WO2023015577A1 - 气体循环装置、气体循环方法、气动装置和半导体设备 - Google Patents

气体循环装置、气体循环方法、气动装置和半导体设备 Download PDF

Info

Publication number
WO2023015577A1
WO2023015577A1 PCT/CN2021/112840 CN2021112840W WO2023015577A1 WO 2023015577 A1 WO2023015577 A1 WO 2023015577A1 CN 2021112840 W CN2021112840 W CN 2021112840W WO 2023015577 A1 WO2023015577 A1 WO 2023015577A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
circulation
piston
cavity
cylinder
Prior art date
Application number
PCT/CN2021/112840
Other languages
English (en)
French (fr)
Inventor
黄青
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/454,240 priority Critical patent/US20230041577A1/en
Publication of WO2023015577A1 publication Critical patent/WO2023015577A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • F15B11/064Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam with devices for saving the compressible medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the embodiments of the present application relate to but are not limited to a gas circulation device, a gas circulation method, a pneumatic device and a semiconductor device.
  • the interior of existing semiconductor equipment usually contains many pneumatic components, which can be used for the movement of gate valves, moving rods or driving discs of semiconductor equipment machines. Due to the advantages of stability and durability, pneumatic components can meet the needs of long-term and multi-frequency actuation of semiconductor equipment machines, so they have been widely used in various machines.
  • the application of a wide range of pneumatic components needs to provide stable and high-consumption compressed air, and the pneumatic components rely on compressed air to fill the cylinder, drive the connecting rod to move, and then rely on springs, gravity or compressed air to reset and fill the cylinder at the same time
  • the gas is discharged to the outside of the valve body through the vent hole or the pressure relief valve.
  • many air valves are inflated and exhausted, resulting in a large amount of compressed air being discharged and consumed, resulting in a waste of compressed air.
  • the embodiment of the present application provides a gas circulation device, which is applied to a pneumatic device including a solenoid valve device and a cylinder device, and the gas cycle device is connected in series between the solenoid valve device and the cylinder device between;
  • the gas circulation device includes a valve core structure, a first circulation cavity and a second circulation cavity;
  • the valve core structure is used to collect and store the compressed gas discharged from the first cylinder cavity of the cylinder device through the first circulation cavity after passing through the electromagnetic valve device when moving in the first direction, And the compressed gas stored in the second circulation cavity and the compressed gas provided by the electromagnetic valve device jointly charge the second cylinder cavity of the cylinder device.
  • the embodiment of the present application provides a gas circulation method, the method is applied to a gas circulation device, the gas circulation device is connected in series between the solenoid valve device and the cylinder device, and the gas circulation device includes a valve core structure , a first circulation chamber and a second circulation chamber, the method comprising:
  • the first circulation cavity is controlled to collect and store the compressed gas discharged from the first cylinder cavity of the cylinder device through the electromagnetic valve device, and the control
  • the compressed gas stored in the second circulation cavity and the compressed gas provided by the electromagnetic valve device jointly charge the second cylinder cavity of the cylinder device.
  • the embodiment of the present application provides a pneumatic device, which includes a cylinder device, a solenoid valve device, and the gas circulation device as described in the first aspect.
  • an embodiment of the present application provides a semiconductor device, which includes the pneumatic device as described in the third aspect.
  • Fig. 1 is a schematic diagram of the hardware structure of a pneumatic device provided by the embodiment of the present application
  • Fig. 2 is a schematic diagram of the working principle of a double-action cylinder provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the working principle of a gas solenoid valve provided in the embodiment of the present application.
  • Fig. 4 is a schematic diagram of the composition and structure of a gas circulation device provided in the embodiment of the present application.
  • Fig. 5 is a schematic diagram of the hardware structure of a gas circulation device provided by the embodiment of the present application.
  • Fig. 6 is a schematic diagram of the hardware structure of another pneumatic device provided by the embodiment of the present application.
  • Fig. 7 is a schematic diagram of the working principle of a gas circulation device provided in the embodiment of the present application.
  • Fig. 8 is a schematic diagram of the hardware structure of another pneumatic device provided by the embodiment of the present application.
  • Fig. 9 is a schematic diagram of the working principle of another gas circulation device provided in the embodiment of the present application.
  • Fig. 10 is a schematic diagram of the hardware structure of another gas circulation device provided by the embodiment of the present application.
  • Fig. 11 is a schematic diagram of the relationship curve between the supply pressure at the front end of the pipeline and the compressed air flow rate provided by the embodiment of the present application;
  • Fig. 12 is a schematic diagram of the relationship curve between the supply pressure at the front end of the pipeline and the average consumption of cylinder gas provided by the embodiment of the present application;
  • Fig. 13 is a schematic flow chart of a gas circulation method provided in the embodiment of the present application.
  • Fig. 14 is a schematic diagram of the composition and structure of a pneumatic device provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of the composition and structure of a semiconductor device provided by an embodiment of the present application.
  • first ⁇ second ⁇ third involved in the embodiment of this application is only to distinguish similar objects, and does not represent a specific ordering of objects. Understandably, “first ⁇ second ⁇ third” Where permitted, the specific order or sequencing may be interchanged such that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein.
  • semiconductor equipment usually contains many pneumatic components, which can be used for the movement of gate valves, moving rods or driving discs of semiconductor equipment machines. Due to the advantages of stability and durability, pneumatic components can meet the needs of long-term and multi-frequency actuation of semiconductor equipment machines, so they have been widely used in various machines.
  • FIG. 1 shows a schematic diagram of a hardware structure of a pneumatic device provided in an embodiment of the present application.
  • the pneumatic device may consist of a double-action cylinder and a gas solenoid valve, and may also include an A gas circuit and a B gas circuit connected between the double-action cylinder and the gas solenoid valve.
  • FIG. 2 it shows a schematic diagram of the working principle of a double-action cylinder provided by the embodiment of the present application.
  • the double-action cylinder can include a cavity 1, a cavity 2, a piston, a piston rod, an air port 1 of the A gas circuit and a gas port 1 of the B gas circuit, and different cavities can be supplied by different gas circuit ports. Air, to achieve the movement of the piston and piston rod in different directions.
  • this double-action cylinder is widely used in cavity gate valves of semiconductor equipment, and is characterized by frequent actions and high stability.
  • FIG. 3 it shows a schematic diagram of the working principle of a gas solenoid valve provided by an embodiment of the present application.
  • Fig. 3 represents when the cavity 3 of the gas solenoid valve supplies air
  • the schematic diagram of the working principle of the gas solenoid valve and
  • Fig. 3 represents when the cavity 4 of the gas solenoid valve supplies gas
  • Schematic diagram of the working principle of the gas solenoid valve
  • the gas solenoid valve may include an air supply port, a cavity body 3, a cavity body 4, an exhaust hole 1, an exhaust hole 2, a sealing structure, an A gas path gas port 2 and a B gas path gas port 2, through
  • the sealing structure seals the chamber to avoid air leakage, supplies air to different chambers through the air supply port, and then supplies air to different chambers of the double-action cylinder through different air ports to realize the direction of the piston and piston rod of the double-action cylinder. movement in different directions.
  • the double-action cylinder When controlling the double-action cylinder, it can be controlled by the pneumatic solenoid valve shown in Figure 3.
  • the double-action cylinder is connected with the gas solenoid valve with a gas pipe to form a pneumatic circuit.
  • the double-action cylinder can be controlled by the valve core of the gas solenoid valve. The filling and deflation of the cylinder can realize the reciprocating motion of the piston, while the frequent operation of the double-action cylinder requires a large amount of compressed air.
  • the pneumatic device provided by the embodiment of the present application can also be improved as follows.
  • FIG. 4 shows a schematic diagram of the composition and structure of a gas circulation device 40 provided in the embodiment of the present application.
  • the gas circulation device 40 can be applied to a pneumatic device including a solenoid valve device and a cylinder device, and the gas circulation device 40 is connected in series between the solenoid valve device and the cylinder device.
  • the gas circulation device 40 may include a valve core structure 401, a first circulation chamber 402 and a second circulation chamber 403; wherein,
  • the valve core structure 401 is used to collect and store the compressed gas discharged from the first cylinder cavity of the cylinder device through the first circulation cavity 402 when moving in the first direction, and pass through the second circulation cavity
  • the compressed gas stored in the body 403 and the compressed gas provided by the solenoid valve device jointly charge the second cylinder cavity of the cylinder device.
  • the gas circulation device 40 provided by the embodiment of the present application is applied to a pneumatic device, for example: the pneumatic device can be an etching (etch) machine, etc., and the pneumatic device includes a solenoid valve device (such as a gas solenoid valve) and a cylinder
  • a solenoid valve device such as a gas solenoid valve
  • a cylinder The structure of the device (such as a double-action cylinder) can be shown in Figure 1, Figure 2 and Figure 3.
  • the gas circulation device 40 provided by the embodiment of the application can be directly connected between the gas solenoid valve and the double-action cylinder, without destroying the original structure of the pneumatic device, and without requiring electromagnetic valves and double-acting cylinders for any improvements.
  • FIG. 5 shows a schematic diagram of a hardware structure of a gas circulation device 40 provided in an embodiment of the present application.
  • FIG. 6 shows a schematic diagram of the hardware structure of another pneumatic device 60 provided by the embodiment of the present application.
  • the pneumatic device 60 includes the gas circulation device 40 described in the embodiment of the present application, and may also include a solenoid valve device 601 and a cylinder device 602, wherein the solenoid valve device 601 is preferably a gas solenoid valve (as shown in Figure 3 shown gas solenoid valve), the solenoid valve device can include a first solenoid valve cavity 6011 and a second solenoid valve cavity 6012; the cylinder device 602 is preferably a double-action cylinder (double-action cylinder as shown in Figure 2), and the cylinder The device 602 may comprise a first cylinder cavity 6021 , a second cylinder cavity 6022 and a piston rod 6023 .
  • the solenoid valve device 601 is preferably a gas solenoid valve (as shown in Figure 3 shown gas solenoid valve)
  • the solenoid valve device can include a first solenoid valve cavity 6011 and a second solenoid valve cavity 6012
  • the cylinder device 602 is preferably a double-action cylinder (
  • FIG. 7 it shows a schematic diagram of the working principle of a gas circulation device provided by an embodiment of the present application.
  • the valve core structure of the gas circulation device 40 moves along the first direction
  • the flow direction of the compressed gas in the pneumatic device 60 is shown by the black arrow in FIG. 6 .
  • the piston rod 6023 of the cylinder device 602 is pulled out, and the compressed gas discharged from the first cylinder cavity 6021 of the cylinder device 602 will pass through the gas circulation device 40 and the solenoid valve device 601 respectively through the A gas path, and finally enter the first The circulation cavity 402 is stored; at the same time, the compressed gas originally stored in the second circulation cavity 403 and the compressed gas provided by the solenoid valve device 601 are used to inflate the second cylinder cavity 6022 of the cylinder device 602 .
  • gas circulation device provided in the embodiment of the present application can not only be used for devices driven by compressed air, but also be used for devices driven by other gases, which is not specifically limited in the embodiment of the present application.
  • valve core structure 401 is also used to discharge the compressed gas from the second cylinder cavity 6023 of the cylinder device 602 through the second circulation cavity 403 after passing through the solenoid valve device 601 when moving in the second direction. Collected and stored, and the compressed gas stored in the first circulation chamber 402 and the compressed gas provided by the solenoid valve device 601 are used to inflate the first cylinder chamber 6021 of the cylinder device 602 .
  • the first circulation cavity 402 and the second circulation cavity 403 both have the functions of storing compressed gas and supplying gas to the cavity of the cylinder device 602 .
  • FIG. 8 it shows a schematic diagram of the hardware structure of another pneumatic device 60 provided by the embodiment of the present application when the valve core structure 401 moves in the second direction. Compared with Fig. 6, except for the flow direction of the compressed gas, the specific hardware structure is the same.
  • FIG. 9 it shows a schematic diagram of the working principle of another gas circulation device provided by the embodiment of the present application when the valve core structure 401 moves in the second direction.
  • the working principle of FIG. 9 when the valve core structure 401 of the gas circulation device 40 moves in the second direction, the flow direction of the compressed gas in the pneumatic device 60 is shown by the black arrow in FIG. 8 .
  • the piston rod 6023 of the cylinder device 602 retracts, and the compressed gas discharged from the second cylinder cavity 6022 of the cylinder device 602 will pass through the gas circulation device 40 and the solenoid valve device 601 respectively through the B gas path, and finally enter the second The second circulation chamber 403 is stored; at the same time, the compressed gas originally stored in the first circulation chamber 402 and the compressed gas provided by the solenoid valve device 601 are used to inflate the first cylinder chamber 6021 of the cylinder device 602 .
  • the gas circulation device provided by the embodiment of the present application is installed between the solenoid valve device 601 and the cylinder device 602, for recycling the gas discharged by the cylinder device 602, and connecting the exhaust hole of the solenoid valve device with the gas circulation device 40 , avoiding the waste of exhaust gas being discharged directly into the air, effectively saving energy and saving expenses.
  • the gas circulation device 40 After applying the gas circulation device 40 in the cylinder device 602 (such as a double-action cylinder), the compressed air discharged from the exhaust hole of the cylinder device 602 is reused in the drive circuit for recycling, and the gas circulation device 40 can be extended to more In multi-gas driven circuits, large savings can be achieved in large numbers of applications.
  • the gas circulation device 40 may further include a connecting rod 404 connected to the valve core structure 401; wherein,
  • the connecting rod 404 is used to drive the valve core structure 401 to move in the first direction when receiving the first driving command, so that the gas circulation device 40 is in the first working state; or,
  • the connecting rod 404 is also used to drive the valve core structure 401 to move in the second direction when receiving the second driving command, so that the gas circulation device 40 is in the second working state.
  • the connecting rod 404 can be a spring-driven structure, or any other structure known in the art that can drive the valve core structure 401 to move, and this embodiment of the present application does not make specific reference to it. limited.
  • the driving valve core structure 401 moves in the first direction, so that the gas circulation device 40 is in the first working state, that is, the first circulation chamber 402 stores the first cylinder device 602
  • the compressed gas discharged from the first cylinder cavity 6021, the second circulation cavity 403 uses the compressed gas stored in itself and the compressed gas provided by the solenoid valve device 601 to supply the second cylinder cavity 6022 of the cylinder device 602 together.
  • the driving valve core structure 401 moves in the second direction, so that the gas circulation device 40 is in the second working state, that is, the second circulation chamber 403 stores the first gas cylinder device 602
  • the compressed gas discharged from the second cylinder cavity 6022, the first circulation cavity 402 uses the compressed gas stored by itself and the compressed gas provided by the solenoid valve device 601 to supply the first cylinder cavity 6021 of the cylinder device 602 together.
  • the connecting rod 404 drives the valve core structure 401 in different directions, so that the gas circulation device 40 is in different working states.
  • the gas circulation device 40 can receive the same control instructions as the solenoid valve device 601 (for example: receive the same input and output (Input/Output, IO ) signal), so as to jointly supply air to the cylinder device 602 and cooperate to complete the recovery and storage of compressed air.
  • the gas circulation device 40 may further include a first gas recovery hole 405 and a second gas recovery hole 406 , the first gas recovery hole 405 is disposed on the first circulation cavity 402 The side wall, the second gas recovery hole 406 is arranged on the side wall of the second circulation cavity 403, wherein,
  • the first gas recovery hole 405 is used to introduce the compressed gas discharged from the first cylinder chamber 6021 into the first circulation chamber 402 through the solenoid valve device 601 when the gas circulation device 40 is in the first working state;
  • the second gas recovery hole 406 is used for introducing the compressed gas discharged from the second cylinder chamber 6022 into the second circulation chamber 403 through the solenoid valve device 601 when the gas circulation device 40 is in the second working state.
  • Fig. 6 and Fig. 7 show the working principle of the gas circulation device 40 when the gas circulation device 40 is in the first working state. Specifically, in the first working state, the compressed gas discharged from the first cylinder chamber 6021 will pass through the B air path and pass through the solenoid valve device 601 (specifically, the first solenoid valve chamber 6011 ), from the first gas The recovery hole 405 leads into the first circulation cavity 402 .
  • FIG. 8 and FIG. 9 show the working principle of the gas circulation device 40 when the gas circulation device 40 is in the second working state. Specifically, in the second working state, the compressed gas discharged from the second cylinder chamber 6022 will pass through the A air path and pass through the solenoid valve device 601 (specifically, the second solenoid valve chamber 6012 ), and then from the second gas The recovery hole 406 leads into the second circulation cavity 403 .
  • the connecting rod 404 is specifically used to drive the valve core structure 401 to move in the first direction, and stops moving when it moves to the position where the first gas recovery hole 405 is opened and the second gas recovery hole 406 is closed, Make the gas circulation device 40 in the first working state.
  • the connecting rod 404 is specifically used to drive the valve core structure 401 to move in the second direction, and stops moving when moving to the position where the first gas recovery hole 405 is closed and the second gas recovery hole 406 is opened. , so that the gas circulation device 40 is in the second working state.
  • the gas circulation device 40 may further include a first sealing structure 407 and a second sealing structure 408 , the first sealing structure 407 is disposed inside the first circulation cavity 402 , the second sealing structure 408 is disposed inside the second circulation cavity 403;
  • the spool structure 401 may include a first piston 409 and a second piston 4010, the first piston 409 is in the first circulation chamber 402, and the second piston 4010 is in the second circulation chamber 403; wherein,
  • the spool structure 401 is also used to control the movement of the first piston 409 to open the first gas recovery hole 405 when moving in the first direction, and control the movement of the second piston 4010 to fit with the second sealing structure 408 to close the second gas recovery hole 406; or,
  • the spool structure 401 is also used to control the movement of the first piston 409 to fit the first sealing structure 407 when moving in the second direction, to close the first gas recovery hole 405, and to control the movement of the second piston 4010 to open the second Gas recovery hole 406 .
  • the spool structure 401 may further include a third piston 4011 and a fourth piston 4012, the third piston 4011 is located in the first circulation chamber 402, and the fourth piston 4012 In the second circulation cavity 403, wherein,
  • the spool structure 401 is also used to control the movement of the third piston 4011 to fit the structure of the first seal 407 when moving in the first direction, and divide the first circulation cavity 402 into the first gas recovery cavity and the first gas recovery cavity. passage, and control the movement of the fourth piston 4012 to combine the second gas recovery chamber and the second gas passage into the second circulation chamber 403; or,
  • the spool structure 401 is also used to control the movement of the third piston 4011 to combine the first gas recovery chamber and the first gas passage into the first circulation chamber 402 when moving in the second direction, and to control the movement of the fourth piston 4012 To be attached to the second sealing structure 408, the second circulation cavity 403 is divided into a second gas recovery cavity and a second gas passage;
  • the first gas passage is used to communicate the first cylinder chamber 6021 with the solenoid valve device 601
  • the second gas passage is used to communicate the second cylinder chamber 6022 with the solenoid valve device 601 .
  • valve core structure 401 may further include a third piston 4011 in the first circulation cavity 402 and a fourth piston 4012 in the second circulation cavity 403 .
  • the third piston 4011 and the fourth piston 4012 move in different directions with the spool structure, so that the first circulation chamber 402 and the second circulation chamber 403 are in different states.
  • the third piston 4011 moves along with the valve core structure 401 along the first direction until the third piston 4011 is in contact with the first sealing structure 407, At this time, the first circulation cavity 402 is divided into two parts by the third piston 4011, the first gas recovery cavity and the first gas path, wherein the first gas recovery cavity refers to the area where the gas path c in Figure 7 is located, The first gas passage refers to the area where the gas passage d in FIG. 7 is located.
  • the compressed gas discharged from the first cylinder cavity 6021 enters the solenoid valve device 601 after passing through the gas circulation device 40 from the first gas passage, and then enters the first gas recovery chamber through the first gas recovery hole 405, and the compressed gas enters the The gas flow after the first gas recovery chamber is shown in gas path c.
  • the fourth piston 4012 when the valve core structure 401 moves in the first direction, the fourth piston 4012 also moves in the first direction along with the valve core structure 401, and is separated from the second sealing structure 408.
  • the second The gas recovery cavity and the second gas channel will no longer be regarded as two independent parts, that is, the two are connected to each other to form the second circulation cavity 403 .
  • the compressed gas provided by the electromagnetic valve device 601 and the compressed gas stored in the second gas recovery chamber will be introduced into the second cylinder cavity 6022 of the cylinder device 602 together to supply gas to the second cylinder cavity 6022 .
  • the fourth piston 4012 moves along the second direction along with the valve core structure 401 until the fourth piston 4012 is in contact with the second sealing structure 408.
  • the second circulation cavity 403 is divided into two parts by the fourth piston 4012, the second gas recovery cavity and the second gas passage. It refers to the area where the gas path a in the figure is located.
  • the compressed gas discharged from the second cylinder cavity 6022 enters the solenoid valve device 601 after passing through the gas circulation device 40 from the second gas passage, and then enters the second gas recovery chamber through the second gas recovery hole 406, and the compressed gas enters the The gas flow after the second gas recovery chamber is shown in b gas path.
  • the third piston 4011 when the valve core structure 401 moves in the second direction, the third piston 4011 also moves in the second direction along with the valve core structure 401, and is separated from the first sealing structure 407.
  • the first The gas recovery cavity and the first gas channel are no longer two independent parts, as shown in FIG. 8 and FIG. 9 , they are connected to each other to form the first circulation cavity 402 .
  • the compressed gas provided by the solenoid valve device 601 and the compressed gas stored in the first gas recovery chamber will be jointly introduced into the first cylinder chamber 6021 of the cylinder device 602 to supply gas to the first cylinder chamber 6021 .
  • the first gas passage is used to communicate the first cylinder chamber 6021 with the solenoid valve device 601, so that the compressed gas discharged from the first cylinder chamber 6021 enters the solenoid valve device 601, and the second gas passage is used to connect the second cylinder chamber
  • the body 6022 communicates with the solenoid valve device 601 , so that the compressed gas discharged from the second cylinder cavity 6022 enters the solenoid valve device 601 .
  • the first gas passage may include a first air hole 4013 and a first two air hole 4014; wherein, the first air hole 4013 is arranged in the first cycle near the side of the solenoid valve device 601 On the side wall of the cavity 402, the first and second air holes 4014 are arranged on the side wall of the first circulation cavity 402 near the side of the first cylinder cavity 6021;
  • the second gas passage may include a second first air hole 4015 and a second second air hole 4016; wherein, the second first air hole 4015 is arranged on the side wall of the second circulation chamber 403 near the electromagnetic valve device 601 side, and the second second air hole 4016 is arranged The side wall of the second circulation cavity 403 on the side close to the second cylinder cavity 6022.
  • the first gas passage may also include a first air hole 4013 and a first two air hole 4014, both of which are arranged on the side wall of the first circulation chamber 402, and pass through the first air hole 4013 and the first two air holes 4014.
  • the connecting pipeline between the solenoid valve device 601 can connect the two to deliver compressed gas, specifically, it can be connected with the first solenoid valve cavity 6011 of the solenoid valve device 601; Connecting pipelines between the bodies 6021 can connect the two to deliver compressed gas.
  • the first air hole 4013 is arranged on the side wall of the first circulation cavity 402 near the electromagnetic valve device 601 side, and the first two air holes 4014 are arranged on the first circulation chamber near the first cylinder chamber 6021 side.”
  • the “side wall of the cavity 402” specifically refers to: the first air hole 4013 is set at the position connected to the solenoid valve device 601 in the right side wall of the first circulation cavity 402, and the first two air holes 4014 are set at the first circulation cavity
  • the second gas passage may also include a second first air hole 4015 and a second second air hole 4016, both of which are arranged on the side wall of the second circulation cavity 403, and pass through the second first air hole.
  • 4015 and the solenoid valve device 601 can connect the two to deliver compressed gas, specifically, it can be connected to the second solenoid valve cavity 6012 of the solenoid valve device 601; through the second two air holes 4016 and the second
  • the pipes connected between the cylinder chambers 6022 can connect the two to deliver compressed gas.
  • the second first air hole 4015 is arranged on the side wall of the second circulation cavity 403 near the electromagnetic valve device 601 side
  • the second second air hole 4016 is arranged on the second circulation chamber near the second cylinder chamber 6022 side
  • the “side wall of the cavity 403” specifically refers to: the second one air hole 4015 is set at the position connected to the solenoid valve device 601 in the right side wall of the second circulation cavity 403, and the second two air holes 4016 are set at the second circulation cavity
  • the spool structure 401 may further include a fifth piston 4017 and a sixth piston 4018, the fifth piston 4017 is in the first circulation chamber 402, and the sixth piston 4018 is in the second Circulation chamber 403, where,
  • the side wall of the first circulation cavity 402 may include a first piston 409 and a fifth piston 4017;
  • the sidewall of the second circulation cavity 403 may include a second piston 4010 and a sixth piston 4018 .
  • the spool structure 401 may further include a fifth piston 4017 in the first circulation cavity 402 and a sixth piston 4018 in the second circulation cavity 403 . It can be understood that as the valve core structure 401 moves to the first direction or to the second direction, the positions of the first circulation cavity 402 and the second circulation cavity 403 are also in a changing state.
  • the first piston 409, the fifth piston 4017 and the casing of the gas circulation device 40 jointly form the cavity space of the first circulation cavity 402, that is, the side wall of the first circulation cavity 402 may include the first piston 409 And the fifth piston 4017, in the figure, the first piston 409 is shown as the upper wall of the first circulation chamber 402, and the fifth piston 4017 is used as the lower wall of the first circulation chamber 402.
  • the second piston 4010, the sixth piston 4018 and the casing of the gas circulation device 40 jointly form the cavity space of the second circulation cavity 403, that is to say, the side wall of the second circulation cavity 403 may include the second piston 4010 And the sixth piston 4018, in the figure, the sixth piston 4018 is used as the upper wall of the second circulation chamber 403, and the second piston 406 is used as the lower wall of the second circulation chamber 403.
  • a hollow cavity will be formed between the fifth piston 4017 and the sixth piston 4018 (that is, between the first circulating gas cavity 402 and the second circulating gas cavity 403), as shown in Figure 7 or Figure 9
  • the blank area between the fifth piston 4017 and the sixth piston 4018 is shown.
  • no cavity may be formed between the first circulating gas cavity 402 and the second circulating gas cavity 403, and the valve core structure 401 may only include the fifth piston 4017, wherein,
  • the side wall of the first circulation cavity 402 may include a first piston 409 and a fifth piston 4017;
  • the sidewall of the second circulation cavity 403 may include a second piston 4010 and a fifth piston 4017 .
  • FIG. 10 shows a schematic diagram of a hardware structure of another gas circulation device provided by an embodiment of the present application.
  • the difference from the aforementioned gas circulation device is that the first circulation cavity 402 and the second circulation cavity 403 share the fifth piston 4017 as its side wall, that is, the fifth piston 4017 serves as both the first circulation cavity and the second circulation cavity 403.
  • the lower wall of the cavity 402 also serves as the upper wall of the second circulation cavity 403 .
  • the cylinder device 602 can be driven to be in different working states.
  • the valve core structure 401 is also used to drive the piston rod 6023 of the cylinder device 602 to move in the third direction through the gas circulation device 40 when moving in the first direction; or when moving in the second direction , the piston rod 6023 of the cylinder device 602 is driven by the gas circulation device 40 to move in the fourth direction.
  • the direction pointed by the white arrow indicates the third direction.
  • the valve core structure 401 of the gas circulation device 40 moves along the first direction, due to the The body 403 and the electromagnetic valve device 601 supply air to the second cylinder cavity 6022, provide power for the piston in the cylinder device 602, and push the piston rod 6023 to move in the direction of the first cylinder cavity 6021 (that is, the third direction).
  • the direction pointed by the white arrow indicates the fourth direction.
  • the device 601 supplies air to the first cylinder cavity 6021, provides power for the piston in the cylinder device 602, and pushes the piston rod 6023 to move in the direction of the second cylinder cavity 6022 (that is, the fourth direction).
  • each air hole/air port can be directly connected with a quick connector to realize the recycling of compressed gas, and for the solenoid valve device, there is no need to install an external noise reduction device, which further saves costs.
  • FIG. 11 shows a schematic diagram of a relationship curve between the supply pressure at the front end of the pipeline and the flow rate of compressed air provided by the embodiment of the present application.
  • the horizontal coordinate axis (X axis) is the supply pressure at the front end of the pipeline, and the unit is kilopascal (KPa);
  • the vertical coordinate axis (Y axis) is the compressed air flow rate, and the unit is liter per hour (L/h).
  • Figure 11 it shows the change trend of the gas flow per unit time of the air pipe with the increase of the supply pressure at the front end of the pipe under different air valve diameters; where the solid line indicates the change trend of the air valve diameter specification of DN10 , the dotted line indicates the change trend of the air valve pipe diameter specification of DN15, and the dotted line indicates the change trend of the air valve pipe diameter specification of DN20.
  • the compressed air of the whole equipment is mostly connected to the unified pipe.
  • a high front-end pressure is required at this time. Taking the etching machine as an example, the front-end pressure is generally not less than 0.3 M Pa (MPa).
  • MPa M Pa
  • 11 is only an exemplary schematic diagram for illustrating the change trend, and the coordinate values shown in it may be different from the actual values, which are only for explaining the change trend.
  • the actual values corresponding to the supply pressure at the front end of the pipeline and the compressed air flow rate under different air valve diameter specifications need to be specifically determined in combination with the usage scenario.
  • FIG. 12 it shows a schematic diagram of the relationship curve between the pressure at the front end of the pipeline and the average gas consumption of the cylinder provided by the embodiment of the present application.
  • the horizontal coordinate axis (X axis) is the supply pressure at the front end of the pipeline, the unit is kilopascal (KPa);
  • the vertical coordinate axis (Y axis) is the average gas consumption of the cylinder, the unit is liters per minute (L/min).
  • KPa kilopascal
  • Y axis the average gas consumption of the cylinder
  • L/min liters per minute
  • Figure 12 is only an exemplary schematic diagram showing the gas consumption change trend when using a gas circulation device and not using a gas circulation device, and the coordinate values shown may be different from the actual values, and here Just to illustrate the trend of change.
  • the actual value corresponding to the supply pressure at the front end of the pipeline and the average consumption of cylinder gas also needs to be specifically determined in conjunction with the usage scenario.
  • the embodiments of the present application can be applied to pneumatic components in semiconductor equipment, such as pneumatic solenoid valves, pneumatic pistons, and pneumatic swing valves, etc., and the gas that is released from the pressure relief or exhaust of common pneumatic components is processed by using a gas circulation device. Recycling, and then putting it into the pneumatic system (pneumatic device) for recycling, by recycling the compressed air that would have been discharged into the air, the consumption of compressed air is effectively reduced, and the cost generation is reduced.
  • semiconductor equipment such as pneumatic solenoid valves, pneumatic pistons, and pneumatic swing valves, etc.
  • the gas circulation device provided by the embodiment of the present application can be directly installed in the circuit of the original pneumatic device through the quick connector, without changing the components and gas circuit of the original pneumatic device, the gas released from the pneumatic components such as the cylinder can be released. Recycling and recycling; that is, it is only necessary to connect the gas circulation device between the original cylinder and the gas circuit of the gas solenoid valve, and connect the exhaust port of the original gas solenoid valve to the gas circulation device without changing the gas circuit or devices separately.
  • the compressed air can be recycled, and the consumption of compressed gas and energy can be reduced without changing the control circuit of the original pneumatic device, and the cost can be saved.
  • a one-way valve structure (that is, a specific example of the gas circulation device) is connected in series, and another pipeline is used to connect the pressure relief valve port or the exhaust hole of the cylinder, and the relief valve The compressed air that is pressed out is recycled as the gas used to drive the cylinder.
  • the working principle of the gas circulation device is briefly described as follows (taking the movement of the valve core device 401 in the second direction in FIG. Due to the movement of the spool structure 401, the upper end (the fourth piston 4012) of the second circulation chamber 403 is closed with the second sealing structure 408, and the exhaust gas from the A air path returns to the electromagnetic valve device 601 through the a air path, and is passed through the electromagnetic valve.
  • the exhaust hole of the valve device 601 is discharged, and then collected into the second circulation cavity 403 of the gas circulation device through the b gas path for use; at the same time, the compressed gas stored in the first cycle cavity 402 is absorbed through the c gas path Into the d air path together for the piston of the cylinder device 602 inflated.
  • the principle is the same, but the gas path is reversed. In this way, the recovery and utilization of exhaust gas can be realized through the gas circulation device 401 .
  • the original circuit of the pneumatic components will not be affected in any way, that is, there is no need to change the hardware settings, and the actuation of the pneumatic components will not cause delay and procrastination.
  • the compressed air consumption of pneumatic components is significantly reduced.
  • the gas consumption of a single component can reach 1/3 of the original consumption, effectively reducing the consumption of compressed air.
  • the gas circulation device can be applied to all pneumatic components including a gas release valve or a vent hole, and is easy to install and simple in structure, and can effectively reduce the consumption of compressed air.
  • the gas circulation device provided by the embodiment of the present application can be applied to a cylinder movement system with a certain stroke controlled by a pneumatic valve, especially on some cylinders that reciprocate periodically, and the effect of saving compressed gas is obvious. It is especially suitable for the gate valve system of the transmission system of semiconductor equipment, which solves the problem of large-scale application of pneumatic components and large consumption of compressed air for driving by semiconductor equipment.
  • This embodiment provides a gas circulation device, a gas circulation method, a pneumatic device, and a semiconductor device.
  • the gas circulation device is applied to a pneumatic device including a solenoid valve device and a cylinder device, and the gas cycle device is connected in series between the solenoid valve device and the cylinder device.
  • the gas circulation device includes a valve core structure, a first circulation cavity and a second circulation cavity; wherein, the valve core structure is used to pass through the first circulation cavity to the first cylinder device when moving in the first direction.
  • the compressed gas discharged from the cylinder cavity is collected and stored after passing through the electromagnetic valve device, and the compressed gas stored in the second circulation cavity and the compressed gas provided by the electromagnetic valve device jointly charge the second cylinder cavity of the cylinder device.
  • the compressed gas discharged from the cylinder device is collected and stored by the gas circulation device, and the compressed gas stored in the gas cycle device can also be used to inflate the cylinder device, so that the compressed gas can be recycled and a large amount of compression can be saved.
  • Gas reducing the consumption of compressed gas can save costs and reduce expenditures for production;
  • the gas circulation device can be directly installed in the gas circuit of the pneumatic device through the quick connector without changing the original pneumatic device (such as pneumatic valve). In the process, the gas discharged from the cylinder device is collected and recycled, which is convenient and fast.
  • installing the gas circulation device in the pneumatic device also saves the cost of installing pressure relief valves, silent valves, etc., and reduces the noise of pneumatic components.
  • FIG. 13 shows a schematic flowchart of a gas circulation method provided in an embodiment of the present application.
  • the method is applied to a gas circulation device.
  • the gas circulation device is connected in series between the electromagnetic valve device and the cylinder device.
  • the gas circulation device may include a valve core structure, a first circulation cavity and a second circulation cavity.
  • the method may include:
  • control the first circulation chamber to collect and store the compressed gas discharged from the first cylinder chamber of the cylinder device through the solenoid valve device
  • control the second circulation chamber to store
  • the compressed gas provided by the solenoid valve device and the compressed gas provided by the solenoid valve device jointly charge the second cylinder cavity of the cylinder device.
  • the spool structure in addition to moving in the first direction, can also move in the second direction; therefore, in some embodiments, the method may further include:
  • the compressed gas discharged from the second cylinder cavity of the cylinder device is controlled to be collected and stored after passing through the solenoid valve device, and the compressed gas stored in the first cycle cavity is controlled.
  • the gas and the compressed gas supplied by the solenoid valve means jointly charge the first cylinder chamber of the cylinder means.
  • the method may also include:
  • valve core structure When the first driving instruction is received, the valve core structure is driven to move in the first direction through the connecting rod, so that the gas circulation device is in the first working state; or,
  • valve core structure When the second driving command is received, the valve core structure is driven to move in the second direction through the connecting rod, so that the gas circulation device is in the second working state.
  • the gas circulation device may also include a first gas recovery hole and a second gas recovery hole.
  • the method may also include:
  • the gas circulation device When the gas circulation device is in the first working state, control the first gas recovery hole to introduce the compressed gas discharged from the first cylinder cavity into the first circulation cavity through the solenoid valve device; or, when the gas circulation device is in the second working state At this time, the second gas recovery hole is controlled to guide the compressed gas discharged from the second cylinder cavity into the second circulation cavity through the electromagnetic valve device.
  • the gas circulation device may also include a first sealing structure and a second sealing structure, and the valve core structure may include a first piston and a second piston.
  • the driving the valve core structure to move in the first direction through the connecting rod may include:
  • the driving the valve core structure to move in the second direction through the connecting rod may include:
  • the connecting rod drives the valve core structure to move in the second direction, controls the movement of the first piston to fit the first sealing structure, closes the first gas recovery hole, and controls the movement of the second piston to open the second gas recovery hole.
  • valve core structure it may also include a third piston and a fourth piston.
  • the driving the valve core structure to move in the first direction through the connecting rod may include:
  • the driving the valve core structure to move in the second direction through the connecting rod may include:
  • the valve core structure Drive the valve core structure to move in the second direction through the connecting rod, control the movement of the third piston to combine the first gas recovery chamber and the first gas passage into the first circulation chamber, and control the movement of the fourth piston to seal with the second Structural fit, the second circulation cavity is divided into a second gas recovery cavity and a second gas passage;
  • the first gas passage is used for communicating the first cylinder cavity with the solenoid valve device
  • the second gas passage is used for communicating the second cylinder cavity with the solenoid valve device
  • the method may further include: when the valve core structure moves in the first direction, driving the piston rod of the cylinder device to move in the third direction; or, when the valve core structure moves in the second direction When moving, the piston rod of the driving cylinder device moves in the fourth direction.
  • gas circulation method provided by the embodiment of the present application and the gas circulation device provided by the foregoing embodiments belong to the same inventive concept, and their specific descriptions are similar, and have similar beneficial effects to those of the method embodiments.
  • technical details not disclosed in the embodiment of the gas circulation method of the present application please refer to the description of the embodiment of the gas circulation device of the present application for understanding.
  • the embodiment of the present application provides a gas circulation method, which is applied to a gas circulation device.
  • the gas circulation device is connected in series between the solenoid valve device and the cylinder device.
  • the gas circulation device may include a valve core structure, a first circulation cavity and The second circulation cavity controls the first circulation cavity to collect and store the compressed gas discharged from the first cylinder cavity of the cylinder device through the electromagnetic valve device when the valve core structure moves in the first direction, and controls the second circulation cavity.
  • the compressed gas stored in the secondary cycle cavity and the compressed gas provided by the electromagnetic valve device jointly inflate the second cylinder cavity of the cylinder device.
  • the compressed gas discharged from the cylinder device is collected and stored by the gas circulation device, and the compressed gas stored in the gas cycle device can also be used to inflate the cylinder device, so that the compressed gas can be recycled and the consumption of compressed gas can be reduced. , avoid waste and save costs.
  • FIG. 14 shows a schematic diagram of the composition and structure of a pneumatic device 60 provided in the embodiment of the present application.
  • the pneumatic device 60 may include a cylinder device 602 , a solenoid valve device 601 and the gas circulation device 40 as described in any one of the preceding embodiments.
  • the compressed gas discharged from the cylinder device is collected and stored by the gas cycle device, and the compressed gas stored by the gas cycle device can also be used as the cylinder device. Inflation can realize the recycling of compressed gas, reduce the consumption of compressed gas, avoid waste and save costs.
  • FIG. 15 shows a schematic diagram of the composition and structure of a semiconductor device 150 provided in the embodiment of the present application.
  • the semiconductor device 150 includes the pneumatic device 60 as described in the previous embodiment.
  • the compressed gas discharged from the cylinder device is collected and stored by the gas circulation device, and the compressed gas stored in the gas circulation device can also be used to inflate the cylinder device, which can realize The recycling of compressed gas reduces the consumption of compressed gas, avoids waste and saves costs.
  • the gas circulation device provided in the embodiment of the present application is applied to a pneumatic device including a solenoid valve device and a cylinder device, and is connected in series between the solenoid valve device and the cylinder device.
  • the gas circulation device includes a spool structure, a first circulation cavity and a second circulation cavity; the spool structure is used to discharge gas from the first cylinder cavity of the cylinder device through the first circulation cavity when moving in the first direction.
  • the compressed gas is collected and stored after passing through the solenoid valve device, and the compressed gas stored in the second circulation cavity and the compressed gas provided by the solenoid valve device jointly charge the second cylinder cavity of the cylinder device. In this way, the compressed gas discharged from the cylinder device is recovered by the gas circulation device, and the recovered compressed gas can also be used to inflate the cylinder device, so as to realize the recycling of compressed gas, reduce the consumption of compressed gas, and save costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

一种气体循环装置(40)、气体循环方法、气动装置(60)和半导体设备(150),气体循环装置(40)应用于包括电磁阀装置(601)和气缸装置(602)的气动装置(60),且串接在电磁阀装置(601)和气缸装置(602)之间。气体循环装置(40)包括阀芯结构(401)、第一循环腔体(402)和第二循环腔体(403);阀芯结构(401),用于沿第一方向运动时,通过第一循环腔体(402)对气缸装置(602)的第一气缸腔体(6021)排出的压缩气体经由电磁阀装置(601)后进行收集并存储,以及通过第二循环腔体(403)存储的压缩气体和电磁阀装置(601)提供的压缩气体共同为所述气缸装置(602)的第二气缸腔体(6022)充气。这样,对于气缸装置(602)排出的压缩气体,通过气体循环装置(40)对其进行回收,并且还能够将回收的压缩气体用于为气缸装置(602)充气,从而实现压缩气体的循环利用,减少压缩气体消耗,节约成本。

Description

气体循环装置、气体循环方法、气动装置和半导体设备
相关申请的交叉引用
本申请要求在2021年08月09日提交中国专利局、申请号为202110910384.0、申请名称为“气体循环装置、气体循环方法、气动装置和半导体设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及但不限于一种气体循环装置、气体循环方法、气动装置和半导体设备。
背景技术
现有的半导体设备内部,通常包含众多气动元件,可以用于半导体设备机台的门阀,动杆或者驱动盘的运动。由于气动元件兼具稳定和耐用的优势,能够满足半导体设备的机台长时间多频次作动的需求,因此在各种机台上都得到了广泛的应用。
目前,大范围气动元件的应用,需要提供稳定且消耗量很大的压缩空气,而气动元件依靠压缩空气充入气缸,带动连杆运动,然后依靠弹簧,重力或者压缩空气复位,同时充入气缸的气体通过排气孔或者泄压阀排出到阀体外部。然而,由于气动元件作动非常频繁,会有很多气阀在进行充气和排气,从而导致了大量压缩空气被排出并消耗掉,造成了压缩空气的浪费。
发明内容
第一方面,本申请实施例提供了一种气体循环装置,该气体循环装置应用于包括电磁阀装置和气缸装置的气动装置,该气体循环装置串接在所述电磁阀装置和所述气缸装置之间;所述气体循环装置包括阀芯结构、第一循环腔体和第二循环腔体;其中,
所述阀芯结构,用于沿第一方向运动时,通过所述第一循环腔体对所述气缸装置的第一气缸腔体排出的压缩气体经由所述电磁阀装置后进行收集并存储,以及通过所述第二循环腔体存储的压缩气体和所述电磁阀装置提供的压缩气体共同为所述气缸装置的第二气缸腔体充气。
第二方面,本申请实施例提供了一种气体循环方法,该方法应用于气体循环装置,所述气体循环装置串接在电磁阀装置和气缸装置之间,所述气体循环装置包括阀芯结构、第一循环腔体和第二循环腔体,该方法包括:
当所述阀芯结构沿第一方向运动时,控制所述第一循环腔体对所述气缸装置的第一气缸腔体排出的压缩气体经由所述电磁阀装置后进行收集并存储,以及控制所述第二循环腔体存储的压缩气体和所述电磁阀装置提供的压缩气体共同为所述气缸装置的第二气缸腔体充气。
第三方面,本申请实施例提供了一种气动装置,该气动装置包括气缸装置、电磁阀装置和如第一方面所述的气体循环装置。
第四方面,本申请实施例提供了一种半导体设备,该半导体设备包括如第三方面所述的气动装置。
附图说明
图1为本申请实施例提供的一种气动装置的硬件结构示意图;
图2为本申请实施例提供的一种双动作气缸的工作原理示意图;
图3为本申请实施例提供的一种气体电磁阀的工作原理示意图;
图4为本申请实施例提供的一种气体循环装置的组成结构示意图;
图5为本申请实施例提供的一种气体循环装置的硬件结构示意图;
图6为本申请实施例提供的另一种气动装置的硬件结构示意图;
图7为本申请实施例提供的一种气体循环装置的工作原理示意图;
图8为本申请实施例提供的又一种气动装置的硬件结构示意图;
图9为本申请实施例提供的另一种气体循环装置的工作原理示意图;
图10为本申请实施例提供的另一种气体循环装置的硬件结构示意图;
图11为本申请实施例提供的一种管道前端供应压力与压缩空气流量之间的关系曲线示意图;
图12为本申请实施例提供的一种管道前端供应压力与气缸气体平均消耗之间的关系曲线示意图;
图13为本申请实施例提供的一种气体循环方法的流程示意图;
图14为本申请实施例提供的一种气动装置的组成结构示意图;
图15为本申请实施例提供的一种半导体设备的组成结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅用于解释相关申请,而非对该申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关申请相关的部分。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
需要指出,本申请实施例所涉及的术语“第一\第二\第三”仅仅是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
目前,半导体设备内部通常包含有众多气动元件,可以用于半导体设备机台的门阀,动杆或者驱动盘的运动。由于气动元件兼具稳定和耐用的优势,能够满足半导体设备的机台长时间多频次作动的需求,因此在各种机台上都得到了广泛的应用。
本申请的一实施例中,参见图1,其示出了本申请实施例提供的一种气动装置的硬件结构示意图。如图1所示,该气动装置可以由双动作气缸和气体电磁阀组成,还可以包括连接在双动作气缸和气体电磁阀之间的A气路和B气路。
参见图2,其示出了本申请实施例提供的一种双动作气缸的工作原理示意图。其中,图2中的(a)表示活塞杆作抽出动作时的工作原理示意图,图2中的(b)表示活塞杆作缩进动作时的工作原理示意图。如图2所示,该双动作气缸可以包括腔体1、腔体2、活塞、活塞杆、A气路气口1和B气路气口1,通过不同的气路气口可以为不同的腔体供气,实现活塞和活塞杆向不同的方向运动。另外,这种双动作气缸广泛应用在半导体设备的腔体门阀中,特点是动作频繁且需要很高的稳定性。
参见图3,其示出了本申请实施例提供的一种气体电磁阀的工作原理示意图。其中,图3中的(a)表示为气体电磁阀的腔体3供气时,气体电磁阀的工作原理示意图,图3中的(b)表示为气体电磁阀的腔体4供气时,气体电磁阀的工作原理示意图。如图3所示,该气体电磁阀可以包括供气口、腔体3、腔体4、排气孔1、排气孔2、密封结构、A气路气口2和B气路气口2,通过密封结构将腔体密封避免漏气,通过供气口为不同的腔体供气,进而通过不同的气路气口为双动作气缸的不同腔体供气,实现双动作气缸的活塞和活塞杆向不同的方向运动。
在控制双动作气缸时,可以通过图3所示的气动电磁阀进行控制,将双动作气缸同气体电磁阀用气管连接起来组成气动回路,通过气体电磁阀的阀芯通断可以控制双动作气缸的充放气,从而实现活塞的往复运动,而双动作气缸频繁作动,需要消耗大量的压缩空气。
可以理解的是,参见图2中的(a)和图3中的(a),当活塞杆作抽出动作时,需要通过供气口为气体电磁阀的腔体3提供压缩空气,压缩空气经由A气路气口2通过A气路从A气路气口1进入双动作气缸的腔体1,给活塞提供压力,以推动活塞和活塞杆向腔体2的方向移动。这时候,腔体2中的压缩空气会被挤出,被挤出的压缩空气可以经由B气路气口1通过B气路从B气路气孔 2进入气体电磁阀的腔体4,并从排气孔2排出。
还可以理解的是,参见图2中的(b)和图3中的(b),当活塞杆作缩进动作时,需要通过供气口为气体电磁阀的腔体4提供压缩空气,压缩空气经由B气路气口2通过B气路从B气路气口1进入双动作气缸的腔体2,给活塞提供压力,以推动活塞和活塞杆向腔体1的方向移动。这时候,腔体1中的压缩空气会被挤出,被挤出的压缩空气可以经由A气路气口1通过A气路从A气路气口2进入气体电磁阀的腔体3,并从排气孔1排出。其中,A气路气口1和B气路气口1为双动作气缸的排气孔或者泄压阀口。
在上述的气动装置中,不管是哪个管路供气,都需要将多余的压缩空气经排气孔1或者排气孔2排出。本申请实施例在处理排气时,可以在排气孔处安装消音设备以降低噪声,并通过气体电磁阀的排气孔将压缩空气排出至大气中,然而这样虽然能够降低噪声,并实现对气缸的灵活控制,但是由于双动作气缸频繁的动作,需要消耗大量的压缩空气,其仍存在大量的压缩空气被排出而造成资源浪费的问题。
基于此,为了能够节省压缩空气,对于本申请实施例提供的气动装置还可以实施如下改进。
本申请的另一实施例中,参见图4,其示出了本申请实施例提供的一种气体循环装置40的组成结构示意图。如图4所示,该气体循环装置40可以应用于包括电磁阀装置和气缸装置的气动装置,气体循环装置40串接在电磁阀装置和气缸装置之间。如图4所示,该气体循环装置40可以包括阀芯结构401、第一循环腔体402和第二循环腔体403;其中,
阀芯结构401,用于沿第一方向运动时,通过第一循环腔体402对气缸装置的第一气缸腔体排出的压缩气体经由电磁阀装置后进行收集并存储,以及通过第二循环腔体403存储的压缩气体和电磁阀装置提供的压缩气体共同为气缸装置的第二气缸腔体充气。
需要说明的是,本申请实施例提供的气体循环装置40应用于气动装置中,例如:气动装置可以是刻蚀(etch)机等,气动装置包括的电磁阀装置(例如 气体电磁阀)和气缸装置(例如双动作气缸)的结构可以参照图1、图2和图3中所示。对于图1示出的气动装置,可以直接在其中的气体电磁阀和双动作气缸之间接入本申请实施例提供的气体循环装置40,无需破坏气动装置的原有结构,也不需要对气体电磁阀和双动作气缸进行任何改进。
在此基础上,参见图5,其示出了本申请实施例提供的一种气体循环装置40的硬件结构示意图。为了便于理解气体循环装置40的工作原理,基于气体循环装置40在气动装置中的具体应用,参见图6,其示出了本申请实施例提供的另一种气动装置60的硬件结构示意图。
如图6所示,该气动装置60包括本申请实施例所述的气体循环装置40,还可以包括电磁阀装置601和气缸装置602,其中,电磁阀装置601优选为气体电磁阀(如图3所示的气体电磁阀),电磁阀装置可以包括第一电磁阀腔体6011和第二电磁阀腔体6012;气缸装置602优选为双动作气缸(如图2所示的双动作气缸),气缸装置602可以包括第一气缸腔体6021、第二气缸腔体6022和活塞杆6023。
参见图7,其示出了本申请实施例提供的一种气体循环装置的工作原理示意图。根据图7的工作原理,当气体循环装置40的阀芯结构沿第一方向运动时,这时候压缩气体在气动装置60中的流动方向如图6中的黑色箭头所示。
此时,气缸装置602的活塞杆6023作抽出动作,气缸装置602的第一气缸腔体6021排出的压缩气体会经由A气路分别经过气体循环装置40和电磁阀装置601,并最终进入第一循环腔体402进行存储;同时,第二循环腔体403中原本存储的压缩气体则和电磁阀装置601所提供的压缩气体一起为气缸装置602的第二气缸腔体6022充气。
还需要说明的是,本申请实施例提供的气体循环装置不仅可以针对以压缩空气为驱动的装置,还可以针对以其它气体为驱动的装置,本申请实施例对此不作具体限定。
在一些实施例中,阀芯结构401,还用于沿第二方向运动时,通过第二循环腔体403对气缸装置602的第二气缸腔体6023排出的压缩气体经由电磁阀装 置601后进行收集并存储,以及通过第一循环腔体402存储的压缩气体和电磁阀装置601提供的压缩气体共同为气缸装置602的第一气缸腔体6021充气。
需要说明的是,在本申请实施例中,第一循环腔体402和第二循环腔体403均同时兼具存储压缩气体和为气缸装置602的腔体供气的功能。参见图8,其示出了在阀芯结构401沿第二方向运动时,本申请实施例提供的又一种气动装置60的硬件结构示意图。与图6相比,两者除压缩气体的流向不同之外,具体的硬件结构都是相同的。
参见图9,其示出了在阀芯结构401沿第二方向运动时,本申请实施例提供的另一种气体循环装置的工作原理示意图。根据图9的工作原理,当气体循环装置40的阀芯结构401沿第二方向运动时,这时候压缩气体在气动装置60中的流动方向如图8中的黑色箭头所示。
此时,气缸装置602的活塞杆6023作缩进动作,气缸装置602的第二气缸腔体6022排出的压缩气体会经由B气路分别经过气体循环装置40和电磁阀装置601,并最终进入第二循环腔体403进行存储;同时,第一循环腔体402中原本存储的压缩气体则和电磁阀装置601所提供的压缩气体一起为气缸装置602的第一气缸腔体6021充气。
可见,在电磁阀装置601和气缸装置602之间安装本申请实施例提供的气体循环装置,用于回收利用气缸装置602排出的气体,将电磁阀装置的排气孔同气体循环装置40连接起来,避免了排气直接排到空气中的浪费,有效节约能源,节省开支。在气缸装置602(如双动作气缸)中应用了气体循环装置40后,气缸装置602排气孔中排出的压缩空气被重新利用到驱动回路中,循环利用,且气体循环装置40可推广至更多气体驱动的回路中,在大量应用后能够产生很大的节约效益。
在一些实施例中,参见图7和图9,该气体循环装置40还可以包括连接杆404,连接杆404与阀芯结构401连接;其中,
连接杆404,用于在接收到第一驱动指令时,驱动阀芯结构401向第一方向运动,以使得气体循环装置40处于第一工作状态;或者,
连接杆404,还用于在接收到第二驱动指令时,驱动阀芯结构401向第二方向运动,以使得气体循环装置40处于第二工作状态。
需要说明的是,在气体循环装置40中,连接杆404可以为弹簧驱动结构,也可以为其它任何本领域所公知的能够驱动阀芯结构401进行运动的结构,本申请实施例对此不作具体限定。
当连接杆404接收到第一驱动指令时,驱动阀芯结构401向第一方向运动,从而使得气体循环装置40处于第一工作状态,也就是:第一循环腔体402存储气缸装置602的第一气缸腔体6021排出的压缩气体,第二循环腔体403利用自身存储的压缩气体与电磁阀装置601提供的压缩气体共同为气缸装置602的第二气缸腔体6022供气的工作状态。
当连接杆404接收到第二驱动指令时,驱动阀芯结构401向第二方向运动,从而使得气体循环装置40处于第二工作状态,也就是:第二循环腔体403存储气缸装置602的第二气缸腔体6022排出的压缩气体,第一循环腔体402利用自身存储的压缩气体与电磁阀装置601提供的压缩气体共同为气缸装置602的第一气缸腔体6021供气的工作状态。
这样,通过接收不同的驱动指令,使得连接杆404向不同的方向驱动阀芯结构401,从而使得气体循环装置40处于不同的工作状态。另外,在本申请实施例中,当气体循环装置40应用于气动装置60时,气体循环装置40可以与电磁阀装置601接收相同的控制指令(例如:接收相同的输入输出(Input/Output,IO)信号),以实现共同为气缸装置602供气,以及配合完成压缩气体的回收存储。
在一些实施例中,参见图7和图9,该气体循环装置40还可以包括第一气体回收孔405和第二气体回收孔406,第一气体回收孔405设置于第一循环腔体402的侧壁,第二气体回收孔406设置于第二循环腔体403的侧壁,其中,
第一气体回收孔405,用于在气体循环装置40处于第一工作状态时,将第一气缸腔体6021排出的压缩气体经由电磁阀装置601后导入第一循环腔体402;
第二气体回收孔406,用于在气体循环装置40处于第二工作状态时,将第二气缸腔体6022排出的压缩气体经由电磁阀装置601后导入第二循环腔体403。
需要说明的是,图6和图7表示了在气体循环装置40处于第一工作状态时,气体循环装置40的工作原理。具体来说,在第一工作状态下,第一气缸腔体6021排出的压缩气体会通过B气路经由电磁阀装置601(具体可以是经过第一电磁阀腔体6011)后,从第一气体回收孔405导入第一循环腔体402中。
还需要说明的是,图8和图9表示了在气体循环装置40处于第二工作状态时,气体循环装置40的工作原理。具体来说,在第二工作状态下,第二气缸腔体6022排出的压缩气体会通过A气路经由电磁阀装置601(具体可以是经过第二电磁阀腔体6012)后,从第二气体回收孔406导入第二循环腔体403中。
在一些具体的实施例中,连接杆404,具体用于驱动阀芯结构401沿第一方向运动,在运动至开放第一气体回收孔405并封闭第二气体回收孔406的位置时停止运动,使得气体循环装置40处于第一工作状态。
需要说明的是,以图6和图7为例,在通过连接杆404驱动阀芯结构401沿第一方向运动,以使得气体循环状40处于第一工作状态时,具体可以通过以下方式实现:在阀芯结构401沿第一方向运动时,当第一气体回收孔405被开放且第二气体回收孔406被封闭时,此时,由于第一气体回收孔405被开放,压缩气体可以通过第一气体回收孔405进入第一循环腔体402,实现气体回收;由于第二气体回收孔406被封闭,压缩气体不会通过第二气体回收孔406进入第二循环腔体403。
在另一些具体的实施例中,连接杆404,具体用于驱动阀芯结构401沿第二方向运动,在运动至封闭第一气体回收孔405并开放第二气体回收孔406的位置时停止运动,使得气体循环装置40处于第二工作状态。
还需要说明的是,以图8和图9为例,在通过连接杆404驱动阀芯结构401沿第二方向运动,以使得气体循环状40处于第二工作状态时,具体可以通过以下方式实现:在阀芯结构401沿第二方向运动时,当第一气体回收孔405被封 闭且第二气体回收孔406被开放时,此时,;由于第一气体回收孔405被封闭,压缩气体不会通过第一气体回收孔405进入第一循环腔体402;由于第二气体回收孔406被开放,压缩气体可以通过第二气体回收孔406进入第二循环腔体403,实现气体回收。
进一步地,参见图7和图9,在一些实施例中,气体循环装置40还可以包括第一密封结构407和第二密封结构408,第一密封结构407设置于第一循环腔体402的内侧,第二密封结构408设置于第二循环腔体403的内侧;
阀芯结构401可以包括第一活塞409和第二活塞4010,第一活塞409处于第一循环腔体402内,第二活塞4010处于第二循环腔体403内;其中,
阀芯结构401,还用于沿第一方向运动时,控制第一活塞409运动至开放第一气体回收孔405,且控制第二活塞4010运动至与第二密封结构408贴合,封闭第二气体回收孔406;或者,
阀芯结构401,还用于沿第二方向运动时,控制第一活塞409运动至与第一密封结构407贴合,封闭第一气体回收孔405,且控制第二活塞4010运动至开放第二气体回收孔406。
需要说明的是,以图7为例,当阀芯结构401沿第一方向运动时,第一活塞409随阀芯结构401沿第一方向运动,并使第一气体回收孔405开放,此时,B气路中的压缩气体可以通过第一气体回收孔405进入第一循环腔体402;同时,第二活塞4010也随阀芯结构401沿第一方向运动,并与第二密封结构408贴合,使第二气体回收孔406封闭,即第二活塞4010堵塞第二气体回收孔406;此时,由于第二气体回收孔406被封闭,压缩气体不能通过第二气体回收孔406进入第二循环腔体403。
还需要说明的是,以图9为例,当阀芯结构401沿第二方向运动时,第一活塞409随阀芯结构401沿第二方向运动,并与第一密封结构407贴合,使第一气体回收孔405封闭,第一活塞409堵塞第一气体回收孔405,此时,由于第一气体回收孔405被封闭,压缩气体不能通过第一气体回收孔405进入第一循环腔体402;同时,第二活塞4010也随阀芯结构401沿第一方向运动,并使 第二气体回收孔406开放,此时,A气路中的压缩气体可以通过第二气体回收孔406进入第二循环腔体403。
进一步地,参见图7和图9,在一些实施例中,阀芯结构401还可以包括第三活塞4011和第四活塞4012,第三活塞4011处于第一循环腔体402内,第四活塞4012处于第二循环腔体403内,其中,
阀芯结构401,还用于沿第一方向运动时,控制第三活塞4011运动至与第一密封407结构贴合,将第一循环腔体402分为第一气体回收腔体和第一气体通路,且控制第四活塞4012运动至将第二气体回收腔体和第二气体通路合并为第二循环腔体403;或者,
阀芯结构401,还用于沿第二方向运动时,控制第三活塞4011运动至将第一气体回收腔体和第一气体通路合并为第一循环腔体402,且控制第四活塞4012运动至与第二密封结构408贴合,将第二循环腔体403分为第二气体回收腔体和第二气体通路;
其中,第一气体通路用于将第一气缸腔体6021与电磁阀装置601连通,第二气体通路用于将第二气缸腔体6022与电磁阀装置601连通。
需要说明的是,在本申请实施例中,阀芯结构401还可以包括处于第一循环腔体402内的第三活塞4011和处于第二循环腔体403内的第四活塞4012。第三活塞4011和第四活塞4012随阀芯结构向不同方向运动,使得第一循环腔体402和第二循环腔体403处于不同状态。
具体地,以图7为例,当阀芯结构401沿第一方向运动时,第三活塞4011随阀芯结构401沿第一方向运动,直至第三活塞4011与第一密封结构407贴合,此时,第一循环腔体402被第三活塞4011分为第一气体回收腔体和第一气体通路两部分,其中,第一气体回收腔是指图7中c气路所处的区域,第一气体通路是指图7中d气路所处的区域。这时候,从第一气缸腔体6021排出的压缩气体,从第一气体通路经过气体循环装置40后进入电磁阀装置601,再通过第一气体回收孔405进入第一气体回收腔,压缩气体进入第一气体回收腔后气流如c气路所示。
进一步地,如图7所示,当阀芯结构401沿第一方向运动时,第四活塞4012也随阀芯结构401沿第一方向运动,与第二密封结构408分开,此时,第二气体回收腔体和第二气体通路将不再作为独立的两部分,即两者相互连通,共同组成第二循环腔体403。这时候,电磁阀装置601提供的压缩气体和第二气体回收腔中存储的压缩气体将共同被导入气缸装置602的第二气缸腔体6022,为第二气缸腔体6022供气。
以图9为例,当阀芯结构401沿第二方向运动时,第四活塞4012随阀芯结构401沿第二方向运动,直至第四活塞4012与第二密封结构408贴合,此时,第二循环腔体403被第四活塞4012分为第二气体回收腔体和第二气体通路两部分,其中,第二气体回收腔是指图中b气路所处的区域,第二气体通路是指图中a气路所处的区域。这时候,从第二气缸腔体6022排出的压缩气体,从第二气体通路经过气体循环装置40后进入电磁阀装置601,再通过第二气体回收孔406进入第二气体回收腔,压缩气体进入第二气体回收腔后气流如b气路所示。
进一步地,如图9所示,当阀芯结构401沿第二方向运动时,第三活塞4011也随阀芯结构401沿第二方向运动,与第一密封结构407分开,此时,第一气体回收腔体和第一气体通路将不再作为独立的两部分,如图8和图9中所示,两者相互连通,共同组成第一循环腔体402。这时候,电磁阀装置601提供的压缩气体和第一气体回收腔中存储的压缩气体将共同被导入气缸装置602的第一气缸腔体6021,为第一气缸腔体6021供气。
可见,第一气体通路用于将第一气缸腔体6021与电磁阀装置601连通,使得第一气缸腔体6021排出的压缩气体进入电磁阀装置601,第二气体通路用于将第二气缸腔体6022与电磁阀装置601连通,使得第二气缸腔体6022排出的压缩气体进入电磁阀装置601。
在一些实施例中,参见图7和图9,第一气体通路可以包括第一一气孔4013和第一二气孔4014;其中,第一一气孔4013设置于靠近电磁阀装置601侧的第一循环腔体402的侧壁,第一二气孔4014设置于靠近第一气缸腔体6021侧的第一循环腔体402的侧壁;
第二气体通路可以包括第二一气孔4015和第二二气孔4016;其中,第二一气孔4015设置于靠近电磁阀装置601侧的第二循环腔体403的侧壁,第二二气孔4016设置于靠近第二气缸腔体6022侧的第二循环腔体403的侧壁。
需要说明的是,以图7为例,第一气体通路还可以包括第一一气孔4013和第一二气孔4014,均设置在第一循环腔402的侧壁,通过在第一一气孔4013和电磁阀装置601之间连接管路就可以将两者连接以输送压缩气体,具体可以是与电磁阀装置601的第一电磁阀腔体6011连接;通过在第一二气孔4014和第一气缸腔体6021之间连接管路就可以将两者连接以输送压缩气体。也就是说,这里的“第一一气孔4013设置于靠近电磁阀装置601侧的第一循环腔体402的侧壁,第一二气孔4014设置于靠近第一气缸腔体6021侧的第一循环腔体402的侧壁”具体是指:第一一气孔4013设置在第一循环腔体402的右侧壁中与电磁阀装置601连接的位置,第一二气孔4014设置在第一循环腔体402的左侧壁中与第一气缸腔体6021连接的位置;但是本领域技术人员可以理解,只要能够实现连接和气体运输,并不对实际位置作具体限定。
还需要说明的是,以图9为例,第二气体通路还可以包括第二一气孔4015和第二二气孔4016,均设置在第二循环腔体403的侧壁,通过在第二一气孔4015和电磁阀装置601之间连接管路就可以将两者连接以输送压缩气体,具体可以是与电磁阀装置601的第二电磁阀腔体6012连接;通过在第二二气孔4016和第二气缸腔体6022之间连接管路就可以将两者连接以输送压缩气体。也就是说,这里的“第二一气孔4015设置于靠近电磁阀装置601侧的第二循环腔体403的侧壁,第二二气孔4016设置于靠近第二气缸腔体6022侧的第二循环腔体403的侧壁”具体是指:第二一气孔4015设置在第二循环腔体403的右侧壁中与电磁阀装置601连接的位置,第二二气孔4016设置在第二循环腔体403的左侧壁中与第二气缸腔体6022连接的位置;但是本领域技术人员可以理解,只要能够实现连接和气体运输,并不对实际位置作具体限定。
在一些实施例中,参见图7和图9,阀芯结构401还可以包括第五活塞4017和第六活塞4018,第五活塞4017处于第一循环腔体402内,第六活塞4018处 于第二循环腔体403内,其中,
第一循环腔体402的侧壁可以包括第一活塞409和第五活塞4017;
第二循环腔体403的侧壁可以包括第二活塞4010和第六活塞4018。
需要说明的是,如图7或者图9所示,阀芯结构401还可以包括处于第一循环腔体402内的第五活塞4017和处于第二循环腔体403内的第六活塞4018。可以理解,随着阀芯结构401向第一方向运动或者向第二方向运动,第一循环腔体402和第二循环腔体403的位置也是处于变化状态的。第一活塞409和第五活塞4017以及气体循环装置的40的壳体共同形成第一循环腔体402的腔体空间,也就是说,第一循环腔体402的侧壁可以包括第一活塞409和第五活塞4017,在图中体现为第一活塞409作为第一循环腔体402的上壁,第五活塞4017作为第一循环腔体402的下壁。
第二活塞4010和第六活塞4018以及气体循环装置的40的壳体共同形成第二循环腔体403的腔体空间,也就是说,第二循环腔体403的侧壁可以包括第二活塞4010和第六活塞4018,在图中体现为第六活塞4018作为第二循环腔体403的上壁,第二活塞406作为第二循环腔体403的下壁。
在这种情况下,第五活塞4017和第六活塞4018之间(也就是第一循环气腔体402和第二循环腔体403之间)会形成空腔体,如图7或图9中第五活塞4017和第六活塞4018之间的空白区域所示。
在一些实施例中,第一循环气腔体402和第二循环腔体403之间也可以不形成空腔体,阀芯结构401还可以只包括第五活塞4017,其中,
第一循环腔体402的侧壁可以包括第一活塞409和第五活塞4017;
第二循环腔体403的侧壁可以包括第二活塞4010和第五活塞4017。
需要说明的是,参见图10,其示出了本申请实施例提供的另一种气体循环装置的硬件结构示意图。如图10所示,与前述气体循环装置的不同之处在于,第一循环腔体402和第二循环腔体403共用第五活塞4017作为其侧壁,即第五活塞4017既作为第一循环腔体402的下壁,也作为第二循环腔体403的上壁。
进一步地,在气动装置60中,基于气体循环装置40的不同工作状态,可 以驱动气缸装置602处于不同的工作状态。具体地,在一些实施例中,阀芯结构401,还用于沿第一方向运动时,通过气体循环装置40驱动气缸装置602的活塞杆6023向第三方向运动;或者沿第二方向运动时,通过气体循环装置40驱动气缸装602置的活塞杆6023向第四方向运动。
需要说明的是,以图6为例,在气缸装置602中,白色箭头所指方向表示第三方向,当气体循环装置40的阀芯结构401沿第一方向运动时,由于通过第二循环腔体403和电磁阀装置601为第二气缸腔体6022供气,为气缸装置602中的活塞提供动力,推送活塞杆6023向第一气缸腔体6021的方向(也就是第三方向)运动。
以图8为例,在气缸装置602中,白色箭头所指方向表示第四方向,当气体循环装置40的阀芯结构401沿第二方向运动时,由于通过第一循环腔体402和电磁阀装置601为第一气缸腔体6021供气,为气缸装置602中的活塞提供动力,推送活塞杆6023向第二气缸腔体6022的方向(也就是第四方向)运动。
这样,根据前述实施例提供的气体循环装置以及气动装置可以看出,本申请实施例可以在不破坏原气动装置结构的基础上,仅需在原气动装置的气缸装置和电磁阀装置之间串接气体循环装置,各气孔/气口之间可以直接采用快接头进行连接,即可实现压缩气体的循环利用,而且对于电磁阀装置而言,还无需再外设置消音装置,进一步节省了成本。
示例性地,参见图11,其示出了本申请实施例提供的一种管道前端供应压力与压缩空气流量之间的关系曲线示意图。其中,水平坐标轴(X轴)为管道前端供应压力,单位为千帕(KPa);垂直坐标轴(Y轴)为压缩空气流量,单位为升每小时(L/h)。在图11中,其展示了在不同气阀管径下,随着管道前端供应压力的提升,气管的单位时间气体流量的变化趋势;其中,实线表示气阀管径规格为DN10的变化趋势,点划线表示气阀管径规格为DN15的变化趋势,虚线表示气阀管径规格为DN20的变化趋势。由于现有的半导体设备,多为整台设备压缩空气统一配管接入,为了满足气动元件的驱动,这时候需要很高的前端压力,以刻蚀机台为例,前端压力一般不小于0.3兆帕(MPa)。另外,需 要注意的是,图11仅是为了说明变化趋势的示例性示意图,其示出的坐标数值可能与实际数值存在差异,这里仅是为了说明变化趋势。在本申请实施例中,不同气阀管径规格下管道前端供应压力与压缩空气流量对应的实际数值需要结合使用场景进行具体确定。
参见图12,其示出了本申请实施例提供的一种管道前端压力与气缸气体平均消耗的关系曲线示意图。其中,水平坐标轴(X轴)为管道前端供应压力,单位为千帕(KPa);垂直坐标轴(Y轴)为气缸气体平均消耗,单位为升每分钟(L/min)。在图12中,其以50mm气缸的常规双动作气缸为例,展示了该常规双动气缸在未使用和使用本申请实施例提供的气体循环装置(也称作气体回收装置)的两种情况下,气缸气体平均消耗的对比示例。其中,虚线表示在未使用本申请实施例提供的气体循环装置的情况下的消耗曲线,实线表示使用了本申请实施例提供的气体循环装置的情况下的消耗曲线。根据图12可以看出,在应用气体循环装置之后,压缩空气消耗量约只有原来的1/3,气体消耗量可以得到有效降低,可以很好地节省能源的消耗,并极大地节约了成本,成本效益明显。另外,还需要注意的是,图12仅是为了表明在使用气体循环装置和不使用气体循环装置时气体消耗变化趋势的示例性示意图,其示出的坐标数值可能与实际数值存在差异,这里也仅是为了说明变化趋势。在本申请实施例中,对于使用气体循环装置和不使用气体循环装置这两种情况,管道前端供应压力与气缸气体平均消耗对应的实际数值也需要结合使用场景进行具体确定。
也就是说,本申请实施例可以应用于半导体设备中的气动元件,例如气动电磁阀,气动活塞以及气动摆阀等,利用气体循环装置,将普通气动元件的泄压或排气排出的气体进行回收,再投入到气动系统(气动装置)中进行循环利用,通过将原本会被排入空气中的压缩空气进行循环利用,有效减少了压缩空气的消耗,降低了成本费用的产生。
进一步地,本申请实施例提供的气体循环装置可以通过快接头直接被安装在原气动装置的回路中,不需要变更原气动装置的器件和气路等,就可以将气动元件如气缸泄压的气体进行回收并循环使用;即只需要在原有气缸和气体电 磁阀的气路中间接入气体循环装置,将原气体电磁阀的排气口接入与气体循环装置连接,无需单独更改气路或者器件,就可以循环利用压缩空气,实现了在不更改原气动装置的控制回路的基础上,减少了压缩气体和能源的消耗,节约了成本。
示例性地,在气动元件的气体输送路径上,串联一个单向阀门结构(即气体循环装置的一种具体示例),并用另外的管路连接气缸的泄压阀口或者排气孔,将泄压出来的压缩空气再作为驱动气缸所用的气体进行循环使用。
简言之,气体循环装置的工作原理简述如下(以图9中阀芯装置401向第二方向运动为例):气体循环装置40收到第二驱动指令吸合,阀芯结构401向下运动,第二循环腔体403因阀芯结构401的运动,上端(第四活塞4012)与第二密封结构408闭合,A气路的排气通过a气路返回电磁阀装置601,并通过电磁阀装置601的排气孔排出,然后经过b气路收集至气体循环装置的第二循环腔体403中待用;同时,第一循环腔体402中的储存的压缩气体通过c气路得以并入d气路中一同为气缸装置602的活塞充气。对于阀芯装置401向第一方向运动的情况,其原理相同,气路相反。这样,通过气体循环装置401即可实现排气的回收及利用。
根据实测结果可以看出,安装气体循环装置后,气动元件原本的回路不受任何影响,即不需要变更硬件设置,且气动元件的作动不会产生延迟和拖沓。应用气体循环装置后,气动元件的压缩空气用量显著减少,例如:在一种使用场景下,单个元件的气体消耗量可以达到原有消耗量的1/3,有效减少了压缩空气的用量。该气体循环装置可以应用到所有包含泄气阀门或排气孔的气动元件,安装方便,结构简单,可以有效减少压缩空气的消耗。
还需要说明的是,本申请实施例提供的气体循环装置可以应用于气动阀门控制的具有一定行程的气缸运动的系统,尤其是在一些周期往复作动的气缸上,节约压缩气体的效果明显,特别适合于半导体设备传送系统的门阀系统,解决了被半导体设备大规模的应用气动元件,驱动用压缩空气的大量消耗问题。
本实施例提供了一种气体循环装置,气体循环方法、气动装置和半导体设 备,该气体循环装置应用于包括电磁阀装置和气缸装置的气动装置,气体循环装置串接在电磁阀装置和气缸装置之间;气体循环装置包括阀芯结构、第一循环腔体和第二循环腔体;其中,阀芯结构,用于沿第一方向运动时,通过第一循环腔体对气缸装置的第一气缸腔体排出的压缩气体经由电磁阀装置后进行收集并存储,以及通过第二循环腔体存储的压缩气体和电磁阀装置提供的压缩气体共同为所述气缸装置的第二气缸腔体充气。这样,对于气缸装置排出的压缩气体,通过气体循环装置对其进行收集存储,并且还能够通过气体循环装置存储的压缩气体为气缸装置充气,从而能够实现压缩气体的循环利用,节约了大量的压缩气体,减少压缩气体的消耗,可以为生产节约成本,减少支出;另外,该气体循环装置可以在不更改原气动装置(如气动阀门)的条件下通过快接头直接安装在的气动装置的气体回路中,将气缸装置排出的气体进行收集并循环利用,方便快捷,另外,在气动装置中安装气体循环装置还省去了安装泄压阀,静音阀等的成本,降低了气动元件的噪音。
本申请的又一实施例中,参见图13,其示出了本申请实施例提供的一种气体循环方法的流程示意图。该方法应用于气体循环装置,气体循环装置串接在电磁阀装置和气缸装置之间,气体循环装置可以包括阀芯结构、第一循环腔体和第二循环腔体。如图13所示,该方法可以包括:
S1301、当阀芯结构沿第一方向运动时,控制第一循环腔体对气缸装置的第一气缸腔体排出的压缩气体经由电磁阀装置后进行收集并存储,以及控制第二循环腔体存储的压缩气体和电磁阀装置提供的压缩气体共同为气缸装置的第二气缸腔体充气。
需要说明的是,除沿第一方向运动外,阀芯结构也可以沿第二方向运动;因此,在一些实施例中,该方法还可以包括:
当阀芯结构沿第二方向运动时,控制第二循环腔体对气缸装置的第二气缸腔体排出的压缩气体经由电磁阀装置后进行收集并存储,以及控制第一循环腔体存储的压缩气体和电磁阀装置提供的压缩气体共同为气缸装置的第一气缸腔 体充气。
对于气体循环装置而言,其还包括连接杆。在一些实施例中,该方法还可以包括:
在接收到第一驱动指令时,通过连接杆驱动阀芯结构向第一方向运动,以使得气体循环装置处于第一工作状态;或者,
在接收到第二驱动指令时,通过连接杆驱动阀芯结构向第二方向运动,以使得所述气体循环装置处于第二工作状态。
进一步地,对于气体循环装置而言,其还可以包括第一气体回收孔和第二气体回收孔。在一些实施例中,该方法还可以包括:
当气体循环装置处于第一工作状态时,控制第一气体回收孔将第一气缸腔体排出的压缩气体经由电磁阀装置后导入第一循环腔体;或者,当气体循环装置处于第二工作状态时,控制第二气体回收孔将第二气缸腔体排出的压缩气体经由电磁阀装置导入第二循环腔体。
进一步地,对于气体循环装置而言,其还可以包括第一密封结构和第二密封结构,阀芯结构可以包括第一活塞和第二活塞。在一些实施例中,在接收到第一驱动指令时,所述通过连接杆驱动阀芯结构向第一方向运动,可以包括:
通过连接杆驱动阀芯结构沿第一方向运动,控制第一活塞运动至开放第一气体回收孔,且控制第二活塞运动至与第二密封结构贴合,封闭第二气体回收孔;
相应地,在接收到第二驱动指令时,所述通过连接杆驱动阀芯结构向第二方向运动,可以包括:
通过连接杆驱动阀芯结构沿第二方向运动,控制第一活塞运动至与第一密封结构贴合,封闭第一气体回收孔,且控制第二活塞运动至开放第二气体回收孔。
进一步地,对于阀芯结构而言,其还可以包括第三活塞和第四活塞。在一些实施例中,在接收到第一驱动指令时,所述通过连接杆驱动阀芯结构向第一方向运动,可以包括:
通过连接杆驱动阀芯结构沿第一方向运动,控制第三活塞运动至与第一密封结构贴合,将第一循环腔体分为第一气体回收腔体和第一气体通路,且控制第四活塞运动至将第二气体回收腔体和第二气体通路合并为第二循环腔体;
相应地,在接收到第二驱动指令时,所述通过连接杆驱动阀芯结构向第二方向运动,可以包括:
通过连接杆驱动阀芯结构沿第二方向运动,控制第三活塞运动至将第一气体回收腔体和第一气体通路合并为第一循环腔体,且控制第四活塞运动至与第二密封结构贴合,将第二循环腔体分为第二气体回收腔体和第二气体通路;
其中,第一气体通路用于将第一气缸腔体与电磁阀装置连通,第二气体通路用于将第二气缸腔体与电磁阀装置连通。
除此之外,在一些实施例中,该方法还可以包括:当阀芯结构沿第一方向运动时,驱动气缸装置的活塞杆向第三方向运动;或者,当阀芯结构沿第二方向运动时,驱动气缸装置的活塞杆向第四方向运动。
可以理解的是,本申请实施例所提供的气体循环方法与前述实施例提供的气体循环装置属于同一发明构思,其具体描述是类似的,具有同方法实施例相似的有益效果。对于本申请气体循环方法实施例中未披露的技术细节,请参照本申请气体循环装置实施例的描述而理解。
本申请实施例提供了一种气体循环方法,应用于气体循环装置,该气体循环装置串接在电磁阀装置和气缸装置之间,该气体循环装置可以包括阀芯结构、第一循环腔体和第二循环腔体,通过在阀芯结构沿第一方向运动时,控制第一循环腔体对气缸装置的第一气缸腔体排出的压缩气体经由电磁阀装置后进行收集并存储,以及控制第二循环腔体存储的压缩气体和电磁阀装置提供的压缩气体共同为气缸装置的第二气缸腔体充气。这样,对于气缸装置排出的压缩气体,通过气体循环装置对其进行收集存储,并且还能够通过气体循环装置存储的压缩气体为气缸装置充气,从而能够实现压缩气体的循环利用,减少压缩气体的消耗,避免浪费并节约成本。
本申请的再一实施例中,参见图14,其示出了本申请实施例提供的一种气动装置60的组成结构示意图。如图14所示,气动装置60可以包括气缸装置602、电磁阀装置601和如前述实施例中任一项所述的气体循环装置40。
对于气动装置60而言,由于其包括前述的气体循环装置40,从而对于气缸装置排出的压缩气体,通过气体循环装置对其进行收集存储,并且还能够通过气体循环装置存储的压缩气体为气缸装置充气,能够实现压缩气体的循环利用,减少压缩气体的消耗,避免浪费并节约成本。
本申请的再一实施例中,参见图15,其示出了本申请实施例提供的一种半导体设备150的组成结构示意图。如图15所示,该半导体设备150包括如前述实施例所述的气动装置60。
对于半导体设备150而言,由于通过气体循环装置40,对于气缸装置排出的压缩气体,通过气体循环装置对其进行收集存储,并且还能够通过气体循环装置存储的压缩气体为气缸装置充气,能够实现压缩气体的循环利用,减少压缩气体的消耗,避免浪费并节约成本。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
需要说明的是,在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以 任意组合,得到新的产品实施例。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
工业实用性
本申请实施例提供的气体循环装置应用于包括电磁阀装置和气缸装置的气动装置,且串接在电磁阀装置和气缸装置之间。气体循环装置包括阀芯结构、第一循环腔体和第二循环腔体;阀芯结构,用于沿第一方向运动时,通过第一循环腔体对气缸装置的第一气缸腔体排出的压缩气体经由电磁阀装置后进行收集并存储,以及通过第二循环腔体存储的压缩气体和电磁阀装置提供的压缩气体共同为所述气缸装置的第二气缸腔体充气。这样,对于气缸装置排出的压缩气体,通过气体循环装置对其进行回收,并且还能够将回收的压缩气体用于为气缸装置充气,从而实现压缩气体的循环利用,减少压缩气体消耗,节约成本。

Claims (20)

  1. 一种气体循环装置,应用于包括电磁阀装置和气缸装置的气动装置,所述气体循环装置串接在所述电磁阀装置和所述气缸装置之间;所述气体循环装置包括阀芯结构、第一循环腔体和第二循环腔体;其中,
    所述阀芯结构,用于沿第一方向运动时,通过所述第一循环腔体对所述气缸装置的第一气缸腔体排出的压缩气体经由所述电磁阀装置后进行收集并存储,以及通过所述第二循环腔体存储的压缩气体和所述电磁阀装置提供的压缩气体共同为所述气缸装置的第二气缸腔体充气。
  2. 根据权利要求1所述的气体循环装置,其中,
    所述阀芯结构,还用于沿第二方向运动时,通过所述第二循环腔体对所述气缸装置的第二气缸腔体排出的压缩气体经由所述电磁阀装置后进行收集并存储,以及通过所述第一循环腔体存储的压缩气体和所述电磁阀装置提供的压缩气体共同为所述气缸装置的第一气缸腔体充气。
  3. 根据权利要求1所述的气体循环装置,其中,所述气体循环装置还包括连接杆,所述连接杆与所述阀芯结构连接;其中,
    所述连接杆,用于在接收到第一驱动指令时,驱动所述阀芯结构向第一方向运动,以使得所述气体循环装置处于第一工作状态;或者,
    所述连接杆,还用于在接收到第二驱动指令时,驱动所述阀芯结构向第二方向运动,以使得所述气体循环装置处于第二工作状态。
  4. 根据权利要求3所述的气体循环装置,其中,所述气体循环装置还包括第一气体回收孔和第二气体回收孔,所述第一气体回收孔设置于所述第一循环腔体的侧壁,所述第二气体回收孔设置于所述第二循环腔体的侧壁,其中,
    所述第一气体回收孔,用于在所述气体循环装置处于第一工作状态时,将所述第一气缸腔体排出的压缩气体经由所述电磁阀装置后导入所述第一循环腔体;
    所述第二气体回收孔,用于在所述气体循环装置处于第二工作状态时,将 所述第二气缸腔体排出的压缩气体经由所述电磁阀装置后导入所述第二循环腔体。
  5. 根据权利要求4所述的气体循环装置,其中,
    所述连接杆,具体用于驱动所述阀芯结构沿第一方向运动,在运动至开放所述第一气体回收孔并封闭所述第二气体回收孔的位置时停止运动,使得所述气体循环装置处于所述第一工作状态;或者,
    所述连接杆,具体用于驱动所述阀芯结构沿第二方向运动,在运动至封闭所述第一气体回收孔并开放所述第二气体回收孔的位置时停止运动,使得所述气体循环装置处于所述第二工作状态。
  6. 根据权利要求4所述的气体循环装置,其中,所述气体循环装置还包括第一密封结构和第二密封结构,所述第一密封结构设置于所述第一循环腔体的内侧,所述第二密封结构设置于所述第二循环腔体的内侧;
    所述阀芯结构包括第一活塞和第二活塞,所述第一活塞处于所述第一循环腔体内,所述第二活塞处于所述第二循环腔体内;其中,
    所述阀芯结构,还用于沿第一方向运动时,控制所述第一活塞运动至开放所述第一气体回收孔,且控制所述第二活塞运动至与所述第二密封结构贴合,封闭所述第二气体回收孔;或者,
    所述阀芯结构,还用于沿第二方向运动时,控制所述第一活塞运动至与所述第一密封结构贴合,封闭所述第一气体回收孔,且控制所述第二活塞运动至开放所述第二气体回收孔。
  7. 根据权利要求4所述的气体循环装置,其中,所述阀芯结构还包括第三活塞和第四活塞,所述第三活塞处于所述第一循环腔体内,所述第四活塞处于所述第二循环腔体内,其中,
    所述阀芯结构,还用于沿第一方向运动时,控制所述第三活塞运动至与所述第一密封结构贴合,将所述第一循环腔体分为第一气体回收腔体和第一气体通路,且控制所述第四活塞运动至将第二气体回收腔体和第二气体通路合并为所述第二循环腔体;或者,
    所述阀芯结构,还用于沿第二方向运动时,控制所述第三活塞运动至将所述第一气体回收腔体和所述第一气体通路合并为所述第一循环腔体,且控制所述第四活塞运动至与所述第二密封结构贴合,将所述第二循环腔体分为所述第二气体回收腔体和所述第二气体通路;
    其中,所述第一气体通路用于将所述第一气缸腔体与所述电磁阀装置连通,所述第二气体通路用于将所述第二气缸腔体与所述电磁阀装置连通。
  8. 根据权利要求6所述的气体循环装置,其中,所述阀芯结构还包括第五活塞和第六活塞,所述第五活塞处于所述第一循环腔体内,所述第六活塞处于所述第二循环腔体内,其中,
    所述第一循环腔体的侧壁包括所述第一活塞和所述第五活塞;
    所述第二循环腔体的侧壁包括所述第二活塞和所述第六活塞。
  9. 根据权利要求6所述的气体循环装置,其中,所述阀芯结构还包括第五活塞,其中,
    所述第一循环腔体的侧壁包括所述第一活塞和所述第五活塞;
    所述第二循环腔体的侧壁包括所述第二活塞和所述第五活塞。
  10. 根据权利要求7所述的气体循环装置,其中,
    所述第一气体通路包括第一一气孔和第一二气孔;其中,所述第一一气孔设置于靠近所述电磁阀装置侧的所述第一循环腔体的侧壁,所述第一二气孔设置于靠近所述第一气缸腔体侧的所述第一循环腔体的侧壁;
    所述第二气体通路包括第二一气孔和第二二气孔;其中,所述第二一气孔设置于靠近所述电磁阀装置侧的所述第二循环腔体的侧壁,所述第二二气孔设置于靠近所述第二气缸腔体侧的所述第二循环腔体的侧壁。
  11. 根据权利要求1至10任一项所述的气体循环装置,其中,
    所述阀芯结构,还用于沿第一方向运动时,通过所述气体循环装置驱动所述气缸装置的活塞杆向第三方向运动;或者沿第二方向运动时,通过所述气体循环装置驱动所述气缸装置的活塞杆向第四方向运动。
  12. 一种气体循环方法,应用于气体循环装置,所述气体循环装置串接在 电磁阀装置和气缸装置之间,所述气体循环装置包括阀芯结构、第一循环腔体和第二循环腔体,所述方法包括:
    当所述阀芯结构沿第一方向运动时,控制所述第一循环腔体对所述气缸装置的第一气缸腔体排出的压缩气体经由所述电磁阀装置后进行收集并存储,以及控制所述第二循环腔体存储的压缩气体和所述电磁阀装置提供的压缩气体共同为所述气缸装置的第二气缸腔体充气。
  13. 根据权利要求12所述的方法,所述方法还包括:
    当所述阀芯结构沿第二方向运动时,控制所述第二循环腔体对所述气缸装置的第二气缸腔体排出的压缩气体经由所述电磁阀装置后进行收集并存储,以及控制所述第一循环腔体存储的压缩气体和所述电磁阀装置提供的压缩气体共同为所述气缸装置的第一气缸腔体充气。
  14. 根据权利要求12所述的方法,其中,所述气体循环装置还包括连接杆,所述方法还包括:
    在接收到第一驱动指令时,通过所述连接杆驱动所述阀芯结构向第一方向运动,以使得所述气体循环装置处于第一工作状态;或者,
    在接收到第二驱动指令时,通过所述连接杆驱动所述阀芯结构向第二方向运动,以使得所述气体循环装置处于第二工作状态。
  15. 根据权利要求12所述的方法,其中,所述气体循环装置还包括第一气体回收孔和第二气体回收孔,所述方法还包括:
    当所述气体循环装置处于第一工作状态时,控制所述第一气体回收孔将所述第一气缸腔体排出的压缩气体经由所述电磁阀装置后导入所述第一循环腔体;或者,
    当所述气体循环装置处于第二工作状态时,控制所述第二气体回收孔将所述第二气缸腔体排出的压缩气体经由所述电磁阀装置导入所述第二循环腔体。
  16. 根据权利要求15所述的方法,其中,所述气体循环装置还包括第一密封结构和第二密封结构,所述阀芯结构包括第一活塞和第二活塞;
    在接收到第一驱动指令时,所述通过所述连接杆驱动所述阀芯结构向第一 方向运动,包括:
    通过所述连接杆驱动所述阀芯结构沿所述第一方向运动,控制所述第一活塞运动至开放所述第一气体回收孔,且控制所述第二活塞运动至与所述第二密封结构贴合,封闭所述第二气体回收孔;
    相应地,在接收到第二驱动指令时,所述通过所述连接杆驱动所述阀芯结构向第二方向运动,包括:
    通过所述连接杆驱动所述阀芯结构沿所述第二方向运动,控制所述第一活塞运动至与所述第一密封结构贴合,封闭所述第一气体回收孔,且控制所述第二活塞运动至开放所述第二气体回收孔。
  17. 根据权利要求15所述的方法,其中,所述阀芯结构还包括第三活塞和第四活塞;
    在接收到第一驱动指令时,所述通过所述连接杆驱动所述阀芯结构向第一方向运动,包括:
    通过所述连接杆驱动所述阀芯结构沿所述第一方向运动,控制所述第三活塞运动至与所述第一密封结构贴合,将所述第一循环腔体分为第一气体回收腔体和第一气体通路,且控制所述第四活塞运动至将第二气体回收腔体和第二气体通路合并为所述第二循环腔体;
    相应地,在接收到第二驱动指令时,所述通过所述连接杆驱动所述阀芯结构向第二方向运动,包括:
    通过所述连接杆驱动所述阀芯结构沿所述第二方向运动,控制所述第三活塞运动至将所述第一气体回收腔体和所述第一气体通路合并为所述第一循环腔体,且控制所述第四活塞运动至与所述第二密封结构贴合,将所述第二循环腔体分为所述第二气体回收腔体和所述第二气体通路;
    其中,所述第一气体通路用于将所述第一气缸腔体与所述电磁阀装置连通,所述第二气体通路用于将所述第二气缸腔体与所述电磁阀装置连通。
  18. 根据权利要求12至17任一项所述的方法,所述方法还包括:
    当所述阀芯结构沿第一方向运动时,驱动所述气缸装置的活塞杆向第三方 向运动;或者,
    当所述阀芯结构沿第二方向运动时,驱动所述气缸装置的活塞杆向第四方向运动。
  19. 一种气动装置,包括气缸装置、电磁阀装置和如权利要求1至11任一项所述的气体循环装置。
  20. 一种半导体设备,包括如权利要求19所述的气动装置。
PCT/CN2021/112840 2021-08-09 2021-08-16 气体循环装置、气体循环方法、气动装置和半导体设备 WO2023015577A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/454,240 US20230041577A1 (en) 2021-08-09 2021-11-09 Gas circulation apparatus, gas circulation method, pneumatic apparatus, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110910384.0A CN115704408A (zh) 2021-08-09 2021-08-09 气体循环装置、气体循环方法、气动装置和半导体设备
CN202110910384.0 2021-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/454,240 Continuation US20230041577A1 (en) 2021-08-09 2021-11-09 Gas circulation apparatus, gas circulation method, pneumatic apparatus, and semiconductor device

Publications (1)

Publication Number Publication Date
WO2023015577A1 true WO2023015577A1 (zh) 2023-02-16

Family

ID=85179360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112840 WO2023015577A1 (zh) 2021-08-09 2021-08-16 气体循环装置、气体循环方法、气动装置和半导体设备

Country Status (2)

Country Link
CN (1) CN115704408A (zh)
WO (1) WO2023015577A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117926405A (zh) * 2024-01-30 2024-04-26 无锡宇邦半导体科技有限公司 一种半导体生产加工用分层渐冷式成型设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020134429A1 (en) * 2000-12-28 2002-09-26 Hiroshi Kubota Gas circulating-processing apparatus
JP2006177245A (ja) * 2004-12-22 2006-07-06 Hitachi Ltd 電磁動弁の制御装置
CN101275596A (zh) * 2007-03-30 2008-10-01 Smc株式会社 双作用气缸的定位控制机构
CN201843843U (zh) * 2010-10-16 2011-05-25 中芯国际集成电路制造(上海)有限公司 气缸控制装置
US20110162959A1 (en) * 2008-09-30 2011-07-07 Canon Anelva Corporation Vacuum pumping system, substrate processing apparatus, manufacturing method of electronic device, and operating method of vacuum pumping system
JP2017067250A (ja) * 2015-10-02 2017-04-06 富士機械製造株式会社 可動体駆動装置
CN108010876A (zh) * 2016-11-02 2018-05-08 三星电子株式会社 用于拾取半导体器件的装置及其方法
CN109210032A (zh) * 2017-07-07 2019-01-15 东京毅力科创株式会社 气缸

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020134429A1 (en) * 2000-12-28 2002-09-26 Hiroshi Kubota Gas circulating-processing apparatus
JP2006177245A (ja) * 2004-12-22 2006-07-06 Hitachi Ltd 電磁動弁の制御装置
CN101275596A (zh) * 2007-03-30 2008-10-01 Smc株式会社 双作用气缸的定位控制机构
US20110162959A1 (en) * 2008-09-30 2011-07-07 Canon Anelva Corporation Vacuum pumping system, substrate processing apparatus, manufacturing method of electronic device, and operating method of vacuum pumping system
CN201843843U (zh) * 2010-10-16 2011-05-25 中芯国际集成电路制造(上海)有限公司 气缸控制装置
JP2017067250A (ja) * 2015-10-02 2017-04-06 富士機械製造株式会社 可動体駆動装置
CN108010876A (zh) * 2016-11-02 2018-05-08 三星电子株式会社 用于拾取半导体器件的装置及其方法
CN109210032A (zh) * 2017-07-07 2019-01-15 东京毅力科创株式会社 气缸

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117926405A (zh) * 2024-01-30 2024-04-26 无锡宇邦半导体科技有限公司 一种半导体生产加工用分层渐冷式成型设备

Also Published As

Publication number Publication date
CN115704408A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2023015577A1 (zh) 气体循环装置、气体循环方法、气动装置和半导体设备
CN102367825B (zh) 变向内置阀式冲击气缸
CN102367824A (zh) 气控阀式振动冲击装置
CN202971942U (zh) 气控两通阀
CN203430719U (zh) 双液气动注浆泵
CN204099656U (zh) 一种气动换向阀
CN105465457B (zh) 一种真空压铸系统
CN110594117A (zh) 一种单头双作用气液增压泵
CN107387794B (zh) 活塞式气控大流量通断阀
US20230041577A1 (en) Gas circulation apparatus, gas circulation method, pneumatic apparatus, and semiconductor device
CN105836111A (zh) 一种具有机械逻辑控制能力的作动筒
CN203594973U (zh) 一种气体稳流输出设备
CN206774449U (zh) 一种用于动车真空断路器的气动执行系统
CN207315771U (zh) 集成式气缸端盖及具有集成式气缸端盖的气缸
CN203009903U (zh) 一种流量可控的气动阀门
CN202024073U (zh) 一种高压气体储存气瓶
CN202118015U (zh) 一种大流量智能气体增压装置
CN210769171U (zh) 一种单头双作用气液增压泵
CN103075376A (zh) 一种容积膨胀式高压气体减压系统
CN203067372U (zh) 一种容积膨胀式高压气体减压系统
CN203035646U (zh) 冲击气缸
CN206954147U (zh) 一种车用卫生间污物转运装置
CN203823162U (zh) 气动阀
CN102661408B (zh) 气流控制装置
CN209743665U (zh) 一种气控换向阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE