WO2023013967A1 - 배터리 관리 장치 및 방법 - Google Patents

배터리 관리 장치 및 방법 Download PDF

Info

Publication number
WO2023013967A1
WO2023013967A1 PCT/KR2022/011075 KR2022011075W WO2023013967A1 WO 2023013967 A1 WO2023013967 A1 WO 2023013967A1 KR 2022011075 W KR2022011075 W KR 2022011075W WO 2023013967 A1 WO2023013967 A1 WO 2023013967A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
profile
battery
peak
state
Prior art date
Application number
PCT/KR2022/011075
Other languages
English (en)
French (fr)
Inventor
차아밍
배윤정
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023524562A priority Critical patent/JP2023547133A/ja
Priority to US18/268,684 priority patent/US20240044995A1/en
Priority to EP22853345.1A priority patent/EP4224182A1/en
Priority to CN202280007494.9A priority patent/CN116457678A/zh
Publication of WO2023013967A1 publication Critical patent/WO2023013967A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0038Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing pulses or pulse trains according to amplitude)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/30Measuring the maximum or the minimum value of current or voltage reached in a time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery management apparatus and method, and more particularly, to a battery management apparatus and method capable of diagnosing a state of a battery in a non-destructive manner.
  • Such batteries may degrade as they are continuously charged and discharged.
  • the battery state may be classified into BOL (Beginning of life), MOL (Middle of life), and EOL (End of life) according to the degree of deterioration, and among them, the EOL battery may be disused.
  • the state of health (SOH) of a battery is estimated based on a change in battery capacity or internal resistance, or a battery is analyzed through VOLCANO analysis (a method of analyzing a differential profile (V-dQdV profile or Q-dVdQ profile)). condition was diagnosed.
  • the state of the battery is the EOL state
  • it is preferable that the corresponding battery is treated as unused.
  • there is an error in the diagnosis of the state of the battery or if the diagnosis of the state of the battery does not proceed quickly there is a problem in that an unexpected accident may occur because the battery in the EOL state may be used.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a battery management apparatus and method capable of diagnosing the state of a battery in a non-destructive manner through differential profile analysis.
  • An apparatus for managing a battery includes a profile generator configured to generate a differential profile with respect to a battery profile indicating a correspondence relationship between voltage and capacity of a battery; and a control unit configured to determine a reference peak and a target peak in the differential profile received from the profile generator, and to diagnose the state of the battery based on a result of comparing the differential value of the reference peak with the differential value of the target peak.
  • the profile generating unit generates, as the differential profile, at least one of a differential voltage profile representing a correspondence relationship between a differential voltage with respect to the capacitance and the capacitance, and a differential capacitance profile representing a correspondence relationship between a differential capacitance with respect to the voltage and the voltage.
  • a differential voltage profile representing a correspondence relationship between a differential voltage with respect to the capacitance and the capacitance
  • a differential capacitance profile representing a correspondence relationship between a differential capacitance with respect to the voltage and the voltage.
  • the control unit is configured to determine the type of differential profile received from the profile generator, and to determine the reference peak and the target peak in the received differential profile according to a rule set in advance to correspond to the determined differential profile type.
  • the control unit When receiving the differential voltage profile from the profile generator, the control unit divides the differential voltage profile into a reference interval and a target interval according to the capacitance, and determines a peak having the smallest differential voltage in the reference interval as the reference interval. peak, and may be configured to determine a peak having the smallest differential voltage in the target section as the target peak.
  • the control unit may be configured to diagnose the state of the battery as a disused state when the differential voltage value of the reference peak is less than the differential voltage value of the target peak.
  • the controller may be configured to diagnose the state of the battery as an available state when the differential voltage value of the reference peak is greater than or equal to the differential voltage value of the target peak.
  • the controller When receiving the differential capacitance profile from the profile generator, the controller divides the differential capacitance profile into a reference section and a target section according to the voltage, and determines a peak having the largest differential capacitance in the reference section as the reference section. peak, and may be configured to determine a peak having the largest differential capacity in the target interval as the target peak.
  • the controller may be configured to diagnose the state of the battery as a disused state when the differential capacitance value of the reference peak exceeds the differential capacitance value of the target peak.
  • the controller may be configured to diagnose the state of the battery as an available state when the differential capacitance value of the reference peak is less than or equal to the differential capacitance value of the target peak.
  • the target peak may be configured to appear in a differential profile for a high nickel-based battery containing more than a certain amount of nickel.
  • a battery pack according to another aspect of the present invention may include the battery management device according to one aspect of the present invention.
  • a battery management method includes a battery profile acquisition step of obtaining a battery profile indicating a correspondence between voltage and capacity of a battery; a differential profile generating step of generating a differential profile for the battery profile; a peak determining step of determining a reference peak and a target peak in the differential profile generated in the differential profile generating step; and a battery state diagnosis step of diagnosing the state of the battery based on a result of comparing the differential value of the reference peak with the differential value of the target peak.
  • the state of the battery can be diagnosed in a non-destructive manner through differential profile analysis.
  • whether or not the state of the battery is in a disused state can be specifically diagnosed.
  • FIG. 1 is a diagram schematically illustrating a battery management device according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a differential voltage profile according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a differential capacity profile according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating an exemplary configuration of a battery pack according to another embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating a battery management method according to another embodiment of the present invention.
  • FIG. 1 is a diagram schematically illustrating a battery management device 100 according to an embodiment of the present invention.
  • the battery management device 100 may include a profile generator 110 and a controller 120.
  • the profile generating unit 110 may be configured to generate a differential profile with respect to a battery profile representing a correspondence relationship between voltage and capacity of a battery.
  • the battery means an independent cell having a negative terminal and a positive terminal and being physically separable.
  • a lithium ion battery or a lithium polymer battery may be considered a battery.
  • a battery may refer to a battery module in which a plurality of cells are connected in series and/or in parallel.
  • a battery will be described as meaning one independent cell.
  • the profile generating unit 110 may directly generate a battery profile by directly receiving a battery profile from the outside or by periodically receiving the voltage and capacity of the battery from the outside.
  • the battery profile may indicate a correspondence between the capacity (Q) and voltage (V) of the battery.
  • the unit of capacity may be [mAh]
  • the unit of voltage may be [V].
  • the battery profile may be expressed as an X-Y two-dimensional graph when X is set to capacity and Y is set to voltage.
  • the profile generating unit 110 may generate a differential profile corresponding to the first derivative of the battery profile.
  • the profile generator 110 may use a differential capacitance profile representing a correspondence between voltage V and differential capacitance dQ/dV and/or a differential capacitance profile representing a corresponding relationship between capacitance Q and differential voltage dV/dQ.
  • a voltage profile can be created.
  • the controller 120 may be configured to determine a reference peak and a target peak in the differential profile received from the profile generator 110 .
  • the controller 120 may divide the section of the differential profile into a reference section (RR) and a target section (TR) that do not overlap each other. Also, the control unit 120 may determine a reference peak in the reference interval (RR) and a target peak in the target interval (TR).
  • the controller 120 may be configured to diagnose the state of the battery based on a result of comparing the differential value of the reference peak with the differential value of the target peak.
  • the controller 120 may compare the magnitude of the differential value of the reference peak and the differential value of the target peak, and diagnose the state of the battery as a disused state or an available state according to the comparison result.
  • the disused state may mean a state in which the battery is in an EOL state and cannot be used.
  • the available state may mean a usable state in which the state of the battery is a BOL or MOL state.
  • a battery in an EOL state is a battery in which deterioration has progressed significantly, and may mean a battery with an SOH of 70% or less.
  • the battery in this EOL state is in a state in which positive electrode capacity and/or available lithium are lost, and in some cases, lithium plating (Li-plating) in which metallic lithium is deposited on the surface of the negative electrode may have occurred. Therefore, when the battery in the EOL state is continuously used, unexpected accidents such as explosion and/or fire may occur due to an internal short circuit.
  • the controller 120 may diagnose the state of the battery by determining both a differential value of a reference peak, which may be a reference value, and a differential value of a target peak, which may be a comparison value, in consideration of one differential profile of the battery. there is.
  • the battery management device 100 may determine the state of the battery by comparing the differential values of two peaks that can be determined from the differential profile without comparing the differential value of the peak determined from the differential profile with a uniformly preset specific value. . Accordingly, the battery management device 100 has an advantage of more accurately diagnosing the current state of the battery by adopting a diagnosis method that can best reflect the current state of the battery.
  • the profile generator 110 and the controller 120 provided in the battery management device 100 include a processor known in the art to execute various control logics performed in the present invention, an application-specific integrated circuit (ASIC), Other chipsets, logic circuits, registers, communication modems, data processing units, etc. may optionally be included.
  • ASIC application-specific integrated circuit
  • the profile generator 110 and the controller 120 may be implemented as a set of program modules.
  • the program module may be stored in the memory and executed by the profile generator 110 and the controller 120 .
  • the memory may be inside or outside each of the profile generator 110 and the controller 120, and may be connected to the profile generator 110 and the controller 120 by various well-known means.
  • the battery management device 100 may further include a storage unit 130 .
  • the storage unit 130 may store data or programs necessary for each component of the battery management device 100 to perform operations and functions, or data generated in the process of performing operations and functions.
  • the type of the storage unit 130 is not particularly limited as long as it is known information storage means capable of writing, erasing, updating, and reading data.
  • the information storage means may include RAM, flash memory, ROM, EEPROM, registers, and the like.
  • the storage unit 130 may store program codes in which processes executable by the control unit 120 are defined.
  • the target peak may be configured to appear in a differential profile for a high nickel-based battery containing at least a certain amount of nickel.
  • a high nickel-based battery may refer to a battery in which a nickel content in a cathode material is 80% or more.
  • a low nickel-based battery may refer to a battery in which the content of nickel included in the positive electrode material is less than 80%.
  • an NCM battery having a ratio of nickel (N), cobalt (C), and manganese (M) of 8:1:1 or 9:1 ⁇ 2:1 ⁇ 2 may be a high nickel-based battery.
  • the target peak determined by the controller 120 may be a peak appearing in a high nickel-based battery.
  • a phase equilibrium may occur during a battery charging process. And, when phase equilibrium occurs, a peak of the differential profile of the battery may appear. For example, when phase equilibrium occurs four times, peaks of Ec(1), Ec(2), Ec(3), and Ec(4) may be sequentially included in the differential profile. In addition, in order to generate a fourth phase equilibrium corresponding to the Ec(4) peak, the content of nickel included in the positive electrode material of the battery may be 80% or more. For example, the Ec(2) peak corresponding to the second phase equilibrium may correspond to the reference peak, and the Ec(4) peak corresponding to the fourth phase equilibrium may correspond to the target peak.
  • the content of nickel included in the positive electrode material is less than 80%, there may be a case where the fourth phase equilibrium does not occur, and even if the fourth phase equilibrium occurs, there may be a case where a corresponding target peak is not generated. there is.
  • the battery management device 100 since the battery management device 100 according to an embodiment of the present invention uses a battery in which the content of nickel in the cathode material is 80% or more, it is possible to clearly determine the target peak in the differential profile. Accordingly, the battery management device 100 may more specifically diagnose the state of the battery.
  • the profile generation unit 110 is configured to generate at least one of a differential voltage profile representing a correspondence relationship between a differential voltage with respect to capacitance and a differential capacitance profile representing a correspondence relationship between a differential capacitance with respect to voltage and voltage, as a differential profile. It can be.
  • FIG. 2 is a diagram schematically illustrating a differential voltage profile according to an embodiment of the present invention. Specifically, FIG. 2 is a diagram illustrating a first differential voltage profile PV1 for a first battery and a second differential voltage profile PV2 for a second battery.
  • the differential voltage profile may indicate a correspondence relationship between the differential voltage (dV/dQ) and the capacitance (Q) of the capacitance (Q).
  • the differential voltage (dV/dQ) may be calculated as an instantaneous rate of change of the voltage (V) with respect to the capacitance (Q).
  • FIG. 3 is a diagram schematically illustrating a differential capacity profile according to an embodiment of the present invention. Specifically, FIG. 3 is a diagram illustrating a first differential capacity profile PQ1 for the first battery and a second differential capacity profile PQ2 for the second battery.
  • the differential capacitance profile may indicate a correspondence relationship between the differential capacitance (dQ/dV) and the voltage (V) with respect to the voltage (V).
  • the differential capacitance (dQ/dV) may be calculated as an instantaneous change rate of the capacitance (Q) with respect to the voltage (V).
  • the controller 120 may be configured to determine the type of differential profile received from the profile generator 110 .
  • the controller 120 may also receive information about the type of differential profile. Accordingly, the controller 120 can clearly classify the type of differential profile generated by the profile generator 110 into a differential capacitance profile or a differential voltage profile.
  • the profile generator 110 may be configured in advance to generate one type of differential profile.
  • the profile generator 110 may be configured to generate a different type of differential profile when requested by the control unit 120 . Accordingly, the controller 120 can clearly distinguish the type of differential profile received from the profile generator 110 .
  • the control unit 120 may be configured to determine a reference peak and a target peak in the received differential profile according to preset rules to correspond to the determined differential profile type.
  • the controller 120 may determine a reference peak and a target peak in a differential capacitance profile and a differential voltage profile in different ways. Since the differential capacitance profile and the differential voltage profile are differential profiles representing a correspondence between different factors, the controller 120 may determine the reference peak and the target peak, respectively, according to a rule corresponding to the type of differential profile.
  • the controller 120 may be configured to divide the differential voltage profile into a reference interval (RR) and a target interval (TR) according to capacitance. For example, the control unit 120 may divide the capacitance section of the differential voltage profile into two equal parts and divide the low capacitance section into a reference section (RR) and the high capacitance section into a target section (TR).
  • the capacity (Q) of the differential voltage profile is shown normalized to a range of 0mAh to 1mAh.
  • the control unit 120 divides the capacity range of the differential voltage profile into two, sets the low capacity range of 0mAh to 0.5mAh as the reference interval (RR), and sets the high capacity range of 0.5mAh to 1mAh as the target interval (TR). .
  • controller 120 may be configured to determine a peak having the smallest differential voltage in the reference interval RR as a reference peak, and determining a peak having the smallest differential voltage in the target interval TR as a target peak.
  • the reference period RR of the first differential voltage profile PV1 includes the first reference peak RP1, and the differential voltage value of the first reference peak RP1 may be dV_RP1.
  • the target period TR of the first differential voltage profile PV1 includes the first target peak TP1, and the differential voltage value of the first target peak TP1 may be dV_TP1.
  • the reference period RR of the second differential voltage profile PV2 includes the second reference peak RP2, and the differential voltage value of the second reference peak RP2 may be dV_RP2.
  • the target period TR of the second differential voltage profile PV2 includes the second target peak TP2, and the differential voltage value of the second target peak TP2 may be dV_TP2.
  • the controller 120 may diagnose the battery state as a disused state. Conversely, when the differential voltage value of the reference peak is greater than or equal to the differential voltage value of the target peak, the controller 120 may diagnose the state of the battery as an available state.
  • the capacitance value corresponding to the target peak shifts to the low capacitance side, and the differential voltage value corresponding to the target peak may increase. That is, in the embodiment of FIG. 2 , the second battery corresponding to the second differential voltage profile PV2 may be more degenerated than the first battery corresponding to the first differential voltage profile PV1 .
  • the controller 120 may diagnose the state of the first battery corresponding to the first differential voltage profile PV1 as an available state. Conversely, since the differential voltage value dV_RP2 of the second reference peak RP2 included in the second differential voltage profile PV2 is less than the differential voltage value dV_TP2 of the second target peak TP2, the controller 120 The state of the second battery corresponding to the second differential voltage profile PV2 may be diagnosed as an available state.
  • the controller 120 may be configured to block charging and discharging of the second battery so that the second battery diagnosed as being in a useless state is not used.
  • the controller 120 may block charging and discharging of the second battery by controlling a relay connected to a positive terminal and/or a negative terminal of the second battery to be turned off.
  • the controller 120 may label the state of the battery as a disused state in battery information about the second battery to indicate that the second battery is in a disused state.
  • the controller 120 may be configured to divide the differential capacitance profile into a reference interval (RR) and a target interval (TR) according to voltage. For example, the controller 120 may divide the voltage section of the differential capacitance profile into two equal parts, and divide the low voltage section into a reference section RR and the high voltage section into a target section TR.
  • RR reference interval
  • TR target interval
  • the voltage range of the differential capacitance profile may be 3.2 [V] to 4.2 [V].
  • the controller 120 divides the voltage range of the differential capacitance profile into two, sets the low voltage range of 3.2V to 3.7V as the reference range (RR), and sets the high voltage range of 3.7V to 4.2V as the target range (TR).
  • the controller 120 may be configured to determine a peak having the largest differential capacitance in the reference interval RR as a reference peak, and determining a peak having the largest differential capacitance in the target interval TR as a target peak.
  • the reference interval RR of the first differential capacity profile PQ1 includes the third reference peak RP3, and the differential capacity value of the third reference peak RP3 may be dQ_RP3.
  • the target interval TR of the first differential capacitance profile PQ1 includes the third target peak TP3, and the differential capacitance value of the third target peak TP3 may be dQ_TP3.
  • the reference interval RR of the second differential capacitance profile PQ2 includes the fourth reference peak RP4, and the differential capacitance value of the fourth reference peak RP4 may be dQ_RP4.
  • the target interval TR of the second differential capacitance profile PQ2 includes the fourth target peak TP4, and the differential capacitance value of the fourth target peak TP4 may be dQ_TP4.
  • the controller 120 diagnoses the state of the battery as a disused state, and when the differential capacity value of the reference peak is less than or equal to the differential capacity value of the target peak, the battery It may be configured to diagnose the state of the available state.
  • the differential capacity value corresponding to the target peak may decrease. That is, in the embodiment of FIG. 3 , the second battery corresponding to the second differential capacity profile PQ2 may be more degenerated than the first battery corresponding to the first differential capacity profile PQ1.
  • the controller 120 may diagnose the state of the first battery corresponding to the first differential voltage profile PV1 as an available state. Conversely, since the differential capacitance value dQ_RP4 of the fourth reference peak RP4 included in the second differential voltage profile PV2 exceeds the differential capacitance value dQ_TP4 of the fourth target peak TP4, the controller 120 may diagnose the state of the second battery corresponding to the second differential voltage profile PV2 as an available state.
  • the controller 120 may be configured to block charging and discharging of the second battery so that the second battery diagnosed as being in a useless state is not used.
  • the controller 120 may block charging and discharging of the second battery by controlling a relay connected to a positive terminal and/or a negative terminal of the second battery to be turned off.
  • the controller 120 may label the state of the battery as a disused state in battery information about the second battery to indicate that the second battery is in a disused state.
  • the battery management device 100 according to the present invention may be applied to a battery management system (BMS). That is, the BMS according to the present invention may include the battery management device 100 described above. In this configuration, at least some of the components of the battery management device 100 may be implemented by supplementing or adding functions of components included in the conventional BMS. For example, the profile generator 110, the controller 120, and the storage unit 130 of the battery management device 100 may be implemented as BMS components.
  • the battery management device 100 according to the present invention may be included in a battery pack. That is, the battery pack according to the present invention may include the above-described battery management device 100 and one or more battery cells. In addition, the battery pack may further include electrical components (relays, fuses, etc.) and cases.
  • FIG. 4 is a diagram schematically illustrating an exemplary configuration of a battery pack according to another embodiment of the present invention.
  • a positive terminal of the battery B may be connected to a positive terminal P+ of the battery pack 10, and a negative terminal of the battery B may be connected to a negative terminal P ⁇ of the battery pack 10.
  • the measurement unit 200 may be connected to the first sensing line SL1 , the second sensing line SL2 , and the third sensing line SL3 . Specifically, the measuring unit 200 may be connected to the positive terminal of the battery B through the first sensing line SL1 and connected to the negative terminal of the battery B through the second sensing line SL2. The measuring unit 200 may measure the voltage of the battery B based on the voltages measured in each of the first sensing line SL1 and the second sensing line SL2 .
  • the measuring unit 200 may be connected to the current measuring unit A through the third sensing line SL3.
  • the current measuring unit A may be an ammeter or shunt resistor capable of measuring the charging current and the discharging current of the battery B.
  • the measurement unit 200 may measure the charging current of the battery B through the third sensing line SL3 to calculate the amount of charge.
  • the measurement unit 200 may measure the discharge current of the battery B through the third sensing line SL3 to calculate the discharge amount.
  • the charging/discharging device 2 may have one end connected to the positive terminal P+ of the battery pack 10 and the other end connected to the negative terminal P ⁇ of the battery pack 10 . Therefore, the positive terminal of the battery B, the positive terminal P+ of the battery pack 10, the charge/discharge device 2, the negative terminal P- of the battery pack 10 and the negative terminal of the battery B are can be electrically connected.
  • the battery management device 100 may be applied to a state diagnosis device for a reusable battery that diagnoses a state of a reusable battery.
  • a battery in an MOL state may be reused at a secondary or tertiary use, but a battery in an EOL state may not be reused. Accordingly, the battery management apparatus 100 may determine whether to reuse the collected battery by diagnosing the state of the collected battery in order to determine whether to reuse it.
  • the battery management apparatus 100 may diagnose whether the state of the collected battery is in a disused state or an available state by comparing a differential value of a reference peak and a differential value of a target peak in the differential profile of the collected battery.
  • FIG. 5 is a diagram schematically illustrating a battery management method according to another embodiment of the present invention.
  • each step of the battery management method may be performed by the battery management device 100 .
  • the contents overlapping with the above description will be omitted or briefly described.
  • the differential profile generating step ( S100 ) is a step of generating a differential profile with respect to a battery profile representing a corresponding relationship between voltage and capacity of a battery, and may be performed by the profile generator 110 .
  • the profile generating unit 110 may be configured to generate at least one of a differential voltage profile representing a correspondence relationship between a differential voltage with respect to capacitance and a differential capacitance profile representing a correspondence relationship between a differential capacitance with respect to voltage and voltage. there is.
  • the peak determining step ( S200 ) is a step of determining a reference peak and a target peak in the differential profile generated in the differential profile generating step ( S100 ), and may be performed by the controller 120 .
  • the control unit 120 when receiving the differential voltage profile from the profile generator 110, divides the capacitance interval of the differential voltage profile into a reference interval (RR) and a target interval (TR), and in the reference interval (RR) A reference peak may be determined, and a target peak may be determined in the target period TR.
  • RR reference interval
  • TR target interval
  • the control unit 120 divides the voltage interval of the differential capacitance profile into a reference interval (RR) and a target interval (TR), and the reference interval (RR)
  • RR reference interval
  • TR target interval
  • a reference peak may be determined in
  • a target peak may be determined in the target period TR.
  • the battery state diagnosis step ( S300 ) is a step of diagnosing the state of the battery based on a result of comparing the differential value of the reference peak with the differential value of the target peak, and may be performed by the controller 120 .
  • the controller 120 when the controller 120 receives the differential voltage profile from the profile generator 110, the controller 120 sets the battery state to a disused state when the differential voltage value of the reference peak is less than the differential voltage value of the target peak. can be diagnosed Conversely, when the differential voltage value of the reference peak is greater than or equal to the differential voltage value of the target peak, the controller 120 may diagnose the state of the battery as an available state.
  • the controller 120 determines the state of the battery when the differential capacity value of the reference peak exceeds the differential capacity value of the target peak. It may be configured to diagnose a battery state as an available state when the differential capacity value of the reference peak is less than or equal to the differential capacity value of the target peak.
  • the embodiments of the present invention described above are not implemented only through devices and methods, and may be implemented through a program that realizes functions corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded. Implementation can be easily implemented by an expert in the technical field to which the present invention belongs based on the description of the above-described embodiment.
  • control unit 120 control unit

Abstract

본 발명의 일 실시예에 따른 배터리 관리 장치는 배터리의 전압과 용량 간의 대응 관계를 나타내는 배터리 프로파일에 대한 미분 프로파일을 생성하도록 구성된 프로파일 생성부; 및 상기 프로파일 생성부로터 수신한 미분 프로파일에서 기준 피크와 타겟 피크를 결정하고, 상기 기준 피크의 미분값과 상기 타겟 피크의 미분값을 비교한 결과에 기반하여 상기 배터리의 상태를 진단하도록 구성된 제어부를 포함한다.

Description

배터리 관리 장치 및 방법
본 출원은 2021년 08월 02일 자로 출원된 한국 특허 출원번호 제10-2021-0101551호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리 관리 장치 및 방법에 관한 것으로서, 보다 상세하게는, 비파괴적인 방식으로 배터리의 상태를 진단할 수 있는 배터리 관리 장치 및 방법에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 배터리는 충전 및 방전이 지속됨에 따라 퇴화할 수 있다. 예컨대, 배터리의 상태는 퇴화도에 따라 BOL(Beginning of life), MOL(Middle of life) 및 EOL(End of life)로 구분될 수 있으며, 이 중 EOL 배터리는 불용 처리될 수 있다.
종래에는, 배터리의 용량 또는 내부 저항의 변화에 기반하여 배터리의 SOH(State of health)를 추정하거나, VOLCANO 분석(미분 프로파일(V-dQdV 프로파일 또는 Q-dVdQ 프로파일)을 분석하는 방법)을 통해서 배터리의 상태를 진단하였다.
특히, 배터리의 상태가 EOL 상태일 경우에 해당 배터리는 불용 처리되는 것이 바람직하다. 하지만, 배터리의 상태 진단에 오차가 있거나, 배터리의 상태 진단이 신속하게 진행되지 않은 경우에는, EOL 상태의 배터리가 사용될 수 있기 때문에, 예상치 못한 사고가 발생될 수 있는 문제가 있다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 미분 프로파일 해석을 통해 비파괴적인 방식으로 배터리의 상태를 진단할 수 있는 배터리 관리 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 배터리 관리 장치는 배터리의 전압과 용량 간의 대응 관계를 나타내는 배터리 프로파일에 대한 미분 프로파일을 생성하도록 구성된 프로파일 생성부; 및 상기 프로파일 생성부로터 수신한 미분 프로파일에서 기준 피크와 타겟 피크를 결정하고, 상기 기준 피크의 미분값과 상기 타겟 피크의 미분값을 비교한 결과에 기반하여 상기 배터리의 상태를 진단하도록 구성된 제어부를 포함할 수 있다.
상기 프로파일 생성부는, 상기 미분 프로파일로, 상기 용량에 대한 미분 전압과 상기 용량 간의 대응 관계를 나타내는 미분 전압 프로파일 및 상기 전압에 대한 미분 용량과 상기 전압 간의 대응 관계를 나타내는 미분 용량 프로파일 중 적어도 하나를 생성하도록 구성될 수 있다.
상기 제어부는, 상기 프로파일 생성부로부터 수신한 미분 프로파일의 종류를 결정하고, 결정된 미분 프로파일의 종류에 대응되도록 미리 설정된 규칙에 따라 상기 수신한 미분 프로파일에서 상기 기준 피크 및 상기 타겟 피크를 결정하도록 구성될 수 있다.
상기 제어부는, 상기 프로파일 생성부로부터 상기 미분 전압 프로파일을 수신한 경우, 상기 미분 전압 프로파일을 상기 용량에 따라 기준 구간과 타겟 구간으로 구분하고, 상기 기준 구간에서 상기 미분 전압이 가장 작은 피크를 상기 기준 피크로 결정하며, 상기 타겟 구간에서 상기 미분 전압이 가장 작은 피크를 상기 타겟 피크로 결정하도록 구성될 수 있다.
상기 제어부는, 상기 기준 피크의 미분 전압값이 상기 타겟 피크의 미분 전압값 미만인 경우, 상기 배터리의 상태를 불용 상태로 진단하도록 구성될 수 있다.
상기 제어부는, 상기 기준 피크의 미분 전압값이 상기 타겟 피크의 미분 전압값 이상인 경우, 상기 배터리의 상태를 가용 상태로 진단하도록 구성될 수 있다.
상기 제어부는, 상기 프로파일 생성부로부터 상기 미분 용량 프로파일을 수신한 경우, 상기 미분 용량 프로파일을 상기 전압에 따라 기준 구간과 타겟 구간으로 구분하고, 상기 기준 구간에서 상기 미분 용량이 가장 큰 피크를 상기 기준 피크로 결정하며, 상기 타겟 구간에서 상기 미분 용량이 가장 큰 피크를 상기 타겟 피크로 결정하도록 구성될 수 있다.
상기 제어부는, 상기 기준 피크의 미분 용량값이 상기 타겟 피크의 미분 용량값을 초과한 경우, 상기 배터리의 상태를 불용 상태로 진단하도록 구성될 수 있다.
상기 제어부는, 상기 기준 피크의 미분 용량값이 상기 타겟 피크의 미분 용량값 이하인 경우, 상기 배터리의 상태를 가용 상태로 진단하도록 구성될 수 있다.
상기 타겟 피크는, 일정량 이상의 니켈을 포함하는 하이 니켈계 배터리에 대한 미분 프로파일에서 나타나도록 구성될 수 있다.
본 발명의 다른 측면에 따른 배터리 팩은 본 발명의 일 측면에 따른 배터리 관리 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 배터리 관리 방법은 배터리의 전압과 용량 간의 대응 관계를 나타내는 배터리 프로파일을 획득하는 배터리 프로파일 획득 단계; 상기 배터리 프로파일에 대한 미분 프로파일을 생성하는 미분 프로파일 생성 단계; 상기 미분 프로파일 생성 단계에서 생성된 미분 프로파일에서 기준 피크와 타겟 피크를 결정하는 피크 결정 단계; 및 상기 기준 피크의 미분값과 상기 타겟 피크의 미분값을 비교한 결과에 기반하여 상기 배터리의 상태를 진단하는 배터리 상태 진단 단계를 포함할 수 있다.
본 발명의 일 측면에 따르면, 미분 프로파일 해석을 통해 비파괴적인 방식으로 배터리의 상태가 진단될 수 있다. 특히, 배터리의 상태가 불용 상태인지 여부가 구체적으로 진단될 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리 관리 장치를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 미분 전압 프로파일을 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 미분 용량 프로파일을 개략적으로 도시한 도면이다.
도 4는 본 발명의 다른 실시예에 따른 배터리 팩의 예시적 구성을 개략적으로 도시한 도면이다.
도 5는 본 발명의 또 다른 실시예에 따른 배터리 관리 방법을 개략적으로 도시한 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 관리 장치(100)를 개략적으로 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 배터리 관리 장치(100)는 프로파일 생성부(110) 및 제어부(120)를 포함할 수 있다.
프로파일 생성부(110)는 배터리의 전압과 용량 간의 대응 관계를 나타내는 배터리 프로파일에 대한 미분 프로파일을 생성하도록 구성될 수 있다.
여기서, 배터리는 음극 단자와 양극 단자를 구비하며, 물리적으로 분리 가능한 하나의 독립된 셀을 의미한다. 일 예로, 리튬 이온 전지 또는 리튬 폴리머 전지가 배터리로 간주될 수 있다. 또한, 배터리는 복수의 셀이 직렬 및/또는 병렬로 연결된 배터리 모듈을 의미할 수도 있다. 이하에서는, 설명의 편의를 위해, 배터리가 하나의 독립된 셀을 의미하는 것으로 설명한다.
구체적으로, 프로파일 생성부(110)는 외부로부터 배터리 프로파일을 직접 수신하거나, 외부로부터 배터리의 전압과 용량을 주기적으로 수신하여 배터리 프로파일을 직접 생성할 수도 있다.
예컨대, 배터리 프로파일은 배터리의 용량(Q)과 전압(V) 간의 대응 관계를 나타낼 수 있다. 여기서, 용량의 단위는 [mAh]이고, 전압의 단위는 [V]일 수 있다. 또한, 배터리 프로파일은, X를 용량으로 설정하고 Y를 전압으로 설정한 경우, X-Y 2차원 그래프로 표현될 수 있다.
그리고, 프로파일 생성부(110)는 배터리 프로파일의 1차 도함수에 해당하는 미분 프로파일을 생성할 수 있다. 예컨대, 프로파일 생성부(110)는 전압(V)과 미분 용량(dQ/dV) 간의 대응 관계를 나타내는 미분 용량 프로파일 및/또는 용량(Q)과 미분 전압(dV/dQ) 간의 대응 관계를 나타내는 미분 전압 프로파일을 생성할 수 있다.
제어부(120)는 프로파일 생성부(110)로터 수신한 미분 프로파일에서 기준 피크와 타겟 피크를 결정하도록 구성될 수 있다.
구체적으로, 제어부(120)는 미분 프로파일의 구간을 서로 중복되지 않는 기준 구간(RR)과 타겟 구간(TR)으로 구분할 수 있다. 그리고, 제어부(120)는 기준 구간(RR)에서 기준 피크를 결정하고, 타겟 구간(TR)에서 타겟 피크를 결정할 수 있다.
제어부(120)는 기준 피크의 미분값과 타겟 피크의 미분값을 비교한 결과에 기반하여 배터리의 상태를 진단하도록 구성될 수 있다.
예컨대, 제어부(120)는 기준 피크의 미분값과 타겟 피크의 미분값의 대소를 비교하고, 비교 결과에 따라 배터리의 상태를 불용 상태 또는 가용 상태로 진단할 수 있다. 여기서, 불용 상태란 배터리의 상태가 EOL 상태로서, 사용이 불가능한 상태를 의미할 수 있다. 가용 상태란 배터리의 상태가 BOL 또는 MOL 상태로서, 사용이 가능한 상태를 의미할 수 있다.
일반적으로, EOL 상태의 배터리는 퇴화가 상당히 많이 진행된 배터리로서, SOH가 70% 이하인 배터리를 의미할 수 있다. 이러한 EOL 상태의 배터리는 양극 용량 및/또는 가용 리튬이 손실된 상태로, 경우에 따라서는 음극 표현에 금속 리튬이 석출되는 리튬 플레이팅(Li-plating)이 발생되었을 수 있다. 따라서, EOL 상태의 배터리를 계속해서 사용하는 경우, 내부 단락에 의해 폭발 및/또는 화재 등의 예상하지 못 한 사고가 발생될 수 있다.
제어부(120)는 배터리에 대한 하나의 미분 프로파일을 고려하여, 기준값이 될 수 있는 기준 피크의 미분값과 비교값이 될 수 있는 타겟 피크의 미분값을 모두 결정함으로써, 배터리의 상태를 진단할 수 있다.
즉, 배터리 관리 장치(100)는 일률적으로 미리 설정된 특정한 값과 미분 프로파일로부터 결정된 피크의 미분값을 비교하지 않고, 미분 프로파일로부터 결정 가능한 2개의 피크의 미분값을 비교하여 배터리의 상태를 결정할 수 있다. 따라서, 배터리 관리 장치(100)는 배터리의 현재 상태를 가장 잘 반영할 수 있는 진단 방식을 채택함으로써, 배터리의 현재 상태를 보다 정확하게 진단할 수 있는 장점이 있다.
한편, 배터리 관리 장치(100)에 구비된 프로파일 생성부(110) 및 제어부(120)는 본 발명에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 제어 로직이 소프트웨어로 구현될 때, 프로파일 생성부(110) 및 제어부(120)는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리에 저장되고, 프로파일 생성부(110) 및 제어부(120)에 의해 실행될 수 있다. 메모리는 프로파일 생성부(110) 및 제어부(120) 각각의 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로파일 생성부(110) 및 제어부(120)와 연결될 수 있다.
또한, 배터리 관리 장치(100)는 저장부(130)를 더 포함할 수 있다. 저장부(130)는 배터리 관리 장치(100)의 각 구성요소가 동작 및 기능을 수행하는데 필요한 데이터나 프로그램 또는 동작 및 기능이 수행되는 과정에서 생성되는 데이터 등을 저장할 수 있다. 저장부(130)는 데이터를 기록, 소거, 갱신 및 독출할 수 있다고 알려진 공지의 정보 저장 수단이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 정보 저장 수단에는 RAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등이 포함될 수 있다. 또한, 저장부(130)는 제어부(120)에 의해 실행 가능한 프로세스들이 정의된 프로그램 코드들을 저장할 수 있다.
바람직하게, 타겟 피크는, 일정량 이상의 니켈을 포함하는 하이 니켈계 배터리에 대한 미분 프로파일에서 나타나도록 구성될 수 있다.
일반적으로, 하이 니켈계 배터리는 양극재에 포함된 니켈의 함유량이 80% 이상인 배터리를 의미할 수 있다. 이와 반대로, 로우 니켈계 배터리는 양극재에 포함된 니켈의 함유량이 80% 미만인 배터리를 의미할 수 있다. 예컨대, 니켈(N), 코발트(C) 및 망간(M)의 비율이 8:1:1 또는 9:½:½인 NCM 배터리가 하이 니켈계 배터리일 수 있다.
그리고, 제어부(120)에 의해 결정되는 타겟 피크는 하이 니켈계 배터리에서 나타나는 피크일 수 있다.
일반적으로, 배터리 충전되는 과정에서 상평형이 발생될 수 있다. 그리고, 상평형이 발생될 때, 배터리의 미분 프로파일의 피크가 나타날 수 있다. 예컨대, 4번의 상평형이 발생된 경우, 순차적으로 Ec(1), Ec(2), Ec(3) 및 Ec(4) 피크가 미분 프로파일에 포함될 수 있다. 그리고, Ec(4) 피크에 대응되는 제4 상평형이 발생되기 위해서는, 배터리의 양극재에 포함된 니켈의 함유량이 80% 이상일 수 있다. 예컨대, 제2 상평형에 대응되는 Ec(2) 피크가 기준 피크에 대응되고, 제4 상평형에 대응되는 Ec(4) 피크가 타겟 피크에 대응될 수 있다.
한편, 양극재에 포함된 니켈의 함유량이 80% 미만이면, 제4 상평형이 발생되지 않는 경우가 발생될 수도 있고, 제4 상평형이 발생되더라도 대응되는 타겟 피크가 생성되지 않는 경우가 있을 수 있다.
따라서, 본 발명의 일 실시예에 따른 배터리 관리 장치(100)는, 양극재에 포함된 니켈의 함유량이 80% 이상인 배터리를 이용하기 때문에, 미분 프로파일에서 타겟 피크를 명확하게 결정할 수 있다. 따라서, 배터리 관리 장치(100)는 배터리의 상태를 보다 구체적으로 진단할 수 있다.
프로파일 생성부(110)는, 미분 프로파일로, 용량에 대한 미분 전압과 용량 간의 대응 관계를 나타내는 미분 전압 프로파일 및 전압에 대한 미분 용량과 전압 간의 대응 관계를 나타내는 미분 용량 프로파일 중 적어도 하나를 생성하도록 구성될 수 있다.
도 2는 본 발명의 일 실시예에 따른 미분 전압 프로파일을 개략적으로 도시한 도면이다. 구체적으로, 도 2는 제1 배터리에 대한 제1 미분 전압 프로파일(PV1)과 제2 배터리에 대한 제2 미분 전압 프로파일(PV2)을 도시한 도면이다.
도 2를 참조하면, 미분 전압 프로파일은 용량(Q)에 대한 미분 전압(dV/dQ)과 용량(Q) 간의 대응 관계를 나타낼 수 있다. 여기서, 미분 전압(dV/dQ)은 용량(Q)에 대한 전압(V)의 순간 변화율로 산출될 수 있다.
도 3은 본 발명의 일 실시예에 따른 미분 용량 프로파일을 개략적으로 도시한 도면이다. 구체적으로, 도 3은 제1 배터리에 대한 제1 미분 용량 프로파일(PQ1)과 제2 배터리에 대한 제2 미분 용량 프로파일(PQ2)을 도시한 도면이다.
도 3을 참조하면, 미분 용량 프로파일은 전압(V)에 대한 미분 용량(dQ/dV)과 전압(V) 간의 대응 관계를 나타낼 수 있다. 여기서, 미분 용량(dQ/dV)은 전압(V)에 대한 용량(Q)의 순간 변화율로 산출될 수 있다.
제어부(120)는 프로파일 생성부(110)로부터 수신한 미분 프로파일의 종류를 결정하도록 구성될 수 있다.
예컨대, 제어부(120)는 프로파일 생성부(110)로부터 미분 프로파일을 수신할 때, 미분 프로파일의 종류에 대한 정보를 함께 수신할 수 있다. 따라서, 제어부(120)는 프로파일 생성부(110)에 의해 생성된 미분 프로파일의 종류를 미분 용량 프로파일 또는 미분 전압 프로파일로 명확하게 구분할 수 있다.
다른 예로, 프로파일 생성부(110)는 한 종류의 미분 프로파일을 생성하도록 미리 구성될 수 있다. 그리고, 프로파일 생성부(110)는 제어부(120)의 요청이 있는 경우, 다른 종류의 미분 프로파일을 생성하도록 구성될 수 있다. 따라서, 제어부(120)는 프로파일 생성부(110)로부터 수신한 미분 프로파일의 종류를 명확하게 구분할 수 있다.
제어부(120)는 결정된 미분 프로파일의 종류에 대응되도록 미리 설정된 규칙에 따라 수신한 미분 프로파일에서 기준 피크 및 타겟 피크를 결정하도록 구성될 수 있다.
구체적으로, 제어부(120)는 미분 용량 프로파일과 미분 전압 프로파일에서 기준 피크 및 타겟 피크를 서로 다른 방식으로 결정할 수 있다. 미분 용량 프로파일과 미분 전압 프로파일은 서로 다른 인자들의 대응 관계를 나타내는 미분 프로파일이기 때문에, 제어부(120)는 미분 프로파일의 종류에 대응되는 규칙에 따라 기준 피크 및 타겟 피크를 각각 결정할 수 있다.
제어부(120)는 프로파일 생성부(110)로부터 미분 전압 프로파일을 수신한 경우, 미분 전압 프로파일을 용량에 따라 기준 구간(RR)과 타겟 구간(TR)으로 구분하도록 구성될 수 있다. 예컨대, 제어부(120)는 미분 전압 프로파일의 용량 구간을 2등분하고, 저용량 구간을 기준 구간(RR)으로 고용량 구간을 타겟 구간(TR)으로 구분할 수 있다.
도 2의 실시예에서, 미분 전압 프로파일의 용량(Q)은 0mAh 내지 1mAh의 범위로 정규화되어 도시된 것이다. 제어부(120)는 미분 전압 프로파일의 용량 구간을 2등분하고, 0mAh 내지 0.5mAh의 저용량 구간은 기준 구간(RR)으로 설정하며, 0.5mAh 내지 1mAh의 고용량 구간은 타겟 구간(TR)으로 설정할 수 있다.
그리고, 제어부(120)는 기준 구간(RR)에서 미분 전압이 가장 작은 피크를 기준 피크로 결정하며, 타겟 구간(TR)에서 미분 전압이 가장 작은 피크를 타겟 피크로 결정하도록 구성될 수 있다.
예컨대, 도 2의 실시예에서, 제1 미분 전압 프로파일(PV1)의 기준 구간(RR)에는 제1 기준 피크(RP1)가 포함되며, 제1 기준 피크(RP1)의 미분 전압값은 dV_RP1일 수 있다. 그리고, 제1 미분 전압 프로파일(PV1)의 타겟 구간(TR)에는 제1 타겟 피크(TP1)가 포함되며, 제1 타겟 피크(TP1)의 미분 전압값은 dV_TP1일 수 있다. 제2 미분 전압 프로파일(PV2)의 기준 구간(RR)에는 제2 기준 피크(RP2)가 포함되며, 제2 기준 피크(RP2)의 미분 전압값은 dV_RP2일 수 있다. 그리고, 제2 미분 전압 프로파일(PV2)의 타겟 구간(TR)에는 제2 타겟 피크(TP2)가 포함되며, 제2 타겟 피크(TP2)의 미분 전압값은 dV_TP2일 수 있다.
제어부(120)는 기준 피크의 미분 전압값이 타겟 피크의 미분 전압값 미만인 경우, 배터리의 상태를 불용 상태로 진단할 수 있다. 반대로, 제어부(120)는 기준 피크의 미분 전압값이 타겟 피크의 미분 전압값 이상인 경우, 배터리의 상태를 가용 상태로 진단할 수 있다.
일반적으로, 미분 전압 프로파일에서는, 배터리가 퇴화될수록 타겟 피크에 대응되는 용량값은 저용량측으로 시프트되고, 타겟 피크에 대응되는 미분 전압값은 증가될 수 있다. 즉, 도 2의 실시예에서, 제1 미분 전압 프로파일(PV1)에 대응되는 제1 배터리보다 제2 미분 전압 프로파일(PV2)에 대응되는 제2 배터리가 더욱 퇴화된 것일 수 있다.
도 2의 실시예에서, 제1 미분 전압 프로파일(PV1)에 포함된 제1 기준 피크(RP1)의 미분 전압값(dV_RP1)은 제1 타겟 피크(TP1)의 미분 전압값(dV_TP1) 이상이므로, 제어부(120)는 제1 미분 전압 프로파일(PV1)에 대응되는 제1 배터리의 상태를 가용 상태로 진단할 수 있다. 반대로, 제2 미분 전압 프로파일(PV2)에 포함된 제2 기준 피크(RP2)의 미분 전압값(dV_RP2)은 제2 타겟 피크(TP2)의 미분 전압값(dV_TP2) 미만이므로, 제어부(120)는 제2 미분 전압 프로파일(PV2)에 대응되는 제2 배터리의 상태를 가용 상태로 진단할 수 있다.
바람직하게, 제어부(120)는 불용 상태로 진단된 제2 배터리가 사용되지 않도록, 제2 배터리의 충전 및 방전을 차단하도록 구성될 수 있다. 예컨대, 제어부(120)는 제2 배터리의 양극 단자 및/또는 음극 단자와 연결된 릴레이를 턴-오프 상태로 제어함으로써, 제2 배터리의 충방전을 차단할 수 있다. 다른 예로, 제어부(120)는 제2 배터리가 불용 상태임을 나타내기 위하여, 제2 배터리에 대한 배터리 정보에서 배터리의 상태를 불용 상태로 라벨링할 수 있다.
제어부(120)는 프로파일 생성부(110)로부터 미분 용량 프로파일을 수신한 경우, 미분 용량 프로파일을 전압에 따라 기준 구간(RR)과 타겟 구간(TR)으로 구분하도록 구성될 수 있다. 예컨대, 제어부(120)는 미분 용량 프로파일의 전압 구간을 2등분하고, 저전압 구간을 기준 구간(RR)으로 고전압 구간을 타겟 구간(TR)으로 구분할 수 있다.
도 3의 실시예에서, 미분 용량 프로파일의 전압 구간은 3.2[V] 내지 4.2[V]일 수 있다. 제어부(120)는 미분 용량 프로파일의 전압 구간을 2등분하고, 3.2V 내지 3.7V의 저전압 구간은 기준 구간(RR)으로 설정하며, 3.7V 내지 4.2V의 고전압 구간은 타겟 구간(TR)으로 설정할 수 있다.
제어부(120)는 기준 구간(RR)에서 미분 용량이 가장 큰 피크를 기준 피크로 결정하며, 타겟 구간(TR)에서 미분 용량이 가장 큰 피크를 타겟 피크로 결정하도록 구성될 수 있다.
예컨대, 도 3의 실시예에서, 제1 미분 용량 프로파일(PQ1)의 기준 구간(RR)에는 제3 기준 피크(RP3)가 포함되며, 제3 기준 피크(RP3)의 미분 용량값은 dQ_RP3일 수 있다. 그리고, 제1 미분 용량 프로파일(PQ1)의 타겟 구간(TR)에는 제3 타겟 피크(TP3)가 포함되며, 제3 타겟 피크(TP3)의 미분 용량값은 dQ_TP3일 수 있다. 제2 미분 용량 프로파일(PQ2)의 기준 구간(RR)에는 제4 기준 피크(RP4)가 포함되며, 제4 기준 피크(RP4)의 미분 용량값은 dQ_RP4일 수 있다. 그리고, 제2 미분 용량 프로파일(PQ2)의 타겟 구간(TR)에는 제4 타겟 피크(TP4)가 포함되며, 제4 타겟 피크(TP4)의 미분 용량값은 dQ_TP4일 수 있다.
제어부(120)는 기준 피크의 미분 용량값이 타겟 피크의 미분 용량값을 초과한 경우, 배터리의 상태를 불용 상태로 진단하고, 기준 피크의 미분 용량값이 타겟 피크의 미분 용량값 이하인 경우, 배터리의 상태를 가용 상태로 진단하도록 구성될 수 있다.
일반적으로, 미분 용량 프로파일에서는, 배터리가 퇴화될수록 타겟 피크에 대응되는 미분 용량값은 감소될 수 있다. 즉, 도 3의 실시예에서, 제1 미분 용량 프로파일(PQ1)에 대응되는 제1 배터리보다 제2 미분 용량 프로파일(PQ2)에 대응되는 제2 배터리가 더욱 퇴화된 것일 수 있다.
도 3의 실시예에서, 제1 미분 용량 프로파일(PQ1)에 포함된 제3 기준 피크(RP3)의 미분 용량값(dQ_RP3)은 제3 타겟 피크(TP3)의 미분 용량값(dQ_TP3) 이하이므로, 제어부(120)는 제1 미분 전압 프로파일(PV1)에 대응되는 제1 배터리의 상태를 가용 상태로 진단할 수 있다. 반대로, 제2 미분 전압 프로파일(PV2)에 포함된 제4 기준 피크(RP4)의 미분 용량값(dQ_RP4)은 제4 타겟 피크(TP4)의 미분 용량값(dQ_TP4)을 초과하므로, 제어부(120)는 제2 미분 전압 프로파일(PV2)에 대응되는 제2 배터리의 상태를 가용 상태로 진단할 수 있다.
바람직하게, 제어부(120)는 불용 상태로 진단된 제2 배터리가 사용되지 않도록, 제2 배터리의 충전 및 방전을 차단하도록 구성될 수 있다. 예컨대, 제어부(120)는 제2 배터리의 양극 단자 및/또는 음극 단자와 연결된 릴레이를 턴-오프 상태로 제어함으로써, 제2 배터리의 충방전을 차단할 수 있다. 다른 예로, 제어부(120)는 제2 배터리가 불용 상태임을 나타내기 위하여, 제2 배터리에 대한 배터리 정보에서 배터리의 상태를 불용 상태로 라벨링할 수 있다.
본 발명에 따른 배터리 관리 장치(100)는, BMS(Battery Management System)에 적용될 수 있다. 즉, 본 발명에 따른 BMS는, 상술한 배터리 관리 장치(100)를 포함할 수 있다. 이러한 구성에 있어서, 배터리 관리 장치(100)의 각 구성요소 중 적어도 일부는, 종래 BMS에 포함된 구성의 기능을 보완하거나 추가함으로써 구현될 수 있다. 예를 들어, 배터리 관리 장치(100)의 프로파일 생성부(110), 제어부(120) 및 저장부(130)는 BMS의 구성요소로서 구현될 수 있다.
또한, 본 발명에 따른 배터리 관리 장치(100)는, 배터리 팩에 구비될 수 있다. 즉, 본 발명에 따른 배터리 팩은, 상술한 배터리 관리 장치(100) 및 하나 이상의 배터리 셀을 포함할 수 있다. 또한, 배터리 팩은, 전장품(릴레이, 퓨즈 등) 및 케이스 등을 더 포함할 수 있다.
도 4는 본 발명의 다른 실시예에 따른 배터리 팩의 예시적 구성을 개략적으로 도시한 도면이다.
배터리(B)의 양극 단자는 배터리 팩(10)의 양극 단자(P+)와 연결되고, 배터리(B)의 음극 단자는 배터리 팩(10)의 음극 단자(P-)와 연결될 수 있다.
측정부(200)는 제1 센싱 라인(SL1), 제2 센싱 라인(SL2) 및 제3 센싱 라인(SL3)과 연결될 수 있다. 구체적으로, 측정부(200)는 제1 센싱 라인(SL1)을 통해 배터리(B)의 양극 단자에 연결되고, 제2 센싱 라인(SL2)을 통해 배터리(B)의 음극 단자에 연결될 수 있다. 측정부(200)는 제1 센싱 라인(SL1)과 제2 센싱 라인(SL2) 각각에서 측정된 전압에 기반하여, 배터리(B)의 전압을 측정할 수 있다.
그리고, 측정부(200)는 제3 센싱 라인(SL3)을 통해 전류 측정 유닛(A)과 연결될 수 있다. 예컨대, 전류 측정 유닛(A)은 배터리(B)의 충전 전류 및 방전 전류를 측정할 수 있는 전류계 또는 션트 저항일 수 있다. 측정부(200)는 제3 센싱 라인(SL3)을 통해서 배터리(B)의 충전 전류를 측정하여 충전량을 산출할 수 있다. 또한, 측정부(200)는 제3 센싱 라인(SL3)을 통해서 배터리(B)의 방전 전류를 측정하여 방전량을 산출할 수 있다.
충방전 장치(2)는 일단이 배터리 팩(10)의 양극 단자(P+)와 연결되고, 타단이 배터리 팩(10)의 음극 단자(P-)와 연결될 수 있다. 따라서, 배터리(B)의 양극 단자, 배터리 팩(10)의 양극 단자(P+), 충방전 장치(2), 배터리 팩(10)의 음극 단자(P-) 및 배터리(B)의 음극 단자는 전기적으로 연결될 수 있다.
예컨대, 배터리 관리 장치(100)는 재사용 배터리의 상태를 진단하는 재사용 배터리용 상태 진단 장치에 적용될 수도 있다.
최근에는 친환경 에너지에 대한 관심이 높아지면서, 배터리의 사용량이 증가되고 있다. 배터리는 사용할수록 퇴화될 수밖에 없는 한계가 있기 때문에, 배터리의 상태에 따라 재활용 가부가 결정될 수 있다. 예컨대, 자동차에서 먼저 사용된 배터리는 에너지 저장 시스템(ESS, Energy storage system)에 다시 재사용될 수 있다.
일반적으로 MOL 상태의 배터리는 2차 사용처, 3차 사용처 등에서 재사용될 수 있으나, EOL 상태의 배터리는 재사용이 불가능할 수 있다. 따라서, 배터리 관리 장치(100)는 재사용 가부를 판단받기 위하여 수거된 배터리의 상태를 진단함으로써, 수거된 배터리의 재사용 가부를 결정할 수 있다.
예컨대, 배터리 관리 장치(100)는 수거된 배터리의 미분 프로파일에서 기준 피크의 미분값과 타겟 피크의 미분값 비교를 통해, 수거된 배터리의 상태가 불용 상태인지 또는 가용 상태인지를 진단할 수 있다.
도 5는 본 발명의 또 다른 실시예에 따른 배터리 관리 방법을 개략적으로 도시한 도면이다.
바람직하게, 배터리 관리 방법의 각 단계는 배터리 관리 장치(100)에 의해 수행될 수 있다. 이하에서는, 앞서 설명한 내용과 중복되는 내용은 생략하거나 간략히 설명한다.
미분 프로파일 생성 단계(S100)는 배터리의 전압과 용량 간의 대응 관계를 나타내는 배터리 프로파일에 대한 미분 프로파일을 생성하는 단계로서, 프로파일 생성부(110)에 의해 수행될 수 있다.
예컨대, 프로파일 생성부(110)는, 용량에 대한 미분 전압과 용량 간의 대응 관계를 나타내는 미분 전압 프로파일 및 전압에 대한 미분 용량과 전압 간의 대응 관계를 나타내는 미분 용량 프로파일 중 적어도 하나를 생성하도록 구성될 수 있다.
피크 결정 단계(S200)는 미분 프로파일 생성 단계(S100)에서 생성된 미분 프로파일에서 기준 피크와 타겟 피크를 결정하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 제어부(120)는 프로파일 생성부(110)로부터 미분 전압 프로파일을 수신한 경우, 미분 전압 프로파일의 용량 구간을 기준 구간(RR)과 타겟 구간(TR)으로 구분하고, 기준 구간(RR)에서 기준 피크를 결정하며, 타겟 구간(TR)에서 타겟 피크를 결정할 수 있다.
다른 예로, 제어부(120)는 프로파일 생성부(110)로부터 미분 용량 프로파일을 수신한 경우, 미분 용량 프로파일의 전압 구간을 기준 구간(RR)과 타겟 구간(TR)으로 구분하고, 기준 구간(RR)에서 기준 피크를 결정하며, 타겟 구간(TR)에서 타겟 피크를 결정할 수 있다.
배터리 상태 진단 단계(S300)는 기준 피크의 미분값과 타겟 피크의 미분값을 비교한 결과에 기반하여 배터리의 상태를 진단하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 제어부(120)는 프로파일 생성부(110)로부터 미분 전압 프로파일을 수신한 경우, 제어부(120)는 기준 피크의 미분 전압값이 타겟 피크의 미분 전압값 미만인 경우, 배터리의 상태를 불용 상태로 진단할 수 있다. 반대로, 제어부(120)는 기준 피크의 미분 전압값이 타겟 피크의 미분 전압값 이상인 경우, 배터리의 상태를 가용 상태로 진단할 수 있다.
다른 예로, 제어부(120)는 프로파일 생성부(110)로부터 미분 용량 프로파일을 수신한 경우, 제어부(120)는 기준 피크의 미분 용량값이 타겟 피크의 미분 용량값을 초과한 경우, 배터리의 상태를 불용 상태로 진단하고, 기준 피크의 미분 용량값이 타겟 피크의 미분 용량값 이하인 경우, 배터리의 상태를 가용 상태로 진단하도록 구성될 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
(부호의 설명)
10: 배터리 팩
20: 충방전 장치
100: 배터리 관리 장치
110: 프로파일 생성부
120: 제어부
130: 저장부
200: 측정부

Claims (10)

  1. 배터리의 전압과 용량 간의 대응 관계를 나타내는 배터리 프로파일에 대한 미분 프로파일을 생성하도록 구성된 프로파일 생성부; 및
    상기 프로파일 생성부로터 수신한 미분 프로파일에서 기준 피크와 타겟 피크를 결정하고, 상기 기준 피크의 미분값과 상기 타겟 피크의 미분값을 비교한 결과에 기반하여 상기 배터리의 상태를 진단하도록 구성된 제어부를 포함하는 것을 특징으로 하는 배터리 관리 장치.
  2. 제1항에 있어서,
    상기 프로파일 생성부는,
    상기 미분 프로파일로, 상기 용량에 대한 미분 전압과 상기 용량 간의 대응 관계를 나타내는 미분 전압 프로파일 및 상기 전압에 대한 미분 용량과 상기 전압 간의 대응 관계를 나타내는 미분 용량 프로파일 중 적어도 하나를 생성하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 프로파일 생성부로부터 수신한 미분 프로파일의 종류를 결정하고, 결정된 미분 프로파일의 종류에 대응되도록 미리 설정된 규칙에 따라 상기 수신한 미분 프로파일에서 상기 기준 피크 및 상기 타겟 피크를 결정하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  4. 제3항에 있어서,
    상기 제어부는,
    상기 프로파일 생성부로부터 상기 미분 전압 프로파일을 수신한 경우, 상기 미분 전압 프로파일을 상기 용량에 따라 기준 구간과 타겟 구간으로 구분하고, 상기 기준 구간에서 상기 미분 전압이 가장 작은 피크를 상기 기준 피크로 결정하며, 상기 타겟 구간에서 상기 미분 전압이 가장 작은 피크를 상기 타겟 피크로 결정하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  5. 제4항에 있어서,
    상기 제어부는,
    상기 기준 피크의 미분 전압값이 상기 타겟 피크의 미분 전압값 미만인 경우, 상기 배터리의 상태를 불용 상태로 진단하고,
    상기 기준 피크의 미분 전압값이 상기 타겟 피크의 미분 전압값 이상인 경우, 상기 배터리의 상태를 가용 상태로 진단하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  6. 제3항에 있어서,
    상기 제어부는,
    상기 프로파일 생성부로부터 상기 미분 용량 프로파일을 수신한 경우, 상기 미분 용량 프로파일을 상기 전압에 따라 기준 구간과 타겟 구간으로 구분하고, 상기 기준 구간에서 상기 미분 용량이 가장 큰 피크를 상기 기준 피크로 결정하며, 상기 타겟 구간에서 상기 미분 용량이 가장 큰 피크를 상기 타겟 피크로 결정하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  7. 제6항에 있어서,
    상기 제어부는,
    상기 기준 피크의 미분 용량값이 상기 타겟 피크의 미분 용량값을 초과한 경우, 상기 배터리의 상태를 불용 상태로 진단하고,
    상기 기준 피크의 미분 용량값이 상기 타겟 피크의 미분 용량값 이하인 경우, 상기 배터리의 상태를 가용 상태로 진단하도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  8. 제1항에 있어서,
    상기 타겟 피크는,
    일정량 이상의 니켈을 포함하는 하이 니켈계 배터리에 대한 미분 프로파일에서 나타나도록 구성된 것을 특징으로 하는 배터리 관리 장치.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 배터리 관리 장치를 포함하는 배터리 팩.
  10. 배터리의 전압과 용량 간의 대응 관계를 나타내는 배터리 프로파일에 대한 미분 프로파일을 생성하는 미분 프로파일 생성 단계;
    상기 미분 프로파일 생성 단계에서 생성된 미분 프로파일에서 기준 피크와 타겟 피크를 결정하는 피크 결정 단계; 및
    상기 기준 피크의 미분값과 상기 타겟 피크의 미분값을 비교한 결과에 기반하여 상기 배터리의 상태를 진단하는 배터리 상태 진단 단계를 포함하는 것을 특징으로 하는 배터리 관리 방법.
PCT/KR2022/011075 2021-08-02 2022-07-27 배터리 관리 장치 및 방법 WO2023013967A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023524562A JP2023547133A (ja) 2021-08-02 2022-07-27 バッテリー管理装置及び方法
US18/268,684 US20240044995A1 (en) 2021-08-02 2022-07-27 Battery Management Apparatus and Method
EP22853345.1A EP4224182A1 (en) 2021-08-02 2022-07-27 Apparatus and method for managing battery
CN202280007494.9A CN116457678A (zh) 2021-08-02 2022-07-27 用于管理电池的设备和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0101551 2021-08-02
KR1020210101551A KR20230019705A (ko) 2021-08-02 2021-08-02 배터리 관리 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2023013967A1 true WO2023013967A1 (ko) 2023-02-09

Family

ID=85154541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011075 WO2023013967A1 (ko) 2021-08-02 2022-07-27 배터리 관리 장치 및 방법

Country Status (6)

Country Link
US (1) US20240044995A1 (ko)
EP (1) EP4224182A1 (ko)
JP (1) JP2023547133A (ko)
KR (1) KR20230019705A (ko)
CN (1) CN116457678A (ko)
WO (1) WO2023013967A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160144437A (ko) * 2014-04-16 2016-12-16 르노 에스.아.에스. 배터리의 건강 상태를 추정하는 방법
JP6123844B2 (ja) * 2014-09-01 2017-05-10 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
JP6251255B2 (ja) * 2012-06-13 2017-12-20 エルジー・ケム・リミテッド 混合正極材を含む二次電池の充電状態推定装置及び方法
JP2019070621A (ja) * 2017-10-11 2019-05-09 三菱自動車工業株式会社 二次電池システム
KR20210031226A (ko) * 2019-09-11 2021-03-19 주식회사 엘지화학 배터리 관리 장치 및 방법
KR20210101551A (ko) 2020-02-10 2021-08-19 김회율 마스크

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6251255B2 (ja) * 2012-06-13 2017-12-20 エルジー・ケム・リミテッド 混合正極材を含む二次電池の充電状態推定装置及び方法
KR20160144437A (ko) * 2014-04-16 2016-12-16 르노 에스.아.에스. 배터리의 건강 상태를 추정하는 방법
JP6123844B2 (ja) * 2014-09-01 2017-05-10 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
JP2019070621A (ja) * 2017-10-11 2019-05-09 三菱自動車工業株式会社 二次電池システム
KR20210031226A (ko) * 2019-09-11 2021-03-19 주식회사 엘지화학 배터리 관리 장치 및 방법
KR20210101551A (ko) 2020-02-10 2021-08-19 김회율 마스크

Also Published As

Publication number Publication date
EP4224182A1 (en) 2023-08-09
US20240044995A1 (en) 2024-02-08
KR20230019705A (ko) 2023-02-09
JP2023547133A (ja) 2023-11-09
CN116457678A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2013151355A1 (ko) 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 자가 진단 방법
WO2019124738A1 (ko) 배터리 충전관리 장치 및 방법
WO2019098722A1 (ko) 배터리 저항 추정 장치 및 방법
WO2019146928A1 (ko) Soh 분석 장치 및 방법
WO2019098576A1 (ko) 배터리 여유 용량 추정 장치
WO2019199057A1 (ko) 배터리 진단 장치 및 방법
WO2019212148A1 (ko) 이차 전지 테스트 장치 및 방법
WO2020213905A1 (ko) 배터리의 퇴화 상태를 결정하기 위한 장치, 방법, 배터리 팩 및 전기 차량
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2021107323A1 (ko) 배터리 셀 이상 퇴화 진단 장치 및 방법
WO2019088504A1 (ko) 배터리 퇴화 진단 장치 및 방법
WO2021230533A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2022250390A1 (ko) 배터리 모니터링 장치 및 방법
WO2023013967A1 (ko) 배터리 관리 장치 및 방법
WO2022108344A1 (ko) 배터리 관리 장치 및 방법
WO2023033480A1 (ko) 배터리 진단 시스템 및 방법
WO2022158948A2 (ko) 배터리 관리 장치 및 방법
WO2019156403A1 (ko) 이차 전지 상태 추정 장치 및 방법
WO2022103213A1 (ko) 배터리 진단 장치 및 방법
WO2022114826A1 (ko) 배터리 관리 장치 및 방법
WO2021230537A1 (ko) 배터리 상태 진단 장치 및 방법
WO2021080219A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2023249285A1 (ko) 배터리 관리 장치 및 방법
WO2022154545A1 (ko) 배터리 관리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524562

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022853345

Country of ref document: EP

Effective date: 20230504

WWE Wipo information: entry into national phase

Ref document number: 202280007494.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18268684

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE