WO2023015934A1 - 一种终端 - Google Patents

一种终端 Download PDF

Info

Publication number
WO2023015934A1
WO2023015934A1 PCT/CN2022/087935 CN2022087935W WO2023015934A1 WO 2023015934 A1 WO2023015934 A1 WO 2023015934A1 CN 2022087935 W CN2022087935 W CN 2022087935W WO 2023015934 A1 WO2023015934 A1 WO 2023015934A1
Authority
WO
WIPO (PCT)
Prior art keywords
waterproof
slot
component
terminal
liquid
Prior art date
Application number
PCT/CN2022/087935
Other languages
English (en)
French (fr)
Inventor
姚文星
王旭阳
汤镇睿
张鑫
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22854938.2A priority Critical patent/EP4184904A4/en
Publication of WO2023015934A1 publication Critical patent/WO2023015934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/18Telephone sets specially adapted for use in ships, mines, or other places exposed to adverse environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0262Details of the structure or mounting of specific components for a battery compartment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of terminal equipment, and more specifically, to a terminal.
  • the battery cover and middle frame of mobile phone products are usually bonded together by adhesive components.
  • the middle frame is provided with a supporting wall for placing the key FPC (Flexible Printed Circuit, flexible circuit board).
  • FPC Flexible Printed Circuit, flexible circuit board
  • a waterproof component is also arranged between the supporting wall and the bonding component, and the bonding component and the waterproof component cooperate with each other to form a waterproof structure.
  • the conventional waterproof structures shown in Figures 1 and 2 all include an adhesive assembly 3, the adhesive assembly 3 has a slot 31, the waterproof assembly 4 is placed in the slot 31, and the gap between the adhesive assembly 3 and the waterproof assembly 4 The gap is the liquid inlet space.
  • the liquid inlet space shown in Figure 1 and Figure 2 is easier to enter liquid, and the waterproof effect is poor.
  • the present application provides a terminal, which can improve the waterproof effect of the terminal.
  • An embodiment of the present application provides a terminal, and the terminal includes a battery cover, a middle frame, an adhesive component, and a waterproof component.
  • the battery cover is bonded to the middle frame through an adhesive component.
  • the middle frame is provided with a supporting wall protruding toward the direction of the battery cover.
  • the bonding component is provided with a slot, and the slot is a semi-closed slot.
  • the waterproof component is arranged between the supporting wall and the bonding component, and is located inside the slot.
  • the cross-sectional shape of the waterproof component is adapted to the cross-sectional shape of the slot. There is an avoidance distance between the waterproof component and the slot and forms a liquid inlet path.
  • a cross-section of a waterproof assembly having a convex configuration or a concave configuration on at least one of a first side and a second side, wherein the first side and the second side are not on the same side as the opening of the slot and are not connected to the opening of the slot.
  • the openings of the slots are opposite.
  • the waterproof structure of the terminal in the embodiment of the present application can lengthen the liquid inlet path, slow down the liquid inlet speed, and have a concave structure or a convex structure that can store liquid, restricting the liquid from entering the interior of the terminal to a certain extent, thereby improving the terminal waterproof effect.
  • the cross section of the waterproof component has a convex structure or a concave structure on both the first side and the second side.
  • both the first side and the second side of the waterproof component can lengthen the liquid inlet path, slow down the liquid inlet speed, and at the same time, both the first side and the second side can store liquid, compared with only one side having a concave structure or a convex shape
  • the implementation manner of the structure, this implementation manner can further improve the waterproof effect of the terminal.
  • the cross section of the waterproof component has a convex structure or a concave structure on at least one of the third side and the fourth side, the third side is on the same side as the slotted opening, and the fourth side The side is opposite the opening of the slot.
  • the liquid inlet path can be further lengthened to slow down the liquid inlet speed, and the concave or convex structure on the third side or the fourth side can store liquid, further improving the waterproof effect of the terminal.
  • the cross-section of the waterproof component has a convex structure or a concave structure on the third side and the fourth side, the third side is on the same side as the opening of the slot, and the fourth side is on the same side as the opening.
  • the openings of the slots are opposite.
  • this implementation can further lengthen the liquid inlet path, slow down the liquid inlet speed, and increase the number of concave holes that can store liquid. shaped structure or convex structure to further enhance the waterproof effect of the terminal.
  • the at least one convex structure or concave structure on the fourth side when the sidewall of at least one convex structure or concave structure on the third side is in contact with the corresponding sidewall of the slot, the at least one convex structure or concave structure on the fourth side The side walls are in contact with corresponding side walls of the slot. In this way, while the convex or concave structure on the third side of the waterproof component closes the liquid inlet path on the third side, the convex or concave structure on the fourth side of the waterproof component closes the liquid inlet path on the fourth side. Therefore, it is possible to completely restrict liquid from entering into the interior of the terminal, further improving the waterproof effect of the terminal.
  • the cross-sectional shape of the waterproof component is H-shaped or cross-shaped.
  • the liquid inlet path can be lengthened, the liquid inlet speed can be slowed down, the liquid can be stored, and the liquid can be restricted from entering the interior of the terminal to a certain extent, and the liquid can be completely restricted from entering the interior of the terminal under the biased state.
  • H-shaped or cross-shaped waterproof components are easier to process.
  • the material of the waterproof component is a compressible waterproof material.
  • the waterproof component can not only play the role of waterproofing, but also can absorb the vibration of the contact part of the electronic component and the terminal shell, so as to prevent the electronic component from being crushed.
  • Figure 1 is a schematic diagram of the assembly state of the adhesive component and the waterproof component in the shell structure of the current terminal;
  • FIG. 2 is a schematic diagram of an assembly state of another adhesive component and a waterproof component in the shell structure of the current terminal;
  • FIG. 3 is a schematic diagram of a closed shell structure of a terminal provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a shell structure of a terminal provided in an embodiment of the present application in an open state
  • FIG. 5 is an enlarged schematic diagram of area A in FIG. 4 provided by the embodiment of the present application.
  • FIG. 6 is an exploded schematic diagram of components of a shell structure of a terminal provided in an embodiment of the present application.
  • FIG. 7 is an enlarged schematic diagram of area B in FIG. 4 provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the assembly state of the adhesive component and the waterproof component in the shell structure of the terminal provided in the first embodiment of the present application;
  • Figures 9a to 9e are schematic diagrams of the assembly state of the adhesive component and the waterproof component in the shell structure of the terminal provided by the second embodiment of the present application;
  • FIG. 10a to FIG. 10e are schematic diagrams of the assembly state of the adhesive component and the waterproof component in the shell structure of the terminal provided by the third embodiment of the present application;
  • Figures 11a to 11e are schematic diagrams of the assembly state of the adhesive component and the waterproof component in the shell structure of the terminal provided by the fourth embodiment of the present application;
  • FIG. 12 is a schematic diagram of the assembly state of the adhesive component and the waterproof component in the shell structure of the terminal provided by the fifth to eighth embodiments of the present application;
  • FIG. 13 is a schematic diagram of an assembled state of an adhesive component and a waterproof component in a shell structure of a terminal provided by the ninth embodiment of the present application;
  • FIG. 14a to FIG. 14b are schematic diagrams of an assembled state of an adhesive component and a waterproof component in the shell structure of a terminal provided by the tenth embodiment of the present application.
  • FIG. 1 and FIG. 2 are schematic diagrams of the assembly state of the adhesive component and the waterproof component in the shell structure of the current terminal. It should be noted that, the schematic diagrams of the assembled state shown in Fig. 1 and Fig. 2 only show the adhesive component and the waterproof component, while omitting other components.
  • the waterproof components shown in Fig. 1 and Fig. 2 are of basic geometric shapes, such as square and trapezoid. With such a conventional adhesive component and waterproof component, external liquid is more likely to enter the interior of the terminal, resulting in a poor waterproof effect.
  • an embodiment of the present application provides a terminal, wherein the terminal device provided can be a mobile phone, a wearable device, an AR (Augmented Reality, augmented reality)/VR (Virtual Reality, virtual reality) device, a tablet computer , notebook computer, UMPC (Ultra-mobile Personal Computer, super mobile personal computer), netbook, PDA (Personal Digital Assistant, personal digital assistant) and other arbitrary terminals, the embodiments of the present application do not make any restrictions on this.
  • FIG. 3 is a schematic diagram of a terminal shell structure provided in an embodiment of the present application in a closed state.
  • the housing structure includes a battery cover 1 and a middle frame 2 , and the battery cover 1 is connected to the middle frame 2 .
  • FIG. 4 is a schematic diagram of an open shell structure provided by an embodiment of the present application
  • FIG. 5 is an enlarged schematic diagram of area A in FIG. 4 .
  • the shell structure not only includes all the components in FIG. 1 , but also includes the bonding assembly 3 .
  • the battery cover 1 is connected to the middle frame 2 through an adhesive component 3 , for example, it may be connected to the middle frame 2 through adhesive.
  • the battery cover 1 is connected to the middle frame 2, that is, the shell structure is in a closed state.
  • the embodiments shown in Fig. 3 to Fig. 5 are the shell structure of the battery cover 1, the bonding assembly 3, and the middle frame 2 from top to bottom.
  • FIG. 6 is an exploded schematic diagram of components of a terminal provided by an embodiment of the present application
  • FIG. 7 is an enlarged schematic diagram of area B in FIG. 6
  • a hole is dug in a part of the middle frame 2 for placing the button FPC
  • the middle frame 2 is provided with a support wall protruding toward the direction of the battery cover 1 21
  • the button FPC is bent from the support wall 21 .
  • a groove is provided at the top of the support wall 21 .
  • the top of the support wall 21 sinks, that is, the top of the support wall 21 and the battery cover 1 are provided with a certain avoidance distance. In this way, there is a gap between the top of the supporting wall 21 and the battery cover 1 , and external water vapor can easily enter the interior of the terminal through the gap. Therefore, it is necessary to arrange a waterproof structure at the gap to enhance the waterproof effect.
  • a waterproof component 4 may be provided at the gap between the top of the support wall 21 and the battery cover 1 .
  • a slot 31 is also provided on the adhesive component 3 .
  • the cross-sectional shape of the slot 31 is adapted to the shape of the waterproof component 4 .
  • the adhesive component 3 and the waterproof component 4 constitute the waterproof structure of the embodiment of the present application, and the avoidance distance between the adhesive component 3 and the waterproof component 4 forms a liquid inlet path.
  • the button FPC will interfere with the bonding component 3 .
  • the battery cover 1 After the battery cover 1 is assembled, it may warp, or the battery cover 1 is easy to come off after a long time of use. And the button FPC will jack up the battery cover, and for the special battery cover 1, a mold will be displayed, which will affect the user experience.
  • the slot 31 can also prevent the bonding component 3 from bonding the button FPC. When the bonding assembly 3 bonds the button FPC and the battery cover 1 moves slightly, the button FPC is easily pulled and damaged by the bonding assembly 3 , thereby affecting its performance.
  • the waterproof structure of the terminal in the foregoing embodiments is taken as an example to describe a technical solution that can improve the waterproof effect of the terminal.
  • Fig. 8 is a schematic diagram of an assembled state of an adhesive assembly 3 and a waterproof assembly 4 provided in the first embodiment of the present application. It should be noted that Fig. 8 only shows the adhesive assembly 3 and the waterproof assembly 4, while omitting other components .
  • the first side or the second side of the cross section of the waterproof component 4 has a concave structure.
  • the first side and the second side of the cross section of the waterproof component 4 are not on the same side as the opening of the slot 31 and are not opposite to the opening of the slot 31 .
  • the waterproof component 4 and the bonding component 3 are installed normally. After the liquid enters the waterproof structure from the outside, it flows along the gap between the waterproof component 4 and the bonding component 3 , and at this time, the gap between the waterproof component 4 and the bonding component 3 is connected. Due to the concave structure on the first side or the second side, compared with conventional waterproof structures (as shown in FIGS. 1 and 2 ), the liquid inlet path in FIG. 8 is longer than that of conventional waterproof structures. Moreover, the concave structure on either the first side or the second side of FIG. 8 can also store liquid.
  • the waterproof component 4 and the adhesive component 3 are installed normally, after the liquid enters the waterproof structure from the outside, it enters from the inlet of the liquid inlet path on the first side or the second side, and then passes through the concave structure on the first side or the second side, and finally Flowing out from the outlet, the increased concave structure can significantly lengthen the liquid inlet path, thereby slowing down the liquid inlet speed. Moreover, after the liquid enters the concave structure along the liquid inlet path, it will be stored in the concave structure, so that the liquid can be restricted from entering the interior of the terminal to a certain extent.
  • the first side or the second side of the waterproof component 4 has a convex structure, it can not only lengthen the liquid inlet path, slow down the liquid inlet speed, but also store the liquid, restricting the liquid from entering the terminal to a certain extent, and finally realize the same Compared with the conventional waterproof structure, the purpose of improving the waterproof effect.
  • Figures 9a to 9e are schematic diagrams of the assembly state of an adhesive assembly 3 and a waterproof assembly 4 provided in the second embodiment of the present application. It should be noted that Figures 9a to 9e only show the adhesive assembly 3 and the waterproof assembly 4 , while omitting other components. Wherein, in the embodiment shown in Fig. 9a to Fig. 9e, the first side and the second side of the cross section of the waterproof component 4 each have a concave structure. In the embodiment shown in FIGS. 9 a to 9 e , the first side and the second side of the cross section of the waterproof component 4 are not on the same side as the opening of the slot 31 and are not opposite to the opening of the slot 31 . Therefore, in fact, in the embodiment shown in Fig. 9a to Fig. 9e, the cross-sectional shape of the waterproof component 4 is H-shaped.
  • Fig. 9a is a schematic diagram of the normal installation of the waterproof component 4 and the adhesive component 3 with an H-shaped cross-sectional shape, that is, when the installation does not deviate.
  • FIG. 9 a after the liquid enters the waterproof structure from the outside, it flows along the gap between the waterproof component 4 and the slot 31 . At this time, the gaps between the waterproof component 4 and the slot 31 are all connected. Since both the first side and the second side have concave structures, compared with conventional waterproof structures (as shown in FIGS. 1 and 2 ), the liquid inlet path in FIG. 9a is longer than that of conventional waterproof structures. Also, the concave structures on both the first side and the second side of Fig. 9a can also store liquid.
  • Fig. 9b is a schematic diagram of the state when the waterproof component 4 with an H-shaped cross-section is attached upwards.
  • the liquid inlet path in Figure 9b is still longer than that of conventional waterproof structures, and the concave structure at the bottom can still store liquid.
  • Fig. 9c is a schematic diagram of the state when the waterproof component 4 with an H-shaped cross section is attached to the right.
  • the liquid inlet path on the first side is closed.
  • the side wall of the concave structure on the second side is in contact with the side wall of the slot 31 , so the liquid inlet path on the second side is closed.
  • the embodiment shown in FIG. 9c can completely restrict liquid from entering the interior of the terminal when it is attached to the right.
  • Fig. 9d is a schematic diagram of the state when the waterproof component 4 with an H-shaped cross section is attached to the left.
  • the liquid inlet path on the first side is closed.
  • the side wall of the concave structure on the second side is in contact with the side wall of the slot 31 , so the liquid inlet path on the second side is closed.
  • the embodiment shown in FIG. 9d can also completely restrict the liquid from entering the interior of the terminal when it is deflected to the left.
  • Fig. 9e is a schematic diagram of the state when the waterproof component 4 with an H-shaped cross-section is rotated and attached.
  • the liquid inlet path on the first side is closed.
  • the apex of the side wall of the concave structure on the second side is in contact with the side wall of the slot 31 , so the liquid inlet path on the second side is closed.
  • the embodiment shown in FIG. 9e can also completely restrict the liquid from entering the interior of the terminal when it is rotated to the wrong direction.
  • the waterproof assembly 4 and the slot 31 are in a normal installation state, after the liquid enters the waterproof structure from the outside, it enters from the inlet of the liquid inlet path on the first side, then passes through the concave structure on the first side, and finally flows out from the outlet.
  • the increased concave structure can significantly lengthen the liquid inlet path, thereby slowing down the liquid inlet speed.
  • the liquid also enters from the inlet of the liquid inlet path on the second side, passes through the concave structure on the second side, and finally flows out from the outlet.
  • the added concave structure can also significantly lengthen the liquid inlet path, thereby slowing down the liquid inlet speed. Improve the waterproof effect of the terminal in terms of slowing down the liquid ingress speed.
  • the added concave structure can still lengthen the liquid inlet path on the other side, and the liquid inlet can still be slowed down on the whole. speed. If the waterproof component 4 is deflected to the left or to the right, the liquid inlet paths on the first side and the second side can be completely closed, thereby completely restricting the liquid from entering the terminal. If the waterproof component 4 is rotated and deflected, the liquid inlet paths on the first side and the second side are also completely closed, so that liquid can be completely restricted from entering the interior of the terminal.
  • the technical solution provided by the second embodiment of the present application can improve the efficiency of slowing down the liquid inflow speed and storing liquid when the waterproof component 4 and the adhesive component 3 are in the normal installation state, the upwardly biased state, and the downwardly biased state.
  • the waterproof effect of the terminal when the waterproof component 4 is in the state of sticking to the left, sticking to the right and rotating, it can completely restrict the liquid from entering the interior of the terminal, so that no matter which installation state the waterproof component 4 and the adhesive component 3 are in, it can be realized.
  • the purpose of improving the waterproof effect of the terminal is provided.
  • Figures 10a to 10e are schematic diagrams of an assembly state of an adhesive assembly 3 and a waterproof assembly 4 provided in the third embodiment of the present application. It should be noted that Figures 10a to 10e only show the adhesive assembly 3 and the waterproof assembly 4 , while omitting other components. Wherein, in the embodiment shown in Fig. 10a to Fig. 10e, the first side and the second side of the cross section of the waterproof component 4 each have a convex structure. In the embodiment shown in FIGS. 10 a to 10 e , the first side and the second side of the cross section of the waterproof component 4 are not on the same side as the opening of the slot 31 and are not opposite to the opening of the slot 31 . Therefore, in the embodiment shown in Figs. 10a to 10e, the cross-sectional shape of the waterproof component 4 is cross-shaped.
  • Fig. 10a is a schematic diagram of the state when the waterproof component 4 and the adhesive component 3 with a cross-shaped cross-sectional shape are installed normally, that is, when the installation does not deviate.
  • FIG. 10 a after the liquid enters the waterproof structure from the outside, it flows along the gap between the waterproof component 4 and the slot 31 . At this time, the gaps between the waterproof component 4 and the slot 31 are all connected. Since both the first side and the second side have convex structures, compared with conventional waterproof structures (as shown in FIGS. 1 and 2 ), the liquid inlet path in FIG. 10a is longer than that of conventional waterproof structures. Also, the convex structures on both the first side and the second side of Fig. 10a can also store liquid.
  • Fig. 10b is a schematic diagram of the state when the waterproof component 4 with a cross-shaped cross-section is attached upwards.
  • the liquid inlet path in Figure 10b is still longer than that of conventional waterproof structures, and the convex structure at the bottom can still store liquid.
  • Fig. 10c is a schematic diagram of the state when the waterproof component 4 with a cross-shaped cross-section is attached to the right.
  • the liquid inlet path on the first side is closed.
  • the side wall of the convex structure on the second side is in contact with the side wall of the slot 31 , so the liquid inlet path on the second side is closed.
  • the embodiment shown in FIG. 10c can completely restrict liquid from entering the interior of the terminal when it is attached to the right.
  • Fig. 10d is a schematic diagram of the state when the waterproof component 4 with a cross-shaped cross-section is attached to the left.
  • the liquid inlet path on the first side is closed.
  • the side wall of the convex structure on the second side is in contact with the side wall of the slot 31 , so the liquid inlet path on the second side is closed.
  • the embodiment shown in Fig. 10d can also completely restrict the liquid from entering the interior of the terminal when it is attached to the left.
  • Fig. 10e is a schematic diagram of the state when the waterproof component 4 with a cross-shaped cross-section is rotated and attached.
  • the liquid inlet path on the first side is closed.
  • the apex of the side wall of the convex structure on the second side is in contact with the side wall of the slot 31 , so the liquid inlet path on the second side is closed.
  • the embodiment shown in FIG. 10 e can also completely restrict the liquid from entering the interior of the terminal when it is rotated to the wrong direction.
  • the waterproof assembly 4 and the slot 31 are in a normal installation state, after the liquid enters the waterproof structure from the outside, it enters from the inlet of the liquid inlet path on the first side, then passes through the convex structure on the first side, and finally flows out from the outlet.
  • the increased convex structure can significantly lengthen the liquid inlet path, thereby slowing down the liquid inlet speed.
  • the liquid also enters from the inlet of the liquid inlet path on the second side, passes through the convex structure on the second side, and finally flows out from the outlet.
  • the increased convex structure can also significantly lengthen the liquid inlet path, thereby slowing down the liquid inlet speed. Improve the waterproof effect of the terminal in terms of slowing down the liquid ingress speed.
  • the increased convex structure can still lengthen the liquid inlet path on the other side, and the liquid inlet can still be slowed down on the whole. speed.
  • the waterproof component 4 If the waterproof component 4 is deflected to the left or to the right, the liquid inlet paths on the first side and the second side can be completely closed, thereby completely restricting the liquid from entering the terminal.
  • the liquid inlet paths on the first side and the second side are also completely closed, so that liquid can be completely restricted from entering the interior of the terminal.
  • the technical solution provided by the third embodiment of the present application can improve the terminal in terms of slowing down the liquid inflow speed and storing liquid when the waterproof component 4 and the slot 31 are in the normal installation state, the upward biased state, and the downward biased state. waterproof effect. And when the waterproof component 4 is in the state of sticking to the left, sticking to the right and rotating, it can completely restrict the liquid from entering the interior of the terminal, so that no matter which installation state the waterproof component 4 and the adhesive component 3 are in, it can be lifted. The purpose of terminal waterproof effect.
  • FIG. 11a to 11e are schematic diagrams of an assembly state of an adhesive component and a waterproof component in a shell structure of a terminal provided in a fourth embodiment of the present application.
  • the first side and the second side of the cross section of the waterproof component 4 respectively have a concave structure and a convex structure.
  • Fig. 11a is a schematic diagram of the normal installation state of the waterproof component 4 and the adhesive component 3. If it is in a normal installation state, on the one hand, the concave structure and the convex structure lengthen the liquid inlet path, so that the liquid inlet speed is slowed down. On the other hand, the concave structure and the convex structure can store the liquid, which restricts the liquid from continuing to enter the interior of the terminal to a certain extent.
  • the specific implementation principle is consistent with the second embodiment and the third embodiment, and will not be repeated in this embodiment.
  • Fig. 11b is a schematic diagram of the state when the waterproof component 4 is installed in an upward biased state. If it is in the installation state of leaning upwards or downwards, on the one hand, the concave structure and the convex structure lengthen the liquid inlet path, so that the liquid inlet speed is slowed down. On the other hand, the concave structure and the convex structure can store the liquid, which restricts the liquid from continuing to enter the interior of the terminal to a certain extent.
  • the specific implementation principle is consistent with the second embodiment and the third embodiment, and will not be repeated in this embodiment.
  • Figure 11c is a schematic diagram of the state when the waterproof component 4 is installed to the left
  • Figure 11d is a schematic diagram of the state when the waterproof component 4 is installed to the right
  • Figure 11e is a schematic diagram of the state when the waterproof component 4 is installed in rotation. If it is in one of the installation states leaning to the left, the installation state leaning right and the installation state rotating, the liquid can be completely restricted from entering the interior of the terminal.
  • the specific implementation principle is the same as that of the second embodiment and the third embodiment, and will not be repeated in this embodiment.
  • FIG. 12 is a schematic diagram of an assembly state of an adhesive component and a waterproof component in the shell structure of the terminal provided by the fifth to eighth embodiments of the present application.
  • the first side of the cross section of the waterproof component 4 has two concave structures, and the second side has one convex structure.
  • the first side of the cross section of the waterproof component 4 has two concave structures, and the second side has one concave structure.
  • the first side of the cross section of the waterproof component 4 has two convex structures, and the second side also has two convex structures.
  • the first side of the cross section of the waterproof component 4 has two concave structures, and the second side also has two convex structures.
  • FIG. 12 Several modified embodiments shown in FIG. 12 can also achieve the beneficial effects of the first embodiment to the fourth embodiment. Therefore, if the cross-section of the waterproof component 4 has a convex structure or a concave structure on the first side and the second side, regardless of the installation state of the waterproof component 4 and the bonding component 3, the waterproof effect of the terminal can be improved. the goal of.
  • the width of the liquid inlet path between the waterproof component 4 and the slot 31 remains unchanged, that is, the width between the waterproof component 4 and the slot 31
  • the gap width always remains the same. In this way, no matter whether the waterproof component 4 is installed to the left or to the right, it can ensure that the liquid inlet paths on the first side and the second side are blocked at the same time, thereby ensuring that the liquid is completely restricted from entering the terminal.
  • the waterproof components of the current terminal shown in Figure 1 and Figure 2 may completely block the liquid inlet path when the rotation is offset, even if the trapezoidal waterproof component shown in Figure 2 is attached to the right Off-time will also make the liquid inlet path completely closed, but it can be seen that the current waterproof component of the terminal completely seals the liquid inlet path, which is more difficult than the embodiment of the present application.
  • the trapezoidal waterproof component in Fig. 2 needs to be pasted to the right for a longer distance to completely seal the liquid inlet path.
  • FIG. 13 is a schematic diagram of an assembled state of an adhesive component 3 and a waterproof component 4 provided by the eighth embodiment of the present application. It should be noted that Fig. 13 only shows the adhesive component 3 and the waterproof component 4, while omitting other components. Wherein, in the embodiment shown in FIG. 13 , both the first side and the second side of the cross section of the waterproof component 4 have a concave structure. At the same time, the third side of the cross section of the waterproof component 4 also has a concave structure. The third side shown in FIG. 13 is opposite to the opening of the slot 31 . In the embodiment shown in FIG. 13 , the waterproof component 4 and the bonding component 3 are in a normal installation state.
  • the liquid inlet path on the third side is longer than the third side liquid inlet path of the conventional waterproof structure, and the liquid inlet speed has been slowed down before the liquid enters the first and second side liquid inlet paths .
  • the liquid inlet path on the third side can store the liquid, thereby restricting the liquid from entering the liquid inlet paths on the first side and the second side to a certain extent. Therefore, compared with the second embodiment to the eighth embodiment, the ninth embodiment of the present application has a better effect of restricting liquid from entering into the terminal.
  • FIGS. 14a to 14b are schematic diagrams of an assembled state of an adhesive component 3 and a waterproof component 4 provided by the tenth embodiment of the present application. It should be noted that Fig. 14a to Fig. 14b only show the adhesive component 3 and the waterproof component 4, while omitting other components. Wherein, in the embodiment shown in Fig. 14a to Fig. 14b, the first side and the second side of the cross section of the waterproof component 4 each have a concave structure. At the same time, the third side and the fourth upper side of the cross section of the waterproof component 4 also have a concave structure. The fourth side shown in FIGS. 14 a to 14 b is on the same side as the slot 31 .
  • Figure 14a is a schematic diagram of the normal installation state of the waterproof component 4 and the adhesive component 3.
  • the concave structure on the fourth side can further slow down the liquid inlet speed , and store the liquid, to some extent restrict the liquid that has flowed from the first side or the second side, from flowing into the interior of the terminal. Therefore, when the waterproof component 4 is in a normal installation state, the waterproof structure of the tenth embodiment is better than the waterproof structure of the ninth embodiment in restricting liquid from entering the terminal.
  • FIG. 14b is a schematic diagram of a state where the waterproof component 4 is biased upward.
  • the side wall of the concave structure on the third side is in contact with the side wall of the slot 31
  • the side wall of the concave structure on the fourth side is in contact with the side wall of the slot 31.
  • the side walls are also in contact. Liquid cannot flow into the interior of the terminal from the liquid inlet paths on the first side and the second side.
  • the waterproof component 4 of the tenth embodiment is attached downward, it can also completely restrict the flow of liquid into the terminal.
  • the waterproof structures in the second to ninth embodiments can only completely restrict liquid from flowing into the terminal when the waterproof component 4 is attached to the left or right.
  • the waterproof structure of the tenth embodiment can not only completely restrict the flow of liquid into the terminal when the waterproof assembly 4 is attached to the left or right, but also completely restrict the flow of liquid into the terminal when the waterproof assembly 4 is attached upward or downward. .
  • the tenth embodiment can completely restrict the flow of liquid into the terminal regardless of any installation state among upward, downward, leftward and rightward. Therefore, the tenth embodiment has a higher probability of completely restricting liquid from flowing into the terminal.
  • the waterproof effect of the terminal in the tenth embodiment is better than that of the terminals in the first to ninth embodiments.
  • the material of the waterproof component 4 is a compressible waterproof material, such as foam.
  • the waterproof effect can be ensured, and the shock can be damped at the contact part of the electronic component and the terminal shell, so as to prevent the electronic component from being crushed.
  • at least one of the first side and the second side of the cross-section of the waterproof component 4 has a convex structure and a concave structure, and the cross-sectional area of the waterproof component 4 is also smaller than , the cross-sectional area when neither the first side nor the second side of the cross-section of the waterproof component 4 has a convex structure or a concave structure.
  • the smaller the area of the waterproof component 4 the smaller the force on the battery cover 1 is, so as to achieve the effect of reducing the risk of degumming of the battery cover 1 .
  • the waterproof assembly 4 that does not have a convex structure or a concave structure on the first side and the second side of the cross-section in the embodiment of the present application, only the rectangular and concave structures shown in FIG. The trapezoid shown in Figure 2.
  • it can also be parallelogram, triangle, circle and other shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Casings For Electric Apparatus (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

本申请提供一种终端,包括:终端包括电池盖、中框、粘接组件及防水组件。电池盖通过粘接组件与中框粘接。中框上设置有向电池盖方向突出的支撑壁。粘接组件设置有开槽,开槽为半封闭槽。防水组件设置于支撑壁和粘接组件之间。防水组件与开槽之间具有避让距离且形成进液路径。防水组件的横剖面,在第一侧和第二侧的至少一侧上具有凸形结构或凹形结构,其中第一侧和第二侧不与开槽的开口在同一侧,且不与开槽的开口相对。本申请提供的技术方案能够加长进液路径,减缓进液速度,并且具有的凹形结构或凸形结构可以储存液体,因而可以一定程度上限制外部液体进入终端内部,从而提升终端的防水效果。

Description

一种终端
本申请要求于2021年8月9日提交到国家知识产权局、申请号为202110908070.7、发明名称为“一种终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端设备技术领域,更具体的说,涉及一种终端。
背景技术
随着用户对终端产品使用体验的要求提高,终端产品防水功能的提升也成为终端产品结构设计过程中亟待解决的问题。
以手机为例,手机产品的电池盖与中框通常通过粘接组件粘接在一起。为了实现手机按键功能,中框上设置有用于放置按键FPC(Flexible Printed Circuit,柔性电路板)的支撑壁。支撑壁与粘接组件之间具有避让距离,以防止按键FPC从支撑壁上弯折时被支撑壁剐蹭。通常支撑壁与粘接组件之间还设置有防水组件,粘接组件与防水组件相互配合形成防水结构。
然而,为了避免粘接组件和防水组件干涉造成的电池盖与中框组装困难,粘接组件的开槽与防水组件之间需要具有一定的避让距离。粘接组件的开槽与防水组件之间避让的空间则会形成进液空间。如图1和图2所示的常规防水结构中均包括粘接组件3,粘接组件3具有开槽31,防水组件4放置在开槽31中,粘接组件3与防水组件4之间的缝隙为进液空间。图1和图2所示的进液空间较容易进液,防水效果较差。
发明内容
本申请提供了一种终端,能够提升终端的防水效果。
本申请实施例提供一种终端,终端包括电池盖、中框、粘接组件及防水组件。电池盖通过粘接组件与中框粘接。中框上设置有向电池盖方向突出的支撑壁。粘接组件设置有开槽,开槽为半封闭槽。防水组件设置于支撑壁和粘接组件之间,且位于开槽的内部。防水组件的横剖面形状适配于开槽的横剖面形状。防水组件与开槽之间具有避让距离且形成进液路径。防水组件的横剖面,在第一侧和第二侧的至少一侧上具有凸形结构或凹形结构,其中第一侧和第二侧不与开槽的开口在同一侧,且不与开槽的开口相对。
基于此,本申请实施例中终端的防水结构可以加长进液路径,减缓进液速度,并且具有的凹形结构或凸形结构可以储存液体,一定程度上限制液体进入终端的内部,从而提升终端的防水效果。
一种可能的实现方式中,防水组件的横剖面,在第一侧和第二侧上均具有凸形结构或凹形结构。这样,防水组件的第一侧和第二侧均能够加长进液路径,减缓进液速度,同时第一侧和第二侧均可以储存液体,相比较于只有一侧具有凹形结构或凸形结构的实现方式,本实现方式能够进一步提升终端的防水效果。
一种可能的实现方式中,在防水组件的第一侧的至少一个凸形结构或凹形结构的侧壁,与开槽的对应侧壁接触时,防水组件的第二侧的至少一个凸形结构或凹形结构的侧壁,与开 槽的对应侧壁接触。这样,防水组件第一侧的凸形结构或凹形结构将第一侧的进液路径封闭的同时,防水组件第二侧的凸形结构或凹形结构将第二侧的进液路径封闭。因而能够完全限制液体进入终端的内部,进一步提升终端的防水效果。
一种可能的实现方式中,防水组件的横剖面,在第三侧和第四侧的至少一侧上具有凸形结构或凹形结构,第三侧与开槽的开口在同一侧,第四侧与开槽的开口相对。这样,可以进一步加长进液路径,减缓进液速度,并且第三侧或第四侧具有的凹形结构或凸形结构可以储存液体,进一步提升终端的防水效果。
一种可能的实现方式中,防水组件的横剖面,在第三侧和第四侧上均具有凸形结构或凹形结构,第三侧与开槽的开口在同一侧,第四侧与开槽的开口相对。这样,相较于第三侧和第四侧仅有一侧具有凸形结构或凹形结构的实现方式,本实现方式可以进一步加长进液路径,减缓进液速度,并且又增加可储存液体的凹形结构或凸形结构,进一步提升终端的防水效果。
一种可能的实现方式中,在第三侧的至少一个凸形结构或凹形结构的侧壁,与开槽的对应侧壁接触时,第四侧的至少一个凸形结构或凹形结构的侧壁,与开槽的对应侧壁接触。这样,防水组件第三侧的凸形结构或凹形结构将第三侧的进液路径封闭的同时,防水组件第四侧的凸形结构或凹形结构将第四侧的进液路径封闭。因而能够完全限制液体进入终端的内部,进一步提升终端的防水效果。
一种可能的实现方式中,在防水组件的中心轴线不平行于开槽的中心轴线,且第一侧的至少一个凸形结构或凹形结构的顶点与开槽的对应侧壁接触时,第二侧的至少一个凸形结构或凹形结构的顶点与开槽的对应侧壁接触。这样,在旋转贴偏的状态时,第一侧的凸形结构或凹形结构将第一侧的进液路径封闭的同时,防水组件第二侧的凸形结构和凹形结构将第二侧的进液路径封闭。因而能够完全限制液体进入终端的内部,进一步提升终端的防水效果。
一种可能的实现方式中,防水组件的横剖面形状为H形或十字形。这样,既可以加长进液路径,减缓进液速度,储存液体,一定程度上限制液体进入终端的内部,又可以在贴偏的状态下,完全限制液体进入终端的内部。并且H形或十字形的防水组件更易加工。
一种可能的实现方式中,防水组件的材质为可压缩的防水材质。这样,防水组件不仅可以起到防水作用,还能够给电子元件与终端外壳接触的部位减震,防止压坏电子元件。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示的为目前终端的外壳结构中粘接组件和防水组件的装配状态示意图;
图2所示的为目前终端的外壳结构中又一种粘接组件和防水组件的装配状态示意图;
图3所示的为本申请实施例提供的一种终端的外壳结构处于关闭状态的示意图;
图4所示的为本申请实施例提供的一种终端的外壳结构处于打开状态的示意图;
图5所示的为本申请实施例提供的图4中A区域的放大示意图;
图6所示的为本申请实施例提供的一种终端的外壳结构部件分解示意图;
图7所示的为本申请实施例提供的图4中B区域的放大示意图;
图8所示的为本申请第一实施例提供的终端的外壳结构中粘接组件和防水组件的装配状态示意图;
图9a至图9e所示的为本申请第二实施例提供的终端的外壳结构中粘接组件和防水组件的装配状态示意图;
图10a至图10e所示的为本申请第三实施例提供的终端的外壳结构中粘接组件和防水组件的装配状态示意图;
图11a至图11e所示的为本申请第四实施例提供的终端的外壳结构中粘接组件和防水组件的装配状态示意图;
图12所示的为本申请第五至第八实施例提供的终端的外壳结构中粘接组件和防水组件的装配状态示意图;
图13所示的为本申请第九实施例提供的终端的外壳结构中粘接组件和防水组件的装配状态示意图;
图14a至图14b所示的为本申请第十实施例提供的终端的外壳结构中粘接组件和防水组件的装配状态示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的其他实施例,都属于本申请的保护范围。
图1和图2所示的为目前终端的外壳结构中粘接组件和防水组件的装配状态示意图。需要说明的是,图1和图2所示的装配状态示意图仅示出了粘接组件和防水组件,而省略了其他部件。图1和图2所示的防水组件为基本几何形状,如为方形和梯形。使用这种常规的粘接组件和防水组件,外部的液体较容易进入到终端的内部,导致防水效果较差。
为了解决上述问题,本申请的实施例提供一种终端,其中所提供的终端设备可以为手机、可穿戴设备、AR(Augmented Reality,增强现实)/VR(Virtual Reality,虚拟现实)设备、平板电脑、笔记本电脑、UMPC(Ultra-mobile Personal Computer,超级移动个人计算机)、上网本、PDA(Personal Digital Assistant,个人数字助理)等任意终端,本申请的实施例对此不作任何限制。
图3所示的为本申请实施例提供的一种终端的外壳结构处于关闭状态的示意图。在图3所示的实施例中,外壳结构包括电池盖1和中框2,电池盖1连接至中框2。图4所示的为本申请实施例提供的一种外壳结构处于打开状态的示意图,图5所示的为图4中A区域的放大示意图。在图4和图5所示的实施例中,外壳结构不仅包括图1中的全部部件,还包括粘接组件3。电池盖1通过粘接组件3连接至中框2,例如可通过背胶连接至中框2。电池盖1连接至中框2,即外壳结构处于关闭状态。图3至图5的实施例为由上至下依次为电池盖1、粘接组件3、中框2的外壳结构.
图6所示的为本申请实施例提供的终端的部件分解示意图,图7所示的为图6中B区域的放大示意图。在图6和图7所示的实施例中,为了实现终端按键功能,中框2的局部位置上挖孔用于放置按键FPC,同时中框2上设置有向电池盖1方向突出的支撑壁21,按键FPC从支撑壁21上弯折。进一步为了避免按键FPC从支撑壁21上弯折时,不受支撑壁21剐蹭而导致失效,在支撑壁21的顶部位置设置挖槽。或者,支撑壁21顶部 下沉,即支撑壁21的顶部与电池盖1设置有一定的避让距离。这样就导致支撑壁21顶部与电池盖1之间存在缝隙,外部的水汽容易从该缝隙进入终端的内部。因此,需要在该缝隙处设置防水结构,以增强防水效果。
为了增强防水效果的同时保证安装,还可以如图4至图7所示,在支撑壁21顶部与电池盖1之间的缝隙处设置防水组件4。为了与防水组件4配合,在粘接组件3上还设置有开槽31。需要说明的是,在本申请的各个实施例中,开槽31的横剖面形状均适配于防水组件4的形状。另外需要说明的是,为了避免电池盖1和中框2装配时,粘接组件3和防水组件4干涉,造成的电池盖1和中框组装困难,粘接组件3和防水组件4之间设置有避让距离。粘接组件3和防水组件4构成本申请实施例的防水结构,粘接组件3和防水组件4之间的避让距离形成进液路径。
另外需要说明的是,如果粘接组件3和防水组件4之间未设置避让距离,按键FPC会与粘接组件3干涉。电池盖1组装后会出现翘起的情况,或者长时间使用后电池盖1容易脱胶。并且按键FPC会顶起电池盖,对于特殊电池盖1还会显示出模印,影响用户体验。开槽31除了保证组装之外,还可以避免粘接组件3粘接按键FPC。在粘接组件3粘接按键FPC,同时电池盖1发生微移动的情况下,按键FPC容易被粘接组件3拉扯损坏,进而被影响性能。
本申请实施例接下来以上述实施例的终端中的防水结构为例,对可提升终端防水效果的技术方案做具体阐述说明。
下面是本申请的第一实施例。
图8为本申请第一实施例提供的一种粘接组件3和防水组件4装配状态示意图,需要说明的是,图8仅示出了粘接组件3和防水组件4,而省略了其他部件。其中,在图8所示的实施例中,防水组件4横剖面的第一侧或第二侧上具有一个凹形结构。在图8所示的实施例中,防水组件4横剖面的第一侧和第二侧不与开槽31的开口在同一侧,且不与开槽31的开口相对。
图8所示的实施例中,防水组件4和粘接组件3正常安装。液体从外部进入防水结构之后,沿着防水组件4与粘接组件3之间的缝隙流动,此时防水组件4与粘接组件3之间的缝隙均是连通的。由于第一侧或第二侧上具有凹形结构,相较于常规防水结构(如图1和图2所示),图8的进液路径长于常规防水结构的进液路径。并且,图8的第一侧或第二侧均具有的凹形结构还可以储存液体。
本申请的第一实施例提供的技术方案具有以下有益效果:
防水组件4和粘接组件3正常安装时,液体从外部进入防水结构之后,从第一侧或第二侧进液路径的入口进入,再经过第一侧或第二侧的凹形结构,最后由出口流出,增加的凹形结构能够显著的加长进液路径,从而减缓进液速度。并且液体沿着进液路径进入凹形结构之后,会在凹形结构储存从,因而能够在一定程度上限制液体进入终端的内部。同样的如果防水组件4的第一侧或第二侧具有凸形结构,也能够既加长进液路径,减缓进液速度,又能够储存液体,在一定程度上限制液体进入终端内部,最终实现相较于常规防水结构,提升防水效果的目的。
下面是本申请的第二实施例。
图9a至图9e为本申请第二实施例提供的一种粘接组件3和防水组件4装配状态示意图,需要说明的是,图9a至图9e仅示出了粘接组件3和防水组件4,而省略了其他部 件。其中,在图9a至图9e所示的实施例中,防水组件4横剖面的第一侧和第二侧上均具有一个凹形结构。在图9a至图9e所示的实施例中,防水组件4横剖面的第一侧和第二侧不与开槽31的开口在同一侧,且不与开槽31的开口相对。因此,实际上在图9a至图9e所示的实施例中,防水组件4的横剖面形状为H形。
图9a为横剖面形状为H形的防水组件4和粘接组件3正常安装,即安装未发生偏位时的状态示意图。如图9a所示,液体从外部进入防水结构之后,沿着防水组件4与开槽31之间的缝隙流动,此时防水组件4与开槽31之间的缝隙均是连通的。由于第一侧和第二侧均具有凹形结构,相较于常规防水结构(如图1和图2所示),图9a的进液路径长于常规防水结构的进液路径。并且,图9a的第一侧和第二侧均具有的凹形结构还可以储存液体。
图9b为横剖面形状为H形的防水组件4向上贴偏时的状态示意图。如图9b所示,液体从外部进入防水结构之后,由于防水组件4与开槽31之间位于顶部的缝隙被封闭,液体只能沿着防水组件4与开槽31底部的缝隙流动。但是由于第一侧和第二侧均具有凹形结构,相较于常规防水结构,图9b的进液路径仍然长于常规防水结构的进液路径,并且底部的凹形结构仍然可以储存液体。
图9c为横剖面形状为H形的防水组件4向右贴偏时的状态示意图。如图9c所示,液体从外部进入防水结构之后,由于第一侧的凹形结构侧壁与开槽31的侧壁接触,因此第一侧的进液路径被封闭。同时第二侧的凹形结构侧壁与开槽31的侧壁接触,因此第二侧的进液路径被封闭。第一侧和第二侧的进液路径均被封闭后,液体不再能沿着防水组件4和开槽31之间的缝隙流动。因此图9c所示的实施例在向右贴偏时,能够完全限制液体进入终端的内部。
图9d为横剖面形状为H形的防水组件4向左贴偏时的状态示意图。如图9d所示,液体从外部进入防水结构之后,由于第一侧的凹形结构侧壁与开槽31的侧壁接触,因此第一侧的进液路径被封闭。同时第二侧的凹形结构侧壁与开槽31的侧壁接触,因此第二侧的进液路径被封闭。第一侧和第二侧的进液路径均被封闭后,液体虽然能够沿着防水组件4和开槽31之间的缝隙流动一段距离,但是仍然不能流入终端内部。因此图9d所示的实施例在向左贴偏时,也能够完全限制液体进入终端的内部。
图9e为横剖面形状为H形的防水组件4旋转贴偏时的状态示意图。如图9e所示,液体从外部进入防水结构之后,由于第一侧的凹形结构侧壁的顶点与开槽31的侧壁接触,因此第一侧的进液路径被封闭。同时第二侧的凹形结构侧壁的顶点与开槽31的侧壁接触,因此第二侧的进液路径被封闭。第一侧和第二侧的进液路径均被封闭后,液体虽然能够沿着防水组件4和开槽31之间的缝隙流动一段距离,但是仍然不能流入终端内部。因此图9e所示的实施例在旋转贴偏时,也能够完全限制液体进入终端的内部。
本申请的第二实施例提供的技术方案具有以下有益效果:
首先,如果防水组件4和开槽31为正常安装状态时,液体从外部进入防水结构之后,从第一侧进液路径的入口进入,再经过第一侧的凹形结构,最后由出口流出,增加的凹形结构能够显著的加长进液路径,从而减缓进液速度。同样液体还从第二侧进液路径的入口进入,在经过第二侧的凹形结构,最后由出口流出,增加的凹形结构同样能够显著的加长进液路径,从而减缓进液速度。在减缓进液速度方面提升终端的防水效果。同时,液体沿着进液路径进入第一侧和第二侧的凹形结构之后,会在凹形结构储存,因而能够 在一定程度上限制液体进入终端的内部。在储存液体方面提升终端的防水效果。
如果防水组件4为向上贴偏或向下贴偏状态时,一侧的进液路径被封闭的同时,增加的凹形结构仍然能够加长另一侧的进液路径,总体上还是能够减缓进液速度。如果防水组件4为向左贴偏或向右贴偏状态时,第一侧和第二侧的进液路径均能够被完全封闭,因而能够完全限制液体进入终端的内部。如果防水组件4为旋转贴偏时,第一侧和第二侧的进液路径也均被完全封闭,因而也能够完全限制液体进入终端的内部。
因此,本申请第二实施例提供的技术方案,能够在防水组件4和粘接组件3处于正常安装状态、向上贴偏状态以及向下贴偏状态时,从减缓进液速度和储存液体方面提升终端的防水效果。并且能够在防水组件4处于向左贴偏、向右贴偏以及旋转贴偏状态时,完全限制液体进入终端的内部,使得无论防水组件4和粘接组件3处于哪种安装状态,均能够实现提升终端防水效果的目的。
下面是本申请的第三实施例。
图10a至图10e为本申请第三实施例提供的一种粘接组件3和防水组件4装配状态示意图,需要说明的是,图10a至图10e仅示出了粘接组件3和防水组件4,而省略了其他部件。其中,在图10a至图10e所示的实施例中,防水组件4横剖面的第一侧和第二侧上均具有一个凸形结构。在图10a至图10e所示的实施例中,防水组件4横剖面的第一侧和第二侧不与开槽31的开口在同一侧,且不与开槽31的开口相对。因此,实际上在图10a至图10e所示的实施例中,防水组件4的横剖面形状为十字形。
图10a为横剖面形状为十字形的防水组件4和粘接组件3正常安装,即安装未发生偏位时的状态示意图。如图10a所示,液体从外部进入防水结构之后,沿着防水组件4与开槽31之间的缝隙流动,此时防水组件4与开槽31之间的缝隙均是连通的。由于第一侧和第二侧均具有凸形结构,相较于常规防水结构(如图1和图2所示),图10a的进液路径长于常规防水结构的进液路径。并且,图10a的第一侧和第二侧均具有的凸形结构还可以储存液体。
图10b为横剖面形状为十字形的防水组件4向上贴偏时的状态示意图。如图10b所示,液体从外部进入防水结构之后,由于防水组件4与开槽31之间位于顶部的缝隙被封闭,液体只能沿着防水组件4与开槽31底部的缝隙流动。但是由于第一侧和第二侧均具有凸形结构,相较于常规防水结构,图10b的进液路径仍然长于常规防水结构的进液路径,并且底部的凸形结构仍然可以储存液体。
图10c为横剖面形状为十字形的防水组件4向右贴偏时的状态示意图。如图10c所示,液体从外部进入防水结构之后,由于第一侧的凸形结构侧壁与开槽31的侧壁接触,因此第一侧的进液路径被封闭。同时第二侧的凸形结构侧壁与开槽31的侧壁接触,因此第二侧的进液路径被封闭。第一侧和第二侧的进液路径均被封闭后,液体不再能沿着防水组件4和开槽31之间的缝隙流动。因此图10c所示的实施例在向右贴偏时,能够完全限制液体进入终端的内部。
图10d为横剖面形状为十字形的防水组件4向左贴偏时的状态示意图。如图10d所示,液体从外部进入防水结构之后,由于第一侧的凸形结构侧壁与开槽31的侧壁接触,因此第一侧的进液路径被封闭。同时第二侧的凸形结构侧壁与开槽31的侧壁接触,因此第二侧的进液路径被封闭。第一侧和第二侧的进液路径均被封闭后,液体虽然能够沿着防水组件4和开槽31之间的缝隙流动一段距离,但是仍然不能流入终端内部。因此图 10d所示的实施例在向左贴偏时,也能够完全限制液体进入终端的内部。
图10e为横剖面形状为十字形的防水组件4旋转贴偏时的状态示意图。如图10e所示,液体从外部进入防水结构之后,由于第一侧的凸形结构侧壁的顶点与开槽31的侧壁接触,因此第一侧的进液路径被封闭。同时第二侧的凸形结构侧壁的顶点与开槽31的侧壁接触,因此第二侧的进液路径被封闭。第一侧和第二侧的进液路径均被封闭后,液体虽然能够沿着防水组件4和开槽31之间的缝隙流动一段距离,但是仍然不能流入终端内部。因此图10e所示的实施例在旋转贴偏时,也能够完全限制液体进入终端的内部。
本申请的第三实施例提供的技术方案具有以下有益效果:
首先,如果防水组件4和开槽31为正常安装状态时,液体从外部进入防水结构之后,从第一侧进液路径的入口进入,再经过第一侧的凸形结构,最后由出口流出,增加的凸形结构能够显著的加长进液路径,从而减缓进液速度。同样液体还从第二侧进液路径的入口进入,在经过第二侧的凸形结构,最后由出口流出,增加的凸形结构同样能够显著的加长进液路径,从而减缓进液速度。在减缓进液速度方面提升终端的防水效果。同时,液体沿着进液路径进入第一侧和第二侧的凸形结构之后,会在凸形结构储存,因而能够在一定程度上限制液体进入终端的内部。在储存液体方面提升终端的防水效果。
如果防水组件4为向上贴偏或向下贴偏状态时,一侧的进液路径被封闭的同时,增加的凸形结构仍然能够加长另一侧的进液路径,总体上还是能够减缓进液速度。
如果防水组件4为向左贴偏或向右贴偏状态时,第一侧和第二侧的进液路径均能够被完全封闭,因而能够完全限制液体进入终端的内部。
如果防水组件4为旋转贴偏时,第一侧和第二侧的进液路径也均被完全封闭,因而也能够完全限制液体进入终端的内部。
因此,本申请第三实施例提供的技术方案,能够在防水组件4和开槽31处于正常安装状态、向上贴偏状态以及向下贴偏状态时,从减缓进液速度和储存液体方面提升终端的防水效果。并且能够在防水组件4处于向左贴偏、向右贴偏以及旋转贴偏状态时,完全限制液体进入终端的内部,使得无论防水组件4和粘接组件3处于哪种安装状态均能够实现提升终端防水效果的目的。
图11a至图11e为本申请第四实施例提供的终端的外壳结构中粘接组件和防水组件的装配状态示意图。在图11a至图11e所示的实施例中,防水组件4横剖面的第一侧和第二侧上分别具有一个凹形结构和凸形结构。
图11a为防水组件4和粘接组件3正常安装时的状态示意图。如果处于正常安装状态,一方面凹形结构和凸形结构加长了进液路径,使得进液速度减缓。另一方面,凹形结构和凸形结构能够储存液体,一定程度上限制液体继续进入终端的内部。具体的实现原理与第二实施例和第三实施例一致,本实施例不再赘述。
图11b为防水组件4安装处于向上贴偏时的状态示意图。如果处于向上贴偏安装状态或向下贴偏安装状态,一方面凹形结构和凸形结构加长了进液路径,使得进液速度减缓。另一方面,凹形结构和凸形结构能够储存液体,一定程度上限制液体继续进入终端的内部。具体的实现原理与第二实施例和第三实施例一致,本实施例不再赘述。
图11c为防水组件4安装处于向左贴偏时的状态示意图,图11d为防水组件4安装处于向右贴偏时的状态示意图,图11e为防水组件4安装处于旋转贴偏时的状态示意图。如果处于向左贴偏安装状态、向右贴偏安装状态以及旋转贴偏安装状态中的一种,能够 完全限制液体进入终端的内部。具体的实现原理与第二实施例和第三实施例一种,本实施例不再赘述。
图12为本申请第五至第八实施例提供的终端的外壳结构中粘接组件和防水组件的装配状态示意图。其中,在图12中的a所示的第五实施例中,防水组件4横剖面的第一侧具有两个凹形结构,第二侧具有一个凸形结构。在图12中的b所示的第六实施例中,防水组件4横剖面的第一侧具有两个凹形结构,第二侧具有一个凹形结构。在图12中的c所示的第七实施例中,防水组件4横剖面的第一侧具有两个凸形结构,第二侧也具有两个凸形结构。在图12中的d所示的第八实施例中,防水组件4横剖面的第一侧具有两个凹形结构,第二侧也具有两个凸形结构。图12中示出的几种变形的实施例,这些实施例同样能够实现第一实施例至第四实施例的有益效果。因此,防水组件4的横剖面如果在第一侧和第二侧上均具有凸形结构或凹形结构,不论防水组件4和粘接组件3在哪种安装状态,都能够实现提升终端防水效果的目的。
需要说明的,如果防水组件4和粘接组件3处于正常安装状态时,防水组件4和开槽31之间的进液路径的宽度始终保持不变,即防水组件4和开槽31之间的缝隙宽度始终保持不变。这样,无论防水组件4在安装时是向左贴偏还是向右贴偏,均能够保证第一侧和第二侧的进液路径同时被封闭,进而保证完全限制液体进入终端内部。
另外需要说明的是,图1和图2所示的目前终端的防水组件,虽然在旋转贴偏时也可能会使得进液路径完全被封闭,甚至在图2所示的梯形防水组件向右贴偏时也会使得进液路径完全被封闭,但是可以看出目前终端的防水组件将进液路径完全封闭,相较于本申请实施例,更不容易。例如,图2的梯形防水组件需要向右贴偏较长的距离,才能够将进液路径完全封闭。因此,在实际安装过程中,如果采用本申请实施例的技术方案,不仅能够加长进液路径,减缓进液速度,储存液体,并且将进液路径完全封闭的概率更大,因而实现完全限制液体进入终端内部的目的的概率更大。
下面是本申请的第九实施例。
图13为本申请第八实施例提供的一种粘接组件3和防水组件4装配状态示意图。需要说明的是,图13仅示出了粘接组件3和防水组件4,而省略了其他部件。其中,在图13所示的实施例中,防水组件4横剖面的第一侧和第二侧上均具有一个凹形结构。同时,防水组件4横剖面的第三侧上也具有一个凹形结构。图13所示的第三侧与开槽31的开口相对。图13所示的实施例中,防水组件4与粘接组件3为正常安装状态。液体从外部进入防水结构之后,首先第三侧的进液路径比常规防水结构第三侧进液路径要长,在液体进入第一侧和第二侧进液路径之前就已经减缓了进液速度。另外,第三侧进液路径就可储存液体,因而在一定程度上可以限制液体进入第一侧和第二侧的进液路径。因此,本申请的第九实施例相较于第二实施例至第八实施例,限制液体进入终端内部的效果更好。
下面是本申请的第十实施例。
图14a至图14b为本申请第十实施例提供的一种粘接组件3和防水组件4装配状态示意图。需要说明的是,图14a至图14b仅示出了粘接组件3和防水组件4,而省略了其他部件。其中,在图14a至图14b所示的实施例中,防水组件4横剖面的第一侧和第二侧上均具有一个凹形结构。同时,防水组件4横剖面的第三侧和第四上侧也均具有一个凹形结构。图14a至图14b所示的第四侧与开槽31位于同一侧。图14a为防水组件4与 粘接组件3正常安装的状态示意图。如图14a所示,液体从外部进入防水结构之后,如果液体从第一侧或第二侧进液路径流入第四侧的进液路径,第四侧的凹形结构能够进一步的减缓进液速度,并且储存液体,在一定程度上限制已经从第一侧或第二侧流出的液体,流入终端内部。因此,在防水组件4处于正常安装状态时,第十实施例的防水结构相较于第九实施例的防水结构限制液体进入终端内部效果更好。
图14b为防水组件4向上贴偏的状态示意图。如图14b所示,液体从外部进入防水结构后,由于第三侧的凹形结构的侧壁与开槽31的侧壁接触的同时,第四侧的凹形结构的侧壁与开槽31的侧壁也接触。液体无法由第一侧和第二侧的进液路径流入终端内部。同样的,如果第十实施例的防水组件4向下贴偏,也可以完全限制液体流入终端内部。第二至第九实施例中的防水结构只能在防水组件4向左或者向右贴偏时,完全限制液体流入终端内部。而第十实施例的防水结构不仅能在防水组件4向左或向右贴偏时,完全限制液体流入终端内部,还能够在防水组件4向上或向下贴偏时,完全限制液体流入终端内部。
在防水组件4的实际安装过程中,由于部件较小,防水组件4的安装较容易出现贴偏的情况。第十实施例能够实现不论在向上贴偏、向下贴偏、向左贴偏以及向右贴偏中任何一种安装状态,都能够实现完全限制液体流入终端内部。因此,第十实施例实现完全限制液体流入终端内部的概率更大,总体来说第十实施例的终端的防水效果要优于第一至第九实施例的终端的防水效果。
需要说明的是,防水组件4的材质为可压缩的防水材质,例如材质可以为泡棉。这样既保证防水的效果,又能够给电子元件与终端外壳接触的部位减震,防止压坏电子元件。本申请的第一至第十实施例中,防水组件4的横剖面的第一侧和第二侧的至少一侧上具有凸形结构和凹形结构,防水组件4的横剖面面积也要小于,防水组件4的横剖面的第一侧和第二侧均不具有凸形结构和凹形结构时的横剖面面积。在中框2和电池盖1装配后,面积越小的防水组件4,对于电池盖1产生的顶力越小,从而实现降低电池盖1脱胶风险的效果。另外还需要说明的是,本申请实施例对于横剖面的第一侧和第二侧均不具有凸形结构或凹形结构的防水组件4,仅示例性的示出图1所示的矩形和图2所示的梯形。这里横剖面的第一侧和第二侧均不具有凸形结构或凹形结构时,还可以为平行四边形,三角形,圆形等形状。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本领域技术中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由权利要求指出。应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅有所附的权利要求来限制。

Claims (9)

  1. 一种终端,其特征在于,所述终端包括:电池盖(1)、中框(2)、粘接组件(3)及防水组件(4);
    所述电池盖(1)通过粘接组件(3)与所述中框(2)粘接;
    所述中框(2)上设置有向所述电池盖(1)方向突出的支撑壁(21);
    所述粘接组件(3)设置有开槽(31),所述开槽(31)为半封闭槽;
    所述防水组件(4)设置于所述支撑壁(21)和所述粘接组件(3)之间,且位于所述开槽(31)的内部;
    所述防水组件(4)的横剖面形状适配于所述开槽(31)的横剖面形状,与所述开槽(31)之间具有避让距离且形成进液路径;
    所述防水组件(4)的横剖面,在第一侧和第二侧的至少一侧上具有凸形结构或凹形结构,其中,所述第一侧和所述第二侧不与所述开槽(31)的开口在同一侧,且不与所述开槽(31)的开口相对。
  2. 根据权利要求1所述的终端,其特征在于,所述防水组件(4)的横剖面,在所述第一侧和所述第二侧上均具有凸形结构或凹形结构。
  3. 根据权利要求2所述的终端,其特征在于,在所述第一侧的至少一个凸形结构或凹形结构的侧壁,与所述开槽(31)的对应侧壁接触时,所述第二侧的至少一个凸形结构或凹形结构的侧壁,与所述开槽(31)的对应侧壁接触。
  4. 根据权利要求2所述的终端,其特征在于,所述防水组件(4)的横剖面,在第三侧和第四侧的至少一侧上具有凸形结构或凹形结构,其中,所述第三侧与所述开槽(31)的开口在同一侧,所述第四侧与所述开槽(31)的开口相对。
  5. 根据权利要求4所述的终端,其特征在于,所述防水组件(4)的横剖面,在所述第三侧和所述第四侧上均具有凸形结构或凹形结构。
  6. 根据权利要求5所述的终端,其特征在于,在所述第三侧的至少一个凸形结构或凹形结构的侧壁,与所述开槽(31)的对应侧壁接触时,所述第四侧的至少一个凸形结构或凹形结构的侧壁,与所述开槽(31)的对应侧壁接触。
  7. 根据权利要求2所述的终端,其特征在于,在所述防水组件(4)的中心轴线不平行于所述开槽(31)的中心轴线,且所述第一侧的至少一个凸形结构或凹形结构的顶点与所述开槽(31)的对应侧壁接触时,所述第二侧的至少一个凸形结构或凹形结构的顶点与所述开槽(31)的对应侧壁接触。
  8. 根据权利要求1至7任意一项权利要求所述的终端,其特征在于,所述防水组件(4)的横剖面形状为H形或十字形。
  9. 根据权利要求1至7任意一项权利要求所述的终端,其特征在于,所述防水组件(4)的材质为可压缩的防水材质。
PCT/CN2022/087935 2021-08-09 2022-04-20 一种终端 WO2023015934A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22854938.2A EP4184904A4 (en) 2021-08-09 2022-04-20 TERMINAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110908070.7A CN114497859B (zh) 2021-08-09 2021-08-09 一种终端
CN202110908070.7 2021-08-09

Publications (1)

Publication Number Publication Date
WO2023015934A1 true WO2023015934A1 (zh) 2023-02-16

Family

ID=81491795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087935 WO2023015934A1 (zh) 2021-08-09 2022-04-20 一种终端

Country Status (3)

Country Link
EP (1) EP4184904A4 (zh)
CN (1) CN114497859B (zh)
WO (1) WO2023015934A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104506674A (zh) * 2014-12-02 2015-04-08 广东欧珀移动通信有限公司 手机密封结构及终端
WO2017065397A1 (ko) * 2015-10-16 2017-04-20 삼성전자 주식회사 전자장치 및 전자장치 제조방법
CN207117686U (zh) * 2017-04-27 2018-03-16 维沃移动通信有限公司 一种移动终端
CN209151206U (zh) * 2019-01-28 2019-07-23 珠海市魅族科技有限公司 一种移动终端及其中框
CN212727130U (zh) * 2020-08-31 2021-03-16 北京小米移动软件有限公司 移动终端侧键结构和终端
CN113096990A (zh) * 2021-03-05 2021-07-09 北京小米移动软件有限公司 移动终端侧键结构和终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068054A (ja) * 2012-09-24 2014-04-17 Sharp Corp 携帯端末
KR102094754B1 (ko) * 2013-12-03 2020-03-30 엘지전자 주식회사 이동 단말기
CN106847588B (zh) * 2017-03-30 2019-10-08 努比亚技术有限公司 一种防水侧按键装置及其组装方法、移动终端
CN207720209U (zh) * 2018-01-16 2018-08-10 威海网时代电子科技有限公司 一种三防手机密封防水结构
CN109167862A (zh) * 2018-11-26 2019-01-08 青岛海信移动通信技术股份有限公司 移动终端
JP7286998B2 (ja) * 2019-02-25 2023-06-06 沖電気工業株式会社 電子機器筐体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104506674A (zh) * 2014-12-02 2015-04-08 广东欧珀移动通信有限公司 手机密封结构及终端
WO2017065397A1 (ko) * 2015-10-16 2017-04-20 삼성전자 주식회사 전자장치 및 전자장치 제조방법
CN207117686U (zh) * 2017-04-27 2018-03-16 维沃移动通信有限公司 一种移动终端
CN209151206U (zh) * 2019-01-28 2019-07-23 珠海市魅族科技有限公司 一种移动终端及其中框
CN212727130U (zh) * 2020-08-31 2021-03-16 北京小米移动软件有限公司 移动终端侧键结构和终端
CN113096990A (zh) * 2021-03-05 2021-07-09 北京小米移动软件有限公司 移动终端侧键结构和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184904A4

Also Published As

Publication number Publication date
EP4184904A1 (en) 2023-05-24
EP4184904A4 (en) 2024-03-06
CN114497859A (zh) 2022-05-13
CN114497859B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2021190198A1 (zh) 电子设备
JP7478837B2 (ja) 電子機器
US9448594B2 (en) Electronic device having waterproof structure
CN205812376U (zh) 电子设备
JP2014520358A (ja) 防水イヤホンジャック
CN108924320B (zh) 一种移动终端
JP2010130582A (ja) 装置筐体及び携帯端末装置
WO2023015934A1 (zh) 一种终端
CN111031728B (zh) 电子设备、装配方法及拆卸方法
WO2021114266A1 (zh) 指纹模组及电子设备
US9477270B2 (en) Electronic device
WO2023273588A1 (zh) 终端设备
US8339793B2 (en) Electronic device with a motherboard waterproofing mechanism
US20240126387A1 (en) Display panel and electronic device
CN210958417U (zh) 防水结构及移动终端
KR102467539B1 (ko) 전지 모듈
CN113270463A (zh) 显示面板及电子设备
KR102031766B1 (ko) 배수 구조가 형성된 버튼 구조체
JP4924738B2 (ja) キー装置、及び電子機器
CN108873678A (zh) 一种可穿戴设备及其外壳
CN219873255U (zh) 一种电子设备
JP2002134938A (ja) 折り畳み筐体構造
WO2023068143A1 (ja) 電子機器およびジャック部品
CN216721453U (zh) 电子设备
CN209002021U (zh) 一种扬声器结构及移动终端

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022854938

Country of ref document: EP

Effective date: 20230220

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22854938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE