WO2023016102A1 - 一种支架及其制备方法 - Google Patents

一种支架及其制备方法 Download PDF

Info

Publication number
WO2023016102A1
WO2023016102A1 PCT/CN2022/100908 CN2022100908W WO2023016102A1 WO 2023016102 A1 WO2023016102 A1 WO 2023016102A1 CN 2022100908 W CN2022100908 W CN 2022100908W WO 2023016102 A1 WO2023016102 A1 WO 2023016102A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical tubular
stent
helical
wire
tubular stent
Prior art date
Application number
PCT/CN2022/100908
Other languages
English (en)
French (fr)
Inventor
林婧
王璐
郭爱军
王富军
关国平
李志荣
Original Assignee
广东富江医学科技有限公司
东华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东富江医学科技有限公司, 东华大学 filed Critical 广东富江医学科技有限公司
Publication of WO2023016102A1 publication Critical patent/WO2023016102A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • A61F2/885Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils comprising a coil including a plurality of spiral or helical sections with alternate directions around a central axis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes

Definitions

  • the invention belongs to the technical field of brackets, and relates to a bracket and a preparation method thereof.
  • the general structural reinforcement method for various types of pipelines is to add reinforcement components to the pipe wall.
  • Common reinforcement components include reinforcement sleeves, axial reinforcement ribs, radial reinforcement rings, and spiral reinforcement ribs. These reinforcement components can be used alone. Can also be used in combination. These reinforcement components are nested or consolidated on the inside or outside of the pipeline to be reinforced, and jointly bear the radial compression, thereby enhancing the radial support.
  • the above methods are only applicable to the radial reinforcement of ordinary pipelines, and cannot meet the needs of recyclable brackets. Clinical needs for sex and flexibility.
  • the spiral reinforcement in ordinary pipes is poured into the pipe body or embedded in the inner and outer surfaces of the pipe wall, while the main body of the weft-knitted support cannot be cast into shape, and there is no place on the surface where the helical wire can be embedded; moreover, the ordinary pipe itself cannot be recycled
  • the ordinary pipeline spiral reinforcement and the pipe body are fixed to each other, and when subjected to external forces, they are almost inflexible in the axial direction, which cannot meet the compliance requirements of the bracket.
  • the existing methods for enhancing the radial support of human body stent mainly include: 1 multi-layer stent intussusception; 2 adding elastic coating; 3 adding reinforcing ribs.
  • the method of invaginating multi-layer stents is to implant multiple stents together into the support lumen.
  • the recyclability of the stents can be preserved, but the During the service of the stent, the stents of each layer are easy to slide against each other, and the radial reinforcement effect of the stent cannot be guaranteed; the method of adding an elastic coating is not suitable for the recyclable stent, and the coating is bonded to the main body of the stent, which affects the strength of the metal weft-knitted stent.
  • the purpose of the present invention is to solve the above-mentioned problems existing in the prior art, and provide a scaffold and a preparation method thereof.
  • a stent comprising a cylindrical tubular stent and single or multiple helical wires
  • Cylindrical tubular stents are processed by single or single-strand metal wires according to the weft knitting process, and single-strand metal wires are formed by twisting more than two metal wires together;
  • the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent, and the case of non-coincidence has no practical use value;
  • the helical wire is sheathed in the overall area of the cylindrical tubular stent (the stent in this case can be used to treat benign esophageal strictures), and the penetration position and the exit position of the helical wire are in the settlement arc of the cylindrical tubular stent.
  • the needle loops and loop stems of the coils withdraw from the coils of the previous row, and the helical wire in the sinking arc does not affect the recovery process, thereby retaining the recyclability of the weft-knitted bracket;
  • the cylindrical tubular stent is divided into multiple sections along the length direction, and the helical wire is only sheathed in one section of the cylindrical tubular stent (the stent in this case can be used for adjuvant treatment of esophageal cancer.
  • the helical wire The segment is located at the position of the tumor tissue, which can effectively prevent the growth of esophageal tumor tissue from squeezing the stent or growing into the stent, causing restenosis of the esophagus.
  • Wire reinforcement can prevent complications such as hemorrhage and necrosis caused by excessive radial force; specifically, the length of the section where the helical wire is located depends on the actual application scenario), and the penetration position and exit position of the helical wire are in the In the settling arc of the cylindrical tubular support, when the support is being recovered, the stitching arc and the coil stem of the coil withdraw from the coil of the previous row, and the helical wire in the settling arc does not affect this recovery process, thereby retaining the weft The recyclability of braided brackets;
  • the positional relationship between the plurality of helical metal wires is not limited, as long as they respectively meet the requirements of "the penetration position and the penetration position are in the settlement arc of the cylindrical tubular support".
  • the tissue structure of the cylindrical tubular support is a weft-knitted plain stitch, a weft-knitted rib weave, a weft-knitted double rib weft, a weft-knitted double-face weave or a weft-knitted tuck weave.
  • the structures related to the content of the present invention but having substantial differences are: padding structure and plating structure.
  • the pad weave forms unclosed hanging arcs on some loops of the fabric, and floats on the other coils and stays on the reverse side of the fabric.
  • the pad yarn must exist on the front and back of all the coils in the same coil course of the ground weave.
  • the radial reinforcing method of the present invention can achieve adjustable reinforcing effects by adjusting the pitch and penetration, and the liner yarn is in the Feeding in the same coil course makes it more difficult for the stent to be radially compressed into the sheath;
  • the plating structure means that all or part of the fabric coils are formed by two yarns, and the plating along the direction of the weft-knitted stent tube coil course can strengthen Radial mechanical properties, but when the plated yarn is separated and recovered, the ground yarn and the plated yarn are withdrawn from the previous course at the same time.
  • the disassembled ground yarn and plating yarn are prone to entanglement, which increases the difficulty of operation under the endoscope.
  • the metal wire is relatively rigid, and the thicker yarn is not easy to bend into loops and is difficult to weave.
  • Padding and plating are traditional weft-knitted structures, which are often used in traditional textile fabrics, but not in weft-knitted esophageal stents.
  • the padding yarn and plating added to the structure are the same as the helical wire in the present invention.
  • the radial mechanical properties of the fabric can be enhanced to a certain extent, but there are essential differences from the present invention.
  • the material of the cylindrical tubular stent is more than one of nickel-titanium alloy, medical stainless steel, cobalt-chromium alloy or magnesium alloy. These materials have good mechanical properties and excellent biocompatibility, and are currently the Commonly used implanted metal materials in the body.
  • the length of the cylindrical tubular stent is 50-250 mm, the inner diameter is 10-25 mm, the diameter of the single or single-strand metal wire constituting the cylindrical tubular stent (a single-strand metal wire is twisted by more than two metal wires) Formed together, here "the diameter of a single strand of metal wire” refers to the overall diameter of two or more metal wires twisted together) is 0.035-0.2mm. If the diameter of the metal wire constituting the cylindrical tubular stent is too low, the strength is insufficient, and it is easy to break during weaving; if the diameter of the metal wire is too large, the bending stiffness is too high, and the yarn cannot be smoothly bent into a loop during weaving.
  • the diameter of the helical metal wire is 0.035-0.3 mm (representing the thickness of the metal wire), the number of wires is 1-10, the pitch is 5-100 mm, and the helical direction is normal or back spin. If the diameter of the helical metal wire is too small, the strength is insufficient, and the purpose of enhancing the radial support of the stent body (that is, the cylindrical tubular stent) cannot be achieved; if the diameter of the helical metal wire is too large, the bending stiffness is too large, and the stent cannot be smoothly penetrated in the subject.
  • each helical wire has the same diameter.
  • the number of helical metal wires is d, and d is an even number, wherein, the helical directions of d/2 helical metal wires are positive, and the helical direction of d/2 helical metal wires is The directions are anti-rotation, and preferably, the helical wires with opposite helical directions are distributed symmetrically. In this case, the bracket is not easy to twist, and the reinforcement effect is better.
  • the material of the helical wire is at least one of nickel-titanium alloy, medical stainless steel, cobalt-chromium alloy or magnesium alloy.
  • n is the number of coil columns between the helical wire penetration position and the penetration position
  • m is the helical wire penetration position and penetration position
  • the number of coil courses between positions, n is less than the total number of columns of the cylindrical tubular support (that is, the number of needles of the circular knitting machine used in the preparation).
  • the radial force of the section where the helical metal wire is located in the stent is 1.4 to 6.6 times that of the cylindrical tubular stent, and the radial compression performance is measured with the RX550 force measuring instrument, and the diameter is compressed to 50% of the original diameter
  • the compressive force at the time is regarded as the radial force
  • the radial force of the cylindrical tubular stent is 15-40N
  • the radial force of the stent is 15-320N.
  • the present invention also provides a method for preparing a stent as described in any one of the above, the steps are as follows:
  • step (1) When the material of the metal wire in step (1) is not the same as that in step (2), and the heat setting temperature of the metal wire in step (1) is higher, after step (1) ends, the two cylindrical tubular stents After the end is fixed, it is heat-set;
  • step (1) When the material of the wire in step (1) is different from that in step (2), and the heat setting temperature of the wire in step (1) is lower, feed the wire in step (2) into the sinker arc Before, the metal wire is spirally wound on the screw rod according to the requirements of the pitch and the helical direction, and the two ends are fixed and then heat-set;
  • the corresponding relationship between the material of the metal wire and the heat setting temperature is: nickel-titanium alloy, 500-650°C; medical stainless steel, 450-550°C; cobalt-chromium alloy, 800-1150°C; magnesium alloy, 100-200°C;
  • the time for each heat setting is 5-30 minutes
  • Heat setting can eliminate internal stress, stabilize the structure of the stent, and can also form an oxide layer on the surface of the material to avoid the release of metal ions in the body.
  • heat setting can also make the martensitic phase The variable temperature is lowered below body temperature to realize self-expansion after placement.
  • the cylindrical tubular stent is preferably processed by a single metal wire according to the weft knitting process, and the helical metal wire is a single piece to form a cylindrical tubular stent
  • the metal wire and the helical metal wire are two sections on the same wire.
  • the whole bracket is made of a metal wire.
  • the tail end of the cylindrical tubular bracket is connected with the helical wire. Pull the detachable cylindrical tubular stent, and then pull the helical wire together for recovery.
  • the preparation steps of the stent are as follows:
  • step (1) The reserved section of the single metal wire in step (1) is spirally fed into the settling arc of the cylindrical tubular support according to the requirements of the pitch, helical direction and threading cycle, so that the helical metal wire Threaded in the overall area of the cylindrical tubular stent to obtain a semi-finished product;
  • the corresponding relationship between the material of the metal wire and the heat setting temperature is: nickel-titanium alloy, 500-650°C; medical stainless steel, 450-550°C; cobalt-chromium alloy, 800-1150°C; magnesium alloy, 100-200°C;
  • the time for each heat setting is 5-30 minutes.
  • the stent with high radial support of the present invention is composed of a cylindrical tubular stent made of a single or single-strand metal wire and a single or multiple helical metal wires based on the weft knitting process, and the single or multiple helical metal wires It is formed in the settlement arc of the cylindrical tubular support through orderly threading.
  • the radial support of the stent is effectively improved to ensure the stability of the vascular and non-vascular lumens in terms of the clinical needs of ensuring the flexibility of the stent and the recyclability in vivo. unobstructed.
  • the helical wire Due to the addition of the helical wire, when the cylindrical tubular stent is radially compressed, the helical wire and the cylindrical tubular stent are jointly stressed, thereby achieving the purpose of radial reinforcement; and the penetration and exit of the helical wire
  • the location is in the sinking arc of the cylindrical tubular support.
  • the needle arc and the coil stem of the coil withdraw from the coil in the previous row.
  • the helical wire in the sinking arc does not affect this recovery process, thus The recyclability of the weft-knitted stent is retained (after the cylindrical tubular stent is recovered, the head end of the helical wire can be clamped and pulled out).
  • the helical wire has a certain axial deformation ability, and the helical wire is located in the subsidence arc of the main body of the stent (that is, the cylindrical tubular stent), it has a certain range of motion relative to the main body of the stent.
  • the metal wire can move in a small range in the sinker arc, so that it has a greater deformability and has less impact on the compliance of the stent body.
  • the preparation method of a stent of the present invention effectively improves the radial support of the stent to ensure the smoothness of vascular, non-vascular and other lumens in terms of the clinical needs of ensuring the flexibility of the stent and the recyclability in vivo;
  • the present invention finally prepares a stent, which still retains the recyclability of the weft-knitted stent, and the radial force of the segment where the helical wire is located is 1.4 to 6.6 times that of the cylindrical tubular stent to match different mechanical requirements.
  • Fig. 1 is the structural representation of the support that embodiment 1 makes;
  • Fig. 2 is that when embodiment 1 prepares stent, metal wire according to Schematic diagram of periodic feeding method
  • Fig. 3 is that when embodiment 2 prepares stent, metal wire according to Schematic diagram of periodic feeding method
  • Fig. 4 is the schematic diagram of the recovery process of the bracket that embodiment 1 makes;
  • Fig. 5 is the structural representation of the support that embodiment 9 makes;
  • Fig. 6 is the structural representation of the support that embodiment 15 makes;
  • Figure 7 is a schematic diagram of the recovery process of the stent prepared in Example 15;
  • Fig. 8 is the structural representation of the support that embodiment 22 makes;
  • 1-cylindrical tubular stent 2-helical metal wire, 3-the penetration position, 4-the penetration position, 5-the head end of the metal wire.
  • a preparation method of a support the specific steps are as follows:
  • a kind of stent finally made comprises cylindrical tubular stent 1 and 4 helical metal wires 2;
  • the wire 2 is sheathed in the overall area of the cylindrical tubular stent 1, and the penetration position and the exit position of the helical metal wire 2 are in the settlement arc of the cylindrical tubular stent 1;
  • the four helical metal wires 2 are parallel to each other, and two adjacent
  • the axial spacing of the roots that is, in the same coil column of the cylindrical tubular stent, the distance between two adjacent helical metal wires along the axial direction of the cylindrical tubular stent) is 15mm; the radial force of the stent is prepared in step (1).
  • FIG. 4 it is a schematic diagram of the recovery process of the stent made in embodiment 1, the wire head end 5 is pulled, the stent is separated, the helical wire 2 is separated, and the cylindrical tubular stent 1 is disassembled. Unravel into a single yarn for recycling.
  • a preparation method of a support the specific steps are as follows:
  • a stent finally produced including a cylindrical tubular stent and two helical wires; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent , the penetration position and exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent; the two helical metal wires are parallel to each other, and the axial distance between two adjacent wires (that is, the same coil tandem of the cylindrical tubular stent Among them, the distance along the axial direction of the cylindrical tubular stent between two helical metal wires) is 35mm; the radial force of the support is 2.8 times of the cylindrical tubular stent 1 that step (1) makes (use RX550 dynamometer to measure radial Compression performance, the compression force when the diameter is compressed to 50% of the initial diameter is taken as the radial force, the radial force of the cylindrical tubular
  • a preparation method of a support the specific steps are as follows:
  • the weft knitting process use a circular weft machine with a small diameter of the needle cylinder (the diameter of the needle cylinder is 20mm, and the number of needles is 25 needles) to weave a single-strand metal wire (0.14mm in diameter) made of medical stainless steel into a cylindrical tubular shape Stent, the organizational structure of the cylindrical tubular stent is a weft-knitted rib weave, the length of the cylindrical tubular stent is 100mm, and the inner diameter is 18mm; the single-strand metal wire is formed by twisting two metal wires together;
  • a single metal wire (0.30mm in diameter) made of medical stainless steel is used according to the pitch (50mm), number (1), helical direction (forward rotation) and threading period ( Period, n is the number of coil rows between the position where the helical wire penetrates and the position where it passes out, m is the number of rows of coils between the position where the helical wire penetrates and the position where it passes out, both n and m are 2)
  • the screw is fed into the settling arc of the specified penetration position of the cylindrical tubular support, so that the helical wire is threaded in the overall area of the cylindrical tubular support to obtain a semi-finished product;
  • a prepared stent including a cylindrical tubular stent and a single helical wire; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent , the penetration position and the penetration position of the helical wire are in the settlement arc of the cylindrical tubular support; the radial force of the support is 1.5 times that of the cylindrical tubular support 1 prepared in step (1) (use the RX550 dynamometer to measure the diameter Compressive performance, the compression force when the diameter is compressed to 50% of the initial diameter is used as the radial force, the radial force of the cylindrical tubular stent is 38N, and the radial force of the stent is 58N).
  • a preparation method of a support the specific steps are as follows:
  • a stent finally produced including a cylindrical tubular stent and three helical wires; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent , the penetration position and exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent; the three helical metal wires pass in and out from the different settlement arcs of the cylindrical tubular stent independently, and the three helical wires
  • the metal wires are parallel to each other, and the axial distance between two adjacent wires (that is, the distance between two adjacent helical metal wires in the same coil column of the cylindrical tubular stent along the axial direction of the cylindrical tubular stent) is 20mm; the diameter of the stent
  • the radial force is 3 times that of the cylindrical tubular stent 1 prepared in step (1) (using the RX550 dynamometer to measure
  • a preparation method of a support the specific steps are as follows:
  • a single metal wire (0.18mm in diameter) made of magnesium alloy is woven into a cylindrical tubular shape by using a circular weft machine with a small diameter of the needle cylinder (the diameter of the cylinder is 15mm, and the number of needles is 15 needles).
  • the organizational structure of the cylindrical tubular support is a weft-knitted tuck structure, the length of the cylindrical tubular support is 160mm, and the inner diameter is 10mm;
  • a stent finally produced including a cylindrical tubular stent and three helical wires; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent , the penetration position and exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent; the three helical metal wires pass in and out from the different settlement arcs of the cylindrical tubular stent independently, and the three helical wires
  • the metal wires are parallel to each other, and the axial distance between two adjacent wires (that is, the distance between two adjacent helical metal wires in the same coil column of the cylindrical tubular stent along the axial direction of the cylindrical tubular stent) is 15mm; the diameter of the stent
  • the radial force is 3.4 times that of the cylindrical tubular stent 1 prepared in step (1) (using the RX550 dynamometer to
  • a preparation method of a stent which is basically the same as in Example 1, except that the metal wire in step (2) is a cobalt-chromium alloy, and before the metal wire in step (2) is fed into the sinker arc, the metal wire is fed according to Requirements for pitch and helical direction Helically wound on the screw, fixed at both ends and heat-set at 800°C for 20min.
  • a stent finally made including a cylindrical tubular stent and 4 helical wires; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent Among them, the penetration position and the penetration position of the helical wire are in the settlement arc of the cylindrical tubular stent; the radial force of the support is 3.1 times that of the cylindrical tubular stent made in step (1) (use the RX550 dynamometer to measure the diameter Compressive performance, the compression force when the diameter is compressed to 50% of the initial diameter is used as the radial force, the radial force of the cylindrical tubular stent is 28N, and the radial force of the stent is 86N).
  • a method for preparing a stent which is basically the same as in Example 1, except that the metal wire in step (1) is a cobalt-chromium alloy, and after the end of step (1), the two ends of the cylindrical tubular stent are fixed at 1150°C Heat setting for 5 minutes.
  • a stent finally made including a cylindrical tubular stent and 4 helical wires; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent Among them, the penetration position and the penetration position of the helical wire are in the settlement arc of the cylindrical tubular stent; the radial force of the stent is 2.6 times that of the cylindrical tubular stent made in step (1) (use the RX550 dynamometer to measure the diameter Compressive performance, the compression force when the diameter is compressed to 50% of the initial diameter is used as the radial force, the radial force of the cylindrical tubular stent is 36N, and the radial force of the stent is 92N).
  • a method for preparing a stent is basically the same as in Example 1, except that the metal wire in step (2) is single, and the material and diameter are the same as those in step (1), and the metal wire in step (2) is The reserved section of the metal wire of step (1).
  • the final stent is made of a metal wire as a whole, which is very convenient to recycle.
  • the cylindrical tubular stent can be disassembled by pulling the head end of the cylindrical tubular stent, and then the helical wire is pulled and recycled.
  • a preparation method of a stent which is basically the same as in Example 1, except that there are 8 metal wires in step (2), wherein the helical directions of the 4 helical metal wires are positive rotation, and the 4 helical metal wires
  • the helical direction of the silk is anti-rotation.
  • a kind of stent finally made comprises cylindrical tubular stent and 8 helical wires; the central axis of helical wire helix coincides with the central axis of cylindrical tubular stent; helical wire is sheathed in In the overall area of the cylindrical tubular stent, the penetration position and exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent; the four helical metal wires with the same helical direction are parallel to each other, and the axial distance between two adjacent wires is (that is, in the same coil column of the cylindrical tubular stent, the distance between two adjacent helical metal wires along the axial direction of the cylindrical tubular stent) is 15mm; the helical metal wires with opposite helical directions are symmetrically distributed; the radial force of the stent 6.6 times of the cylindrical tubular support 1 that step (1) makes (use RX550 dynamometer to measure radial compressibility, compress the compression force when the diameter
  • a preparation method of a stent which is basically the same as in Example 1, except that in step (2), the helical directions of the four metal wires are not completely the same, and the helical directions of the two helical metal wires are both positive , the helical directions of the two helical wires are anti-rotation.
  • a stent finally made including a cylindrical tubular stent and 4 helical wires; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent , the penetration position and exit position of the helical wire are in the settlement arc of the cylindrical tubular stent; the two helical metal wires with the same helical direction are parallel to each other, and the axial distance between two adjacent wires (that is, the In the same coil column, the distance between two adjacent helical wires along the axial direction of the cylindrical tubular stent) is 15mm; the helical wires with opposite helical directions are symmetrically distributed; the radial force of the stent is as follows: (1) 3.3 times of the obtained cylindrical tubular stent 1 (use the RX550 dynamometer to measure the radial compression performance, the compression force when the diameter is compressed to 50% of the initial diameter
  • a preparation method of a support the specific steps are as follows:
  • the reserved section of the single metal wire in step (1) is set according to the pitch (60mm), helical direction (reverse rotation) and threading cycle ( Period, n is the number of coil rows between the position where the helical wire penetrates and the position where it passes out, m is the number of rows of coils between the position where the helical wire penetrates and the position where it passes out, both n and m are 1)
  • the screw is fed into the settling arc of the specified penetration position of the cylindrical tubular support, so that the helical wire is threaded in the overall area of the cylindrical tubular support to obtain a semi-finished product;
  • a stent finally produced including a cylindrical tubular stent and a single helical wire; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent , the penetration position and the penetration position of the helical wire are in the settlement arc of the cylindrical tubular stent; the radial force of the support is 1.6 times that of the cylindrical tubular stent 1 prepared in step (1) (measured using RX550 dynamometer Radial compression performance, the compression force when the diameter is compressed to 50% of the initial diameter is used as the radial force, the radial force of the cylindrical tubular stent is 18N, and the radial force of the stent is 29N), the stent is very convenient to recover, and the clamping
  • the cylindrical tubular stent can be disassembled by pulling the head end of the cylindrical tubular stent, and then the helical wire is
  • a preparation method of a support the specific steps are as follows:
  • the reserved section of the single metal wire in step (1) is set according to the pitch (70mm), helical direction (reverse rotation) and threading period ( Period, n is the number of coil rows between the position where the helical wire penetrates and the position where it passes out, m is the number of rows of coils between the position where the helical wire penetrates and the position where it passes out, both n and m are 1)
  • the screw is fed into the settling arc of the specified penetration position of the cylindrical tubular support, so that the helical wire is threaded in the overall area of the cylindrical tubular support to obtain a semi-finished product;
  • a stent finally produced including a cylindrical tubular stent and a single helical wire; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent , the penetration position and the penetration position of the helical wire are in the settlement arc of the cylindrical tubular stent; the radial force of the support is 2.2 times that of the cylindrical tubular stent 1 made in step (1) (measured using RX550 dynamometer Radial compression performance, the compression force when the diameter is compressed to 50% of the initial diameter is taken as the radial force, the radial force of the cylindrical tubular stent is 34N, and the radial force of the stent is 72N), the stent is extremely convenient to recover, and the clamping
  • the cylindrical tubular stent can be disassembled by pulling the head end of the cylindrical tubular stent, and then the helical wire is
  • a preparation method of a support the specific steps are as follows:
  • the reserved section of the single metal wire in step (1) is set according to the pitch (80mm), helical direction (reverse rotation) and threading period ( Period, n is the number of coil rows between the position where the helical wire penetrates and the position where it passes out, m is the number of rows of coils between the position where the helical wire penetrates and the position where it passes out, both n and m are 1)
  • the screw is fed into the settling arc of the specified penetration position of the cylindrical tubular support, so that the helical wire is threaded in the overall area of the cylindrical tubular support to obtain a semi-finished product;
  • a stent finally produced including a cylindrical tubular stent and a single helical wire; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent , the penetration position and the penetration position of the helical wire are in the settlement arc of the cylindrical tubular stent; the radial force of the support is 1.9 times that of the cylindrical tubular stent 1 prepared in step (1) (measured using RX550 dynamometer Radial compression performance, the compression force when the diameter is compressed to 50% of the initial diameter is used as the radial force, the radial force of the cylindrical tubular stent is 29N, and the radial force of the stent is 55N), the stent is extremely convenient to recover, and the clamping
  • the cylindrical tubular stent can be disassembled by pulling the head end of the cylindrical tubular stent, and then the helical wire is
  • a preparation method of a support the specific steps are as follows:
  • the reserved section of the single metal wire in step (1) is set according to the pitch (50mm), helical direction (reverse rotation) and threading cycle ( Period, n is the number of coil rows between the position where the helical wire penetrates and the position where it passes out, m is the number of rows of coils between the position where the helical wire penetrates and the position where it passes out, both n and m are 1)
  • the screw is fed into the settling arc of the specified penetration position of the cylindrical tubular support, so that the helical wire is threaded in the entire area of the cylindrical tubular support to obtain a semi-finished product;
  • a stent finally produced including a cylindrical tubular stent and a single helical wire; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the helical wire is sheathed in the entire area of the cylindrical tubular stent , the penetration position and the penetration position of the helical wire are in the settlement arc of the cylindrical tubular stent; the radial force of the support is 2.3 times that of the cylindrical tubular stent 1 made in step (1) (measured using RX550 dynamometer Radial compression performance, the compression force when the diameter is compressed to 50% of the initial diameter is taken as the radial force, the radial force of the cylindrical tubular stent is 34N, and the radial force of the stent is 77N), the stent is very convenient to recover, and the clamping
  • the cylindrical tubular stent can be disassembled by pulling the head end of the cylindrical tubular stent, and then the helical wire
  • a preparation method of a support the specific steps are as follows:
  • a metal wire (0.20mm in diameter) made of nickel-titanium alloy is set according to the pitch (60mm), the number (1), the helical direction (both anti-rotation) and the threading cycle ( Period, n is the number of coil rows between the position where the helical wire penetrates and the position where it passes out, m is the number of rows of coils between the position where the helical wire penetrates and the position where it passes out, both n and m are 1) According to the requirement of spiral feeding the cylindrical tubular support into the settling arc at the specified penetration position, so that the helical metal wire is threaded in a section of the cylindrical tubular support to obtain a semi-finished product;
  • a kind of stent finally made comprises cylindrical tubular stent 1 and 1 helical metal wire 2;
  • the central axis of spiral metal wire 2 spiral coincides with the central axis of cylindrical tubular stent 1;
  • Cylindrical tubular stent 1 is divided into multiple sections along the length direction, the helical metal wire 2 is only threaded in a section of the cylindrical tubular support 1, and the penetration position and the exit position of the helical metal wire 2 are in the settlement arc of the cylindrical tubular support 1;
  • the radial force of the segment where the helical metal wire is located is 1.4 times that of the cylindrical tubular stent 1 prepared in step (1) (use the RX550 dynamometer to measure the radial compression performance, and the compression force when the diameter is compressed to 50% of the initial diameter As the radial force, the radial force of the cylindrical tubular stent is 28N, and the radial force of the segment where the helical metal wire is located in the support is 38N); as shown in
  • a preparation method of a support the specific steps are as follows:
  • Two metal wires made of nickel-titanium alloy (the same diameter, both 0.15mm) are arranged according to the pitch (70mm), number (2), helical direction (both anti-rotation) and threading cycle ( Period, n is the number of coil rows between the position where the helical wire penetrates and the position where it passes out, m is the number of rows of coils between the position where the helical wire penetrates and the position where it passes out, n is 2, m is 1 ) is spirally fed into the settling arc at the specified penetration position of the cylindrical tubular support, so that the helical metal wire is threaded in a section of the cylindrical tubular support to obtain a semi-finished product;
  • a kind of stent finally made including cylindrical tubular stent and 2 helical metal wires; the central axis of helical metal wire helix coincides with the central axis of cylindrical tubular stent; cylindrical tubular stent is divided into multiple sections along the length direction, and helical metal The wire is only threaded in a section of the cylindrical tubular stent, and the penetration position and exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent; the two helical metal wires are parallel to each other, and the axial distance between two adjacent wires is (that is, in the same coil column of the cylindrical tubular stent, the axial distance between the two helical metal wires along the cylindrical tubular stent) is 35mm; 2.8 times that of the cylindrical tubular stent 1 (Using the RX550 dynamometer to measure the radial compression performance, the compression force when the diameter is compressed to 50% of the initial diameter is taken as the radial force, the radial force of
  • a preparation method of a support the specific steps are as follows:
  • the weft knitting process use a circular weft machine with a small diameter of the needle cylinder (the diameter of the needle cylinder is 20mm, and the number of needles is 25 needles) to weave a single-strand metal wire (0.14mm in diameter) made of medical stainless steel into a cylindrical tubular shape Stent, the organizational structure of the cylindrical tubular stent is a weft-knitted rib weave, the length of the cylindrical tubular stent is 100mm, and the inner diameter is 18mm; the single-strand metal wire is formed by twisting two metal wires together;
  • a single metal wire (0.30mm in diameter) made of medical stainless steel is used according to the pitch (50mm), number (1), helical direction (forward rotation) and threading period ( Period, n is the number of coil rows between the position where the helical wire penetrates and the position where it passes out, m is the number of rows of coils between the position where the helical wire penetrates and the position where it passes out, both n and m are 2) According to the requirement of spiral feeding the cylindrical tubular support into the settling arc at the specified penetration position, so that the helical metal wire is threaded in a section of the cylindrical tubular support to obtain a semi-finished product;
  • a prepared stent includes a cylindrical tubular stent and a single helical wire; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the cylindrical tubular stent is divided into multiple sections along the length direction, and the helical wire Only threaded in a section of the cylindrical tubular stent, the penetration position and the exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent; 1.5 times of the obtained cylindrical tubular stent 1 (use the RX550 dynamometer to measure the radial compression performance, the compression force when the diameter is compressed to 50% of the initial diameter is taken as the radial force, the radial force of the cylindrical tubular stent is 38N, the stent The radial force of the segment where the middle helical wire is located is 58N).
  • a preparation method of a support the specific steps are as follows:
  • a kind of stent finally made including cylindrical tubular stent and 3 helical metal wires; the central axis of helical metal wire helix coincides with the central axis of cylindrical tubular stent;
  • the wire is only threaded in a section of the cylindrical tubular stent, and the penetration position and the exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent; the three helical metal wires are independent from each other from the different settlement arcs of the cylindrical tubular stent.
  • the three helical metal wires are parallel to each other, and the axial distance between two adjacent ones (that is, in the same coil column of the cylindrical tubular stent, the distance between two adjacent helical metal wires along the axis of the cylindrical tubular stent The distance in the direction) is 20mm; the radial force of the section where the helical metal wire is located in the stent is 3 times that of the cylindrical tubular stent 1 prepared in step (1) (use the RX550 dynamometer to measure the radial compression performance, and the diameter is compressed to The compressive force at 50% of the initial diameter is taken as the radial force, the radial force of the cylindrical tubular stent is 21N, and the radial force of the section where the helical metal wire is located in the stent is 64N).
  • a preparation method of a support the specific steps are as follows:
  • a single metal wire (0.18mm in diameter) made of magnesium alloy is woven into a cylindrical tubular shape by using a circular weft machine with a small diameter of the needle cylinder (the diameter of the cylinder is 15mm, and the number of needles is 15 needles).
  • the organizational structure of the cylindrical tubular support is a weft-knitted tuck structure, the length of the cylindrical tubular support is 160mm, and the inner diameter is 10mm;
  • a kind of stent finally made including cylindrical tubular stent and 3 helical metal wires; the central axis of helical metal wire helix coincides with the central axis of cylindrical tubular stent;
  • the wire is only threaded in a section of the cylindrical tubular stent, and the penetration position and the exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent; the three helical metal wires are independent from each other from the different settlement arcs of the cylindrical tubular stent.
  • the three helical metal wires are parallel to each other, and the axial distance between two adjacent ones (that is, in the same coil column of the cylindrical tubular stent, the distance between two adjacent helical metal wires along the axis of the cylindrical tubular stent The distance in the direction) is 15mm; the radial force of the segment where the helical metal wire is located in the stent is 3.4 times that of the cylindrical tubular stent 1 prepared in step (1) (use the RX550 dynamometer to measure the radial compression performance, and the diameter is compressed to The compressive force at 50% of the initial diameter is taken as the radial force, the radial force of the cylindrical tubular stent is 32N, and the radial force of the section where the helical wire in the stent is located is 108N).
  • a method for preparing a stent which is basically the same as in Example 15, except that the metal wire in step (2) is a cobalt-chromium alloy, and before the metal wire in step (2) is fed into the sinker arc, the metal wire is fed according to Requirements for pitch and helical direction Helically wound on the screw, fixed at both ends and heat-set at 800°C for 20min.
  • a kind of stent finally made including cylindrical tubular stent and 4 helical wires; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the cylindrical tubular stent is divided into multiple sections along the length direction, and the helical metal
  • the wire is only threaded in a section of the cylindrical tubular stent, and the penetration position and the exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent;
  • the radial force of the section where the helical metal wire is located in the stent is step (1) 1.5 times of the cylindrical tubular stent made (Use RX550 dynamometer to measure the radial compression performance, the compression force when the diameter is compressed to 50% of the initial diameter is taken as the radial force, the radial force of the cylindrical tubular stent is 28N, the stent The radial force of the segment where the middle helical wire is located is 42N).
  • a method for preparing a stent which is basically the same as in Example 15, except that the metal wire in step (1) is a cobalt-chromium alloy, and after the end of step (1), the two ends of the cylindrical tubular stent are fixed at 1150°C Heat setting for 5 minutes.
  • a kind of stent finally made including cylindrical tubular stent and 4 helical wires; the central axis of the helical wire helix coincides with the central axis of the cylindrical tubular stent; the cylindrical tubular stent is divided into multiple sections along the length direction, and the helical metal
  • the wire is only threaded in a section of the cylindrical tubular stent, and the penetration position and the exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent;
  • the radial force of the section where the helical metal wire is located in the stent is step (1) 1.5 times of the prepared cylindrical tubular stent (use the RX550 dynamometer to measure the radial compression performance, the compression force when the diameter is compressed to 50% of the initial diameter is taken as the radial force, the radial force of the cylindrical tubular stent is 36N, the stent The radial force of the section where the middle helical wire is located is 55N).
  • a method for preparing a stent which is basically the same as in Example 15, except that there are two metal wires in step (2), of which, the helical direction of one helical metal wire is forward rotation, and one helical metal wire The helical direction of the silk is anti-rotation.
  • a kind of stent finally made comprises cylindrical tubular stent and 2 helical metal wires; the central axis of helical metal wire helix coincides with the central axis of cylindrical tubular stent; cylindrical tubular stent divides along the length direction It is multi-segment, and the helical metal wire is only threaded in one section of the cylindrical tubular stent, and the penetration position and the exit position of the helical metal wire are in the settlement arc of the cylindrical tubular stent; the helical metal wires with opposite helical directions are symmetrically distributed;
  • the radial force of the section where the helical metal wire is located in the stent is 1.8 times that of the cylindrical tubular stent 1 made in step (1) (use the RX550 dynamometer to measure the radial compression performance, and compress the diameter to 50% of the initial diameter.
  • the compressive force is used as the radial force, the radial force of the cylindrical tubular stent is 28N, and

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种支架及其制备方法,制备方法为:步骤一、将单根或单股金属丝织造成圆柱管状支架(1);步骤二、将单根或多根金属丝按照螺距、根数、螺旋方向和穿套周期的要求螺旋喂入圆柱管状支架(1)指定穿入位置(3)和穿出位置(4)的沉降弧中,得到半成品;步骤三、将半成品穿套在芯棒上,两端固定后热定型,脱模即得到支架;制得的支架包括圆柱管状支架(1)和单根或多根螺旋状金属丝(2);螺旋状金属丝(2)螺旋的中心轴与圆柱管状支架(1)的中心轴重合;螺旋状金属丝(2)穿套在圆柱管状支架(1)的整体区域或一段中,螺旋状金属丝(2)的穿入位置(3)和穿出位置(4)在圆柱管状支架(1)的沉降弧中。支架径向增强效果好、可回收性能好且柔顺性好。

Description

一种支架及其制备方法 技术领域
本发明属于支架技术领域,涉及一种支架及其制备方法。
背景技术
血管、非血管等腔道良、恶性狭窄或梗阻是临床上常见的严重病症,支架置入是重要的姑息治疗手段,理想的支架需要具有径向增强效果好、可回收性能好且柔顺性好的特点,但传统支架存在以下问题:
仅仅依靠管壁的变形恢复机械力来支撑狭窄或者梗阻的腔道,提供不了理想的机械支撑力,当狭窄或者梗阻继续发展时很容易发生支架的闭合,从而导致腔道的再狭窄。
目前,对于各类管道通用的结构增强方法是在管壁中加入增强部件,常见的增强部件有加强套管、轴向加强筋、径向加强环、螺旋加强筋,这些增强部件可单独使用,也可组合使用。这些增强部件套叠或固结于需增强的管道内侧或外侧,共同承受径向压缩,从而增强径向支撑性,但以上方法均只适用于普通管道的径向增强,而不能满足支架可回收性和柔顺性的临床需求。普通管道中的螺旋加强筋被浇注在管体中或嵌于管壁内外表面,而纬编支架主体无法浇注成型,表面亦无可嵌入螺旋状金属丝的位置;并且,普通管道本身是无法回收的;此外,普通管道螺旋加强筋与管体相互固定,在受到外力时,轴向上几乎不可变形,无法满足支架的柔顺性要求。
现有增强人体支架管径向支撑性的方法主要有:①多层支架套叠;②添加弹性覆膜;③添加加强筋。其中,多层支架套叠的方法是将多个支架套接共同植入支撑管腔,若将多个可回收支架套叠而无固定部件,可保留支架的可回收性能,但该方法制备的支架在服役过程中各层支架易相互滑移,而无法保证支架的径向增强效果;添加弹性覆膜的方法不适用于可回收支架,覆膜与支架主体粘结,影响金属纬编支架的可回收性能,且使用覆膜的增强方式无法保证增强覆膜与支架的紧密结合和力学匹配;添加加强筋的方法常用于激光雕刻支架,该类支架一般不可回收,而在纬编支架中加入加强筋也会使其丧失可回收性能。
因此,亟待研究一种径向增强效果好、可回收性能好且柔顺性好的支架。
发明内容
本发明的目的是解决现有技术中存在的上述问题,提供一种支架及其制备方法。
为达到上述目的,本发明采用的技术方案如下:
一种支架,包括圆柱管状支架和单根或多根螺旋状金属丝;
圆柱管状支架由单根或单股金属丝按纬编工艺加工而成,单股金属丝由两根以上金属丝拧在一起形成;
螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合,不重合的情况不具有实际使用价值;
螺旋状金属丝穿套在圆柱管状支架的整体区域中(此种情况的支架可用于治疗食管良性狭窄),螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中,当支架在回收时,线圈的针编弧和圈干从上一横列的线圈中退出,沉降弧中的螺旋状金属丝并不影响这一回收过程,从而保留纬编支架的可回收性;
或者,圆柱管状支架沿长度方向分为多段,螺旋状金属丝仅穿套在圆柱管状支架的一段中(此种情况的支架可用于辅助治疗食管癌,支架在实际使用过程中,螺旋状金属丝所在段位于肿瘤组织所在位置,可有效防止食管肿瘤组织生长挤压支架或长入支架,造成食管再狭窄,其它段无螺旋状金属丝,其它段位于正常组织所在位置,其他段无螺旋状金属丝增强,可防止由于径向力过大造成出血、坏死等并发症;具体地螺旋状金属丝所在段的长度依照实际应用场景而定),螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中,当支架在回收时,线圈的针编弧和圈干从上一横列的线圈中退出,沉降弧中的螺旋状金属丝并不影响这一回收过程,从而保留纬编支架的可回收性;
多根螺旋状金属丝相互独立地从圆柱管状支架不同的沉降弧中穿入穿出,或者多根螺旋状金属丝相互交叠,全部或部分从圆柱管状支架相同的沉降弧中穿入穿出,本发明中多根螺旋状金属丝相互之间的位置关系不限,只要其分别满足“穿入位置和穿出位置在圆柱管状支架的沉降弧中”的要求即可。
作为优选的技术方案:
如上所述的一种支架,因为纬编平针组织、纬编罗纹组织、纬编双罗纹组织、纬编双反面组织或纬编集圈组织均可逆编织方向脱散从而实现支架可回收性能,圆柱管状支架的组织结构为纬编平针组织、纬编罗纹组织、纬编双罗纹组织、纬编双反面组织或纬编集圈组织。
纬编组织中目前与本发明内容相关但具有实质性差别的组织是:衬垫组织、添纱组织。其中,衬垫组织是在织物的某些线圈上形成不封闭的悬弧,在其余线圈上呈浮线停留在织物反面,衬垫纱必须存在于地组织的同一线圈横列所有线圈的正反面,相当于满穿于地组织中,其对支架的径向支撑性的增强效果单一,而本发明的径向增强方法可通过调节螺距和穿入方式实现增强效果可调节,且衬垫纱线在同一线圈横列中喂入,使支架在后续径向压缩入鞘过程中较为困难;添纱组织是指织物全部或部分线圈由两根纱线形成,沿纬编支架管线圈横列方向添纱可增强径向力学性能,但在添纱组织脱散回收时,地纱与添纱同时从上一横列线圈中退出,与地组织回收相比退出阻力更大,即回收阻力更大,且回收过程中,拆解出的地纱与添纱易发生缠结,增加了内窥镜下操作的难度,此外,金属丝刚度较大,较粗的纱线不易弯纱成圈,难以织造。衬垫和添纱组织属于传统的纬编组织,常用于传统纺织面料中,而并非用在纬编食管支架中,其结构中加入的衬垫纱与添纱与本发明中的螺旋状金属丝相似,可以在一定程度上增强织物的径向力学性能,但与本发明有本质性区别。
如上所述的一种支架,圆柱管状支架的材质为镍钛合金、医用不锈钢、钴铬合金或镁合金中的一种以上,这些材料具有良好的力学性能和优异的生物相容性,是目前常用的体内植入金属材料。
如上所述的一种支架,圆柱管状支架的长度为50~250mm,内径为10~25mm,构成圆柱管状支架的单根或单股金属丝的直径(单股金属丝由两根以上金属丝拧在一起形成,此处“单股金属丝的直径”指的是两根以上金属丝拧在一起形成的整体的直径)为0.035~0.2mm。若构成圆柱管状支架的金属丝直径过低,强力不足,织造时极易发生断裂;若金属丝直径过大,弯曲刚度过大,而无法在织造时顺利弯纱成圈。
如上所述的一种支架,螺旋状金属丝的直径为0.035~0.3mm(表征的是金属丝的粗细情况),根数为1~10根,螺距为5~100mm,螺旋方向为正旋或反旋。若螺旋状金属丝直径过低,强力不足,无法实现增强支架主体(即圆柱管状支架)径向支撑性的目的;若螺旋状金属丝直径过大,弯曲刚度过大,而无法顺利穿入支架主体中。若螺距过大,对支架的径向支撑性增强效果不佳;若螺距过小,会使穿入的螺线金属丝的浮线过长,支架置入后会被粗颗粒食物拖曳,同时也会影响支架的柔顺性。当螺旋状金属丝为多根时,优选地,每根螺旋状金属丝的直径都相同。
如上所述的一种支架,螺旋状金属丝的根数为d,d为偶数,其中,d/2根螺旋状金属丝的螺旋方向都为正旋,d/2根螺旋状金属丝的螺旋方向都为反旋,优选地,螺旋方向相反的螺旋状金属丝对称分布。此种情况下,支架不易扭转,增强效果更好。
如上所述的一种支架,螺旋状金属丝的材质为镍钛合金、医用不锈钢、钴铬合金或镁合金中的一种以上。
如上所述的一种支架,螺旋状金属丝按
Figure PCTCN2022100908-appb-000001
周期性穿套在圆柱管状支架的整体区域或一段中,其中,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n小于圆柱管状支架的总纵列数(即制备时所用圆纬机的针筒针数)。
如上所述的一种支架,支架中螺旋状金属丝所在段的径向力为圆柱管状支架的1.4~6.6倍,使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为15~40N,支架的径向力为15~320N。
本发明还提供制备如上任一项所述的一种支架的方法,步骤如下:
(1)使用小针筒直径的圆纬机将单根或单股金属丝织造成圆柱管状支架,金属丝刚度较大,弯纱成圈有一定难度,为保证织造顺利,选取圆纬机的针筒直径为15~35mm,针数为12~50针;
(2)将单根或多根金属丝按照螺距、根数、螺旋方向和穿套周期的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域或一段中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在一定温度下热定型,脱模即得到支架;
当步骤(1)的金属丝与步骤(2)的金属丝的材质不相同,且步骤(1)的金属丝的热定型温度较高时,在步骤(1)结束后将圆柱管状支架的两端固定后热定型;
当步骤(1)的金属丝与步骤(2)的金属丝的材质不相同,且步骤(1)的金属丝的热定型温度较低时,将步骤(2)的金属丝喂入沉降弧中之前,将金属丝按照螺距和螺旋方向的要求螺旋缠绕在螺杆上,两端固定后热定型;
金属丝的材质与热定型的温度的对应关系为:镍钛合金,500~650℃;医用不锈钢,450~550℃;钴铬合金,800~1150℃;镁合金,100~200℃;
每次热定型的时间为5~30min;
热定型可消除内应力,使支架的结构稳定,还可以使材料表面形成氧化层,避免金属离子在体内释放,当金属丝的材质为镍钛合金时,热定型还可以使其马氏体相变温度降低至体温以下,实现置入后自膨胀。
本发明的支架当螺旋状金属丝穿套在圆柱管状支架的整体区域中时,优选圆柱管状支架由单根金属丝按纬编工艺加工而成,螺旋状金属丝为单根,构成圆柱管状支架的金属丝与螺旋状金属丝为同一根金属丝上的两段,此时支架整体由一根金属丝制成,圆柱管状支架尾端与螺旋状金属丝相连,夹取圆柱管状支架头端牵拉可拆解圆柱管状支架,后一并将螺旋丝牵拉回收,此时支架的制备步骤如下:
(1)将单根金属丝预留一定的长度段后,使用小针筒直径的圆纬机将单根金属丝织造成圆柱管状支架,金属丝刚度较大,弯纱成圈有一定难度,为保证织造顺利,选取圆纬机的针筒直径为15~35mm,针数为12~50针;
(2)将步骤(1)的单根金属丝的预留段按照螺距、螺旋方向和穿套周期的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在一定温度下热定型,脱模即得到支架;
金属丝的材质与热定型的温度的对应关系为:镍钛合金,500~650℃;医用不锈钢,450~550℃;钴铬合金,800~1150℃;镁合金,100~200℃;
每次热定型的时间为5~30min。
本发明的原理如下:
本发明的高径向支撑性的支架由基于纬编工艺采用单根或单股金属丝制成的圆柱管状支架和单根或多根螺旋状金属丝组成,单根或多根螺旋状金属丝是通过有序穿套在圆柱管状支架的沉降弧中形成。通过喂入不同直径、螺距、根数的螺旋状金属丝,在保证支架柔顺性和体内可回收性的临床需求上,有效提高了支架的径向支撑性,保证血管、非血管等腔道的通畅。
由于螺旋状金属丝的加入,使圆柱管状支架在受到径向压缩时,螺旋状金属丝与圆柱管状支架共同受力,从而达到径向增强的目的;且螺旋状金属丝的穿入和穿出位置在圆柱管状支架的沉降弧中,当支架在回收时,线圈的针编弧和圈干从上一横列的线圈中退出,沉降弧中的螺旋状金属丝并不影响这一回收过程,从而保留纬编支架的可回收性(圆柱管状支架回收后,可夹取螺旋状金属丝头端牵拉取出)。此外,由于螺旋状金属丝有一定的轴向变形能力,且螺旋状金属丝位于支架主体(即圆柱管状支架)的沉降弧中,相对支架主体有一定的活动范围,在受到外力时,螺旋状金属丝可在沉降弧中小范围移动,从而具有更大的变形能力,对支架主体的柔顺性影响较小。
有益效果:
(1)本发明的一种支架的制备方法,在保证支架柔顺性和体内可回收性的临床需求上,有效提高了支架的径向支撑性,保证血管、非血管等腔道的通畅;
(2)本发明最终制备得到一种支架,该支架仍保留纬编支架的可回收性能,螺旋状金属丝所在段的径向力为圆柱管状支架的1.4~6.6倍,以匹配不同力学需求。
附图说明
图1为实施例1制得的支架的结构示意图;
图2为实施例1制备支架时金属丝按照
Figure PCTCN2022100908-appb-000002
周期性喂入方式示意图;
图3为实施例2制备支架时金属丝按照
Figure PCTCN2022100908-appb-000003
周期性喂入方式示意图;
图4为实施例1制得的支架的回收过程示意图;
图5为实施例9制得的支架的结构示意图;
图6为实施例15制得的支架的结构示意图;
图7为实施例15制得的支架的回收过程示意图;
图8为实施例22制得的支架的结构示意图;
其中,1-圆柱管状支架,2-螺旋状金属丝,3-穿入位置,4-穿出位置,5-金属丝头端。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种支架的制备方法,具体步骤如下:
(1)按纬编工艺,使用小针筒直径的圆纬机(针筒直径为25mm,针数为22针)将材质为镍钛合金的单根金属丝(直径为0.12mm)织造成圆柱管状支架,圆柱管状支架的组织结构为纬编平针组织,圆柱管状支架的长度为120mm,内径为20mm;
(2)如图1和图2所示,将材质为镍钛合金的4根金属丝(直径相同,都为0.20mm)按照螺距(60mm)、根数(4根)、螺旋方向(都为反旋)和穿套周期(
Figure PCTCN2022100908-appb-000004
周期,n为螺旋状金属丝2穿入位置3和穿出位置4之间的线圈纵列数,m为螺旋状金属丝2穿入位置3和穿出位置4之间的线圈横列数,n和m均为1)的要求螺旋喂入圆柱管状支架1指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在550℃下热定型15min,脱模即得到支架。
如图1所示,最终制得的一种支架,包括圆柱管状支架1和4根螺旋状金属丝2;螺旋状金属丝2螺旋的中心轴与圆柱管状支架1的中心轴重合;螺旋状金属丝2穿套在圆柱管状支架1的整体区域中,螺旋状金属丝2的穿入位置和穿出位置在圆柱管状支架1的沉降弧中;4根螺旋状金属丝2相互平行,相邻两根的轴向间距(即圆柱管状支架的同一线圈纵列中,相邻的两根螺旋状金属丝间沿圆柱管状支架轴向的距离)为15mm;支架的径向力为步骤(1)制得的圆柱管状支架1的2.9倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为28N,支架的径向力为80N);如图4所示,为实施例1制得的支架的回收过程示意图,拉扯金属丝头端5,支架脱散,螺旋状金属丝2分离,圆柱管状支架1拆解成一根纱线回收。
实施例2
一种支架的制备方法,具体步骤如下:
(1)按纬编工艺,使用小针筒直径的圆纬机(针筒直径为20mm,针数为15针)将材质为镍钛合金的单根金属丝(直径为0.12mm)织造成圆柱管状支架,圆柱管状支架的组织结构为纬编平针组织,圆柱管状支架的长度为150mm,内径为18mm;
(2)如图3所示,将材质为镍钛合金的2根金属丝(直径相同,都为0.15mm)按照螺距(70mm)、根数(2根)、螺旋方向(都为反旋)和穿套周期(
Figure PCTCN2022100908-appb-000005
周期,n为螺旋状金属丝2穿入位置3和穿出位置4之间的线圈纵列数,m为螺旋状金属丝2穿入位置3和穿出位置4之间的线圈横列数,n为2,m为1)的要求螺旋喂入圆柱管状支架1指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在600℃下热定型10min,脱模即得到支架。
最终制得的一种支架,包括圆柱管状支架和2根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;2根螺旋状金属丝相互平行,相邻两根的轴向间距(即圆柱管状支架的同一线圈纵列中,两根螺旋状金属丝间沿圆柱管状支架轴向的距离)为35mm;支架的径向力为步骤(1)制得的圆柱管状支架1的2.8倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为20N,支架的径向力为56N)。
实施例3
一种支架的制备方法,具体步骤如下:
(1)按纬编工艺,使用小针筒直径的圆纬机(针筒直径为20mm,针数为25针)将材质为医用不锈钢的单股金属丝(直径为0.14mm)织造成圆柱管状支架,圆柱管状支架的组织结构为纬编罗纹组织,圆柱管状支架的长度为100mm,内径为18mm;单股金属丝由2根金属丝拧在一起形成;
(2)将材质为医用不锈钢的单根金属丝(直径为0.30mm)按照螺距(50mm)、根数(1根)、螺旋方向(正旋)和穿套周期(
Figure PCTCN2022100908-appb-000006
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为2)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在450℃下热定型25min,脱模即得到支架。
制得的一种支架,包括圆柱管状支架和单根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;支架的径向力为步骤(1)制得的圆柱管状支架1的1.5倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为38N,支架的径向力为58N)。
实施例4
一种支架的制备方法,具体步骤如下:
(1)按纬编工艺,使用小针筒直径的圆纬机(针筒直径为30mm,针数为12针)将材质为钴铬合金的单股金属丝(直径为0.10mm)织造成圆柱管状支架,圆柱管状支架的组织结构为纬编双反面组织,圆柱管状支架的长度为120mm,内径为23mm;单股金属丝由3根金属丝拧在一起形成;
(2)将材质为钴铬合金的3根金属丝(直径相同,都为0.08mm)按照螺距(60mm)、根数(3根)、螺旋方向(都为正旋)和穿套周期(
Figure PCTCN2022100908-appb-000007
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为2)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在950℃下热定型15min,脱模即得到支架。
最终制得的一种支架,包括圆柱管状支架和3根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;3根螺旋状金属丝相互独立地从圆柱管状支架不同的沉降弧中穿入穿出,3根螺旋状金属丝相互平行,相邻两根的轴向间距(即圆柱管状支架的同一线圈纵列中,相邻的两根螺旋状金属丝间沿圆柱管状支架轴向的距离)为20mm;支架的径向力为步骤(1)制得的圆柱管状支架1的3倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为21N,支架的径向力为64N)。
实施例5
一种支架的制备方法,具体步骤如下:
(1)按纬编工艺,使用小针筒直径的圆纬机(针筒直径为15mm,针数为15针)将材质为镁合金的单根金属丝(直径为0.18mm)织造成圆柱管状支架,圆柱管状支架的组织结构为纬编集圈组织,圆柱管状支架的长度为160mm,内径为10mm;
(2)将材质为镁合金的3根金属丝(直径相同,都为0.25mm)按照螺距(45mm)、根数(3根)、螺旋方向(都为正旋)和穿套周期(
Figure PCTCN2022100908-appb-000008
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为2)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在150℃下热定型20min,脱模即得到支架。
最终制得的一种支架,包括圆柱管状支架和3根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;3根螺旋状金属丝相互独立地从圆柱管状支架不同的沉降弧中穿入穿出,3根螺旋状金属丝相互平行,相邻两根的轴向间距(即圆柱管状支架的同一线圈纵列中,相邻的两根螺旋状金属丝间沿圆柱管状支架轴向的距离)为15mm;支架的径向力为步骤(1)制得的圆柱管状支架1的3.4倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为32N,支架的径向力为108N)。
实施例6
一种支架的制备方法,基本同实施例1,不同之处仅在于步骤(2)的金属丝为钴铬合金,且将步骤(2)的金属丝喂入沉降弧中之前,将金属丝按照螺距和螺旋方向的要求螺旋缠绕在螺杆上,两端固定后在800℃下热定型20min。
最终制得的一种支架,包括圆柱管状支架和4根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;支架的径向力为步骤(1)制得的圆柱管状支架的3.1倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为28N,支架的径向力为86N)。
实施例7
一种支架的制备方法,基本同实施例1,不同之处仅在于步骤(1)的金属丝为钴铬合金,在步骤(1)结束后将圆柱管状支架的两端固定后在1150℃下热定型5min。
最终制得的一种支架,包括圆柱管状支架和4根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;支架的径向力为步骤(1)制得的圆柱管状支架的2.6倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为36N,支架的径向力为92N)。
实施例8
一种支架的制备方法,基本同实施例1,不同之处仅在于步骤(2)的金属丝为单根,材质和直径与步骤(1)的金属丝相同,步骤(2)的金属丝为步骤(1)的金属丝的预留段。
最终制得的一种支架,整体由一根金属丝制成,回收极为方便,夹取圆柱管状支架头端牵拉可拆解圆柱管状支架,后一并将螺旋丝牵拉回收。
实施例9
一种支架的制备方法,基本同实施例1,不同之处仅在于步骤(2)的金属丝为8根,其中,4根螺旋状金属丝的螺旋方向都为正旋,4根螺旋状金属丝的螺旋方向都为反旋。
如图5所示,最终制得的一种支架,包括圆柱管状支架和8根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;螺旋方向相同的4根螺旋状金属丝相互平行,相邻两根的轴向间距(即圆柱管状支架的同一线圈纵列中,相邻的两根螺旋状金属丝间沿圆柱管状支架轴向的距离)为15mm;螺旋方向相反的螺旋状金属丝对称分布;支架的径向力为步骤(1)制得的圆柱管状支架1的6.6倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为28N,支架的径向力为187N)。
实施例10
一种支架的制备方法,基本同实施例1,不同之处仅在于步骤(2)中,4根金属丝的螺旋方向不完全相同,其中,2根螺旋状金属丝的螺旋方向都为正旋,2根螺旋状金属丝的螺旋方向都为反旋。
最终制得的一种支架,包括圆柱管状支架和4根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;螺旋方向相同的2根螺旋状金属丝相互平行,相邻两根的轴向间距(即圆柱管状支架的同一线圈纵列中,相邻的两根螺旋状金属丝间沿圆柱管状支架轴向的距离)为15mm;螺旋方向相反的螺旋状金属丝对称分布;支架的径向力为步骤(1)制得的圆柱管状支架1的3.3倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为28N,支架的径向力为92N)。
实施例11
一种支架的制备方法,具体步骤如下:
(1)将材质为镍钛合金的单根金属丝(直径为0.12mm)预留一定的长度段后,按纬编工艺,使用小针筒直径的圆纬机(针筒直径为15mm,针数为12针)将金属丝织造成圆柱管状支架,圆柱管状支架的组织结构为纬编平针组织,圆柱管状支架的长度为120mm,内径为20mm;
(2)将步骤(1)的单根金属丝的预留段按照螺距(60mm)、螺旋方向(反旋)和穿套周期(
Figure PCTCN2022100908-appb-000009
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为1)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在550℃下热定型15min,脱模即得到支架。
最终制得的一种支架,包括圆柱管状支架和单根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;支架的径向力为步骤(1)制得的圆柱管状支架1的1.6倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为18N,支架的径向力为29N),支架,回收极为方便,夹取圆柱管状支架头端牵拉可拆解圆柱管状支架,后一并将螺旋丝牵拉回收。
实施例12
一种支架的制备方法,具体步骤如下:
(1)将材质为医用不锈钢的单根金属丝(直径为0.14mm)预留一定的长度段后,按纬编工艺,使用小针筒直径的圆纬机(针筒直径为35mm,针数为50针)将金属丝织造成圆柱管状支架,圆柱管状支架的组织结构为纬编平针组织,圆柱管状支架的长度为120mm,内径为20mm;
(2)将步骤(1)的单根金属丝的预留段按照螺距(70mm)、螺旋方向(反旋)和穿套周期(
Figure PCTCN2022100908-appb-000010
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为1)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在450℃下热定型15min,脱模即得到支架。
最终制得的一种支架,包括圆柱管状支架和单根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;支架的径向力为步骤(1)制得的圆柱管状支架1的2.2倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为34N,支架的径向力为72N),支架,回收极为方便,夹取圆柱管状支架头端牵拉可拆解圆柱管状支架,后一并将螺旋丝牵拉回收。
实施例13
一种支架的制备方法,具体步骤如下:
(1)将材质为钴铬合金的单根金属丝(直径为0.16mm)预留一定的长度段后,按纬编工艺,使用小针筒直径的圆纬机(针筒直径为20mm,针数为20针)将金属丝织造成圆柱管状支架,圆柱管状支架的组织结构为纬编平针组织,圆柱管状支架的长度为120mm,内径为20mm;
(2)将步骤(1)的单根金属丝的预留段按照螺距(80mm)、螺旋方向(反旋)和穿套周期(
Figure PCTCN2022100908-appb-000011
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为1)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在800℃下热定型15min,脱模即得到支架。
最终制得的一种支架,包括圆柱管状支架和单根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中 心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;支架的径向力为步骤(1)制得的圆柱管状支架1的1.9倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为29N,支架的径向力为55N),支架,回收极为方便,夹取圆柱管状支架头端牵拉可拆解圆柱管状支架,后一并将螺旋丝牵拉回收。
实施例14
一种支架的制备方法,具体步骤如下:
(1)将材质为镁合金的单根金属丝(直径为0.18mm)预留一定的长度段后,按纬编工艺,使用小针筒直径的圆纬机(针筒直径为25mm,针数为35针)将金属丝织造成圆柱管状支架,圆柱管状支架的组织结构为纬编平针组织,圆柱管状支架的长度为120mm,内径为20mm;
(2)将步骤(1)的单根金属丝的预留段按照螺距(50mm)、螺旋方向(反旋)和穿套周期(
Figure PCTCN2022100908-appb-000012
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为1)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在100℃下热定型15min,脱模即得到支架。
最终制得的一种支架,包括圆柱管状支架和单根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;支架的径向力为步骤(1)制得的圆柱管状支架1的2.3倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为34N,支架的径向力为77N),支架,回收极为方便,夹取圆柱管状支架头端牵拉可拆解圆柱管状支架,后一并将螺旋丝牵拉回收。
实施例15
一种支架的制备方法,具体步骤如下:
(1)按纬编工艺,使用小针筒直径的圆纬机(针筒直径为25mm,针数为22针)将材质为镍钛合金的单根金属丝(直径为0.12mm)织造成圆柱管状支架,圆柱管状支架的组织结构为纬编平针组织,圆柱管状支架的长度为120mm,内径为20mm;
(2)将材质为镍钛合金的1根金属丝(直径为0.20mm)按照螺距(60mm)、根数(1根)、螺旋方向(都为反旋)和穿套周期(
Figure PCTCN2022100908-appb-000013
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为1)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的一段中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在550℃下热定型15min,脱模即得到支架。
如图6所示,最终制得的一种支架,包括圆柱管状支架1和1根螺旋状金属丝2;螺旋状金属丝2螺旋的中心轴与圆柱管状支架1的中心轴重合;圆柱管状支架1沿长度方向分为多段,螺旋状金属丝2仅穿套在圆柱管状支架1的一段中,螺旋状金属丝2的穿入位置和穿出位置在圆柱管状支架1的沉降弧中;支架中螺旋状金属丝所在段的径向力为步骤(1)制得的圆柱管状支架1的1.4倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为28N,支架中螺旋状金属丝所在段的径向力为38N);如图7所示,为实施例15制得的支架的回收过程示意图,拉扯金属丝头端5,支架脱散,螺旋状金属丝2分离,圆柱管状支架1拆解成一根纱线回收。
实施例16
一种支架的制备方法,具体步骤如下:
(1)按纬编工艺,使用小针筒直径的圆纬机(针筒直径为20mm,针数为15针)将材质为镍钛合金的单根金属丝(直径为0.12mm)织造成圆柱管状支架,圆柱管状支架的组织结构为纬编平针组织,圆柱管状支架的长度为150mm,内径为18mm;
(2)将材质为镍钛合金的2根金属丝(直径相同,都为0.15mm)按照螺距(70mm)、根数(2根)、螺旋方向(都为反旋)和穿套周期(
Figure PCTCN2022100908-appb-000014
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n为2,m为1)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的一段中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在600℃下热定型10min,脱模即得到支架。
最终制得的一种支架,包括圆柱管状支架和2根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;圆柱管状支架沿长度方向分为多段,螺旋状金属丝仅穿套在圆柱管状支架的一段中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;2根螺旋状金属丝相互平行,相邻两根的轴向间距(即圆柱管状支架的同一线圈纵列中,两根螺旋状金属丝间沿圆柱管状支架轴向的距离)为35mm;支架中螺旋状金属丝所在段的径向力为步骤(1)制得的圆柱管状支架1的2.8倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为20N,支架中螺旋状金属丝所在段的径向力为56N)。
实施例17
一种支架的制备方法,具体步骤如下:
(1)按纬编工艺,使用小针筒直径的圆纬机(针筒直径为20mm,针数为25针)将材质为医用不锈钢的单股金属丝(直径为0.14mm)织造成圆柱管状支架,圆柱管状支架的组织结构为纬编罗纹组织,圆柱管状支架的长度为100mm,内径为18mm;单股金属丝由2根金属丝拧在一起形成;
(2)将材质为医用不锈钢的单根金属丝(直径为0.30mm)按照螺距(50mm)、根数(1根)、螺旋方向(正旋)和穿套周期(
Figure PCTCN2022100908-appb-000015
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为2)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的一段中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在450℃下热定型25min,脱模即得到支架。
制得的一种支架,包括圆柱管状支架和单根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;圆柱管状支架沿长度方向分为多段,螺旋状金属丝仅穿套在圆柱管状支架的一段中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;支架中螺旋状金属丝所在段的径向力为步骤(1)制得的圆柱管状支架1的1.5倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为38N,支架中螺旋状金属丝所在段的径向力为58N)。
实施例18
一种支架的制备方法,具体步骤如下:
(1)按纬编工艺,使用小针筒直径的圆纬机(针筒直径为30mm,针数为12针)将材质为钴铬合金的单股金属丝(直径为0.10mm)织造成圆柱管状支架,圆柱管状支架的组织结构为纬编双反面组织,圆柱管状支架的长度为120mm,内径为23mm;单股金属丝由3根金属丝拧在一起形成;
(2)将材质为钴铬合金的3根金属丝(直径相同,都为0.08mm)按照螺距(60mm)、根数(3根)、螺旋方向(都为正旋)和穿套周期(
Figure PCTCN2022100908-appb-000016
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为2)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的一段中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在950℃下热定型15min,脱模即得到支架。
最终制得的一种支架,包括圆柱管状支架和3根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;圆柱管状支架沿长度方向分为多段,螺旋状金属丝仅穿套在圆柱管状支架的一段中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;3根螺旋状金属丝相互独立地从圆柱管状支架不同的沉降弧中穿入穿出, 3根螺旋状金属丝相互平行,相邻两根的轴向间距(即圆柱管状支架的同一线圈纵列中,相邻的两根螺旋状金属丝间沿圆柱管状支架轴向的距离)为20mm;支架中螺旋状金属丝所在段的径向力为步骤(1)制得的圆柱管状支架1的3倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为21N,支架中螺旋状金属丝所在段的径向力为64N)。
实施例19
一种支架的制备方法,具体步骤如下:
(1)按纬编工艺,使用小针筒直径的圆纬机(针筒直径为15mm,针数为15针)将材质为镁合金的单根金属丝(直径为0.18mm)织造成圆柱管状支架,圆柱管状支架的组织结构为纬编集圈组织,圆柱管状支架的长度为160mm,内径为10mm;
(2)将材质为镁合金的3根金属丝(直径相同,都为0.25mm)按照螺距(45mm)、根数(3根)、螺旋方向(都为正旋)和穿套周期(
Figure PCTCN2022100908-appb-000017
周期,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n和m均为2)的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的一段中,得到半成品;
(3)将半成品穿套在芯棒上,两端固定后在150℃下热定型20min,脱模即得到支架。
最终制得的一种支架,包括圆柱管状支架和3根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;圆柱管状支架沿长度方向分为多段,螺旋状金属丝仅穿套在圆柱管状支架的一段中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;3根螺旋状金属丝相互独立地从圆柱管状支架不同的沉降弧中穿入穿出,3根螺旋状金属丝相互平行,相邻两根的轴向间距(即圆柱管状支架的同一线圈纵列中,相邻的两根螺旋状金属丝间沿圆柱管状支架轴向的距离)为15mm;支架中螺旋状金属丝所在段的径向力为步骤(1)制得的圆柱管状支架1的3.4倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为32N,支架中螺旋状金属丝所在段的径向力为108N)。
实施例20
一种支架的制备方法,基本同实施例15,不同之处仅在于步骤(2)的金属丝为钴铬合金,且将步骤(2)的金属丝喂入沉降弧中之前,将金属丝按照螺距和螺旋方向的要求螺旋缠绕在螺杆上,两端固定后在800℃下热定型20min。
最终制得的一种支架,包括圆柱管状支架和4根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;圆柱管状支架沿长度方向分为多段,螺旋状金属丝仅穿套在圆柱管状支架的一段中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;支架中螺旋状金属丝所在段的径向力为步骤(1)制得的圆柱管状支架的1.5倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为28N,支架中螺旋状金属丝所在段的径向力为42N)。
实施例21
一种支架的制备方法,基本同实施例15,不同之处仅在于步骤(1)的金属丝为钴铬合金,在步骤(1)结束后将圆柱管状支架的两端固定后在1150℃下热定型5min。
最终制得的一种支架,包括圆柱管状支架和4根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;圆柱管状支架沿长度方向分为多段,螺旋状金属丝仅穿套在圆柱管状支架的一段中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;支架中螺旋状金属丝所在段的径向力为步骤(1)制得的圆柱管状支架的1.5倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为36N,支架中螺旋状金属丝所在段的径向力为55N)。
实施例22
一种支架的制备方法,基本同实施例15,不同之处仅在于步骤(2)的金属丝为2根,其中,1根螺旋状金属丝的螺旋方向都为正旋,1根螺旋状金属丝的螺旋方向都为反旋。
如图8所示,最终制得的一种支架,包括圆柱管状支架和2根螺旋状金属丝;螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;圆柱管状支架沿长度方向分为多段,螺旋状金属丝仅穿套在圆柱管状支架的一段中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;螺旋方向相反的螺旋状金属丝对称分布;支架中螺旋状金 属丝所在段的径向力为步骤(1)制得的圆柱管状支架1的1.8倍(使用RX550测力器测量径向压缩性能,以直径压缩至初始直径的50%时的压缩力作为径向力,圆柱管状支架的径向力为28N,支架中螺旋状金属丝所在段的径向力为51N)。

Claims (10)

  1. 一种支架,其特征在于,包括圆柱管状支架和单根或多根螺旋状金属丝;
    圆柱管状支架由单根或单股金属丝按纬编工艺加工而成,单股金属丝由两根以上金属丝拧在一起形成;
    螺旋状金属丝螺旋的中心轴与圆柱管状支架的中心轴重合;
    螺旋状金属丝穿套在圆柱管状支架的整体区域中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中;或者,圆柱管状支架沿长度方向分为多段,螺旋状金属丝仅穿套在圆柱管状支架的一段中,螺旋状金属丝的穿入位置和穿出位置在圆柱管状支架的沉降弧中。
  2. 根据权利要求1所述的一种支架,其特征在于,圆柱管状支架的组织结构为纬编平针组织、纬编罗纹组织、纬编双罗纹组织、纬编双反面组织或纬编集圈组织。
  3. 根据权利要求1所述的一种支架,其特征在于,圆柱管状支架的材质为镍钛合金、医用不锈钢、钴铬合金或镁合金中的一种以上。
  4. 根据权利要求1所述的一种支架,其特征在于,圆柱管状支架的长度为50~250mm,内径为10~25mm,构成圆柱管状支架的单根或单股金属丝的直径为0.035~0.2mm。
  5. 根据权利要求4所述的一种支架,其特征在于,螺旋状金属丝的直径为0.035~0.3mm,根数为1~10根,螺距为5~100mm,螺旋方向为正旋或反旋。
  6. 根据权利要求5所述的一种支架,其特征在于,螺旋状金属丝的根数为d,d为偶数,其中,d/2根螺旋状金属丝的螺旋方向都为正旋,d/2根螺旋状金属丝的螺旋方向都为反旋。
  7. 根据权利要求1所述的一种支架,其特征在于,螺旋状金属丝的材质为镍钛合金、医用不锈钢、钴铬合金或镁合金中的一种以上。
  8. 根据权利要求1所述的一种支架,其特征在于,螺旋状金属丝按周期性穿套在圆柱管状支架的整体区域或一段中,其中,n为螺旋状金属丝穿入位置和穿出位置之间的线圈纵列数,m为螺旋状金属丝穿入位置和穿出位置之间的线圈横列数,n小于圆柱管状支架的总纵列数,m小于圆柱管状支架的总横列数。
  9. 根据权利要求1所述的一种支架,其特征在于,螺旋状金属丝所在段的径向力为圆柱管状支架的1.4~6.6倍。
  10. 制备如权利要求1~9任一项所述的一种支架的方法,其特征在于,步骤如下:
    (1)使用小针筒直径的圆纬机将单根或单股金属丝织造成圆柱管状支架,圆纬机的针筒直径为15~35mm,针数为12~50针;
    (2)将单根或多根金属丝按照螺距、根数、螺旋方向和穿套周期的要求螺旋喂入圆柱管状支架指定穿入穿出位置的沉降弧中,使得螺旋状金属丝穿套在圆柱管状支架的整体区域或一段中,得到半成品;
    (3)将半成品穿套在芯棒上,两端固定后热定型,脱模即得到支架;
    当步骤(1)的金属丝与步骤(2)的金属丝的材质不相同,且步骤(1)的金属丝的热定型温度较高时,在步骤(1)结束后将圆柱管状支架的两端固定后热定型;
    当步骤(1)的金属丝与步骤(2)的金属丝的材质不相同,且步骤(1)的金属丝的热定型温度较低时,将步骤(2)的金属丝喂入沉降弧中之前,将金属丝按照螺距和螺旋方向的要求螺旋缠绕在螺杆上,两端固定后热定型;
    金属丝的材质与热定型的温度的对应关系为:镍钛合金,500~650℃;医用不锈钢,450~550℃;钴铬合金,800~1150℃;镁合金,100~200℃;
    每次热定型的时间为5~30min。
PCT/CN2022/100908 2021-08-12 2022-06-23 一种支架及其制备方法 WO2023016102A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110924763.5A CN113813090B (zh) 2021-08-12 2021-08-12 一种支架及其制备方法
CN202110924763.5 2021-08-12

Publications (1)

Publication Number Publication Date
WO2023016102A1 true WO2023016102A1 (zh) 2023-02-16

Family

ID=78913161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100908 WO2023016102A1 (zh) 2021-08-12 2022-06-23 一种支架及其制备方法

Country Status (2)

Country Link
CN (1) CN113813090B (zh)
WO (1) WO2023016102A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113813090B (zh) * 2021-08-12 2022-07-29 广东富江医学科技有限公司 一种支架及其制备方法
CN114305817B (zh) * 2022-03-14 2022-05-27 杭州亿科医疗科技有限公司 一种抗塌陷的血管支架
CN115654052B (zh) * 2022-10-18 2023-06-30 武汉纺织大学 一种压缩型管状形状记忆复合结构及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389271A (zh) * 2001-05-31 2003-01-08 东华大学 针织医用金属内支架及其制造方法
US20040133272A1 (en) * 2000-09-28 2004-07-08 Swaminathan Jayaraman Method for manufacturing a wire stent coated with a biocompatible fluoropolymer
JP2008086339A (ja) * 2006-09-29 2008-04-17 Olympus Medical Systems Corp ステント
CN101683537A (zh) * 2008-09-25 2010-03-31 上海聚睿生物材料有限公司 一种组织工程肌腱复合支架材料及其制备方法和用途
CN107468391A (zh) * 2017-08-21 2017-12-15 北京赛铂医药科技有限公司 一种脑血管抽线式临时支架
CN107536658A (zh) * 2016-06-28 2018-01-05 微创心脉医疗科技(上海)有限公司 覆膜支架及其制造方法
US20200214858A1 (en) * 2019-01-07 2020-07-09 Boston Scientific Scimed, Inc. Stent with anti-migration feature
CN113813090A (zh) * 2021-08-12 2021-12-21 广东富江医学科技有限公司 一种支架及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2671704Y (zh) * 2003-11-29 2005-01-19 桐乡市自力有限责任公司 静电植绒布
CN105586698A (zh) * 2014-10-23 2016-05-18 曾聪明 变色织物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133272A1 (en) * 2000-09-28 2004-07-08 Swaminathan Jayaraman Method for manufacturing a wire stent coated with a biocompatible fluoropolymer
CN1389271A (zh) * 2001-05-31 2003-01-08 东华大学 针织医用金属内支架及其制造方法
JP2008086339A (ja) * 2006-09-29 2008-04-17 Olympus Medical Systems Corp ステント
CN101683537A (zh) * 2008-09-25 2010-03-31 上海聚睿生物材料有限公司 一种组织工程肌腱复合支架材料及其制备方法和用途
CN107536658A (zh) * 2016-06-28 2018-01-05 微创心脉医疗科技(上海)有限公司 覆膜支架及其制造方法
CN107468391A (zh) * 2017-08-21 2017-12-15 北京赛铂医药科技有限公司 一种脑血管抽线式临时支架
US20200214858A1 (en) * 2019-01-07 2020-07-09 Boston Scientific Scimed, Inc. Stent with anti-migration feature
CN113813090A (zh) * 2021-08-12 2021-12-21 广东富江医学科技有限公司 一种支架及其制备方法

Also Published As

Publication number Publication date
CN113813090B (zh) 2022-07-29
CN113813090A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2023016102A1 (zh) 一种支架及其制备方法
US11786386B2 (en) Integrated stent repositioning and retrieval loop
CA2475058C (en) Medical stents for body lumens exhibiting peristaltic motion
CN104254289B (zh) 阻塞装置
JP2020073179A (ja) 改善された放射線不透過性を有するマルチストランドインプラント
US6305436B1 (en) Medical stents for body lumens exhibiting peristaltic motion
US20230072224A1 (en) Braided medical devices
CN108514677A (zh) 一种微导管
CN102973341A (zh) 一种编织的自膨式管腔支架及其制作方法
WO1994012136A9 (en) Stents for body lumens exhibiting peristaltic
KR20170126969A (ko) 임플란트 삽입 시스템
JP4503011B2 (ja) 螺旋移植片
CN114052820B (zh) 一种血管支架
CN106880429A (zh) 一种螺旋式血管支架
CN113116611A (zh) 医用支架以及覆膜支架
CN218356482U (zh) 一种血流导向装置
CN113081419B (zh) 一种可显影可回收自膨式输尿管支架管及其制备方法
CN113599030B (zh) 一种自锚定食管支架
CN202982316U (zh) 一种编织的自膨式管腔支架
CN216854949U (zh) 一种治疗动脉瘤的植入物
CN116370008B (zh) 多节距编织支架
CN115998496B (zh) 一种节段式膨胀部件、包含其的输送装置和脉管植入物系统
CN111317601A (zh) 气管支架
CN113952096A (zh) 一种血流导向装置及制备方法
MXPA96005485A (en) Compound implant recubie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE