WO2023015753A1 - 长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置及测斜方法 - Google Patents

长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置及测斜方法 Download PDF

Info

Publication number
WO2023015753A1
WO2023015753A1 PCT/CN2021/129355 CN2021129355W WO2023015753A1 WO 2023015753 A1 WO2023015753 A1 WO 2023015753A1 CN 2021129355 W CN2021129355 W CN 2021129355W WO 2023015753 A1 WO2023015753 A1 WO 2023015753A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber optic
optic gyro
hole
attitude stabilization
inclinometer
Prior art date
Application number
PCT/CN2021/129355
Other languages
English (en)
French (fr)
Inventor
李方政
姜国静
韩玉福
许舒荣
高伟
付财
孔令辉
王磊
崔兵兵
杨志刚
李孔刚
郭鹏
郑祥龙
杨宁
Original Assignee
北京中煤矿山工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中煤矿山工程有限公司 filed Critical 北京中煤矿山工程有限公司
Publication of WO2023015753A1 publication Critical patent/WO2023015753A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism

Definitions

  • the invention relates to the technical field of freezing hole detection. Specifically, the invention relates to an attitude stabilizing device and an inclinometer method for a long-distance horizontal freezing hole fiber optic gyroscope inclinometer.
  • the freezing method is widely used in subway communication passages and shield access tunnel projects.
  • the drilling distance of freezing holes in such projects is relatively short, usually less than 20m.
  • the traditional lighting inclinometer method can meet the requirements of freezing holes Inclinometer needs.
  • the length of the horizontal freezing hole is close to 80m, and the traditional light inclinometer method can no longer meet the requirements; and the use of fiber optic gyro inclinometers to measure inclinometers in horizontal freezing holes has the following problems:
  • the horizontal fiber optic gyro The steady lowering of the inclinometer requires a certain driving force, and the driving force increases with the length of the frozen hole, and the continuous increase of the driving force brings some inconvenience to the subsequent lowering of the fiber optic gyro inclinometer; on the other hand, the fiber optic gyro inclinometer
  • the outer diameter of the instrument does not match the inner diameter of the freezing tube, and there is a large space. As a result, in actual testing, the
  • the technical problem to be solved by the present invention is to provide a long-distance horizontal freezing hole fiber optic gyro inclinometer attitude stabilization device and an inclinometer method that improve the attitude stability of the fiber optic gyro inclinometer during detection and reduce the forward resistance.
  • a long-distance horizontal freezing hole fiber optic gyro inclinometer attitude stabilization device including a fiber optic gyro inclinometer, a self-adjusting attitude stabilization component and a fixed component, the self-adjusting attitude stabilization component Sleeved on the end of the fiber optic gyro inclinometer, the support end of the self-adjusting attitude stabilization assembly is against the inner wall of the freezing tube, and the two ends of the self-adjustment attitude stabilization assembly are provided with the fixing assembly,
  • the self-adjusting attitude stabilization component is fixedly connected to the fiber optic gyro inclinometer through the fixing components at both ends thereof.
  • the self-adjusting attitude stabilization component includes a bead screw and a collar, and the side wall of the collar is uniformly provided with three or more threads along its circumference. hole, the ball screw is threaded in the threaded hole, and the end of the ball screw protrudes from the side wall of the collar; the collar is set on the fiber optic gyro inclinometer, and The inner diameter of the collar matches the outer diameter of the fiber optic gyro inclinometer, and the end of the bead screw away from the axis of the collar abuts against the inner wall of the freezing tube.
  • the material of the collar is nylon.
  • the ball screw includes a screw body, and one end of the screw body is provided with a blind hole along its axis, and a steel ball and a spring are arranged in the blind hole.
  • One end of the spring overlaps the bottom of the blind hole, the other end of the spring overlaps the surface of the steel ball, and the diameter of the opening end of the blind hole is smaller than the diameter of the steel ball; the screw body The end opposite to the blind hole is screwed into the threaded hole on the side wall of the collar, and the steel ball is against the inner wall of the freezing tube.
  • the fixing component is a clamp, and the two clamps are respectively fixed on the fiber optic gyro inclinometer at both ends of the self-adjusting attitude stabilization component, and the The side wall of the clip is overlapped with the side wall of the self-adjusting attitude stabilization component.
  • the clamp In the long-distance horizontal freezing hole fiber optic gyro inclinometer attitude stabilization device, the clamp includes a split ring, a clamping arm and a bolt, the clamping arm is fixedly connected to both ends of the split ring, and one clamp
  • the side wall of the tight arm is provided with a through hole
  • the side wall of the other clamp arm is provided with a threaded hole
  • the bolt passes through the through hole of the side wall of one clamp arm and is threadedly connected to the other clamp
  • the split ring is sleeved on the fiber optic gyro inclinometer, and the side wall of the split ring is overlapped with the side wall of the self-adjusting attitude stabilization component.
  • the long-distance horizontal freezing hole fiber optic gyroscope inclinometer method includes the following steps: Step A: install the attitude stabilization device of the long-distance horizontal freezing hole fiber optic gyroscope inclinometer on the fiber optic gyroscope, and the long-distance horizontal freezing
  • the fiber optic gyro inclinometer of the hole fiber optic gyro inclinometer attitude stabilizing device is placed at the orifice of the horizontal freezing hole; assembly and a fixed assembly, the self-adjusting attitude stabilization assembly is sleeved on the end of the fiber optic gyro inclinometer, the support end of the self-adjustment attitude stabilization assembly is against the inner wall of the freezing tube, the self-adjustment
  • Both ends of the attitude stabilizing component are provided with the fixing component, and the self-adjusting attitude stabilizing component is fixedly connected to the fiber optic gyro inclinometer through the fixing components at both ends;
  • Step B Insert the fiber optic gyro inclin
  • the measurement point should avoid the joint of the frozen tube.
  • additional measurement processing is performed; The line is in a relaxed state; when taking a fixed point, wait for the gyro to stand still for 1 to 2 seconds before taking a measurement; after removing the singular point, the stable data of each point is at least 3.
  • step A the attitude stabilization device of the fiber optic gyro inclinometer is installed at 40 cm from the end of the fiber optic gyro inclinometer; in step B, the first point is collected 3 to 5 times; in step C, the length of each section of PVC pipe is 4m, and the length of each section of PVC pipe shall prevail at each sampling point.
  • the self-adjusting attitude stabilization component includes a bead screw and a collar, and the side wall of the collar is uniformly opened with three or more holes along its circumference.
  • the ball screw is threaded in the threaded hole, and the end of the ball screw protrudes from the side wall of the collar;
  • the collar is sleeved on the fiber optic gyro inclinometer, And the inner diameter of the collar matches the outer diameter of the fiber optic gyro inclinometer, and the end of the bead screw away from the axis of the collar abuts against the inner wall of the freezing tube; the inner diameter of the collar
  • the material is nylon;
  • the ball screw includes a screw body, one end of the screw body is provided with a blind hole along its axis, a steel ball and a spring are arranged in the blind hole, and one end of the spring is connected to the hole of the blind hole The bottom overlaps, the other end of the spring overlaps the surface of the steel ball, and the diameter of the opening end of the blind hole is smaller than the diameter of the steel ball; the end of the screw body opposite to the blind hole is threaded on the collar In the threaded hole of the side wall
  • the clamp includes a split ring, a clamping arm and a bolt, and both ends of the split ring are fixedly connected
  • the clamping arm the side wall of one of the clamping arms is provided with a through hole
  • the side wall of the other clamping arm is provided with a threaded hole
  • the bolt passes through one of the side walls of the clamping arm. and threaded into another threaded hole on the side wall of the clamping arm
  • the split ring is sleeved on the fiber optic gyro inclinometer, and the side wall of the split ring is connected to the self-adjusting attitude stabilization assembly sidewall overlap.
  • the optical fiber gyro inclinometer is located in the center of the frozen tube, which overcomes the difficult problem that the gyro attitude is difficult to stabilize; through the clamp, The axial movement of the collar can be avoided when the fiber optic gyro inclinometer is pushed, and the stability in the process of pushing and inclinometer of the fiber optic gyro inclinometer is realized.
  • the steel ball of the wave ball screw is pressed against the inner wall of the freezing tube under the force of the spring.
  • the steel ball can roll, thereby reducing the long-distance inclinometer process.
  • Pushing resistance; the wave ball screw is installed on the nylon collar, which can play a role in damping vibration during the forward process, and with the spring of the wave ball screw, the steel ball can expand and contract to a certain extent, further improving the vibration damping effect; at the same time,
  • the freely expandable steel ball can play the role of supporting the fiber optic gyro inclinometer.
  • the freely expandable steel ball can ensure good passing capacity; with the cooperation of the above structure, the inclinometer accuracy can be controlled at Within 5 ⁇ , it meets the accuracy requirements of the long-distance horizontal freezing hole site.
  • Fig. 1 is a schematic diagram of the three-dimensional structure of the present invention
  • Fig. 2 is a schematic cross-sectional view of the present invention after being lowered to the freezing tube
  • Fig. 3 Schematic cross-sectional view of the present invention after being lowered into the freezing tube.
  • the reference signs in the figure are represented as: 1-bead screw; 101-screw body; 102-spring; 103-steel ball; 2-collar; 3-optical fiber gyro inclinometer; 4-clamp; 402-clamping arm; 403-bolt; 5-freezing tube; 6-male and female buckle.
  • the test is carried out in a certain section of rail transit in a certain city.
  • the freezing pipe 5 is a ⁇ 127*10mm seamless steel pipe.
  • the attitude stabilization device of the fiber optic gyro inclinometer in the long-distance horizontal freezing hole including the fiber optic gyro inclinometer 3, the self-adjusting attitude stabilization assembly and the fixing assembly, and the self-adjustment attitude stabilization assembly is sleeved on the optical fiber
  • the end of the gyro inclinometer 3, the support end of the self-adjusting attitude stabilization assembly is against the inner wall of the freezing tube 5, the two ends of the self-adjustment attitude stabilization assembly are provided with the fixing assembly, and the self-adjustment attitude stabilization assembly is provided with the fixing assembly.
  • the attitude stabilization component is fixedly connected with the fiber optic gyro inclinometer 3 through the fixing components at both ends thereof.
  • the self-adjusting attitude stabilization assembly includes a ball bead screw 1 and a collar 2, and the side wall of the collar 2 is uniformly provided with six threaded holes along its circumference, and the ball bead screw 1 is threaded. Connected in the threaded hole, and the end of the bead screw 1 protrudes from the side wall of the collar 2; the collar 2 is set on the fiber optic gyro inclinometer 3, and the collar The inner diameter of 2 is matched with the outer diameter of the fiber optic gyro inclinometer 3.
  • the bead screw 1 includes a screw body 101. One end of the screw body 101 is provided with a blind hole along its axis, and a blind hole is set in the blind hole.
  • the diameter of the steel ball 103 is smaller than the diameter of the steel ball 103; the end of the screw body 101 opposite to the blind hole is screwed into the threaded hole on the side wall of the collar, the steel ball 103 is against the inner wall of the freezing tube 5, and the sleeve
  • the material of the ring 2 is nylon, the material of the nylon rod is PA6, the outer diameter is ⁇ 70mm, and the inner diameter is 42mm; the depth of the threaded hole is 10mm; the length of the ball screw 1 is 24mm, and the maximum load is 55N.
  • the steel ball 103 When pushing, the steel ball 103 can roll, thereby reducing the pushing resistance in the long-distance inclinometer process; the wave ball screw 1 is installed On the nylon collar 2, in the process of moving forward, it can play the role of vibration reduction, and cooperate with the spring 102 of the ball screw 1, the steel ball 103 can be stretched to a certain extent, further improving the vibration reduction effect; at the same time, it can be freely stretched
  • the steel ball 103 can play the role of supporting the fiber optic gyro inclinometer 3, and when the freezing tube 5 is partially deformed, the freely retractable steel ball 103 can ensure a good passing capacity.
  • the fixing component is a clamp 4, and two clamps 4 are respectively fixed on the fiber optic gyro inclinometer 3 at both ends of the self-adjusting attitude stabilization component, and the clamp includes a split ring 401, a clamping arm 402 and Bolt 403, the two ends of the split ring 401 are fixedly connected with the clamping arm 402, the side wall of one clamping arm 402 is provided with a through hole, and the side wall of the other clamping arm 402 is provided with a Threaded hole, the bolt 403 passes through a through hole of the side wall of the clamping arm 402 and is threaded into another threaded hole of the side wall of the clamping arm 402; the split ring 401 is sleeved on the fiber optic gyroscope On the inclinometer 3, and the side wall of the split ring 401 is overlapped with the side wall of the self-adjusting attitude stabilization assembly, the material of the clip 4 is 304 stainless steel, and the thickness is 5mm. By the clip 4, it can be
  • the long-distance horizontal freezing hole fiber optic gyro inclinometer inclinometer method includes the following steps: Step A: install the long-distance horizontal freezing hole fiber optic gyro inclinometer attitude stabilization device on the fiber optic gyro inclinometer 3, and the long-distance horizontal
  • the fiber optic gyro inclinometer 3 of the frozen hole fiber optic gyro inclinometer attitude stabilizing device is placed on the horizontal freezing hole aperture; Adjust the attitude stabilization assembly and the fixing assembly, the self-adjustment attitude stabilization assembly is sleeved on the end of the fiber optic gyro inclinometer 3, and the support end of the self-adjustment attitude stabilization assembly is against the inner wall of the freezing tube 5 , both ends of the self-adjusting attitude stabilization assembly are provided with the fixing assembly, and the self-adjusting attitude stabilization assembly is fixedly connected to the fiber optic gyro inclinometer 3 through the fixing assemblies at both ends; Step B: The fiber optic gyro
  • the measurement point should avoid the joint of the frozen tube 5.
  • do additional measurement processing when taking a point for each measurement, keep the gyroscope signal line in a relaxed state; when taking a fixed point, wait for the gyroscope to stop After 1 to 2 seconds, take a point measurement, and after removing the singular point, the stable data of each point is at least 3; in step A, the attitude stabilization device of the fiber optic gyro inclinometer is installed at In step B, the first point is collected 3 to 5 times; in step C, the length of each section of PVC pipe is 4m, and each sampling point is based on the length of each section of PVC pipe.
  • the self-adjusting attitude stabilization assembly includes a ball bead screw 1 and a collar 2, and the side wall of the collar 2 is evenly provided with six threaded holes along its circumference, and the ball bead screw 1 is threaded in the threaded holes Inside, and the end of the ball bead screw 1 protrudes from the side wall of the collar 2; the collar 2 is set on the fiber optic gyro inclinometer 3, and the inner diameter of the collar 2 is the same as the The outer diameter of the fiber optic gyro inclinometer 3 is matched, and the end of the bead screw 1 away from the axis of the collar 2 is against the inner wall of the freezing tube 5; the material of the collar 2 is nylon;
  • the ball screw 1 includes a screw body 101, one end of the screw body 101 is provided with a blind hole along its axis, a steel ball 103 and a spring 102 are arranged in the blind hole, and one end of the spring 102 is connected to the blind hole.
  • the clamp includes a split ring 401 and a clamping arm 402 and bolts 403, the two ends of the split ring 401 are fixedly connected with the clamping arm 402, the side wall of one clamping arm 402 is provided with a through hole, and the side wall of the other clamping arm 402 is provided with a There is a threaded hole, and the bolt 403 passes through a through hole in the side wall of the clamping arm 402 and is threade
  • attitude stabilization device of the fiber optic gyro inclinometer After using the attitude stabilization device of the fiber optic gyro inclinometer in the long-distance horizontal freezing hole to measure the inclination, the problem of attitude stability of the gyro inclinometer in the long-distance horizontal freezing hole was overcome.
  • the accuracy is controlled within 5 ⁇ , which meets the accuracy requirements of the long-distance horizontal freezing hole site.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Gyroscopes (AREA)

Abstract

长距离水平冻结孔光纤陀螺测斜仪(3)姿态稳定装置及测斜方法,长距离水平冻结孔光纤陀螺测斜仪(3)姿态稳定装置包括光纤陀螺测斜仪(3),光纤陀螺测斜仪(3)穿在冻结管(5)内,相邻两个冻结管(5)通过公母扣(6)连接,还包括自调节姿态稳定组件和固定组件,长距离水平冻结孔光纤陀螺测斜仪(3)测斜方法,包括安装姿态稳定装置和测量。

Description

长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置及测斜方法 技术领域
本发明涉及冻结孔检测技术领域。具体地说是长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置及测斜方法。
背景技术
现代地下工程中,冻结法广泛应用于地铁的联络通道及盾构进出洞工程中,这类工程的冻结孔钻孔距离较短,通常小于20m,采用传统的灯光测斜法便能够满足冻结孔测斜的需求。但随着交叉穿越冻结工程的出现,水平冻结孔长度接近80m,传统的灯光测斜方法已无法满足;而采用光纤陀螺测斜仪在水平冻结孔中测斜存在以下问题:一方面水平光纤陀螺测斜仪的平稳下放需要一定的驱动力,驱动力随着冻结孔的长度而加大,驱动力不断增加给后续下放光纤陀螺测斜仪带来一定的不便;另一方面,光纤陀螺测斜仪的外径与冻结管的内径不匹配,存在较大的空间,导致在实际的检测中,光纤陀螺测斜仪的姿态难以稳定,导致测量误差,影响测量精度。
技术问题
为此,本发明所要解决的技术问题在于提供一种提高光纤陀螺测斜仪检测时姿态稳定性并减少前进阻力的长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置及测斜方法。
技术解决方案
为解决上述技术问题,本发明提供如下技术方案:长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,包括光纤陀螺测斜仪、自调节姿态稳定组件和固定组件,所述自调节姿态稳定组件套在所述光纤陀螺测斜仪的端部,所述自调节姿态稳定组件的支撑端抵顶在冻结管的内壁上,所述自调节姿态稳定组件的两端均设置有所述固定组件,所述自调节姿态稳定组件通过其两端的所述固定组件与所述光纤陀螺测斜仪固定连接。
上述长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,所述自调节姿态稳定组件包括波珠螺丝和套环,所述套环的侧壁沿其周向均匀开设有三个或三个以上螺纹孔,所述波珠螺丝螺纹连接在所述螺纹孔内,且所述波珠螺丝的端部突出所述套环的侧壁;所述套环套在所述光纤陀螺测斜仪上,且所述套环的内径与所述光纤陀螺测斜仪的外径相匹配,所述波珠螺丝远离所述套环轴线的一端抵顶在所述冻结管的内壁上。
上述长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,所述套环的材质为尼龙。
上述长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,所述波珠螺丝包括螺丝本体,所述螺丝本体的一端沿其轴线开设有盲孔,所述盲孔内设置有钢珠和弹簧,所述弹簧的一端与所述盲孔的孔底搭接,所述弹簧的另一端与所述钢珠的表面搭接,且所述盲孔的开口端直径小于所述钢珠的直径;所述螺丝本体与盲孔相对的一端螺纹连接在套环侧壁的螺纹孔内,所述钢珠抵顶在所述冻结管的内壁上。
上述长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,所述固定组件为卡箍,两个所述卡箍分别固定在所述自调节姿态稳定组件两端的光纤陀螺测斜仪上,且所述卡箍的侧壁与所述自调节姿态稳定组件的侧壁搭接。
上述长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,所述卡箍包括开口环、夹紧臂和螺栓,所述开口环的两端均固定连接有所述夹紧臂,一个所述夹紧臂的侧壁开设有通孔,另一个所述夹紧臂的侧壁开设有螺纹孔,所述螺栓穿过一个所述夹紧臂侧壁的通孔并螺纹连接另一个所述夹紧臂侧壁的螺纹孔内;所述开口环套在所述光纤陀螺测斜仪上,且所述开口环的侧壁与所述自调节姿态稳定组件的侧壁搭接。
长距离水平冻结孔光纤陀螺测斜仪测斜方法,包括以下步骤:步骤A:在光纤陀螺测斜仪上安装长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,将装有长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置的光纤陀螺测斜仪放在水平冻结孔孔口处;所述长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置包括光纤陀螺测斜仪、自调节姿态稳定组件和固定组件,所述自调节姿态稳定组件套在所述光纤陀螺测斜仪的端部,所述自调节姿态稳定组件的支撑端抵顶在所述冻结管的内壁上,所述自调节姿态稳定组件的两端均设置有所述固定组件,所述自调节姿态稳定组件通过其两端的所述固定组件与所述光纤陀螺测斜仪固定连接;步骤B:将光纤陀螺测斜仪插入冻结管内,使光纤陀螺测斜仪的尾端与冻结孔孔口处平齐,进行第一点数据采集;步骤C:利用PVC管推动光纤陀螺测斜仪前进,使PVC管的后端部与冻结孔孔口处平齐,进行第二点数据采集。
上述长距离水平冻结孔光纤陀螺测斜仪测斜方法,测量点应避开冻结管连接处,当测量点数据存在奇异点时,做加测处理;每次测量取点时,保持陀螺仪信号线处于松弛状态;固定点取点时,等待陀螺静止1~2s后再取点测量;剔除奇异点之后,每个点的稳定数据至少为3个。
上述长距离水平冻结孔光纤陀螺测斜仪测斜方法,在步骤A中,光纤陀螺测斜仪姿态稳定装置安装在距光纤陀螺测斜仪端部4Ocm处;在步骤B中,第一点采集3~5次;在步骤C中,每节PVC管的长度为4m,每次采点以每节PVC管长度为准。
上述长距离水平冻结孔光纤陀螺测斜仪测斜方法,所述自调节姿态稳定组件包括波珠螺丝和套环,所述套环的侧壁沿其周向均匀开设有有三个或三个以上螺纹孔,所述波珠螺丝螺纹连接在所述螺纹孔内,且所述波珠螺丝的端部突出所述套环的侧壁;所述套环套在所述光纤陀螺测斜仪上,且所述套环的内径与所述光纤陀螺测斜仪的外径相匹配,所述波珠螺丝远离所述套环轴线的一端抵顶在所述冻结管的内壁上;所述套环的材质为尼龙;所述波珠螺丝包括螺丝本体,所述螺丝本体的一端沿其轴线开设有盲孔,所述盲孔内设置有钢珠和弹簧,所述弹簧的一端与所述盲孔的孔底搭接,所述弹簧的另一端与所述钢珠的表面搭接,且所述盲孔的开口端直径小于所述钢珠的直径;所述螺丝本体与盲孔相对的一端螺纹连接在套环侧壁的螺纹孔内,所述钢珠抵顶在所述冻结管的内壁上;所述固定组件为卡箍,两个所述卡箍分别固定在所述自调节姿态稳定组件两端的光纤陀螺测斜仪上,且所述卡箍的侧壁与所述自调节姿态稳定组件的侧壁搭接;所述卡箍包括开口环、夹紧臂和螺栓,所述开口环的两端均固定连接有所述夹紧臂,一个所述夹紧臂的侧壁开设有通孔,另一个所述夹紧臂的侧壁开设有螺纹孔,所述螺栓穿过一个所述夹紧臂侧壁的通孔并螺纹连接另一个所述夹紧臂侧壁的螺纹孔内;所述开口环套在所述光纤陀螺测斜仪上,且所述开口环的侧壁与所述自调节姿态稳定组件的侧壁搭接。。
有益效果
1、本发明,通过在套环的周围均匀设置波珠螺丝,在波珠螺丝的支撑下,使光纤陀螺测斜仪位于冻结管的中心,克服了陀螺姿态难以稳定的难题;通过卡箍,能够避免在推送光纤陀螺测斜仪时,套环发生轴向移动,实现了光纤陀螺测斜仪推送及测斜过程中的稳定。
2、本发明,通过设置波珠螺丝,波珠螺丝的钢珠在弹簧的顶动下抵顶在冻结管的内壁上,在推送时,钢珠能够进行滚动,从而减少了长距离测斜过程中的推送阻力;波珠螺丝安装在尼龙套环上,在前进的过程中,能够起到减振的作用,并配合波珠螺丝的弹簧,钢珠能够进行一定的伸缩,进一步提高减振效果;同时,可自由伸缩的钢珠能够起到支撑光纤陀螺测斜仪的作用,在冻结管出现部分变形时,可自由伸缩的钢珠能够保证良好的通过能力;在上述结构的配合下,使测斜精度控制在5‰以内,满足了长距离水平冻结孔现场对精度的要求。
附图说明
图1  本发明的立体结构示意图;图2 本发明下放至冻结管后的剖面示意图;图3       本发明下放至冻结管后的截面示意图。
图中附图标记表示为:1-波珠螺丝;101-螺丝本体;102-弹簧;103-钢珠;2-套环;3-光纤陀螺测斜仪;4-卡箍;401-开口环;402-夹紧臂;403-螺栓;5-冻结管;6-公母扣。
本实施例中,在某市轨道交通某区间段进行试验,冻结管5为φ127*10mm无缝钢管,冻结管5的连接采用公母扣6连接,光纤陀螺测斜仪3外径为40mm。
请参阅图1-3,长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,包括光纤陀螺测斜仪3、自调节姿态稳定组件和固定组件,所述自调节姿态稳定组件套在所述光纤陀螺测斜仪3的端部,所述自调节姿态稳定组件的支撑端抵顶在冻结管5的内壁上,所述自调节姿态稳定组件的两端均设置有所述固定组件,所述自调节姿态稳定组件通过其两端的所述固定组件与所述光纤陀螺测斜仪3固定连接。
如图3所示,所述自调节姿态稳定组件包括波珠螺丝1和套环2,所述套环2的侧壁沿其周向均匀开设有六个螺纹孔,所述波珠螺丝1螺纹连接在所述螺纹孔内,且所述波珠螺丝1的端部突出所述套环2的侧壁;所述套环2套在所述光纤陀螺测斜仪3上,且所述套环2的内径与所述光纤陀螺测斜仪3的外径间隙配合,所述波珠螺丝1包括螺丝本体101,所述螺丝本体101的一端沿其轴线开设有盲孔,所述盲孔内设置有钢珠103和弹簧102,所述弹簧102的一端与所述盲孔的孔底搭接,所述弹簧102的另一端与所述钢珠103的表面搭接,且所述盲孔的开口端直径小于所述钢珠103的直径;所述螺丝本体101与盲孔相对的一端螺纹连接在套环侧壁的螺纹孔内,所述钢珠103抵顶在所述冻结管5的内壁上,所述套环2的材质为尼龙,尼龙棒的材质为PA6,外径尺寸为φ70mm,内径尺寸为42mm;螺纹孔深度为10mm;波珠螺丝1长度为24mm,最大承担荷重为55N,通过在套环2的周围均匀设置波珠螺丝1,在波珠螺丝1的支撑下,使光纤陀螺测斜仪3位于冻结管5的中心,克服了陀螺姿态难以稳定的难题;通过设置波珠螺丝1,波珠螺丝1的钢珠103在弹簧102的顶动下抵顶在冻结管5的内壁上,在推送时,钢珠103能够进行滚动,从而减少了长距离测斜过程中的推送阻力;波珠螺丝1安装在尼龙套环2上,在前进的过程中,能够起到减振的作用,并配合波珠螺丝1的弹簧102,钢珠103能够进行一定的伸缩,进一步提高减振效果;同时,可自由伸缩的钢珠103能够起到支撑光纤陀螺测斜仪3的作用,在冻结管5出现部分变形时,可自由伸缩的钢珠103能够保证良好的通过能力。
所述固定组件为卡箍4,两个所述卡箍4分别固定在所述自调节姿态稳定组件两端的光纤陀螺测斜仪3上,所述卡箍包括开口环401、夹紧臂402和螺栓403,所述开口环401的两端均固定连接有所述夹紧臂402,一个所述夹紧臂402的侧壁开设有通孔,另一个所述夹紧臂402的侧壁开设有螺纹孔,所述螺栓403穿过一个所述夹紧臂402侧壁的通孔并螺纹连接另一个所述夹紧臂402侧壁的螺纹孔内;所述开口环401套在所述光纤陀螺测斜仪3上,且所述开口环401的侧壁与所述自调节姿态稳定组件的侧壁搭接,卡箍4的材质为304不锈钢,厚度为5mm,通过卡箍4,能够避免在推送光纤陀螺测斜仪3时,套环2发生轴向移动,实现了光纤陀螺测斜仪3推送及测斜过程中的稳定。
长距离水平冻结孔光纤陀螺测斜仪测斜方法,包括以下步骤:步骤A:在光纤陀螺测斜仪3上安装长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,将装有长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置的光纤陀螺测斜仪3放在水平冻结孔孔口处;所述长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置包括光纤陀螺测斜仪3、自调节姿态稳定组件和固定组件,所述自调节姿态稳定组件套在所述光纤陀螺测斜仪3的端部,所述自调节姿态稳定组件的支撑端抵顶在所述冻结管5的内壁上,所述自调节姿态稳定组件的两端均设置有所述固定组件,所述自调节姿态稳定组件通过其两端的所述固定组件与所述光纤陀螺测斜仪3固定连接;步骤B:将光纤陀螺测斜仪3插入冻结管5内,使光纤陀螺测斜仪3的尾端与冻结孔孔口处平齐,进行第一点数据采集;步骤C:利用PVC管推动光纤陀螺测斜仪3前进,使PVC管的后端部与冻结孔孔口处平齐,进行第二点数据采集。
测量点应避开冻结管5连接处,当测量点数据存在奇异点时,做加测处理;每次测量取点时,保持陀螺仪信号线处于松弛状态;固定点取点时,等待陀螺静止1~2s后再取点测量,剔除奇异点之后,每个点的稳定数据至少为3个;在步骤A中,光纤陀螺测斜仪姿态稳定装置安装在距光纤陀螺测斜仪3端部4Ocm处;在步骤B中,第一点采集3~5次;在步骤C中,每节PVC管的长度为4m,每次采点以每节PVC管长度为准。
所述自调节姿态稳定组件包括波珠螺丝1和套环2,所述套环2的侧壁沿其周向均匀开设有六个螺纹孔,所述波珠螺丝1螺纹连接在所述螺纹孔内,且所述波珠螺丝1的端部突出所述套环2的侧壁;所述套环2套在所述光纤陀螺测斜仪3上,且所述套环2的内径与所述光纤陀螺测斜仪3的外径相匹配,所述波珠螺丝1远离所述套环2轴线的一端抵顶在所述冻结管5的内壁上;所述套环2的材质为尼龙;所述波珠螺丝1包括螺丝本体101,所述螺丝本体101的一端沿其轴线开设有盲孔,所述盲孔内设置有钢珠103和弹簧102,所述弹簧102的一端与所述盲孔的孔底搭接,所述弹簧102的另一端与所述钢珠103的表面搭接,且所述盲孔的开口端直径小于所述钢珠103的直径;所述螺丝本体101与盲孔相对的一端螺纹连接在套环侧壁的螺纹孔内,所述钢珠103抵顶在所述冻结管5的内壁上;所述固定组件为卡箍4,两个所述卡箍4分别固定在所述自调节姿态稳定组件两端的光纤陀螺测斜仪3上,且所述卡箍4的侧壁与所述自调节姿态稳定组件的侧壁搭接;所述卡箍包括开口环401、夹紧臂402和螺栓403,所述开口环401的两端均固定连接有所述夹紧臂402,一个所述夹紧臂402的侧壁开设有通孔,另一个所述夹紧臂402的侧壁开设有螺纹孔,所述螺栓403穿过一个所述夹紧臂402侧壁的通孔并螺纹连接另一个所述夹紧臂402侧壁的螺纹孔内;所述开口环401套在所述光纤陀螺测斜仪3上,且所述开口环401的侧壁与所述自调节姿态稳定组件的侧壁搭接。
利用长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置进行测斜后,克服了长距离水平冻结孔中陀螺测斜仪的姿态稳定难题,在本段水平冻结孔施工测斜中,使测斜精度控制在5‰以内,满足了长距离水平冻结孔现场对精度的要求。
工作流程:实际使用中,首先将波珠螺丝1拧入套环2侧壁的螺纹孔内,在光纤陀螺测斜仪3的两端套上姿态稳定装置,并通过卡箍4对姿态稳定装置进行固定;然后将装有姿态稳定装置的光纤陀螺测斜仪3推送入冻结管5内,进行测斜。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本专利申请权利要求的保护范围之中。

Claims (10)

  1. 长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,包括光纤陀螺测斜仪(3),其特征在于,还包括自调节姿态稳定组件和固定组件,所述自调节姿态稳定组件套在所述光纤陀螺测斜仪(3)的端部,所述自调节姿态稳定组件的支撑端抵顶在冻结管(5)的内壁上,所述自调节姿态稳定组件的两端均设置有所述固定组件,所述自调节姿态稳定组件通过其两端的所述固定组件与所述光纤陀螺测斜仪(3)固定连接。
  2. 根据权利要求1所述的长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,其特征在于,所述自调节姿态稳定组件包括波珠螺丝(1)和套环(2),所述套环(2)的侧壁沿其周向均匀开设有三个或三个以上螺纹孔,所述波珠螺丝(1)螺纹连接在所述螺纹孔内,且所述波珠螺丝(1)的端部突出所述套环(2)的侧壁;所述套环(2)套在所述光纤陀螺测斜仪(3)上,且所述套环(2)的内径与所述光纤陀螺测斜仪(3)的外径相匹配,所述波珠螺丝(1)远离所述套环(2)轴线的一端抵顶在所述冻结管(5)的内壁上。
  3. 根据权利要求2所述的长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,其特征在于,所述套环(2)的材质为尼龙。
  4. 根据权利要求2所述的长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,其特征在于,所述波珠螺丝(1)包括螺丝本体(101),所述螺丝本体(101)的一端沿其轴线开设有盲孔,所述盲孔内设置有钢珠(103)和弹簧(102),所述弹簧(102)的一端与所述盲孔的孔底搭接,所述弹簧(102)的另一端与所述钢珠(103)的表面搭接,且所述盲孔的开口端直径小于所述钢珠(103)的直径;所述螺丝本体(101)与盲孔相对的一端螺纹连接在套环侧壁的螺纹孔内,所述钢珠(103)抵顶在所述冻结管(5)的内壁上。
  5. 根据权利要求1所述的长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,其特征在于,所述固定组件为卡箍(4),两个所述卡箍(4)分别固定在所述自调节姿态稳定组件两端的光纤陀螺测斜仪(3)上,且所述卡箍(4)的侧壁与所述自调节姿态稳定组件的侧壁搭接。
  6. 根据权利要求5所述的长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,其特征在于,所述卡箍包括开口环(401)、夹紧臂(402)和螺栓(403),所述开口环(401)的两端均固定连接有所述夹紧臂(402),一个所述夹紧臂(402)的侧壁开设有通孔,另一个所述夹紧臂(402)的侧壁开设有螺纹孔,所述螺栓(403)穿过一个所述夹紧臂(402)侧壁的通孔并螺纹连接另一个所述夹紧臂(402)侧壁的螺纹孔内;所述开口环(401)套在所述光纤陀螺测斜仪(3)上,且所述开口环(401)的侧壁与所述自调节姿态稳定组件的侧壁搭接。
  7. 长距离水平冻结孔光纤陀螺测斜仪测斜方法,其特征在于,包括以下步骤:    步骤A:在光纤陀螺测斜仪(3)上安装长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置,将装有长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置的光纤陀螺测斜仪(3)放在水平冻结孔孔口处;所述长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置包括光纤陀螺测斜仪(3)、自调节姿态稳定组件和固定组件,所述自调节姿态稳定组件套在所述光纤陀螺测斜仪(3)的端部,所述自调节姿态稳定组件的支撑端抵顶在所述冻结管(5)的内壁上,所述自调节姿态稳定组件的两端均设置有所述固定组件,所述自调节姿态稳定组件通过其两端的所述固定组件与所述光纤陀螺测斜仪(3)固定连接;    步骤B:将光纤陀螺测斜仪(3)插入冻结管(5)内,使光纤陀螺测斜仪(3)的尾端与冻结孔孔口处平齐,进行第一点数据采集;    步骤C:利用PVC管推动光纤陀螺测斜仪(3)前进,使PVC管的后端部与冻结孔孔口处平齐,进行第二点数据采集。
  8. 根据权利要求5所述的长距离水平冻结孔光纤陀螺测斜仪测斜方法,其特征在于,测量点应避开冻结管(5)连接处,当测量点数据存在奇异点时,做加测处理;每次测量取点时,保持陀螺仪信号线处于松弛状态;固定点取点时,等待陀螺静止1~2s后再取点测量;剔除奇异点之后,每个点的稳定数据至少为3个。
  9. 根据权利要求5所述的长距离水平冻结孔光纤陀螺测斜仪测斜方法,其特征在于,在步骤A中,光纤陀螺测斜仪姿态稳定装置安装在距光纤陀螺测斜仪(3)端部4Ocm处;在步骤B中,第一点采集3~5次;在步骤C中,每节PVC管的长度为4m,每次采点以每节PVC管长度为准。
  10. 根据权利要求5所述的长距离水平冻结孔光纤陀螺测斜仪测斜方法,其特征在于,所述自调节姿态稳定组件包括波珠螺丝(1)和套环(2),所述套环(2)的侧壁沿其周向均匀开设有三个或三个以上螺纹孔,所述波珠螺丝(1)螺纹连接在所述螺纹孔内,且所述波珠螺丝(1)的端部突出所述套环(2)的侧壁;所述套环(2)套在所述光纤陀螺测斜仪(3)上,且所述套环(2)的内径与所述光纤陀螺测斜仪(3)的外径相匹配,所述波珠螺丝(1)远离所述套环(2)轴线的一端抵顶在所述冻结管(5)的内壁上;所述套环(2)的材质为尼龙;所述波珠螺丝(1)包括螺丝本体(101),所述螺丝本体(101)的一端沿其轴线开设有盲孔,所述盲孔内设置有钢珠(103)和弹簧(102),所述弹簧(102)的一端与所述盲孔的孔底搭接,所述弹簧(102)的另一端与所述钢珠(103)的表面搭接,且所述盲孔的开口端直径小于所述钢珠(103)的直径;所述螺丝本体(101)与盲孔相对的一端螺纹连接在套环侧壁的螺纹孔内,所述钢珠(103)抵顶在所述冻结管(5)的内壁上;所述固定组件为卡箍(4),两个所述卡箍(4)分别固定在所述自调节姿态稳定组件两端的光纤陀螺测斜仪(3)上,且所述卡箍(4)的侧壁与所述自调节姿态稳定组件的侧壁搭接;所述卡箍包括开口环(401)、夹紧臂(402)和螺栓(403),所述开口环(401)的两端均固定连接有所述夹紧臂(402),一个所述夹紧臂(402)的侧壁开设有通孔,另一个所述夹紧臂(402)的侧壁开设有螺纹孔,所述螺栓(403)穿过一个所述夹紧臂(402)侧壁的通孔并螺纹连接另一个所述夹紧臂(402)侧壁的螺纹孔内;所述开口环(401)套在所述光纤陀螺测斜仪(3)上,且所述开口环(401)的侧壁与所述自调节姿态稳定组件的侧壁搭接。
PCT/CN2021/129355 2021-08-11 2021-11-08 长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置及测斜方法 WO2023015753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110920165.0A CN113653485A (zh) 2021-08-11 2021-08-11 长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置及测斜方法
CN202110920165.0 2021-08-11

Publications (1)

Publication Number Publication Date
WO2023015753A1 true WO2023015753A1 (zh) 2023-02-16

Family

ID=78491466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129355 WO2023015753A1 (zh) 2021-08-11 2021-11-08 长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置及测斜方法

Country Status (2)

Country Link
CN (1) CN113653485A (zh)
WO (1) WO2023015753A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014893A (ja) * 2006-07-10 2008-01-24 Chem Grouting Co Ltd 傾斜計及びそれを用いた計測方法
CN106761840A (zh) * 2017-02-23 2017-05-31 长安大学 一种隧道管棚测斜管的埋设和居中固定装置及方法
CN209102064U (zh) * 2018-12-06 2019-07-12 北京中建翔天勘测工程有限公司 一种杆式测斜仪安装固定装置
CN110042822A (zh) * 2019-05-27 2019-07-23 福州大学 测量岩土体多方向水平位移的测斜装置及测斜方法
CN110863477A (zh) * 2019-10-24 2020-03-06 北京中煤矿山工程有限公司 长距离水平冻结孔光纤陀螺测斜新方法
CN211900493U (zh) * 2020-03-24 2020-11-10 东营市金亿来石油机械有限公司 一种带有扶正器的高产型包覆抽油杆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014893A (ja) * 2006-07-10 2008-01-24 Chem Grouting Co Ltd 傾斜計及びそれを用いた計測方法
CN106761840A (zh) * 2017-02-23 2017-05-31 长安大学 一种隧道管棚测斜管的埋设和居中固定装置及方法
CN209102064U (zh) * 2018-12-06 2019-07-12 北京中建翔天勘测工程有限公司 一种杆式测斜仪安装固定装置
CN110042822A (zh) * 2019-05-27 2019-07-23 福州大学 测量岩土体多方向水平位移的测斜装置及测斜方法
CN110863477A (zh) * 2019-10-24 2020-03-06 北京中煤矿山工程有限公司 长距离水平冻结孔光纤陀螺测斜新方法
CN211900493U (zh) * 2020-03-24 2020-11-10 东营市金亿来石油机械有限公司 一种带有扶正器的高产型包覆抽油杆

Also Published As

Publication number Publication date
CN113653485A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN210664985U (zh) 一种便于检测不同型号光纤的光纤端面检测仪适配头
CN110657327B (zh) 拼接齿圈轨道及其水平度和同轴度位姿解耦调节方法
WO2023015753A1 (zh) 长距离水平冻结孔光纤陀螺测斜仪姿态稳定装置及测斜方法
CN105466663B (zh) 精确测量风洞跨声速试验段局部气流偏斜角的装置
CN109596799A (zh) 一种焊缝检测装置
CN203849061U (zh) 一种脱硝逃逸氨采样装置
CN209606380U (zh) 一种超声波无损检测装置
CN215296256U (zh) 一种可调节管径的顶管轴线和高程测量工具
CN212274891U (zh) 一种油气管道壁厚监测设备
CN210424307U (zh) 滑动支架滑动定位结构
CN215636231U (zh) 一种陀螺仪固定装置和可调式陀螺结构
CN211178286U (zh) 管道中心的同轴度测量装置
CN103353048A (zh) 透射式探头夹紧结构及分离式双透射式探头夹紧结构
CN205280324U (zh) 精确测量风洞跨声速试验段局部气流偏斜角的装置
CN213165365U (zh) 管座角焊缝相控阵检测管外划线器
CN211061375U (zh) 一种粉尘检测装置
CN110470249B (zh) 长距离直管管道连接偏移的检测方法
CN213041673U (zh) 一种回弹法测强辅助装置
CN211397571U (zh) 一种盾构测量全站仪吊篮设备
CN220154355U (zh) 一种防擦伤管体的超声设备夹持装置
CN220337837U (zh) 一种可调式伸缩支架
CN103091161B (zh) 自动定位螺钉抗拉强度试验夹具
CN114226182B (zh) 一种用于圆形截面管梁的光纤应变传感器铺设定位装置
CN206387771U (zh) 一种手动超声波检测用的管道驱动装置
CN210268557U (zh) 长距离直管管道连接偏移检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE