,氯化汞气体首先经过吸收液进入水洗罐,对氯化汞、氯化氢等气体进行初步溶解,此时绝大多数的氯化汞已经截留在水溶液中,集液器中溶液氯化汞最高浓度控制在5%左右,更换新水原液放至工业用水池待用,经过水洗后的尾气再进入碱洗罐,将尾气中剩余的氯化氢完全吸收处理,再经过一级活性炭吸附后进入真空泵,真空泵排气首先经过氟硅油棉吸附罐除去水分,然后经过二级活性炭吸附罐以后达到无氯化汞、氯化氢等合格气体。
进一步的,所述废气、废液处理;
(1)所述废气处理,低汞触媒干燥工序产生的废气,活性炭在浸渍氯化汞溶液以后,进入干燥工序,所述干燥工序使用大功率的风机进行干燥,产生的含氯化汞气体经过喷淋工序和水封工序以后,废气中的少量氯化汞被水带走;
(2)废汞触媒回收装置初始换气阶段的排气,在所述废汞触媒回收装置中,在废汞触媒填完料以后需要用氮气替换系统中的空气,替换完成以后使氮气重新回到缓冲罐,实现系统的封闭循环,排除空气的过程中会产生一定量的废气,排除空气的过程中产生的这部分废气通过水射泵溶解装置以后排出;
所述废液处理,系统中水的进入有两个途径,一是水封工序需要不断进入去离子水,所述水封工序需要的这部分水在水封工序中与来自喷淋工序的气体进行交换并吸收气体中的氯化汞,然后进入喷淋工序与来自干燥工序的气体交换并吸收氯化汞,吸收氯化汞后的所述水封工序需要的这部 分水进入工业水池,以供氯化汞溶液配置所用;二是在废汞触媒回收系统中,来自水射泵溶解装置的氯化汞的稀溶液,所述水射泵装置中的水与来自回收炉中的氯化汞气体交换溶解,当含氯化汞的量达到6%以后,用于低汞触媒的生产,然后补充新鲜的去离子水,含氯化汞的量达到6%的这部分溶液也一样进入工业水池,备配置氯化汞溶液所用。
3.有益效果
相比于现有技术,本发明的优点在于:
1、适应能力强,方法流程对原料有比较强的适应能力,使生产具有灵活性。
2、环保,在方法选择上要体现“以人为本”的原则,选择系统密闭,负压操作,有害气体、烟尘泄漏少,原料进行仓贮,避免露天堆放和被自然水流失污染。
3、工艺成熟,可靠。
4、高效节能。
5、经济效益可行。
说明书附图
图1为本发明的生产工艺流程图;
图2为本发明的废触媒回收工艺流程图;
图3为本发明的废气、废液处理流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述;显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
请参阅图1-3,一种使用汞触媒合成氯乙烯的方法,包括原料浸泡、分离、酸洗、水洗、干燥、废触媒回收和废气、废液处理;
原料浸泡,将氯化汞按需量加入蒸汽加热的机械搅拌的溶解罐中,再加一定量的工业盐酸和一定量清水或工业池中的循环用水,开启搅拌器和 通蒸汽加热至80℃,恒温20分钟,使氯化汞溶解成透明溶液待用;此时将活性炭放入浸泡罐中,经过多次重复的酸洗、水洗工序以后,活性炭备用,然后打开溶解罐阀门使溶好了的氯化汞溶液进入密封式浸泡罐中,使活性炭快速与氯化汞溶液充分、均匀的接触而被完全浸渍;
汞触媒触媒的原材料及其质量百分数为:氯化汞5.5%,活性炭86%,盐酸5.5%,水3%;
汞触媒触媒的制备方法为:经数小时后取残液检测,达标后,先放残液入残液池循环;然后配制助剂溶液到相应浓度备用,浸泡罐内的残液排净以后,将配制好的助剂溶液放入浸泡罐,浸泡一定时间,一般为4-6小时,化验助剂液浓度,达标后排入助剂循环罐,活性炭在吸附氯化汞的浸泡过程中产生的氯化汞残液、助剂残液全部循环使用无外排。浸泡完成后得到半成品触媒,此时半成品触媒含大量水分,首先将半成品触媒放入半成品料仓静置一段时间,然后放入干燥罐中,通入电热风,在对流作用下将半成品触媒中的水分带走,使半成品触媒经数小时达到干燥至含水≤0.3%成为合格产品包装入库。半成品触媒在料仓静置过程中产生的含氯化汞废水全部通过密闭管道收集到残液循环池或者助剂循环池中,干燥过程中热风排放含有的微量氯化汞通过后续的高效除汞器进行收集,确保烟气排放全部达标。
进一步的,分离,将活性炭与氯化汞液体通入至固液分离器中,工作时间为15-20min。
进一步的,酸洗,首先利用盐酸溶液将活性炭进行酸洗,去除铁元素,然后利用超声波清洗,将活性炭孔隙中的杂质清洗彻底,工作时间为15-20min,工作温度在60℃-90℃条件下进行。
进一步的,水洗,将含有微量氯化汞的烟气通入到水洗罐中,工作时间为20-30min,用于气体净化。
进一步的,干燥,将半成品触媒置入到干燥罐中,通入电热风,电热风通入速度为50-80m 3/h,工作温度在60℃-70℃条件下进行。
进一步的,废触媒回收,废触媒首先加入到立式回收炉中,回收炉的加料量为12吨,利用天然气对回收炉进行加热,并配套有热量重复利用装置,将回收炉升温到800℃以后,将一定量干燥(露点温度-300℃)N 2气 流入回收炉,N 2气流的温度在一定范围内,压力范围-50-100Pa(表压),N 2气流的空速在一定范围,N 2气流的作用是加速氯化汞蒸气的流动。废触媒经过均匀受热以后,氯化汞气体在高温情况下挥发为气体状态。在负压溶液吸收装置的作用下,经高温挥发出的氯化汞气体进入水射流吸收系统,形成氯化汞溶液,经过持续的循环吸收,氯化汞溶液中氯化汞浓度逐渐上升,达到6%左右,经过精制处理,此氯化汞纯度高,无杂质,可直接用于配置浸泡活性炭使用的氯化汞溶液,用于低汞触媒的生产;
含有少量氯化汞的气流进入水溶液吸收装置,吸收装置全部为内部衬搪瓷的罐,水溶液温度控制在30-500℃,氯化汞气体首先经过吸收液进入水洗罐,对氯化汞、氯化氢等气体进行初步溶解,此时绝大多数的氯化汞已经截留在水溶液中,集液器中溶液氯化汞最高浓度控制在5%左右,更换新水原液放至工业用水池待用。经过水洗后的尾气再进入碱洗罐,将尾气中剩余的氯化氢完全吸收处理,再经过一级活性炭吸附后进入真空泵,真空泵排气首先经过氟硅油棉吸附罐除去水分,然后经过二级活性炭吸附罐以后达到无氯化汞、氯化氢等合格气体,重新返回回收炉中,实现闭路循环。
在回收炉高温环境下,废触媒孔隙中含有的各类物质已几乎全部升华为气体收集,剩余的为孔隙已经完全打开的活性炭,经过洗涤、筛分等处理措施后,可重新用于制作新的汞触媒。
进一步的,废气、废液处理;
(1)废气处理,低汞触媒干燥工序产生的废气,活性炭在浸渍氯化汞溶液以后,进入干燥工序,干燥工序使用大功率的风机进行干燥,产生的含氯化汞气体经过喷淋工序和水封工序以后,废气中的少量氯化汞已经被水所带走,从水封工序出来的气体中几乎不含有氯化汞,达到国家排放标准;
(2)废汞触媒回收装置初始换气阶段的排气,在废汞触媒回收装置中,在废汞触媒填完料以后需要用氮气替换系统中的空气,替换完成以后使氮气重新回到缓冲罐,实现系统的封闭循环。排除空气的过程中会产生一定量的废气,排除空气的过程中产生的这部分废气通过水射泵溶解装置以后排出,排除空气的过程中产生的这部分废气也可以达到国家排放标准;
废液处理,在低汞触媒生产和废汞触媒回收过程中,水的循环可以达到一个平衡的状态,系统中水的排出只有一个途径,就是由低汞触媒干燥工序出来的气体带走的水量,干燥工序出来的这部分气体经过喷淋和水封工序以后,带出来一定的水量排空,这部分水大约为400kg/吨汞触媒,生产5000吨/年的项目,则每年排空水量为2000吨/年。整个系统中水的进入有两个途径,一是水封工序需要不断进入去离子水,水封工序需要的这部分水在水封工序中与来自喷淋工序的气体进行交换并吸收气体中的氯化汞,然后进入喷淋工序与来自干燥工序的气体交换并吸收氯化汞,吸收氯化汞后的所述水封工序需要的这部分水进入工业水池,以供氯化汞溶液配置所用,这部分水溶液(由水封工序补进的新鲜水)每年大约5600吨/年。二是在废汞触媒回收系统中,来自水射泵溶解装置的氯化汞的稀溶液。水射泵装置中的水与来自回收炉中的氯化汞气体交换溶解,当含氯化汞的量达到6%以后,用于低汞触媒的生产,然后补充新鲜的去离子水,含氯化汞的量达到6%的这部分溶液也一样进入工业水池,备配置氯化汞溶液所用,这部分水溶液大约400吨/年。
实施例2:
请参阅图1-3,一种使用汞触媒合成氯乙烯的方法,包括原料浸泡、分离、酸洗、水洗、干燥、废触媒回收和废气、废液处理;
原料浸泡,将氯化汞按需量加入蒸汽加热的机械搅拌的溶解罐中,再加一定量的工业盐酸和一定量清水或工业池中的循环用水,开启搅拌器和通蒸汽加热至80℃,恒温20分钟,使氯化汞溶解成透明溶液待用;此时将活性炭放入浸泡罐中,经过多次重复的酸洗、水洗工序以后,活性炭达到备用水平,然后打开溶解罐阀门使溶好了的氯化汞溶液进入密封式浸泡罐中,使活性炭快速与氯化汞溶液充分、均匀的接触而被完全浸渍;
汞触媒触媒的原材料及其质量百分数为:氯化汞6.5%,活性炭85%,盐酸6.5%,水2%;
汞触媒触媒的制备方法为:经数小时后取残液检测,达标后,先放残液入残液池循环;然后配制助剂溶液到相应浓度备用,浸泡罐内的残液排净以后,将配制好的助剂溶液放入浸泡罐,浸泡一定时间,一般为4-6小时,化验助剂液浓度,达标后排入助剂循环罐,活性炭在吸附氯化汞的浸 泡过程中产生的氯化汞残液、助剂残液全部循环使用无外排。浸泡完成后得到半成品触媒,此时半成品触媒含大量水分,首先将半成品触媒放入半成品料仓静置一段时间,然后放入干燥罐中,通入电热风,在对流作用下将半成品触媒中的水分带走,使半成品触媒经数小时达到干燥至含水≤0.3%成为合格产品包装入库。半成品触媒在料仓静置过程中产生的含氯化汞废水全部通过密闭管道收集到残液循环池或者助剂循环池中,干燥过程中热风排放含有的微量氯化汞通过后续的高效除汞器进行收集,确保烟气排放全部达标。
进一步的,分离,将活性炭与氯化汞液体通入至固液分离器中,工作时间为15-20min。
进一步的,酸洗,首先利用盐酸溶液将活性炭进行酸洗,去除铁元素,然后利用超声波清洗,将活性炭孔隙中的杂质清洗彻底,工作时间为15-20min,工作温度在60℃-90℃条件下进行。
进一步的,水洗,将含有微量氯化汞的烟气通入到水洗罐中,工作时间为20-30min,用于气体净化。
进一步的,干燥,将半成品触媒置入到干燥罐中,通入电热风,电热风通入速度为50-80m3/h,工作温度在60℃-70℃条件下进行。
进一步的,废触媒回收,废触媒首先加入到立式回收炉中,回收炉的加料量为12吨,利用天然气对回收炉进行加热,并配套有热量重复利用装置,将回收炉升温到800℃以后,将一定量干燥(露点温度-300℃)N 2气流入回收炉,N 2气流的温度在一定范围内,压力范围-50-100Pa(表压),N 2气流的空速在一定范围,N2气流的作用是加速氯化汞蒸气的流动。废触媒经过均匀受热以后,氯化汞气体在高温情况下挥发为气体状态。在负压溶液吸收装置的作用下,经高温挥发出的氯化汞气体进入水射流吸收系统,形成氯化汞溶液,经过持续的循环吸收,氯化汞溶液中氯化汞浓度逐渐上升,达到6%左右,经过精制处理,此氯化汞纯度高,无杂质,可直接用于配置浸泡活性炭使用的氯化汞溶液,用于低汞触媒的生产;
含有少量氯化汞的气流进入水溶液吸收装置,吸收装置全部为内部衬搪瓷的罐,水溶液温度控制在30-500℃,氯化汞气体首先经过吸收液进入水洗罐,对氯化汞、氯化氢等气体进行初步溶解,此时绝大多数的氯化 汞已经截留在水溶液中,集液器中溶液氯化汞最高浓度控制在5%左右,更换新水原液放至工业用水池待用。经过水洗后的尾气再进入碱洗罐,将尾气中剩余的氯化氢完全吸收处理,再经过一级活性炭吸附后进入真空泵,真空泵排气首先经过氟硅油棉吸附罐除去水分,然后经过二级活性炭吸附罐以后达到无氯化汞、氯化氢等合格气体,重新返回回收炉中,实现闭路循环。
在回收炉高温环境下,废触媒孔隙中含有的各类物质已几乎全部升华为气体收集,剩余的为孔隙已经完全打开的活性炭,经过洗涤、筛分等处理措施后,可重新用于制作新的汞触媒。
进一步的,废气、废液处理;
(1)废气处理,低汞触媒干燥工序产生的废气,活性炭在浸渍氯化汞溶液以后,进入干燥工序,干燥工序使用大功率的风机进行干燥,产生的含氯化汞气体经过喷淋工序和水封工序以后,废气中的少量氯化汞已经被水所带走,从水封工序出来的气体中几乎不含有氯化汞,达到国家排放标准;
(2)废汞触媒回收装置初始换气阶段的排气,在废汞触媒回收装置中,在废汞触媒填完料以后需要用氮气替换系统中的空气,替换完成以后使氮气重新回到缓冲罐,实现系统的封闭循环。排除空气的过程中会产生一定量的废气,排除空气的过程中产生的这部分废气通过水射泵溶解装置以后排出,排除空气的过程中产生的这部分废气也可以达到国家排放标准;
废液处理,在低汞触媒生产和废汞触媒回收过程中,水的循环可以达到一个平衡的状态,系统中水的排出只有一个途径,就是由低汞触媒干燥工序出来的气体带走的水量,干燥工序出来的这部分气体经过喷淋和水封工序以后,带出来一定的水量排空,这部分水大约为400kg/吨汞触媒,生产5000吨/年的项目,则每年排空水量为2000吨/年。整个系统中水的进入有两个途径,一是水封工序需要不断进入去离子水,水封工序需要的这部分水在水封工序中与来自喷淋工序的气体进行交换并吸收气体中的氯化汞,然后进入喷淋工序与来自干燥工序的气体交换并吸收氯化汞,吸收氯化汞后的所述水封工序需要的这部分水进入工业水池,以供氯化汞溶液配置所用,这部分水溶液(由水封工序补进的新鲜水)每年大约5600吨/ 年。二是在废汞触媒回收系统中,来自水射泵溶解装置的氯化汞的稀溶液。水射泵装置中的水与来自回收炉中的氯化汞气体交换溶解,当含氯化汞的量达到6%以后,用于低汞触媒的生产,然后补充新鲜的去离子水,含氯化汞的量达到6%的这部分溶液也一样进入工业水池,备配置氯化汞溶液所用,这部分水溶液大约400吨/年。
以上所述,仅为本发明较佳的具体实施方式;但本发明的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其改进构思加以等同替换或改变,都应涵盖在本发明的保护范围内。

Claims (7)

  1. 一种使用汞触媒合成氯乙烯的方法,其特征在于:包括原料浸泡、分离、酸洗、水洗、干燥、废触媒回收和废气、废液处理;
    所述原料浸泡,将氯化汞按需量加入蒸汽加热的机械搅拌的溶解罐中,再加一定量的工业盐酸和一定量清水或工业池中的循环用水,开启搅拌器和通蒸汽加热至80℃,恒温20分钟,使氯化汞溶解成透明溶液待用;此时将活性炭放入浸泡罐中,经过多次重复的酸洗、水洗工序以后,活性炭备用,然后打开溶解罐阀门使溶好了的氯化汞溶液进入密封式浸泡罐中,使活性炭快速与氯化汞溶液充分、均匀的接触而被完全浸渍;
    汞触媒触媒的原材料及其质量百分数为:氯化汞6.5%,活性炭85%,盐酸6.5%,水2%;或触媒的原材料及其质量百分数为:氯化汞5.5%,活性炭86%,盐酸5.5%,水3%;
    所述汞触媒的制备方法为:经数小时后取残液检测,达标后,先放残液入残液池循环;然后配制助剂溶液到相应浓度备用,浸泡罐内的残液排净以后,将配制好的助剂溶液放入浸泡罐,浸泡4-6小时,化验助剂液浓度,达标后排入助剂循环罐,活性炭在吸附氯化汞的浸泡过程中产生的氯化汞残液、助剂残液全部循环使用无外排,浸泡完成后得到半成品触媒;
    所述半成品触媒含大量水分,首先将半成品触媒放入半成品料仓静置一段时间,然后放入干燥罐中,通入电热风,在对流作用下将半成品触媒中的水分带走,使半成品触媒经数小时达到干燥至含水≤0.3%成为合格产品包装入库,半成品触媒在料仓静置过程中产生的含氯化汞废水全部通过密闭管道收集到残液循环池或者助剂循环池中,干燥过程中热风排放含有的微量氯化汞通过后续的高效除汞器进行收集,确保烟气排放全部达标。
  2. 根据权利要求1所述的一种使用汞触媒合成氯乙烯的方法,其特征在于:所述分离为:将活性炭与氯化汞液体通入至固液分离器中,工作时间为15-20min。
  3. 根据权利要求1所述的一种使用汞触媒合成氯乙烯的工艺,其特征在于:所述酸洗为:首先利用盐酸溶液将活性炭进行酸洗,去除铁元素,然后利用超声波清洗,将活性炭孔隙中的杂质清洗彻底,工作时间为 15-20min,工作温度在60℃-90℃。
  4. 根据权利要求1所述的一种使用汞触媒合成氯乙烯的方法,其特征在于:所述水洗为:将含有微量氯化汞的烟气通入到水洗罐中,工作时间为20-30min,用于气体净化。
  5. 根据权利要求1所述的一种使用汞触媒合成氯乙烯的方法,其特征在于:所述干燥为:将所述半成品触媒置入到干燥罐中,通入电热风,所述电热风通入速度为50-80m 3/h,工作温度在60℃-70℃。
  6. 根据权利要求1所述的一种使用汞触媒合成氯乙烯的方法,其特征在于:所述废触媒回收为:将废触媒首先加入到立式回收炉中,回收炉的加料量为12吨,利用天然气对回收炉进行加热,并配套有热量重复利用装置,将回收炉升温到800℃以后,将一定量干燥N 2气流入回收炉,所述N 2的露点温度为-300℃;N 2气流的温度在一定范围内,表压压力范围为-50-100Pa,N 2气流的空速在一定范围,N 2气流的作用是加速氯化汞蒸气的流动,废触媒经过均匀受热以后,氯化汞气体在高温情况下挥发为气体状态,在负压溶液吸收装置的作用下,经高温挥发出的氯化汞气体进入水射流吸收系统,形成氯化汞溶液,经过持续的循环吸收,氯化汞溶液中氯化汞浓度逐渐上升,达到6%左右;
    含有少量氯化汞的气流进入水溶液吸收装置,吸收装置全部为内部衬搪瓷的罐,水溶液温度控制在30-500℃,氯化汞气体首先经过吸收液进入水洗罐,对氯化汞、氯化氢等气体进行初步溶解,此时绝大多数的氯化汞已经截留在水溶液中,集液器中溶液氯化汞最高浓度控制在5%左右,更换新水原液放至工业用水池待用,经过水洗后的尾气再进入碱洗罐,将尾气中剩余的氯化氢完全吸收处理,再经过一级活性炭吸附后进入真空泵,真空泵排气首先经过氟硅油棉吸附罐除去水分,然后经过二级活性炭吸附罐以后达到无氯化汞、氯化氢等合格气体。
  7. 根据权利要求1所述的一种使用汞触媒合成氯乙烯的方法,其特征在于:所述废气、废液处理为:
    (1)废气处理:低汞触媒干燥工序产生的废气,活性炭在浸渍氯化汞溶液以后,进入干燥工序,所述干燥工序使用大功率的风机进行干燥,产生的含氯化汞气体经过喷淋工序和水封工序以后,废气中的少量氯化汞被 水带走;
    (2)废汞触媒回收装置初始换气阶段的排气,在所述废汞触媒回收装置中,在废汞触媒填完料以后需要用氮气替换系统中的空气,替换完成以后使氮气重新回到缓冲罐,实现系统的封闭循环,排除空气的过程中会产生一定量的废气,排除空气的过程中产生的这部分废气通过水射泵溶解装置以后排出;
    (3)废液处理:系统中水的进入有两个途径,一是水封工序需要不断进入去离子水,所述水封工序需要的这部分水在水封工序中与来自喷淋工序的气体进行交换并吸收气体中的氯化汞,然后进入喷淋工序与来自干燥工序的气体交换并吸收氯化汞,吸收氯化汞后的所述水封工序需要的这部分水进入工业水池,以供氯化汞溶液配置所用;二是在废汞触媒回收系统中,来自水射泵溶解装置的氯化汞的稀溶液,所述水射泵装置中的水与来自回收炉中的氯化汞气体交换溶解,当含氯化汞的量达到6%以后,用于低汞触媒的生产,然后补充新鲜的去离子水,含氯化汞的量达到6%的这部分溶液也一样进入工业水池,备配置氯化汞溶液所用。
PCT/CN2022/130799 2022-04-11 2022-11-09 一种使用汞触媒合成氯乙烯的方法 WO2023016585A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2023/03160A ZA202303160B (en) 2022-04-11 2023-02-28 Method for synthesizing vinyl chloride by using mercury catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210373229.4 2022-04-11
CN202210373229.4A CN114669288A (zh) 2022-04-11 2022-04-11 一种使用无汞触媒合成氯乙烯的工艺

Publications (1)

Publication Number Publication Date
WO2023016585A1 true WO2023016585A1 (zh) 2023-02-16

Family

ID=82077413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130799 WO2023016585A1 (zh) 2022-04-11 2022-11-09 一种使用汞触媒合成氯乙烯的方法

Country Status (3)

Country Link
CN (1) CN114669288A (zh)
WO (1) WO2023016585A1 (zh)
ZA (1) ZA202303160B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669288A (zh) * 2022-04-11 2022-06-28 内蒙古圣龙大地科技有限公司 一种使用无汞触媒合成氯乙烯的工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1039524A (fr) * 1950-07-17 1953-10-07 Belge Produits Chimiques Sa Procédé perfectionné de fabrication de chlorure de vinyle
US2779804A (en) * 1953-11-03 1957-01-29 Belge Produits Chimiques Sa Process for the manufacture of vinyl chloride from 1, 2-dichloroethane and acetylene
CN103693676A (zh) * 2013-12-12 2014-04-02 毛振华 一种废汞触媒回收工艺及装置
CN104056645A (zh) * 2014-06-22 2014-09-24 贵州省万山银河化工有限责任公司 一种低汞触媒生产方法及生产装置
CN106179428A (zh) * 2016-08-12 2016-12-07 宁夏新龙蓝天科技股份有限公司 低汞催化剂的制备方法
CN114669288A (zh) * 2022-04-11 2022-06-28 内蒙古圣龙大地科技有限公司 一种使用无汞触媒合成氯乙烯的工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1039524A (fr) * 1950-07-17 1953-10-07 Belge Produits Chimiques Sa Procédé perfectionné de fabrication de chlorure de vinyle
US2779804A (en) * 1953-11-03 1957-01-29 Belge Produits Chimiques Sa Process for the manufacture of vinyl chloride from 1, 2-dichloroethane and acetylene
CN103693676A (zh) * 2013-12-12 2014-04-02 毛振华 一种废汞触媒回收工艺及装置
CN104056645A (zh) * 2014-06-22 2014-09-24 贵州省万山银河化工有限责任公司 一种低汞触媒生产方法及生产装置
CN106179428A (zh) * 2016-08-12 2016-12-07 宁夏新龙蓝天科技股份有限公司 低汞催化剂的制备方法
CN114669288A (zh) * 2022-04-11 2022-06-28 内蒙古圣龙大地科技有限公司 一种使用无汞触媒合成氯乙烯的工艺

Also Published As

Publication number Publication date
ZA202303160B (en) 2023-05-31
CN114669288A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2023016585A1 (zh) 一种使用汞触媒合成氯乙烯的方法
CN100443412C (zh) 酸法焙烧稀土精矿工艺尾气和废水治理方法
CN101455974B (zh) 综合利用氯化汞触媒生产中尾气的方法
CN106734117B (zh) 工业废醋酸钠渣的处理方法
CN105645453A (zh) 一种利用电石渣处理工业废硫酸的方法
CN203741248U (zh) 一种改良型合成乙醛酸的氧化反应及尾气吸收的装置
CN104760985A (zh) 一种利用工业废硫酸生产电石渣化学石膏的系统和方法
CN204710080U (zh) 一种脱硫塔尾气处理净化装置
CN115595433B (zh) 一种微波高选择性提取酸泥中有价金属的系统
CN205109370U (zh) 回转挥发窑含硫尾气脱硫装置
CN115974184A (zh) 一种用铝灰生产净水剂的制备方法及应用
CN217163800U (zh) 一种高温hf尾气的处理系统
CN207192961U (zh) 一种组合式氨氮去除设备
CN210206819U (zh) 一种醋酸钙专用反应装置
CN109112302B (zh) 一种从高碳石煤中提取钒的方法
CN208082202U (zh) 一种氨尾气处理系统
CN207891081U (zh) 一种回收co2的旋转填料式除碳装置
CN111957179A (zh) 一种用于高硫高卤素危险废物焚烧的烟气净化装置
CN209735300U (zh) 一种硫酸尾气脱硫装置
CN114849791A (zh) 一种合成氯乙烯用无汞触媒的工艺系统
CN218689549U (zh) 一种低汞催化剂的生产系统
CN111099712A (zh) 一种使用氧气处理dcc合成过程中产生的硫化碱废水的方法
CN220696352U (zh) 一种含so2烟气碱洗脱硫系统
CN109574011A (zh) 多功能防酸防有机气体活性炭的制备工艺
CN220879907U (zh) 一种去除固体危险废物水反应性的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855564

Country of ref document: EP

Kind code of ref document: A1