WO2023013651A1 - Bonding method - Google Patents

Bonding method Download PDF

Info

Publication number
WO2023013651A1
WO2023013651A1 PCT/JP2022/029692 JP2022029692W WO2023013651A1 WO 2023013651 A1 WO2023013651 A1 WO 2023013651A1 JP 2022029692 W JP2022029692 W JP 2022029692W WO 2023013651 A1 WO2023013651 A1 WO 2023013651A1
Authority
WO
WIPO (PCT)
Prior art keywords
adherend
frequency
dielectric heating
spacer
adhesive
Prior art date
Application number
PCT/JP2022/029692
Other languages
French (fr)
Japanese (ja)
Inventor
直紀 田矢
泰之 天野
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2023540370A priority Critical patent/JPWO2023013651A1/ja
Priority to CN202280051134.9A priority patent/CN117677483A/en
Publication of WO2023013651A1 publication Critical patent/WO2023013651A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/04Dielectric heating, e.g. high-frequency welding, i.e. radio frequency welding of plastic materials having dielectric properties, e.g. PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/40Applying molten plastics, e.g. hot melt
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive

Definitions

  • the present invention relates to a joining method.
  • an adherend having an undulating surface on at least one surface of the adherend is bonded by high-frequency dielectric heating using an adhesive.
  • the undulating surface side of the adherend having the undulating surface may be arranged on the electrode surface side of the high-frequency dielectric heating device, and the bonding may be performed by arranging an adhesive on the surface opposite to the electrode surface.
  • Patent Document 1 a water-based adhesive is applied to the adherend surface of the adherend portion of one adherend, and the adherend surface of one adherend and the adherend surface of the other adherend are disclosed. and applying high-frequency dielectric heating while pressing the superimposed adherend surfaces to join two adherends, one adherend and the other adherend.
  • the high-frequency dielectric heating device When bonding is performed by arranging the undulating surface side of the adherend having the undulating surface on the electrode surface side of the high-frequency dielectric heating device and placing an adhesive on the surface opposite to the electrode surface side, the high-frequency dielectric heating device A space is generated between the electrode surface and the undulating surface of the adherend. Then, when a high-frequency electric field is applied to the adhesive, the high-frequency energy is less likely to be transmitted to the adhesive placed at the position corresponding to this space, and the undulating surface of the adherend and the high-frequency dielectric The high-frequency energy is selectively transmitted to the adhesive placed at the position corresponding to the portion in contact with the electrode of the heating device. As a result, the application of the high-frequency electric field to the adhesive becomes non-uniform, making it difficult to firmly bond the adherend and the adhesive in a short period of time.
  • the undulations of the adherend are prepared in advance.
  • a plurality of adherends are joined using a compression plate molded into a shape corresponding to the surface.
  • it is time-consuming to prepare a pressure-bonding plate molded for each shape of the undulating surface.
  • An object of the present invention is to provide a technique of placing an adherend having an undulating surface on the electrode surface side of a high-frequency dielectric heating device and bonding it by high-frequency dielectric heating, in which a crimping die (crimping) is formed in advance according to the shape of the undulating surface (crimping To provide a bonding method capable of firmly bonding the adherends in a short time without preparing a plate.
  • a bonding method for bonding adherends using a high-frequency dielectric heating adhesive comprising an arrangement step of arranging an electrode of a dielectric heating device, the adherend and a spacer, and a high-frequency electric field in the high-frequency dielectric heating adhesive. and a high-frequency electric field application step of bonding the adherend by applying a high-frequency electric field, wherein the adherend has a first surface having an undulating surface, and the high-frequency dielectric heating adhesive is a thermoplastic resin and in the arranging step, when the adherend and the spacer are arranged, a space is formed between the first surface of the adherend and the surface of the spacer facing the first surface The bonding method, wherein the space is filled by deformation of the spacer.
  • the adherend is joined by applying a high-frequency electric field while pressing the adherend and the high-frequency dielectric heating adhesive with the electrode to join the adherend; Joining method as described.
  • the undulations of the first surface of the adherend include concave portions and convex portions, and when the first surface of the adherend is viewed in plan, the area ratio of the concave portions to the first surface is 20. % or more and less than 100%, the joining method according to any one of [1] to [7].
  • the dielectric material is a dielectric filler (B)
  • the dielectric filler (B) is at least one selected from the group consisting of zinc oxide, silicon carbide, titanium oxide and barium titanate; Joining method as described.
  • the crimping is formed in advance according to the shape of the undulating surface. It is possible to provide a joining method capable of firmly joining the adherends in a short time without preparing a mold.
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability;
  • 1 is a schematic diagram of a high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment;
  • FIG. 1 is a schematic diagram of a high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment;
  • FIG. 1 is a schematic diagram of a high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment;
  • FIG. 1 is a schematic diagram of a first adherend WK1 used in Examples.
  • FIG. 1 is a schematic diagram of a first adherend WK1 used in Examples.
  • FIG. It is the schematic showing the side surface of the test piece for bondability evaluation.
  • the bonding method according to the present embodiment is a bonding method for bonding adherends using a high-frequency dielectric heating adhesive, and includes an arrangement step of arranging an electrode of a dielectric heating device, an adherend, and a spacer, and a high-frequency dielectric a high-frequency electric field application step of applying a high-frequency electric field to the heating adhesive to join the adherends.
  • the adherend has a first surface having an undulating surface, and the high-frequency dielectric heating adhesive includes a thermoplastic resin.
  • the arranging step when the adherend and the spacer are arranged, a space is formed between the first surface of the adherend and the surface of the spacer facing the first surface, and the space is formed by the spacer. Filled by deformation.
  • the dielectric heating device may be referred to as a high-frequency dielectric heating device.
  • the adherend used in the bonding method according to this embodiment has a first surface having an undulating surface and a second surface opposite to the first surface.
  • the second surface need not have an undulating surface.
  • the undulating surface of the adherend has a raised portion and a depressed portion, and the depressed portion may be present at one location or at a plurality of locations. Similarly, the raised portion may be present at one location or may be present at a plurality of locations.
  • the depth of the depressed portions may be substantially uniform or may be uneven.
  • the height of the protruded parts may or may not be uniform.
  • the raised portions and depressed portions may be scattered or densely packed.
  • the recessed portion may have a single arcuate concave shape, or may exist at a plurality of locations.
  • the protruded portion may have a single arcuate convex shape, or may be present at a plurality of locations.
  • adherend having the first surface having the undulating surface may be referred to as an adherend (X) for convenience.
  • the first surface side of the adherend (X) is directed toward the electrode side of the dielectric heating device, and the electrode and the adherend (X) are Place a spacer in between.
  • a space is formed between the first surface of the adherend (X) and the surface of the spacer facing the first surface.
  • the shape of the space is a shape corresponding to the shape of the space formed between the undulating surface of the adherend (X) and the spacer.
  • the high-frequency dielectric heating adhesive is placed on the second surface side of the adherend (X).
  • a high-frequency electric field is applied to the high-frequency dielectric heating adhesive in a state where the space is filled by deformation of the spacer, and the high-frequency dielectric heating adhesive and the adherend (X ).
  • the deformation of the spacer fills the space, thus saving the trouble of preparing a crimping die that has been molded according to the shape of the undulating surface in advance.
  • the bonding method according to the present embodiment since the dielectric heating is performed in a state where the space is filled by the deformation of the spacer, the energy of the high-frequency dielectric heating is almost uniform with respect to the high-frequency dielectric heating adhesive. It becomes easier to convey. As a result, the adherend (X) and the high-frequency dielectric heating adhesive can be firmly bonded in a short time.
  • the number of adherends is not particularly limited, and the number of spacers is also not limited, as long as at least one adherend having a first surface having an undulating surface can be joined. Even in this case, in the bonding method according to the present embodiment, the adherend (X) and the high-frequency dielectric heating adhesive can be firmly bonded in a short time. The adherends can be strongly bonded together in a short period of time.
  • a bonding method includes an arrangement step (step P1) of arranging an electrode of a dielectric heating device, an adherend, and a spacer, and applying a high-frequency electric field to an adhesive for high-frequency dielectric heating, includes a high-frequency electric field application step (step P2) for bonding.
  • Step P1 is a step of arranging the electrode of the dielectric heating device, the adherend (X), and the spacer.
  • the first surface of the adherend (X) and the spacer are arranged to face each other, and between the first surface of the adherend (X) and the surface of the spacer facing the first surface , a space is formed. The space is filled by deformation of the spacer.
  • the order of arranging the electrodes, adherends (X), and spacers is not particularly limited.
  • the adherend (X) and spacers may be placed after placing the electrodes, or the electrodes may be placed after placing the adherend (X) and spacers.
  • the order in which the adherend (X) and the spacer are placed is not particularly limited, and either the adherend (X) or the spacer may be placed first, or both may be placed at the same time.
  • step P1 the space formed between the first surface of the adherend (X) and the surface of the spacer facing the first surface is filled by deformation of the spacer.
  • the order in which the space is filled by deformation of the spacer is not particularly limited, and the space may be filled after the adherend (X) and the spacer are placed.
  • the space of the adherend (X) may be filled with the spacer.
  • the space may be filled by deformation of the spacer when pressure is applied to the adherend (X) and the spacer by electrodes of a dielectric heating device.
  • the adherend (X) and the spacer may be placed after filling the space by deformation of the spacer.
  • the space of the adherend (X) is previously filled with the spacer, and then the spacer and the adherend ( X) may be placed on the electrodes of the dielectric heating device.
  • the adherend (X) and the spacer may be placed on the electrode of the dielectric heating device.
  • the spacer is the undulating surface of the adherend (X).
  • the adherend It may not be located between the raised portion of the undulating surface of X) and the electrode.
  • the number of adherends is not particularly limited, and two or more adherends may be arranged.
  • at least one adherend is the adherend (X).
  • the adherend (X) For example, when joining two adherends (X) with a high-frequency dielectric heating adhesive, the high-frequency dielectric heating adhesive is placed between the second surfaces of both adherends (X), and the electrode and A spacer may be placed between the first surfaces of both adherends (X) for bonding.
  • the adherend (X) and an adherend having neither the first surface nor the second surface having undulating surfaces are joined by a high-frequency dielectric heating adhesive
  • the undulations of the two adherends A high-frequency dielectric heating adhesive may be placed between the surfaces having no surfaces, and a spacer may be placed between the electrode and the first surface of the adherend (X) for bonding.
  • the high-frequency dielectric heating adhesive is placed between the non-undulating surfaces of each adherend.
  • the adherends and the high-frequency dielectric heating adhesive may be alternately arranged and bonded.
  • the high-frequency dielectric heating adhesive and the adherend (X) may be placed respectively.
  • the high-frequency dielectric heating adhesive is arranged as a high-frequency dielectric heating adhesive integrated with the second surface side of the adherend (X) having no undulating surface.
  • the high-frequency dielectric heating adhesive may be arranged as a high-frequency dielectric heating adhesive integrated with an adherend that does not have undulating surfaces on both the first and second surfaces. In either case, the first surface of the adherend (X) is placed facing away from the high-frequency dielectric heating adhesive. That is, the high-frequency dielectric heating adhesive is placed on the surface opposite to the first surface of the adherend (X).
  • the step P1 is to apply the high-frequency dielectric heating adhesive to the adherend having an undulating surface so that the adherends can be joined together. It is preferable to sandwich between non-contact surfaces.
  • the high-frequency dielectric heating adhesive may be sandwiched between a part of the adherends, at a plurality of locations between the adherends, or over the entire surface between the adherends. From the viewpoint of improving the adhesive strength between the adherends, it is preferable to sandwich the high-frequency dielectric heating adhesive over the entire joint surface between the adherends.
  • the high-frequency dielectric heating adhesive is arranged in a frame shape along the outer periphery of the bonding surface between the adherends, A mode in which it is sandwiched between adherends is exemplified.
  • the amount of the high-frequency dielectric heating adhesive to be used can be reduced and the size can be reduced.
  • the high-frequency dielectric heating treatment time can be shortened compared to the case where the high-frequency dielectric heating adhesive is used.
  • Step P2 is a step of applying a high-frequency electric field to the high-frequency dielectric heating adhesive to join the adherend (X) after arranging each member in the step P1.
  • a high-frequency electric field is applied to the high-frequency dielectric heating adhesive placed between the adherends. It is a step of joining two or more adherends.
  • the frequency of the applied high-frequency electric field is 3 MHz or more and 300 MHz or less.
  • a high frequency electric field can be applied to the high frequency dielectric heating adhesive.
  • the adherend (X) may be joined by applying a high-frequency electric field while pressing the adherend (X) and the high-frequency dielectric heating adhesive with an electrode.
  • High-frequency dielectric heating conditions Although the high-frequency dielectric heating conditions can be changed as appropriate, the following conditions are preferred.
  • the output of the high-frequency electric field is preferably 10 W or higher, more preferably 30 W or higher, even more preferably 50 W or higher, and even more preferably 80 W or higher.
  • the output of the high-frequency electric field is preferably 50,000 W or less, more preferably 20,000 W or less, even more preferably 15,000 W or less, even more preferably 10,000 W or less, 1,000 W or less is even more preferable. If the output of the high-frequency electric field is 10 W or more, it is possible to prevent the problem that the temperature is difficult to rise during the dielectric heating treatment, so it is easy to obtain good bonding strength. If the output of the high-frequency electric field is 50,000 W or less, it is easy to prevent the problem of difficulty in temperature control due to dielectric heating treatment.
  • the application time of the high-frequency electric field is preferably 1 second or longer.
  • the application time of the high-frequency electric field is preferably 300 seconds or less, more preferably 240 seconds or less, even more preferably 180 seconds or less, even more preferably 120 seconds or less, and 90 seconds or less. is even more preferable, and 50 seconds or less is particularly preferable. If the application time of the high-frequency electric field is 1 second or longer, it is possible to prevent the problem that the temperature is difficult to rise during the dielectric heating treatment, so that it is easy to obtain good adhesive strength. If the application time of the high-frequency electric field is 300 seconds or less, problems such as a decrease in manufacturing efficiency of the structure, an increase in manufacturing cost, and thermal deterioration of the adherend (X) can be easily prevented.
  • the frequency of the high-frequency electric field to be applied is preferably 1 kHz or higher, more preferably 1 MHz or higher, even more preferably 3 MHz or higher, even more preferably 5 MHz or higher, and 10 MHz or higher. Even more preferred.
  • the frequency of the high-frequency electric field to be applied is preferably 300 MHz or less, more preferably 100 MHz or less, even more preferably 80 MHz or less, and even more preferably 50 MHz or less.
  • the industrial frequency band of 13.56 MHz, 27.12 MHz, or 40.68 MHz allocated by the International Telecommunication Union is also used for the manufacturing method and joining method by high-frequency dielectric heating of this embodiment.
  • the pressing pressure when applying the high-frequency is preferably 1 kPa or more as an initial setting value of the pressure applied to the high-frequency dielectric heating adhesive. It is more preferably 5 kPa or more, still more preferably 10 kPa or more, even more preferably 30 kPa or more, and even more preferably 50 kPa or more.
  • the pressing pressure when applying the high frequency is preferably 10 MPa or less, and 5 MPa or less as an initial set value of the pressure applied to the high frequency dielectric heating adhesive.
  • the reference area for the initial set value of the pressure applied to the high-frequency dielectric heating adhesive is the smallest area among the areas of the electrodes, the adherend, and the spacer when viewed from above.
  • 1 to 3 are schematic diagrams illustrating an example of the bonding method according to this embodiment.
  • 1 to 3 show an example of a method of bonding a first adherend 110 and a second adherend 120 with a high-frequency dielectric heating adhesive 11 using a dielectric heating device 50. It is shown.
  • the dielectric heating device 50 shown in FIGS. 1 to 3 includes a first high-frequency electric field applying electrode 51, a second high-frequency electric field applying electrode 52, and a high-frequency power source 53.
  • FIG. The first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 are arranged to face each other.
  • the first high frequency electric field applying electrode 51 and the second high frequency electric field applying electrode 52 have a press mechanism. Two or more adherends arranged between the electrodes and the high-frequency dielectric heating adhesive are pressed by the press mechanism of the electrodes (the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52) of the dielectric heating device 50. It is also possible to apply a high frequency electric field while pressurizing the .
  • the dielectric heating device 50 when the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 constitute a pair of parallel plate electrodes, such an electrode arrangement form is called a parallel plate type. sometimes referred to as It is also preferable to use a parallel plate type high frequency dielectric heating device for applying the high frequency electric field.
  • the parallel plate type high frequency dielectric heating device the high frequency electric field penetrates the high frequency dielectric heating adhesive located between the electrodes, so that the entire high frequency dielectric heating adhesive can be heated, and the adherend (X) can be heated. and the high-frequency dielectric heating adhesive can be bonded in a short time. Further, when manufacturing a laminate as a structure, it is preferable to use a parallel plate type high-frequency dielectric heating apparatus.
  • a high-frequency power source 53 for applying a high-frequency electric field with a frequency of about 13.56 MHz, about 27.12 MHz, or about 40.68 MHz to each of the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52. is connected.
  • FIG. 2 shows the electrodes of the dielectric heating device 50 (the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52), the first adherend 110, the high-frequency dielectric heating adhesive 11, and the adherend (X).
  • the second adherend 120 and the spacer 210 are arranged.
  • the first adherend 110 does not have undulating surfaces on both the high-frequency dielectric heating adhesive 11 side and the first high-frequency electric field applying electrode 51 side.
  • the second adherend 120 has an undulating surface on a first surface 125 and a second surface 127 opposite the first surface 125 does not have an undulating surface. As shown in FIG.
  • a spacer 210, a second adherend 120, a high-frequency dielectric heating adhesive 11, and the first adherend 110 are arranged in this order from the second high-frequency electric field applying electrode 52 side.
  • the first surface 125 of the second adherend 120 is arranged to face the spacer 210 .
  • FIG. 3 shows the state after the electrodes of the dielectric heating device 50, the first adherend 110, the high-frequency dielectric heating adhesive 11, the second adherend 120, and the spacer 210 are arranged.
  • the spacer 210 is arranged between the second high-frequency electric field applying electrode 52 and the second adherend 120, a space 31 is formed between the undulating surface of the second adherend 120 and the spacer.
  • the dielectric heating device 50 can apply pressure from at least one of the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 .
  • the dielectric heating device 50 heats the first adherend 110 , the high-frequency dielectric heating adhesive 11 and the second adherend between the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 .
  • the adherend 120 and the spacer 210 are pressurized in the direction of the arrow.
  • FIG. 1 After arranging the electrodes of the dielectric heating device 50, the first adherend 110, the high-frequency dielectric heating adhesive 11, the second adherend 120, and the spacer 210, heating is performed by the dielectric heating device 50. It shows a state in which pressure treatment and dielectric heat treatment are performed. When pressurized by the dielectric heating device 50 , the spacer 210 deforms and follows the shape of the space 31 . Space 31 is filled with spacer 210 .
  • the dielectric heating device 50 uses a spacer 210 to sandwich a high-frequency dielectric heating adhesive between a first adherend 110 and a second adherend 120. 11, dielectric heat treatment. Furthermore, the dielectric heating device 50 applies pressure to the first adherend 110 and the second adherend by pressure treatment using the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 in addition to the dielectric heating treatment.
  • the body 120 is joined.
  • the bonding of the first adherend 110 and the second adherend 120 may be performed by applying a high-frequency electric field while applying pressure with electrodes of the dielectric heating device 50 .
  • the bonding of the first adherend 110 and the second adherend 120 is performed by applying pressure from the electrode of the dielectric heating device 50, filling the space 31 with the spacer 210, and then applying a high-frequency electric field. good too.
  • the high-frequency electric field is applied at approximately the same time as the space 31 is filled with the spacer 210 by the pressure.
  • Pressurization means for example, A.I. It refers to pressure treatment by the press mechanism of the dielectric heating device 50, or B. It refers to a pressure treatment in which pressure is applied only by the weight of the electrodes of the dielectric heating device 50 without performing pressure treatment by a press mechanism of the dielectric heating device 50, or C. It refers to a combination of pressure treatment by the press mechanism of the dielectric heating device 50 and pressure treatment by the weight of the electrode of the dielectric heating device 50 .
  • One aspect of a state in which a high-frequency electric field is applied to the first adherend 110, the high-frequency dielectric heating adhesive 11, the spacer 210, and the second adherend 120 while being pressurized by the electrodes of the dielectric heating device 50 examples thereof include the following aspects (E1) to (E3).
  • the spacer 210 After the spacer 210 is deformed by applying pressure with the electrode of the dielectric heating device 50, the high-frequency electric field is applied while the pressure from the electrode is released. Mode of application.
  • the pressurizing process by the pressing mechanism may be canceled, and the pressing due to the weight of the electrode may be maintained.
  • the aspect of applying the high-frequency electric field while applying pressure by the electrodes of the dielectric heating device 50 is preferably the above aspect (E1).
  • the structure 100 having the second adherend 120 having the undulating surface on the first surface 125 is obtained.
  • two or more adherends may be joined by pressing only with the high-frequency dielectric heating adhesive and the weight of the adherends, for example, without performing the pressure treatment by the dielectric heating device 50 .
  • the spacer 210 may be deformed to fill the space 31 in advance before the dielectric heating treatment.
  • a material such as removable putty may be used as the spacer 210, and the spacer 210 may be deformed to fill the space in advance.
  • the high frequency dielectric heating adhesive 11 absorbs high frequency energy.
  • the use of the spacer 210 fills the space 31 by deformation of the spacer 210. . Therefore, the high-frequency dielectric heating adhesive 11 can absorb high-frequency energy in a nearly uniform manner.
  • the thermoplastic resin component in the high-frequency dielectric heating adhesive 11 is almost uniformly melted, and the first adherend 110 and the second adherend 120 are firmly attached even if the treatment is performed for a short period of time. can be joined to
  • the high-frequency dielectric heating adhesive 11 contains a dielectric material (not shown), the dielectric material dispersed in the thermoplastic resin component as the adhesive component absorbs high-frequency energy.
  • the dielectric material functions as a heat source, and the heat generated by the dielectric material melts the thermoplastic resin component. , the adherend 120 can be strongly bonded.
  • first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 have a press mechanism, they also function as a press device. Therefore, by applying pressure in the compression direction by the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 and heating and melting the high-frequency dielectric heating adhesive 11, the first adherend 110 and the second adherend The adherend 120 can be more strongly bonded.
  • the number of adherends is not particularly limited as long as at least one adherend (X) is used.
  • the adherend (X) may be used for both adherends.
  • the second adherend 120 as the adherend (X) is used as one adherend, and the first adherend having no undulating surface is used as the other adherend.
  • a body 110 was used.
  • a parallel plate type high-frequency dielectric heating device is used, and both the two adherends are the second adherend 120 as the adherend (X). may be used.
  • any second adherend 120 is arranged with the first surface 125 facing each electrode side of the dielectric heating device 50 (the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52). .
  • Spacers 210 are placed between the electrodes of the dielectric heating device and the two second adherends 120, respectively, and the two second adherends 120 are bonded with the high-frequency dielectric heating adhesive 11. do.
  • the high-frequency dielectric heating treatment is not limited to the above-described dielectric heating device in which electrodes are arranged opposite to each other, and a lattice electrode type high-frequency dielectric heating device may be used.
  • a grid electrode type high-frequency dielectric heating device has a grid electrode in which electrodes of a first polarity and electrodes of a second polarity opposite to the electrodes of the first polarity are alternately arranged on the same plane at regular intervals. .
  • FIGS. 1 to 3 exemplify a mode using a dielectric heating device in which electrodes are arranged opposite to each other. Even when a lattice electrode type dielectric heating device is used, the adherend (X) can be strongly bonded in a short time.
  • a lattice electrode type high frequency dielectric heating device for applying a high frequency electric field.
  • bonding can be performed without being affected by the thickness of the adherend (X).
  • a lattice electrode type high-frequency dielectric heating device it is possible to save energy during bonding.
  • the grid electrode When bonding with a grid electrode type dielectric heating device, the grid electrode is arranged on either the first surface side having the undulating surface of the adherend (X) or the second surface side opposite to the first surface. Then, a high frequency may be applied. Alternatively, a high-frequency electric field may be applied by arranging lattice electrodes on both the first surface side and the second surface side of the adherend (X). Further, a high-frequency electric field may be applied by arranging on the first surface side of the adherend (X), and then a grid electrode may be arranged on the second surface side to apply a high-frequency electric field.
  • the adherend (X) used in the bonding method according to the present embodiment has an undulating surface on the first surface, and the undulating surface has a convex portion that is a raised portion and a concave portion that is a depressed portion. have.
  • a relatively protruding portion of the undulating surface may be referred to as a convex portion
  • a relatively depressed portion defined by the convex portion of the undulating surface may be referred to as a concave portion.
  • FIGS. 4A and 4B are cross-sectional views showing an example of an adherend used in the bonding method according to this embodiment.
  • the adherend 120B shown in FIG. 4A has an undulating surface on the first surface, and the convex portions 121A, 121B, and 121C are raised portions of the undulating surface,
  • the concave portion 123A, the concave portion 123B, the concave portion 123C, and the concave portion 123D are the depressed portions of the undulating surface.
  • the cross-sectional shape of the recesses and protrusions is not limited to the rectangular shape shown in FIGS. 4A and 4B. and may have steps. Further, for example, the protruding portion of the undulating surface may be semicircular.
  • the semicircular portion becomes a convex portion, and the recessed portions on both sides of the convex portion become concave portions. Furthermore, for example, when the recessed portion of the undulating surface is semicircular, the semicircular portion becomes a concave portion, and the raised portions on both sides of the semicircular recessed portion become convex portions.
  • the maximum height difference of the undulations of the undulating surface is preferably 1 mm or more, more preferably 2 mm or more, even more preferably 3 mm or more, and 4 mm or more. Even more preferable. If the maximum height difference of the undulations of the undulating surface is 1 mm or more, the effect of using the spacer to firmly bond the adherend (X) and the high-frequency dielectric heating adhesive in a short time tends to increase.
  • the upper limit of the height difference of the undulations of the undulating surface of the adherend is not particularly limited as long as the adherend (X) and the high-frequency dielectric heating adhesive can be firmly bonded in a short time using a spacer.
  • the maximum height difference of the undulations of the undulating surface of the adherend may be, for example, 40 mm or less, 20 mm or less, or 10 mm or less.
  • the maximum height difference of the undulations of the undulating surface represents the maximum value of the height difference from the top of the projection to the bottom of the recess when the undulation surface has one projection.
  • the top of the protrusion is the highest portion of the protrusion, and the bottom of the recess is the lowest portion of the recess. Note that, for example, in the case where the undulating surface has one raised portion or depressed portion in the shape of a single semicircle, the height difference of the undulations is the radius of the semicircle.
  • the maximum height difference of the undulations of the undulating surface represents the maximum value of the height difference between the projections and the recesses when the number of projections on the undulation surface is two or more.
  • recess 123A, recess 123B, recess 123C, and recess 123D each have the same distance from the top T of protrusion 121C to the bottom L of recess 123D. Therefore, the maximum height difference of the undulations shown in FIG. 4A is represented by, for example, the maximum height difference D from the top T of the adjacent convex portion 121C to the bottom L of the concave portion 123D.
  • FIG. 4A the maximum height difference D from the top T of the adjacent convex portion 121C to the bottom L of the concave portion 123D.
  • the heights of the protrusions 122A, 122B, 122C, and 122D are different, and the protrusion 122B projects the most. .
  • the recesses 124A, 124B, 124C, and 124D have different depths, and the recess 124D is the most recessed. Therefore, the maximum height difference of the undulations shown in FIG. 4B is represented by the maximum height difference D from the top T of the projection 122B that protrudes the most to the bottom L of the recess 124D that sinks the most.
  • the area ratio of the recesses occupying the first surface is preferably 20% or more, and 30% or more. is more preferably 40% or more, even more preferably 50% or more, and even more preferably 60% or more.
  • the upper limit of the area ratio of the recesses in the first surface is not particularly limited, and is preferably 90% or less, for example.
  • the material of the adherend (X) is not particularly limited.
  • the material of the adherend may be either an organic material or an inorganic material (including a metal material, etc.), or may be a composite material of an organic material and an inorganic material.
  • the material of the adherend (X) is preferably an organic material.
  • Organic materials for the adherend include, for example, plastic materials and rubber materials.
  • plastic materials include polypropylene resin, polyethylene resin, ethylene-vinyl acetate copolymer, epoxy resin, polyurethane resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), unhydrogenated styrene-conjugated diene copolymer.
  • the adherend (X) may be an organic foam material.
  • the material of the adherend is a thermoplastic resin, from the viewpoint of adhesion, the main composition of the thermoplastic resin contained in the adherend (X) is the thermoplastic resin (A ) is preferably the same as the main composition.
  • the term "main composition of the thermoplastic resin” means, for example, when the thermoplastic resin is a polymer, among the repeating units contained in the polymer, the repeating unit that is the most contained in the polymer. be. If the thermoplastic resin is a polymer derived from a single monomer, the monomer unit (repeating unit) is the "main composition of the thermoplastic resin". When the thermoplastic resin is a copolymer, the repeating unit that is the most contained in the polymer is the "main composition of the thermoplastic resin".
  • the "main composition of the thermoplastic resin" in the copolymer is a repeating unit (monomer unit) containing 30% by mass or more, and in one aspect, 30% by mass. It is a repeating unit that is contained in excess, and in another aspect, it is a repeating unit that is included in an amount of 40% by mass or more, and in another aspect, it is a repeating unit that is included in an amount of 50% by mass or more. Moreover, when the thermoplastic resin is a copolymer, two or more kinds of repeating units may be included most.
  • the adherend (X) examples include glass materials, cement materials, ceramic materials, and metal materials.
  • the adherend (X) may be fiber reinforced plastics (FRP), which is a composite material of fibers and the plastic material described above.
  • Plastic materials in this fiber-reinforced resin include, for example, polypropylene resin, polyethylene resin, polyurethane resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polycarbonate resin (PC resin), polyamide resin (nylon 6 and nylon 66, etc.).
  • polyester resin polyethylene terephthalate (PET resin) and polybutylene terephthalate resin (PBT resin), etc.
  • polyacetal resin POM resin
  • polymethyl methacrylate resin epoxy resin
  • epoxy resin epoxy resin
  • fibers in the fiber-reinforced resin include glass fiber, Kevlar fiber, and carbon fiber.
  • the adherend (X) preferably has low conductivity.
  • adherend when two or more adherends are bonded together using a high-frequency dielectric heating adhesive, at least one adherend among the plurality of adherends is An adherend (X) is used.
  • the materials of the plurality of adherends are the same material or different materials.
  • the shape of the adherend is not particularly limited, but when the high-frequency dielectric heating adhesive according to the present embodiment is an adhesive sheet, the adherend preferably has a surface on which the adhesive sheet can be attached. A sheet-like, plate-like or block-like shape is preferred. When a plurality of adherends are to be joined together, the shapes and dimensions of the adherends may be the same or different.
  • the material of the spacer used in the bonding method according to the present embodiment is not particularly limited as long as it is deformable and can fill the space formed by the first surface of the adherend (X) and the spacer.
  • Materials for the spacer include, for example, rubber, clay, and putty.
  • the rubber is not particularly limited, and includes various rubbers.
  • silicone rubber is preferable from the viewpoint that it is difficult to generate heat due to application of a high-frequency electric field, so that heat deterioration is less likely to occur, and welding to an adherend is less likely to occur.
  • the clay any commonly known clay may be used, and examples thereof include silicone clay containing silicone resin.
  • the putty include inert chemical synthetic resins and the like.
  • the thickness of the spacer is preferably 50% or more, more preferably 75% or more, with respect to the maximum height difference of the undulations of the undulation surface provided on the first surface of the adherend (X). % or more, more preferably 125% or more, even more preferably 150% or more, and even more preferably 175% or more.
  • the upper limit of the thickness of the spacer is not particularly limited as long as it can fill the space and firmly bond an adherend having an undulating surface in a short time.
  • the thickness of the spacer represents the distance between the surface of the spacer facing the electrode side and the surface facing the adherend (X).
  • the thickness Z of the spacer 210 is determined by is the distance between
  • the dielectric property (tan ⁇ / ⁇ 'r) of the spacer is preferably 0.003 or less, more preferably 0.002 or less, and even more preferably 0.0010 or less.
  • the spacer used in the bonding method according to this embodiment usually has a dielectric property of 0 or more. (tan ⁇ is the dielectric loss tangent at 23 ° C. and a frequency of 40.68 MHz, ⁇ ′r is the dielectric constant at 23° C. and a frequency of 40.68 MHz. )
  • the dielectric property of the spacer (the closer it is to 0), the more difficult it is for the spacer to generate heat when subjected to dielectric heat treatment. more restrained. Therefore, if the dielectric property of the spacer is 0.003 or less, the spacer is less likely to generate heat when subjected to dielectric heating treatment, and the adherend having an undulating surface and the adhesive can be firmly bonded in a short time. easier to do.
  • the dielectric property (tan ⁇ / ⁇ 'r) is a value obtained by dividing the dielectric loss tangent (tan ⁇ ) measured using an impedance material device or the like by the relative permittivity ( ⁇ 'r) measured using an impedance material device or the like. is.
  • a dielectric loss tangent (tan ⁇ ) and a dielectric constant ( ⁇ ′r) as dielectric properties of the spacer can be measured simply and accurately using an impedance material analyzer.
  • the details of the spacer measurement method are as follows. First, a test piece for spacer measurement is obtained. When the thickness of the spacer is thick, the thickness may be adjusted by cutting, polishing, or the like. The thickness of the measurement sheet is, for example, 10 ⁇ m or more and 2 mm or less.
  • the dielectric constant ( ⁇ 'r) and dielectric loss tangent (tan ⁇ ) were measured under the condition of a frequency of 40.68 MHz at 23 ° C. Each is measured and the value of the dielectric property (tan ⁇ / ⁇ 'r) is calculated.
  • the spacer is preferably an insulator. If the spacer is an insulator, electricity will not flow through the spacer during dielectric heating treatment, and the dielectric heating treatment will be performed in a state close to the uniformity of the high-frequency dielectric heating adhesive. It becomes easy to firmly bond the body (X) and the high-frequency dielectric heating adhesive in a short time.
  • the insulating property of the spacer is determined by measuring the volume resistivity at a measurement voltage of 500 V according to JIS K 6911:1995.
  • a spacer is defined as an insulator when the volume resistivity exceeds 10 8 ⁇ cm one minute after the start of measurement.
  • the space followability of the spacer is preferably 50% or more, more preferably 60% or more, and more preferably 70% or more. It is more preferable to bond to 80% or more, and it is even more preferable to bond to 80% or more.
  • the greater the followability of the spacer to the space the easier it is to embed the spacer in the space.
  • the spatial followability of the spacer is 50% or more, the high-frequency dielectric heating adhesive can absorb high-frequency energy in a more uniform state, so that the adherend (X) and the adhesive can be kept together for a short time. , making it easier to join firmly.
  • the upper limit of the space followability of the spacer may be 100% or less.
  • Space followability FP of the spacer is represented by the following Equation 1.
  • FP (S2/S1) ⁇ 100 (Equation 1)
  • S1 is the state before the spacer follows the adherend (X) when the space (the space formed by the first surface of the adherend (X) and the spacer) is viewed from above. This is the area corresponding to the shape of the opening of the space of the body (X).
  • S2 is a plane view of a portion where the coloring agent is attached to the surface of the spacer that fills the space when the space is filled by deformation of the spacer by attaching the colorant to the surface inside the space. It is the area of time.
  • FIGS. 5A to 7B are conceptual diagrams for explaining a method of measuring spatial followability.
  • An adherend 120C shown in FIGS. 5A to 7B is an adherend as the adherend (X).
  • 5A, 6A, 5B, and 6B show a state in which the first surface having the undulating surface side of the adherend 120C is placed facing the spacer 210A.
  • 5A and 6A show the state before pressurization
  • FIG. 5A represents a plan view seen from the second surface side of the adherend 120C
  • FIG. 6A represents a cross-sectional view along AA in FIG. 5A.
  • 5B and 6B show the state after pressurization
  • FIGS. 5B shows a plan view of the adherend 120C viewed from the second surface side
  • FIG. 6B shows a cross-sectional view along the line BB in FIG. 5B.
  • the dashed lines shown in FIGS. 5A and 5B represent the positions of the recesses provided on the first surface side of the adherend 120C, the coloring agent V applied inside the recesses, and the positions of the spacers 210A.
  • the coloring agent V adheres also to the bottom side of the recess forming the space 31A (that is, the inner portion surrounded by the dashed line).
  • the illustration of the coloring agent V applied to the bottom side of the recess is omitted for convenience to show the positional relationship between the position of the adherend 120C and the position of the spacer 210A.
  • the adherend 120C has a first surface located on the side of the spacer 210A.
  • the first surface of the adherend 120C has an undulating surface having concave portions and convex portions.
  • the concave portion of the adherend 120C has a rectangular opening when viewed from the top of the first surface of the adherend 120C and a rectangular cross section when viewed from the side of the adherend 120C. That is, the first surface of the adherend 120C has a concave shape surrounded by a rectangular plane and a rectangular cross section. As shown in FIG.
  • the space 31A is formed between the recess of the adherend 120C and the spacer 210A in a non-pressurized state. is formed.
  • the space 31A is defined by the spacer 210A and the recess of the adherend 120C.
  • the spatial followability FP is measured as follows. First, the coloring agent V is applied in advance to adhere to the entire interior surface of the recess forming the space 31A.
  • the type of coloring agent V is not particularly limited.
  • the spacer 210A is placed facing the first surface of the adherend 120C. Then, pressure is applied to the spacer 210A toward the adherend 120C. When pressure is applied to the spacer 210A toward the adherend 120C, the spacer 210A to which the pressure is applied is deformed, and part of the spacer 210A is embedded inside the space 31A.
  • the pressure applied to the spacer 210A is not particularly limited, and may be any pressure that makes the conformability to the space of the adherend 50% or more.
  • An example of the pressure is the pressure applied when applying a high-frequency electric field while pressing the adherend (X) and the high-frequency dielectric heating adhesive with electrodes.
  • the coloring agent V attached to the inner surface of the space is attached to the surface of the part of the spacer 210 embedded in the space.
  • FIG. 7A shows a plan view of the adherend 120C viewed from the first surface (that is, the space portion side).
  • the adherend 120C shown in FIG. 7A is in a state before part of the spacer 210A follows the space of the adherend 120C, and before the coloring agent V is applied to the entire interior of the recess.
  • FIG. 7B is a plane of the spacer 210A taken out from the space 31A after the coloring agent V is applied to the entire interior of the recess, and the spacer 210A is made to follow the adherend 120C, as viewed from the surface of the spacer 210A to which the coloring agent V is attached. represents the figure.
  • the area S1A and the area S1B shown in FIG. 7A are each part of the area corresponding to the shape of the opening RO of the space 31A of the adherend 120C.
  • An area S2A and an area S2B shown in FIG. 7B are each part of the area where the colorant V attached to the inner surface of the space 31A is attached to the surface of the spacer 210A. Specifically, it is as follows. First, when the coloring agent V is attached to the inner surface of the space 31A and the interior of the space 31A is filled by deformation of the spacer 210A, the coloring agent V adheres to the surface of the spacer 210A that fills the space 31A. do.
  • the pressure for deforming the spacers 210A is released to separate the adherend 120C and the spacers 210A.
  • the portion where the coloring agent V is attached to the surface of the spacer 210A is viewed from above.
  • a part of the area when viewed in plan is the area S2A and the area S2B.
  • the area S2A and the area S2B respectively correspond to the substantially cross-shaped portions to which the coloring agent V is adhered, as shown in FIG. 7B.
  • the spatial followability FP is expressed as a percentage obtained by dividing the total area (S2) of the areas S2A and S2B by the total area (S1) of the areas S1A and S1B. .
  • the high-frequency dielectric heating adhesive used in the bonding method according to this embodiment contains a thermoplastic resin (A).
  • the high-frequency dielectric heating adhesive contains the thermoplastic resin (A) and may or may not contain a dielectric material. From the viewpoint of facilitating the enhancement of the heat generation property of the high-frequency dielectric heating adhesive, the high-frequency dielectric heating adhesive preferably contains a dielectric material.
  • the dielectric material is not particularly limited, and may be either dielectric resin or dielectric filler.
  • the dielectric material is preferably a dielectric filler (B), for example, from the viewpoint of less deterioration during molding and stable heat generation.
  • thermoplastic resin (A) the thermoplastic resin contained in the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment
  • dielectric filler (B) the dielectric filler
  • thermoplastic resin (A) The type of thermoplastic resin (A) is not particularly limited.
  • the thermoplastic resin (A) is, for example, polyolefin-based resin, styrene-based resin, polyacetal-based resin, polycarbonate-based resin, acrylic-based resin, polyamide-based resin, from the viewpoint of being easy to melt and having predetermined heat resistance. It is preferably at least one selected from the group consisting of polyimide-based resins, polyvinyl acetate-based resins, phenoxy-based resins, and polyester-based resins.
  • the thermoplastic resin (A) is preferably a polyolefin resin or a styrene resin, more preferably a polyolefin resin. If the thermoplastic resin (A) is a polyolefin-based resin or a styrene-based resin, the high-frequency dielectric heating adhesive is likely to melt when a high-frequency electric field is applied, and the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment can be easily melted. It can be easily adhered to the adherend (X).
  • polyolefin resin includes polyolefin resins having polar sites and polyolefin resins having no polar sites. is described as a polyolefin-based resin that does not have
  • thermoplastic resin (A) is a polyolefin resin having a polar site.
  • the thermoplastic resin (A) may be a polyolefin resin that does not have a polar site.
  • Polyolefin resins as the thermoplastic resin (A) include, for example, homopolymer resins such as polyethylene, polypropylene, polybutene, and polymethylpentene, and ethylene, propylene, butene, hexene, octene, 4-methylpentene, and the like. Examples include ⁇ -olefin resins composed of copolymers of monomers selected from the group consisting of The polyolefin-based resin as the thermoplastic resin (A) may be a single resin or a combination of two or more resins.
  • the polar site in the polyolefin resin having a polar site is not particularly limited as long as it can impart polarity to the polyolefin resin. Further, when the high-frequency dielectric heating adhesive contains a polyolefin-based resin having a polar site as the thermoplastic resin (A), the dielectric properties are likely to be improved, and the adhesive strength to the adherend (X) is increased, which is preferable. .
  • the polyolefinic thermoplastic resin having a polar site may be a copolymer of an olefinic monomer and a monomer having a polar site.
  • the polyolefinic thermoplastic resin having a polar site may also be a resin obtained by introducing a polar site into an olefinic polymer obtained by polymerization of an olefinic monomer through modification such as an addition reaction.
  • olefinic monomer that constitutes the polyolefinic resin having a polar site.
  • olefinic monomers include ethylene, propylene, butene, hexene, octene, 4-methyl-1-pentene, and the like. These olefinic monomers may be used singly or in combination of two or more. At least one of ethylene and propylene is preferable as the olefin-based monomer from the viewpoint of excellent mechanical strength and stable adhesive properties.
  • the olefin-derived structural unit in the polyolefin-based resin having a polar site is preferably a structural unit derived from ethylene or propylene.
  • Polar sites include, for example, hydroxyl groups, carboxyl groups, vinyl acetate structures, acid anhydride structures, and the like.
  • Examples of polar sites include acid-modified structures that are introduced into polyolefin resins by acid modification.
  • the acid-modified structure as a polar site is a site introduced by acid-modifying a thermoplastic resin (eg, polyolefin resin).
  • a thermoplastic resin eg, polyolefin resin
  • Compounds used for acid-modifying thermoplastic resins include unsaturated carboxylic acids, unsaturated carboxylic acid anhydrides, and unsaturated carboxylic acid esters.
  • a carboxylic acid derivative component may be mentioned.
  • a polyolefin resin having an acid-modified structure may be referred to as an acid-modified polyolefin resin.
  • unsaturated carboxylic acids examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid.
  • acid anhydrides of unsaturated carboxylic acids include acid anhydrides of unsaturated carboxylic acids such as maleic anhydride, itaconic anhydride, and citraconic anhydride.
  • unsaturated carboxylic acid esters include methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dimethyl maleate, monomethyl maleate, dimethyl fumarate, diethyl fumarate, and dimethyl itaconate. , diethyl itaconate, dimethyl citraconate, diethyl citraconate, and esters of unsaturated carboxylic acids such as dimethyl tetrahydrophthalate anhydride.
  • the dielectric filler (B) which is a preferred dielectric material, will now be described.
  • the dielectric filler (B) is a filler that generates heat when a high frequency electric field is applied.
  • a high-frequency electric field is an electric field whose direction is reversed at high frequencies.
  • the dielectric filler (B) is preferably a filler that generates heat when a high-frequency electric field with a frequency range of 3 MHz or more and 300 MHz or less is applied.
  • the dielectric filler (B) is preferably a filler that generates heat upon application of a high-frequency electric field having a frequency of 13.56 MHz, 27.12 MHz, or 40.68 MHz, within a frequency range of 3 MHz or higher and 300 MHz or lower.
  • Dielectric filler (B) is zinc oxide, silicon carbide (SiC), anatase titanium oxide, barium titanate, barium zirconate titanate, lead titanate, potassium niobate, rutile titanium oxide, hydrated aluminum silicate, Inorganic materials having water of crystallization such as hydrated aluminosilicate of alkali metals or inorganic materials having water of crystallization such as hydrated aluminosilicates of alkaline earth metals are preferably used singly or in combination of two or more.
  • the dielectric filler (B) preferably contains at least one selected from the group consisting of zinc oxide, silicon carbide, barium titanate and titanium oxide. At least one selected from the group consisting of barium and titanium oxide is more preferable.
  • Zinc oxide is more preferred.
  • Zinc oxide has a low density among dielectric fillers, so when the adherend (X) is bonded using a high-frequency dielectric heating adhesive containing zinc oxide as the dielectric filler (B), other dielectric fillers are included.
  • the total weight of the structure is less likely to increase as compared with the case of using an adhesive that adheres to the structure.
  • Zinc oxide is not too hard among ceramics, so it is less likely to damage the production equipment for high-frequency dielectric heating adhesives. Since zinc oxide is an inactive oxide, even if it is blended with a thermoplastic resin, it causes little damage to the thermoplastic resin.
  • the titanium oxide as the dielectric filler (B) is preferably at least one of anatase-type titanium oxide and rutile-type titanium oxide, and from the viewpoint of excellent dielectric properties, anatase-type titanium oxide is more preferable. .
  • the volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is preferably 5% by volume or more, more preferably 8% by volume or more, and even more preferably 10% by volume or more. .
  • the volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is preferably 50% by volume or less, more preferably 40% by volume or less, and even more preferably 35% by volume or less. , 25% by volume or less.
  • the volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is 50% by volume or less, it is possible to prevent the strength of the adhesive from decreasing, and as a result, the bonding strength is increased by using the adhesive. can prevent a decline in Further, when the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is an adhesive sheet, the volume content of the dielectric filler (B) in the adhesive sheet is 50% by volume or less. Flexibility can be easily obtained and toughness can be easily prevented from being lowered, so that the adhesive sheet for high-frequency dielectric heating can be easily processed into a desired shape in a subsequent step.
  • the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment contains the thermoplastic resin (A) and the dielectric filler (B)
  • the volume content of the dielectric filler (B) is preferably 5% by volume or more, more preferably 8% by volume or more, and even more preferably 10% by volume or more.
  • the volume content of the dielectric filler (B) is preferably 50% by volume or less, more preferably 40% by volume or less, relative to the total volume of the thermoplastic resin (A) and the dielectric filler (B). , more preferably 35% by volume or less, and even more preferably 25% by volume or less.
  • the volume average particle size of the dielectric filler (B) is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 3 ⁇ m or more.
  • the volume average particle size of the dielectric filler (B) is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 20 ⁇ m or less. Since the dielectric filler (B) has a volume average particle size of 1 ⁇ m or more, the high-frequency dielectric heating adhesive exhibits high heat generation performance when a high-frequency electric field is applied, and is firmly attached to the adherend (X) in a short time. Can be glued.
  • the high-frequency dielectric heating adhesive exhibits high heat generation performance when a high-frequency electric field is applied, and is firmly attached to the adherend (X) in a short time. Can be glued. Further, when the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is an adhesive sheet, the volume average particle size of the dielectric filler (B) is 30 ⁇ m or less, so that the strength of the high-frequency dielectric heating adhesive sheet You can prevent the decline.
  • the volume average particle size of the dielectric filler (B) is measured by the following method.
  • the particle size distribution of the dielectric filler (B) is measured by a laser diffraction/scattering method, and the volume average particle size is calculated from the results of the particle size distribution measurement according to JIS Z 8819-2:2001.
  • the high-frequency dielectric heating adhesive used in the bonding method according to this embodiment may or may not contain an additive.
  • the additives include, for example, tackifiers, plasticizers, waxes, colorants, antioxidants, ultraviolet absorbers, antibacterial agents, coupling agents, viscosity modifiers, organic fillers, inorganic fillers, and the like.
  • Organic and inorganic fillers as additives are different from dielectric materials (dielectric fillers).
  • Tackifiers and plasticizers can improve the melting and adhesion properties of high frequency dielectric heating adhesives.
  • tackifiers include rosin derivatives, polyterpene resins, aromatic modified terpene resins, hydrides of aromatic modified terpene resins, terpene phenol resins, coumarone-indene resins, aliphatic petroleum resins, aromatic petroleum resins, and aromatic and hydrides of family petroleum resins.
  • Plasticizers include, for example, petroleum-based process oils, natural oils, dialkyl dibasic acids, and low molecular weight liquid polymers. Petroleum-based process oils include, for example, paraffinic process oils, naphthenic process oils, and aromatic process oils.
  • Natural oils include, for example, castor oil, tall oil, and the like.
  • Dialkyl dibasic acids include, for example, dibutyl phthalate, dioctyl phthalate, and dibutyl adipate.
  • Examples of low molecular weight liquid polymers include liquid polybutene and liquid polyisoprene.
  • the content of the additive in the high-frequency dielectric heating adhesive is usually based on the total amount of the high-frequency dielectric heating adhesive. , is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and even more preferably 0.1% by mass or more.
  • the content of the additive in the high-frequency dielectric heating adhesive is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less.
  • the high-frequency dielectric heating adhesive used in the bonding method according to this embodiment preferably does not contain a solvent. According to the solvent-free high-frequency dielectric heating adhesive, the problem of volatile organic compounds (VOC) caused by the adhesive used for adhesion to the adherend (X) is less likely to occur.
  • VOC volatile organic compounds
  • the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment preferably does not contain carbon or a carbon compound containing carbon as a main component (for example, carbon black, etc.) and a conductive substance such as metal.
  • High-frequency dielectric heating adhesives used in the bonding method according to the present embodiment include, for example, carbon steel, ⁇ -iron, ⁇ -iron, ⁇ -iron, copper, iron oxide, brass, aluminum, iron-nickel alloy, iron-nickel-chromium. It is preferably free of alloys, carbon fibers and carbon black.
  • the content of the conductive substance in the adhesive is independently 7 mass based on the total amount of the adhesive. % or less, more preferably 6% by mass or less, even more preferably 5% by mass or less, even more preferably 1% by mass or less, and 0.1% by mass or less. is even more preferred. It is particularly preferable that the content of the conductive substance in the adhesive is 0% by mass. If the content of the conductive substance in the adhesive is 7% by mass or less, it becomes easy to prevent the problem of carbonization of the bonding portion and the adherend (X) due to electrical breakdown during the dielectric heat treatment.
  • the total content of the thermoplastic resin (A) and the dielectric filler (B) in the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably 80% by mass or more, and 90% by mass or more. It is more preferably 93% by mass or more, even more preferably 95% by mass or more, and even more preferably 99% by mass or more.
  • the shape of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is not particularly limited, and is preferably sheet-like. That is, the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably an adhesive sheet (sometimes referred to as a high-frequency dielectric heating adhesive sheet). Since the high-frequency dielectric heating adhesive is an adhesive sheet, it is possible to further shorten the time required for the manufacturing process of the structure.
  • the sheet-like high-frequency dielectric heating adhesive may be in the form of a frame-like sheet having openings penetrating from one surface to the other surface of the surfaces facing each other. The opening may have one, or may have two or more.
  • the sheet-like high-frequency dielectric heating adhesive may be a sheet without the opening.
  • the dielectric properties (tan ⁇ / ⁇ 'r) of the high-frequency dielectric heating adhesive used in the bonding method according to this embodiment will be described.
  • the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment has a dielectric property (tan ⁇ / ⁇ ′r) of 0.005 or more.
  • tan ⁇ is the dielectric loss tangent at 23 ° C. and a frequency of 40.68 MHz
  • ⁇ ′r is the dielectric constant at 23° C. and a frequency of 40.68 MHz.
  • the dielectric property of the high-frequency dielectric heating adhesive is 0.005 or more, the high-frequency dielectric heating adhesive easily generates heat when the dielectric heating treatment is performed, and the high-frequency dielectric heating adhesive and the adherend (X ) can be firmly joined in a short time.
  • the dielectric property of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is more preferably 0.008 or more, and even more preferably 0.010 or more. If the dielectric property of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is 0.008 or more, the high-frequency dielectric heating adhesive is more likely to generate heat when the dielectric heating treatment is performed. It becomes easy to bond the heating adhesive and the adherend (X) firmly in a short time.
  • the upper limit of the dielectric properties of the high-frequency dielectric heating adhesive used in the bonding method according to this embodiment is not particularly limited.
  • the dielectric property of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment may be, for example, 0.1 or less, 0.08 or less, or 0.05 or less. good.
  • the dielectric properties of the high-frequency dielectric heating adhesive may satisfy, for example, 0.005 or more and 0.1 or less. If the dielectric property of the high-frequency dielectric heating adhesive is 0.1 or less, overheating is easily suppressed, and damage to the portion where the adherend (X) and the high-frequency dielectric heating adhesive are in contact is less likely to occur.
  • the method of measuring the dielectric properties (tan ⁇ / ⁇ 'r) of the high-frequency dielectric heating adhesive is the same as the method of measuring the dielectric properties (tan ⁇ / ⁇ 'r) of the spacer described above.
  • the measurement of the dielectric properties (tan ⁇ / ⁇ 'r) of the high-frequency dielectric heating adhesive if it is necessary to obtain a measurement sheet for the high-frequency dielectric heating adhesive from the structure, cut it out from the structure or scrape it.
  • a sheet for measurement with a uniform thickness is obtained by taking out the sheet.
  • a pellet-like high-frequency dielectric heating adhesive that is not formed into a sheet may be formed into a sheet using a heat press or the like to obtain a sheet for measurement.
  • the thickness of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 30 ⁇ m or more, and 50 ⁇ m or more. is particularly preferred.
  • the thickness of the adhesive sheet is 5 ⁇ m or more, the adhesive sheet in contact with the adherend (X) is improved in heat generation when a high frequency is applied, so that the adhesive sheet and the adherend (X) can be firmly bonded in a short time. Easy to adhere.
  • the adhesive sheet when the adhesive sheet is bonded to the adherend (X), the adhesive sheet easily conforms to the shape of the second surface of the adherend, and adhesive strength is easily exhibited.
  • the upper limit of the thickness of the adhesive sheet is not particularly limited. As the thickness of the adhesive sheet increases, the weight of the entire structure obtained by bonding the adhesive sheet and the adherend (X) also increases. For this reason, the adhesive sheet preferably has a thickness within a range in which there is no practical problem in workability, handleability, or the like. Considering the practicality and moldability of the high-frequency dielectric heating adhesive sheet, the thickness of the adhesive sheet used in the bonding method according to the present embodiment is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, and more preferably 600 ⁇ m. More preferably:
  • the adhesive sheet as the high-frequency dielectric heating adhesive is easier to handle and improves workability when bonding to the adherend (X), compared to the case of using a liquid adhesive that requires coating.
  • the sheet thickness and the like of the adhesive sheet used as the high-frequency dielectric heating adhesive can be appropriately controlled. Therefore, the adhesive sheet can be applied in a roll-to-roll system, and the adhesive area with the second surface of the adherend (X) and the second surface of the adherend (X) can be reduced by punching or the like.
  • the adhesive sheet can be processed into an arbitrary area and shape according to the shape of the surface. Therefore, the adhesive sheet as an adhesive for high-frequency dielectric heating has a great advantage also from the viewpoint of the manufacturing process.
  • the shape of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is not particularly limited, and is preferably sheet-like. That is, the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably an adhesive sheet (sometimes referred to as a high-frequency dielectric heating adhesive sheet). Since the high-frequency dielectric heating adhesive is an adhesive sheet, it is possible to further shorten the time required for the manufacturing process of the structure.
  • the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is composed of only one adhesive layer made of the high-frequency dielectric heating adhesive sheet used in the bonding method according to the present embodiment.
  • the high-frequency dielectric heating adhesive is a high-frequency dielectric heating adhesive sheet consisting of only one adhesive layer
  • the adhesive layer itself corresponds to the high-frequency dielectric heating adhesive sheet.
  • the morphology and properties of the adhesive sheet for adhesives correspond to the morphology and properties of the adhesive layer.
  • the high-frequency dielectric heating adhesive sheet preferably consists of only a single adhesive layer.
  • the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably a high-frequency dielectric heating adhesive sheet consisting of only a single adhesive layer. As a result, the thickness of the high-frequency dielectric heating adhesive sheet can be reduced, and the high-frequency dielectric heating adhesive sheet can be easily molded.
  • the adhesive sheet for high-frequency dielectric heating may consist of only one adhesive layer with high-frequency dielectric heating adhesiveness
  • the terms "adhesive sheet for high-frequency dielectric heating” and “adhesive layer” are used in this specification. , in some cases can be interchanged with each other.
  • the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is not limited to the mode of the high-frequency dielectric heating adhesive sheet consisting of only one adhesive layer.
  • an adhesive layer for high-frequency dielectric heating may be provided in advance on at least one surface of the adherend.
  • FIGS. 8A to 8C are schematic diagrams of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment, exemplifying a plurality of modes.
  • a high-frequency dielectric heating adhesive 11A shown in FIG. 8A is an adhesive sheet 12 composed of only a single adhesive layer.
  • the adherend 14 with a high-frequency dielectric heating adhesive shown in FIG. A heating adhesive 11A is provided integrally with the adherend 120A.
  • the adherend 120A has a first surface and a second surface, the first surface having an undulating surface and the second surface having no undulating surface.
  • the high-frequency dielectric heating adhesive 11A is provided in direct contact with the second surface of the adherend 120A.
  • the adherend 14 with the high-frequency dielectric heating adhesive may be prepared by separately preparing the high-frequency dielectric heating adhesive 11A and the adherend 120A and bonding them together to form an integral body.
  • the second surface of the adherend 120A may be integrated with the high-frequency dielectric heating adhesive 11A.
  • the adherend 120A the same material as the material described above for the material of the adherend is used.
  • the adherend 16 with a high-frequency dielectric heating adhesive shown in FIG. 8C includes a high-frequency dielectric heating adhesive 11A as an adhesive layer and an adherend 110A. It is provided integrally with the adherend 110A. Neither the first surface nor the second surface of the adherend 110A has an undulating surface.
  • the high-frequency dielectric heating adhesive 11A is provided in direct contact with the non-undulating surface of the adherend 110A.
  • the adherend 16 with the high-frequency dielectric heating adhesive may be formed by preparing the high-frequency dielectric heating adhesive 11A and the adherend 110A and bonding them together to form an integral body. Alternatively, the flat surface of the adherend 110A may be integrated with the high-frequency dielectric heating adhesive 11A.
  • the adherend 110A the same material as the material described above for the material of the adherend is used.
  • the high-frequency dielectric heating adhesive 11A is placed on the surface of the adherend 120A or the surface of the adherend 110A opposite to the electrode-side surface. Further, when the high-frequency dielectric heating adhesive is composed of only the high-frequency dielectric heating adhesive 11A, which is a single adhesive layer, in the above-described placement step, the high-frequency dielectric heating adhesive 11A and the adherend ( X) (for example, adherend 120A) are placed respectively. On the other hand, when the high-frequency dielectric heating adhesive is provided integrally with the adherend, the adherend 14 with the high-frequency dielectric heating adhesive may be placed in the aforementioned placement step.
  • the adherend (X) (for example, the adherend 120A) and the adherend with the high-frequency dielectric heating adhesive 16 should be arranged. In either case, the first surface of the adherend (X) is arranged facing away from the high-frequency dielectric heating adhesive 11A.
  • the thickness of the adhesive sheet used in the bonding method according to the present embodiment is 5 ⁇ m or more. is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the adhesive sheet in contact with the adherend (X) is improved in heat generation when a high frequency is applied, so that the adhesive sheet and the adherend (X) can be firmly bonded in a short time. Easy to adhere.
  • the adhesive sheet when the adhesive sheet is bonded to the adherend (X), the adhesive sheet easily follows the second surface of the adherend (X), and adhesive strength is easily exhibited.
  • the thickness of the adhesive layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and more preferably 30 ⁇ m or more. is more preferable, and 50 ⁇ m or more is even more preferable.
  • the adhesive layer is provided on the adherend when bonding to the adherend. It is easy to follow the surface of the surface, and it becomes easy to develop adhesive strength.
  • the upper limit of the thickness of the adhesive sheet is not particularly limited. As the thickness of the adhesive sheet increases, the weight of the entire structure obtained by bonding the adhesive sheet and the adherend (X) also increases. For this reason, the adhesive sheet preferably has a thickness within a range in which there is no practical problem in workability, handleability, or the like. Considering the practicality and moldability of the high-frequency dielectric heating adhesive sheet, the thickness of the adhesive sheet used in the bonding method according to the present embodiment is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, and more preferably 600 ⁇ m. More preferably: The upper limit of the thickness of the adhesive sheet is preferably the above value regardless of whether the adhesive sheet has a structure consisting of only one adhesive layer or a multi-layer structure consisting of a plurality of layers including an adhesive layer.
  • the adhesive sheet as the high-frequency dielectric heating adhesive is easier to handle and improves workability when bonding to the adherend (X), compared to the case of using a liquid adhesive that requires coating.
  • the sheet thickness and the like of the adhesive sheet used as the high-frequency dielectric heating adhesive can be appropriately controlled. Therefore, the adhesive sheet can be applied in a roll-to-roll system, and the adhesive area with the second surface of the adherend (X) and the second surface of the adherend (X) can be reduced by punching or the like.
  • the adhesive sheet can be processed into an arbitrary area and shape according to the shape of the surface. Therefore, the adhesive sheet as an adhesive for high-frequency dielectric heating has a great advantage also from the viewpoint of the manufacturing process.
  • the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably used by applying a high-frequency electric field in a so-called short wave to ultra-short wave frequency band (for example, 3 MHz or more and 300 MHz or less).
  • a high-frequency electric field in this frequency band is applied, heat generation is improved when a high-frequency wave is applied, because the depth that can be heated is deep. Therefore, even when the high-frequency dielectric heating adhesive is thick, the adhesive sheet and the adherend (X) are easily and firmly bonded in a short time.
  • the high-frequency dielectric heating adhesive used in the bonding method according to this embodiment can be produced, for example, by mixing the components described above.
  • the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is an adhesive sheet, for example, the components described above are premixed and kneaded using a known kneading device such as an extruder and hot rolls. , extrusion molding, calendar molding, injection molding, and casting molding.
  • High-frequency dielectric heating adhesives have superior water resistance and moisture resistance compared to general adhesives.
  • the high-frequency dielectric heating adhesive used in the bonding method according to this embodiment is locally heated by application of a high-frequency electric field. Therefore, according to the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment, it is easy to prevent the problem that the entire adherend (X) is damaged during bonding with the adherend (X).
  • the pressurizing direction is preferably, for example, along the stacking direction of the adherend (X) and the spacer, and when the adherend (X) and the spacer are stacked in the vertical direction, direction), and when the adherend (X) and the spacer are laminated and arranged in the horizontal direction, it is the direction along the lamination direction (horizontal direction).
  • the pressure treatment may be performed by applying pressure from both sides of the adherend (X) and the spacer placed, or by fixing one of the surfaces and applying pressure from the other side.
  • the vertical direction here refers to, for example, a direction along the direction of gravity
  • the horizontal direction refers to a direction perpendicular to the direction of gravity.
  • the pressurizing means may be, for example, pressurization by hand, pressurization by only the weight of the electrode of a high-frequency dielectric heating device not equipped with a press mechanism, or pressurizing means of a device equipped with a press mechanism other than the high-frequency dielectric heating device. It's okay.
  • thermoplastic resin (A) and a dielectric filler (B) shown below are prepared, and weighed so that the thermoplastic resin (A) is 80% by volume and the dielectric filler (B) is 20% by volume. bottom.
  • thermoplastic resin (A) and the dielectric filler (B) were premixed.
  • a material obtained by pre-mixing the thermoplastic resin (A) and the dielectric filler (B) is supplied to the hopper of a 30 mm diameter twin-screw extruder, the cylinder temperature is set to 180 ° C. or higher and 230 ° C. or lower, and the die temperature is set to 230 ° C.
  • the premixed materials were melt kneaded. After cooling the melt-kneaded material, granular pellets were produced by cutting the material.
  • the prepared granular pellets are put into a hopper of a single-screw extruder equipped with a T-die, and a cylinder temperature of 200 ° C.
  • high-frequency dielectric heating adhesive sheet AS1 having a thickness of 0.4 mm was produced.
  • thermoplastic resin (A) Polypropylene resin (manufactured by Japan Polypropylene Corporation, Novatec PPMH4, polypropylene homopolymer, melting point: 165°C)
  • ZnO zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., product name “LP-ZINC11”)
  • volume average particle size of dielectric filler The particle size distribution of the dielectric filler was measured by a laser diffraction/scattering method. From the results of particle size distribution measurement, the volume average particle size was calculated according to JIS Z 8819-2:2001. The calculated volume average particle size of zinc oxide (ZnO) was 11 ⁇ m.
  • the produced high-frequency dielectric heating adhesive sheet was cut into a size of 30 mm ⁇ 30 mm.
  • a dielectric material test fixture 16453A manufactured by Agilent
  • an RF impedance material analyzer E4991A manufactured by Agilent
  • a frequency of 40.68 MHz at 23 ° C. is measured by the parallel plate method.
  • the dielectric constant ( ⁇ 'r) and dielectric loss tangent (tan ⁇ ) were measured. Based on the measurement results, the values of the dielectric properties (tan ⁇ / ⁇ 'r) were calculated.
  • the dielectric property (tan ⁇ / ⁇ 'r) of the high-frequency dielectric heating adhesive sheet was 0.011.
  • First adherend WK1 As the first adherend WK1, a block-shaped first adherend WK1 made of polypropylene resin shown in FIGS. 9A and 9B was produced.
  • the first adherend WK1 has a first surface having an undulating surface with recesses and protrusions, and a second surface opposite to the first surface does not have an undulating surface.
  • 9A and 9B show schematic diagrams of the first adherend WK1 used in the examples.
  • FIG. 9A shows a plan view of the first adherend WK1 seen from the second surface side
  • FIG. 9B shows a side view of the first adherend WK1 seen from the longitudinal direction side.
  • the width dimension W in the lateral direction of the first adherend WK1 is 20 mm.
  • the length L2 of the protrusions of the first adherend WK1 is 15 mm, and the length L1 of the recesses of the first adherend WK1 is 10 mm. Therefore, the length dimension in the longitudinal direction of the first adherend WK1 is 60 mm.
  • the maximum height difference D between the convex portion and the concave portion of the first adherend WK1 is 5 mm.
  • the spacer was cut into pieces with a length of 30 mm and a width of 30 mm.
  • a dielectric material test fixture 16453A manufactured by Agilent
  • E4991A manufactured by Agilent
  • the ratio was measured by the parallel plate method under the condition of a frequency of 40.68 MHz at 23 ° C.
  • the dielectric constant ( ⁇ 'r) and dielectric loss tangent (tan ⁇ ) were measured respectively. Based on the measurement results, the values of the dielectric properties (tan ⁇ / ⁇ 'r) were calculated.
  • the spacer is adjusted to a thickness of 2 mm or less by cutting or polishing before measurement.
  • the volume resistivity of the spacer was measured according to JIS K 6911:1995.
  • the measurement voltage was set to 500 V, and the case where the volume resistivity exceeded 1 ⁇ 10 8 ⁇ cm one minute after the start of measurement was defined as an insulator.
  • the high-frequency dielectric heating adhesive sheet AS1 is cut into a size of 20 mm in width and 10 mm in length, and is used as a first electrode and a second electrode of a high-frequency dielectric heating device (manufactured by Yamamoto Vinita Co., Ltd., product name "YRP-400T-A").
  • a spacer cut to a width of 20 mm and a length of 60 mm is placed between the two, and the first adherend WK1, the high-frequency dielectric heating adhesive sheet AS1, and the second adherend WK2 are placed on the spacer. They were stacked and arranged in this order.
  • FIG. 10 is a schematic diagram showing a side surface of a test piece for bondability evaluation. As shown in FIG. 10, the high-frequency dielectric heating adhesive sheet AS1 is arranged between the first adherend WK1 and the second adherend WK2.
  • the surface of the adherend WK1 on the opposite side of the surface provided with the recess located closest to the second end E1B side, and the second end E2B side of the second adherend WK2 facing the surface. is placed between the faces of That is, the high-frequency dielectric heating adhesive sheet AS1 arranged between the first adherend WK1 and the second adherend WK2 extends from the second end E1B of the first adherend WK1 to the first It is arranged in the range up to the first protrusion toward the end E1A.
  • the bonding strength was measured according to JIS Z 0237:2000. Specifically, the bonding strength is measured using a tensile tester, and the first end E1A side of the first adherend WK1 is fixed in the test piece for bonding property evaluation shown in FIG. , was measured by 180° peeling by moving the first end E2A side of the second adherend WK2 upward.
  • the time required for high-frequency dielectric heat treatment to obtain a bond strength of 1 N/20 mm or more was measured when a test piece for bondability evaluation was produced.
  • Reference Signs List 11 11A High-frequency dielectric heating adhesive 12 High-frequency dielectric heating adhesive sheet 14 High-frequency dielectric heating adherend with adhesive 16 High-frequency dielectric heating adhesive with adherend 31, 31A Space Part 50 Dielectric heating device 51 First high-frequency electric field applying electrode 52 Second high-frequency electric field applying electrode 53 High-frequency power supply 100 Structure 110, 110A, 120, 120A, 120B, 120C, 120D ... Adherend 121A, 121B, 121C, 122A, 122B, 122C, 122D... Convex part 123A, 123B, 123C, 123D, 124A, 124B, 124C, 124D... Concave part 125... First surface 127... Second surface , 210, 210A... spacer, AS1... adhesive sheet, WK1... adherend, WK2... adherend, V... colorant, E1A, E2A... first end, E1B, E2B... second end.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

A bonding method for bonding an adherend (120) with an adhesive (11) for high-frequency dielectric heating, the bonding method comprising a placement step in which the electrodes of a dielectric heater (50), the adherend (120), and a spacer (210) are placed and a high-frequency electric-field application step in which a high-frequency electric field is applied to the adhesive (11) for high-frequency dielectric heating to bond the adherend (120). The adherend (120) has a first surface, which includes recessed and protrudent portions, and the adhesive (11) for high-frequency dielectric heating comprises a thermoplastic resin. In the placement step, after the adherend (120) and the spacer (210) have been placed, there are spaces (31) formed between the first surface of the adherend (120) and the surface of the spacer (210) which faces the first surface, and the spaces (31) are filled by a deformation of the spacer (210).

Description

接合方法Joining method
 本発明は、接合方法に関する。 The present invention relates to a joining method.
 接着剤を用いて、被着体を接合する方法として、高周波誘電加熱処理等によって、被着体を接合する方法が提案されている。例えば、被着体の少なくとも一方の面に、起伏面を備える被着体を、接着剤を用いて高周波誘電加熱処理により接合を行う場合がある。この場合、起伏面を備える被着体の起伏面側を高周波誘電加熱装置の電極面側に配置し、電極面と反対側の面に接着剤を配置して接合を行う場合がある。 As a method of joining adherends using an adhesive, a method of joining adherends by high-frequency dielectric heating treatment or the like has been proposed. For example, in some cases, an adherend having an undulating surface on at least one surface of the adherend is bonded by high-frequency dielectric heating using an adhesive. In this case, the undulating surface side of the adherend having the undulating surface may be arranged on the electrode surface side of the high-frequency dielectric heating device, and the bonding may be performed by arranging an adhesive on the surface opposite to the electrode surface.
 例えば、特許文献1には、一方の被着体の被接着部分の被接着面に水性接着剤を塗布すること、一方の被着体の被接着面と他方の被着体の被接着面とを重ね合わせること、重ね合わせた被接着面を押圧しつつ高周波誘電加熱を行うことにより、一方の被着体と他方の被着体の2つの被着体を接合する方法が開示されている。 For example, in Patent Document 1, a water-based adhesive is applied to the adherend surface of the adherend portion of one adherend, and the adherend surface of one adherend and the adherend surface of the other adherend are disclosed. and applying high-frequency dielectric heating while pressing the superimposed adherend surfaces to join two adherends, one adherend and the other adherend.
特開2004-222990号公報JP-A-2004-222990
 起伏面を備える被着体の起伏面側を高周波誘電加熱装置の電極面側に配置し、当該電極面側と反対側の面に接着剤を配置して接合を行う場合、高周波誘電加熱装置の電極面と、当該被着体の起伏面との間に、空間部が生じてしまう。そして、当該接着剤に対し、高周波電界を印加すると、この空間部に対応する位置に配置されている接着剤に対しては、高周波のエネルギーが伝わりにくくなり、被着体の起伏面と高周波誘電加熱装置の電極とが接触している部分に対応する位置に配置される接着剤に対しては、選択的に高周波のエネルギーが伝わりやすくなる。このため、接着剤に対する高周波電界の印加が不均一となり、被着体と接着剤とを短時間で強固に接合することが難しくなる。 When bonding is performed by arranging the undulating surface side of the adherend having the undulating surface on the electrode surface side of the high-frequency dielectric heating device and placing an adhesive on the surface opposite to the electrode surface side, the high-frequency dielectric heating device A space is generated between the electrode surface and the undulating surface of the adherend. Then, when a high-frequency electric field is applied to the adhesive, the high-frequency energy is less likely to be transmitted to the adhesive placed at the position corresponding to this space, and the undulating surface of the adherend and the high-frequency dielectric The high-frequency energy is selectively transmitted to the adhesive placed at the position corresponding to the portion in contact with the electrode of the heating device. As a result, the application of the high-frequency electric field to the adhesive becomes non-uniform, making it difficult to firmly bond the adherend and the adhesive in a short period of time.
 特許文献1に開示される接合技術においては、起伏面を備える被着体の起伏面を高周波誘電加熱装置の電極面側に配置したときに生じる空間を埋めるため、予め、被着体が備える起伏面に対応した形状に成形した圧着板を用いて、複数の被着体を接合している。しかしながら、特許文献1に開示される接合技術では、起伏面の形状ごとに成形した圧着板を準備する手間があった。このように、起伏面を備える被着体を高周波誘電加熱装置の電極面側に配置して高周波誘電加熱処理によって接合する技術は、さらなる改善の余地があった。 In the joining technique disclosed in Patent Document 1, in order to fill the space generated when the undulating surface of the adherend having the undulating surface is arranged on the electrode surface side of the high-frequency dielectric heating device, the undulations of the adherend are prepared in advance. A plurality of adherends are joined using a compression plate molded into a shape corresponding to the surface. However, in the joining technique disclosed in Patent Document 1, it is time-consuming to prepare a pressure-bonding plate molded for each shape of the undulating surface. Thus, there is room for further improvement in the technique of arranging an adherend having an undulating surface on the electrode surface side of a high-frequency dielectric heating device and joining them by high-frequency dielectric heating treatment.
 本発明の目的は、起伏面を備える被着体を高周波誘電加熱装置の電極面側に配置して高周波誘電加熱処理によって接合する技術において、予め起伏面の形状に応じて成形した圧着型(圧着板)を準備しなくても、当該被着体を短時間で強固に接合することができる接合方法を提供することである。 An object of the present invention is to provide a technique of placing an adherend having an undulating surface on the electrode surface side of a high-frequency dielectric heating device and bonding it by high-frequency dielectric heating, in which a crimping die (crimping) is formed in advance according to the shape of the undulating surface (crimping To provide a bonding method capable of firmly bonding the adherends in a short time without preparing a plate.
[1]
 高周波誘電加熱用接着剤を用いて被着体を接合する接合方法であって、誘電加熱装置の電極、前記被着体及びスペーサーを配置する配置工程と、前記高周波誘電加熱用接着剤に高周波電界を印加して、前記被着体を接合する高周波電界印加工程と、を有し、前記被着体は、起伏面を有する第1面を備え、前記高周波誘電加熱用接着剤は、熱可塑性樹脂を含み、前記配置工程において、前記被着体及び前記スペーサーを配置したとき、前記被着体の前記第1面と、当該第1面に対向する前記スペーサーの面との間に、空間部が形成され、前記空間部が、前記スペーサーの変形によって埋められる、接合方法。
[1]
A bonding method for bonding adherends using a high-frequency dielectric heating adhesive, comprising an arrangement step of arranging an electrode of a dielectric heating device, the adherend and a spacer, and a high-frequency electric field in the high-frequency dielectric heating adhesive. and a high-frequency electric field application step of bonding the adherend by applying a high-frequency electric field, wherein the adherend has a first surface having an undulating surface, and the high-frequency dielectric heating adhesive is a thermoplastic resin and in the arranging step, when the adherend and the spacer are arranged, a space is formed between the first surface of the adherend and the surface of the spacer facing the first surface The bonding method, wherein the space is filled by deformation of the spacer.
[2]
 前記空間部は、前記被着体及び前記スペーサーに対して前記電極で加圧したときに、前記スペーサーの変形によって、埋められる、[1]に記載の接合方法。
[2]
The bonding method according to [1], wherein the space is filled by deformation of the spacer when the electrode presses the adherend and the spacer.
[3]
 前記高周波電界印加工程において、前記被着体と前記高周波誘電加熱用接着剤とを前記電極で加圧しながら高周波電界を印加して、前記被着体を接合する、[1]又は[2]に記載の接合方法。
[3]
wherein in the high-frequency electric field application step, the adherend is joined by applying a high-frequency electric field while pressing the adherend and the high-frequency dielectric heating adhesive with the electrode to join the adherend; Joining method as described.
[4]
 前記配置工程において、前記高周波誘電加熱用接着剤と、前記被着体とをそれぞれ配置する、[1]から[3]のいずれか一項に記載の接合方法。
[4]
The bonding method according to any one of [1] to [3], wherein the high-frequency dielectric heating adhesive and the adherend are respectively arranged in the arrangement step.
[5]
 前記配置工程において、前記被着体の前記第1面が、前記高周波誘電加熱用接着剤と反対側に向けて配置される、[1]から[4]のいずれか一項に記載の接合方法。
[5]
The bonding method according to any one of [1] to [4], wherein in the placing step, the first surface of the adherend is placed facing the side opposite to the high-frequency dielectric heating adhesive. .
[6]
 前記配置工程において、2つ以上の被着体を配置し、少なくとも1つの被着体は、前記第1面を備える前記被着体である、[1]から[5]のいずれか一項に記載の接合方法。
[6]
The method according to any one of [1] to [5], wherein in the arranging step, two or more adherends are arranged, and at least one adherend is the adherend having the first surface. Joining method as described.
[7]
 前記被着体の前記起伏面において前記起伏面の起伏の最大高低差が1mm以上である、[1]から[6]のいずれか一項に記載の接合方法。
[7]
The bonding method according to any one of [1] to [6], wherein the undulating surface of the adherend has a maximum height difference of 1 mm or more.
[8]
 前記被着体の前記第1面の起伏が、凹部と凸部とを備え、前記被着体の前記第1面を平面視したとき、前記第1面に占める前記凹部の面積割合が、20%以上、100%未満である、[1]から[7]のいずれか一項に記載の接合方法。
[8]
The undulations of the first surface of the adherend include concave portions and convex portions, and when the first surface of the adherend is viewed in plan, the area ratio of the concave portions to the first surface is 20. % or more and less than 100%, the joining method according to any one of [1] to [7].
[9]
 前記スペーサーの厚さが、前記被着体の前記第1面に備える前記起伏面の前記起伏の最大高低差に対して50%以上である、[1]から[8]のいずれか一項に記載の接合方法。
[9]
The thickness of the spacer according to any one of [1] to [8], wherein the thickness of the spacer is 50% or more with respect to the maximum height difference of the undulations of the undulation surface provided on the first surface of the adherend. Joining method as described.
[10]
 前記スペーサーの誘電特性(tanδ/ε’r)が、0.003以下である、[1]から[9]のいずれか一項に記載の接合方法。
 (tanδは、23℃かつ周波数40.68MHzにおける誘電正接であり、ε’rは、23℃かつ周波数40.68MHzにおける比誘電率である。)
[10]
The bonding method according to any one of [1] to [9], wherein the spacer has a dielectric property (tan δ/ε'r) of 0.003 or less.
(tan δ is the dielectric loss tangent at 23° C. and a frequency of 40.68 MHz, and ε′r is the relative permittivity at 23° C. and a frequency of 40.68 MHz.)
[11]
 前記スペーサーが、絶縁体である、[1]から[10]のいずれか一項に記載の接合方法。
[11]
The joining method according to any one of [1] to [10], wherein the spacer is an insulator.
[12]
 下記数式1で表される前記スペーサーの空間部追従性FPが、50%以上になるように接合を行う、[1]から[11]のいずれか一項に記載の接合方法。
 FP=(S2/S1)×100・・・(数式1)
 S1:前記被着体の前記空間部を平面視したとき、前記スペーサーを前記被着体に追従させる前の状態で、前記被着体の前記空間部の開口形状に対応する面積
 S2:前記空間部の内部の表面に着色剤を付着させ、前記スペーサーの変形によって前記空間部の内部を埋めたとき、前記空間部を埋めた部分の前記スペーサーの表面に前記着色剤が付着した部位を平面視したときの面積
[12]
The bonding method according to any one of [1] to [11], wherein bonding is performed so that the space followability FP of the spacer represented by the following formula 1 is 50% or more.
FP=(S2/S1)×100 (Equation 1)
S1: an area corresponding to the shape of the opening of the space of the adherend before the spacer follows the adherend when the space of the adherend is viewed from above S2: the space When a coloring agent is attached to the inner surface of the portion and the interior of the space is filled by deformation of the spacer, a portion where the coloring agent is attached to the surface of the spacer in the portion that fills the space is viewed from above. area when
[13]
 前記高周波誘電加熱用接着剤が、高周波電界の印加により発熱する誘電材料をさらに含む、[1]から[12]のいずれか一項に記載の接合方法。
[13]
The bonding method according to any one of [1] to [12], wherein the high-frequency dielectric heating adhesive further contains a dielectric material that generates heat when a high-frequency electric field is applied.
[14]
 前記誘電材料が、誘電フィラー(B)であり、前記誘電フィラー(B)は、酸化亜鉛、炭化ケイ素、酸化チタン及びチタン酸バリウムからなる群から選択される少なくとも1種である、[13]に記載の接合方法。
[14]
[13], wherein the dielectric material is a dielectric filler (B), and the dielectric filler (B) is at least one selected from the group consisting of zinc oxide, silicon carbide, titanium oxide and barium titanate; Joining method as described.
[15]
 前記高周波誘電加熱用接着剤の誘電特性(tanδ/ε’r)が、0.005以上である、[1]から[14]のいずれか一項に記載の接合方法。
(tanδは、23℃かつ周波数40.68MHzにおける誘電正接であり、ε’rは、23℃かつ周波数40.68MHzにおける比誘電率である。)
[15]
The bonding method according to any one of [1] to [14], wherein the dielectric property (tan δ/ε'r) of the high-frequency dielectric heating adhesive is 0.005 or more.
(tan δ is the dielectric loss tangent at 23° C. and a frequency of 40.68 MHz, and ε′r is the relative permittivity at 23° C. and a frequency of 40.68 MHz.)
 本発明の一態様によれば、起伏面を備える被着体を高周波誘電加熱装置の電極面側に配置して高周波誘電加熱処理によって接合する技術において、予め起伏面の形状に応じて成形した圧着型を準備しなくても、当該被着体を短時間で強固に接合することができる接合方法を提供できる。 According to one aspect of the present invention, in a technique of arranging an adherend having an undulating surface on the electrode surface side of a high-frequency dielectric heating device and bonding by high-frequency dielectric heating treatment, the crimping is formed in advance according to the shape of the undulating surface. It is possible to provide a joining method capable of firmly joining the adherends in a short time without preparing a mold.
本実施形態に係る接合方法の一例を説明する概略図である。It is the schematic explaining an example of the joining method which concerns on this embodiment. 本実施形態に係る接合方法の一例を説明する概略図である。It is the schematic explaining an example of the joining method which concerns on this embodiment. 本実施形態に係る接合方法の一例を説明する概略図である。It is the schematic explaining an example of the joining method which concerns on this embodiment. 本実施形態に係る接合方法に用いる被着体の一例を表す断面図である。It is a sectional view showing an example of an adherend used for a joining method concerning this embodiment. 本実施形態に係る接合方法に用いる被着体の一例を表す断面図である。It is a sectional view showing an example of an adherend used for a joining method concerning this embodiment. 空間部追従性の測定方法を説明する概念図である。FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability; 空間部追従性の測定方法を説明する概念図である。FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability; 空間部追従性の測定方法を説明する概念図である。FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability; 空間部追従性の測定方法を説明する概念図である。FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability; 空間部追従性の測定方法を説明する概念図である。FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability; 空間部追従性の測定方法を説明する概念図である。FIG. 4 is a conceptual diagram illustrating a method for measuring spatial followability; 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の概略図である。1 is a schematic diagram of a high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment; FIG. 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の概略図である。1 is a schematic diagram of a high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment; FIG. 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の概略図である。1 is a schematic diagram of a high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment; FIG. 実施例で用いた第1の被着体WK1の概略図である。1 is a schematic diagram of a first adherend WK1 used in Examples. FIG. 実施例で用いた第1の被着体WK1の概略図である。1 is a schematic diagram of a first adherend WK1 used in Examples. FIG. 接合性評価用の試験片の側面を表す概略図である。It is the schematic showing the side surface of the test piece for bondability evaluation.
〔接合方法〕
 本実施形態に係る接合方法は、高周波誘電加熱用接着剤を用いて被着体を接合する接合方法であって、誘電加熱装置の電極、被着体及びスペーサーを配置する配置工程と、高周波誘電加熱用接着剤に高周波電界を印加して、被着体を接合する高周波電界印加工程と、を有する。被着体は、起伏面を有する第1面を備え、高周波誘電加熱用接着剤は、熱可塑性樹脂を含む。配置工程において、被着体及びスペーサーを配置したとき、被着体の第1面と、当該第1面に対向するスペーサーの面との間に、空間部が形成され、空間部が、スペーサーの変形によって埋められる。なお、本明細書において、誘電加熱装置を高周波誘電加熱装置という場合がある。
[Joining method]
The bonding method according to the present embodiment is a bonding method for bonding adherends using a high-frequency dielectric heating adhesive, and includes an arrangement step of arranging an electrode of a dielectric heating device, an adherend, and a spacer, and a high-frequency dielectric a high-frequency electric field application step of applying a high-frequency electric field to the heating adhesive to join the adherends. The adherend has a first surface having an undulating surface, and the high-frequency dielectric heating adhesive includes a thermoplastic resin. In the arranging step, when the adherend and the spacer are arranged, a space is formed between the first surface of the adherend and the surface of the spacer facing the first surface, and the space is formed by the spacer. Filled by deformation. In this specification, the dielectric heating device may be referred to as a high-frequency dielectric heating device.
 本実施形態に係る接合方法に用いられる被着体は、起伏面を有する第1面と、第1面の反対側の面の第2面とを備えている。第2面は、起伏面を有していなくてもよい。被着体の起伏面は、隆起した部位と陥没した部位とを備えており、陥没した部位は、1か所存在していてもよく、複数個所存在していてもよい。隆起した部位も同様に、1か所存在していてもよく、複数個所存在していてもよい。陥没した部位が複数個所存在する場合、陥没した部位の深さは、ほぼ一様でもよく、一様でなくてもよい。隆起した部位が複数個所存在する場合、隆起した部位の高さは、ほぼ一様でもよく、一様でなくてもよい。隆起した部位、及び陥没した部位が、それぞれ複数個所存在する場合、隆起した部位、及び陥没した部位は、それぞれ、点在していてもよく、密集していてもよい。また、起伏面を断面視したとき、陥没した部位は、円弧状に凹になる形状が1カ所存在してもよく、複数個所存在していてもよい。隆起した部位は、円弧状に凸になる形状が1カ所存在してもよく、複数個所存在していてもよい。以下、起伏面を有する第1面を備える被着体を、便宜上、被着体(X)と称する場合がある。 The adherend used in the bonding method according to this embodiment has a first surface having an undulating surface and a second surface opposite to the first surface. The second surface need not have an undulating surface. The undulating surface of the adherend has a raised portion and a depressed portion, and the depressed portion may be present at one location or at a plurality of locations. Similarly, the raised portion may be present at one location or may be present at a plurality of locations. When there are a plurality of depressed portions, the depth of the depressed portions may be substantially uniform or may be uneven. When there are a plurality of protruded parts, the height of the protruded parts may or may not be uniform. When there are a plurality of raised portions and depressed portions, the raised portions and depressed portions may be scattered or densely packed. Further, when the undulating surface is viewed in cross section, the recessed portion may have a single arcuate concave shape, or may exist at a plurality of locations. The protruded portion may have a single arcuate convex shape, or may be present at a plurality of locations. Hereinafter, the adherend having the first surface having the undulating surface may be referred to as an adherend (X) for convenience.
 本実施形態に係る接合方法の一態様において、配置工程では、まず、被着体(X)の第1面側を、誘電加熱装置の電極側に向け、電極と被着体(X)との間にスペーサーを配置する。スペーサーの配置によって、被着体(X)の第1面と、当該第1面に対向するスペーサーの面との間に、空間部が形成される。空間部の形状は、被着体(X)の起伏面とスペーサーとの間で形成される空間の形状に対応した形状である。そして、スペーサーを変形させることによって、空間部の形状に応じて、空間部の少なくとも一部が埋められる。このとき、高周波誘電加熱用接着剤は、被着体(X)の第2面側に配置される。次いで、高周波電界印加工程において、スペーサーの変形によって空間部が埋められた状態で、高周波誘電加熱用接着剤に対して、高周波電界を印加して、高周波誘電加熱用接着剤と被着体(X)とを接合させる。 In one aspect of the bonding method according to the present embodiment, in the placement step, first, the first surface side of the adherend (X) is directed toward the electrode side of the dielectric heating device, and the electrode and the adherend (X) are Place a spacer in between. By arranging the spacer, a space is formed between the first surface of the adherend (X) and the surface of the spacer facing the first surface. The shape of the space is a shape corresponding to the shape of the space formed between the undulating surface of the adherend (X) and the spacer. By deforming the spacer, at least part of the space is filled according to the shape of the space. At this time, the high-frequency dielectric heating adhesive is placed on the second surface side of the adherend (X). Next, in the high-frequency electric field application step, a high-frequency electric field is applied to the high-frequency dielectric heating adhesive in a state where the space is filled by deformation of the spacer, and the high-frequency dielectric heating adhesive and the adherend (X ).
 本実施形態に係る接合方法では、スペーサーの変形によって空間部が埋められるため、予め起伏面の形状に応じて成形した圧着型を準備する手間が省ける。そして、本実施形態に係る接合方法では、スペーサーの変形によって空間部が埋められた状態で、誘電加熱処理するため、高周波誘電加熱処理のエネルギーが高周波誘電加熱用接着剤に対して均一に近い状態で伝わりやすくなる。これによって、被着体(X)と高周波誘電加熱用接着剤とを短時間で強固に接合することができる。 In the joining method according to the present embodiment, the deformation of the spacer fills the space, thus saving the trouble of preparing a crimping die that has been molded according to the shape of the undulating surface in advance. In the bonding method according to the present embodiment, since the dielectric heating is performed in a state where the space is filled by the deformation of the spacer, the energy of the high-frequency dielectric heating is almost uniform with respect to the high-frequency dielectric heating adhesive. It becomes easier to convey. As a result, the adherend (X) and the high-frequency dielectric heating adhesive can be firmly bonded in a short time.
 本実施形態に係る接合方法においては、起伏面を有する第1面を備える少なくとも1つの被着体を接合できれば、被着体の数は特に限定されず、スペーサーの数も限定されない。この場合でも、本実施形態に係る接合方法では、被着体(X)と高周波誘電加熱用接着剤とを短時間で強固に接合することができるため、高周波誘電加熱用接着剤を介して、被着体同士を短時間で強固に接合できる。 In the joining method according to the present embodiment, the number of adherends is not particularly limited, and the number of spacers is also not limited, as long as at least one adherend having a first surface having an undulating surface can be joined. Even in this case, in the bonding method according to the present embodiment, the adherend (X) and the high-frequency dielectric heating adhesive can be firmly bonded in a short time. The adherends can be strongly bonded together in a short period of time.
 本実施形態の一態様に係る接合方法は、誘電加熱装置の電極、被着体及びスペーサーを配置する配置工程(工程P1)及び高周波誘電加熱用接着剤に高周波電界を印加して、被着体を接合する高周波電界印加工程(工程P2)を含む。 A bonding method according to one aspect of the present embodiment includes an arrangement step (step P1) of arranging an electrode of a dielectric heating device, an adherend, and a spacer, and applying a high-frequency electric field to an adhesive for high-frequency dielectric heating, includes a high-frequency electric field application step (step P2) for bonding.
 以下、本実施形態に係る接合方法の各工程について説明する。 Each step of the joining method according to this embodiment will be described below.
・工程P1
 工程P1は、誘電加熱装置の電極と、被着体(X)と、スペーサーとを配置する工程である。工程P1では、被着体(X)の第1面とスペーサーとを対向させて配置し、被着体(X)の第1面と、当該第1面に対向するスペーサーの面との間に、空間部が形成される。空間部は、スペーサーの変形によって埋められる。
・Process P1
Step P1 is a step of arranging the electrode of the dielectric heating device, the adherend (X), and the spacer. In step P1, the first surface of the adherend (X) and the spacer are arranged to face each other, and between the first surface of the adherend (X) and the surface of the spacer facing the first surface , a space is formed. The space is filled by deformation of the spacer.
 工程P1では、電極と、被着体(X)と、スペーサーとを配置する順序は特に限定されない。例えば、電極を配置してから、被着体(X)及びスペーサーを配置してもよく、被着体(X)及びスペーサーを配置してから、電極を配置してもよい。また、被着体(X)及びスペーサーを配置する順序は特に限定されず、被着体(X)及びスペーサーのいずれか一方を先に配置してもよく、それぞれを同時に配置してもよい。 In step P1, the order of arranging the electrodes, adherends (X), and spacers is not particularly limited. For example, the adherend (X) and spacers may be placed after placing the electrodes, or the electrodes may be placed after placing the adherend (X) and spacers. The order in which the adherend (X) and the spacer are placed is not particularly limited, and either the adherend (X) or the spacer may be placed first, or both may be placed at the same time.
 工程P1では、被着体(X)の第1面と、当該第1面に対向するスペーサーの面との間に形成された空間部が、スペーサーの変形によって埋められる。空間部が、スペーサーの変形によって埋められる順序は特に限定されず、被着体(X)及びスペーサーを配置した後に空間部を埋めてもよい。例えば、誘電加熱装置の電極にスペーサー及び被着体(X)を配置した後、スペーサーによって被着体(X)の空間部が埋められた状態にしてもよい。具体的には、空間部は、被着体(X)及びスペーサーに対して、誘電加熱装置の電極で加圧したときに、スペーサーの変形によって埋められてもよい。
 また、工程P1では、スペーサーの変形によって空間部を埋めた後に、被着体(X)及びスペーサーを配置してもよい。例えば、誘電加熱装置の電極にスペーサー及び被着体(X)を配置する前に、予め、スペーサーによって被着体(X)の空間部が埋められた状態にしてから、スペーサー及び被着体(X)を誘電加熱装置の電極に配置してもよい。具体的には、スペーサーとして、粘土、パテ等を変形させることによって空間部を埋めた後、被着体(X)及びスペーサーを誘電加熱装置の電極に配置してもよい。
 なお、スペーサーを配置するときに被着体(X)及びスペーサーの間に空間部が形成され、スペーサーの変形によって空間部を埋められるのであれば、スペーサーは、被着体(X)の起伏面の全面に対して、配置されていなくてもよい。例えば、被着体(X)の起伏面と電極との間に配置されるスペーサーは、被着体(X)の起伏面における陥没した部分と、電極との間に配置され、被着体(X)の起伏面における隆起した部分と、電極との間に、配置されていなくてもよい。
In step P1, the space formed between the first surface of the adherend (X) and the surface of the spacer facing the first surface is filled by deformation of the spacer. The order in which the space is filled by deformation of the spacer is not particularly limited, and the space may be filled after the adherend (X) and the spacer are placed. For example, after arranging the spacer and the adherend (X) on the electrode of the dielectric heating device, the space of the adherend (X) may be filled with the spacer. Specifically, the space may be filled by deformation of the spacer when pressure is applied to the adherend (X) and the spacer by electrodes of a dielectric heating device.
Further, in step P1, the adherend (X) and the spacer may be placed after filling the space by deformation of the spacer. For example, before arranging the spacer and the adherend (X) on the electrode of the dielectric heating device, the space of the adherend (X) is previously filled with the spacer, and then the spacer and the adherend ( X) may be placed on the electrodes of the dielectric heating device. Specifically, after filling the space by deforming clay, putty, or the like as a spacer, the adherend (X) and the spacer may be placed on the electrode of the dielectric heating device.
In addition, if a space is formed between the adherend (X) and the spacer when the spacer is arranged, and the space can be filled by deformation of the spacer, the spacer is the undulating surface of the adherend (X). may not be arranged on the entire surface of the For example, a spacer placed between the undulating surface of the adherend (X) and the electrode is placed between the recessed portion of the undulating surface of the adherend (X) and the electrode, and the adherend ( It may not be located between the raised portion of the undulating surface of X) and the electrode.
 工程P1では、被着体の数は特に限定されず、2つ以上の被着体を配置してもよい。2つ以上の被着体を配置する場合、少なくとも1つの被着体は、被着体(X)である。例えば、2つの被着体(X)を、高周波誘電加熱用接着剤によって接合する場合、両者の被着体(X)における第2面の間に高周波誘電加熱用接着剤を配置し、電極と両者の被着体(X)における第1面との間にスペーサーを配置して接合してもよい。また、例えば、被着体(X)と、第1面及び第2面ともに起伏面を有さない被着体とを、高周波誘電加熱用接着剤によって接合する場合、2つの被着体の起伏面を有さない面の間に高周波誘電加熱用接着剤を配置し、電極と、被着体(X)における第1面との間にスペーサーを配置して接合してもよい。さらに、少なくとも1つの被着体(X)を含み、3つ以上の被着体を接合する場合、各被着体の起伏面を有さない面の間に高周波誘電加熱用接着剤を配置し、各被着体と高周波誘電加熱用接着剤とを交互に配置して接合してもよい。 In step P1, the number of adherends is not particularly limited, and two or more adherends may be arranged. When arranging two or more adherends, at least one adherend is the adherend (X). For example, when joining two adherends (X) with a high-frequency dielectric heating adhesive, the high-frequency dielectric heating adhesive is placed between the second surfaces of both adherends (X), and the electrode and A spacer may be placed between the first surfaces of both adherends (X) for bonding. Further, for example, when the adherend (X) and an adherend having neither the first surface nor the second surface having undulating surfaces are joined by a high-frequency dielectric heating adhesive, the undulations of the two adherends A high-frequency dielectric heating adhesive may be placed between the surfaces having no surfaces, and a spacer may be placed between the electrode and the first surface of the adherend (X) for bonding. Furthermore, when joining three or more adherends including at least one adherend (X), the high-frequency dielectric heating adhesive is placed between the non-undulating surfaces of each adherend. Alternatively, the adherends and the high-frequency dielectric heating adhesive may be alternately arranged and bonded.
 工程P1では、高周波誘電加熱用接着剤と、被着体(X)とを、それぞれ配置してもよい。2つ以上の被着体を配置する場合、高周波誘電加熱用接着剤は、被着体(X)の起伏面を有さない第2面側と一体化された高周波誘電加熱用接着剤として配置してもよい。高周波誘電加熱用接着剤は、第1面及び第2面の両面に起伏面を有さない被着体と一体化された高周波誘電加熱用接着剤として配置してもよい。いずれの場合であっても、被着体(X)の第1面は、高周波誘電加熱用接着剤と反対側に向けて配置される。つまり、被着体(X)の第1面の反対側の面に高周波誘電加熱用接着剤が配置される。 In step P1, the high-frequency dielectric heating adhesive and the adherend (X) may be placed respectively. When arranging two or more adherends, the high-frequency dielectric heating adhesive is arranged as a high-frequency dielectric heating adhesive integrated with the second surface side of the adherend (X) having no undulating surface. You may The high-frequency dielectric heating adhesive may be arranged as a high-frequency dielectric heating adhesive integrated with an adherend that does not have undulating surfaces on both the first and second surfaces. In either case, the first surface of the adherend (X) is placed facing away from the high-frequency dielectric heating adhesive. That is, the high-frequency dielectric heating adhesive is placed on the surface opposite to the first surface of the adherend (X).
 被着体(X)を含む2つ以上の被着体を接合する場合、工程P1は、被着体同士を接合できるように、高周波誘電加熱用接着剤を被着体の起伏面を有さない面の間で挟持することが好ましい。高周波誘電加熱用接着剤を、被着体間の一部において挟持するか、被着体間の複数箇所において挟持するか、又は被着体間の全面において挟持すればよい。被着体同士の接着強度を向上させる観点から、被着体同士の接合面全体に亘って高周波誘電加熱用接着剤を挟持することが好ましい。
 また、被着体間の一部において高周波誘電加熱用接着剤を挟持する一態様としては、被着体同士の接合面の外周に沿って高周波誘電加熱用接着剤を枠状に配置して、被着体間で挟持する態様が挙げられる。このように高周波誘電加熱用接着剤を枠状に配置することで、被着体同士の接合強度を得るとともに、接合面全体に亘って高周波誘電加熱用接着剤を配置した場合に比べて構造体を軽量化できる。
 また、被着体間の一部に高周波誘電加熱用接着剤を挟持する一態様によれば、用いる高周波誘電加熱用接着剤の量を減らしたり、サイズを小さくできるため、接合面全体に亘って高周波誘電加熱用接着剤を配置した場合に比べて高周波誘電加熱処理時間を短縮できる。
When two or more adherends including the adherend (X) are to be joined, the step P1 is to apply the high-frequency dielectric heating adhesive to the adherend having an undulating surface so that the adherends can be joined together. It is preferable to sandwich between non-contact surfaces. The high-frequency dielectric heating adhesive may be sandwiched between a part of the adherends, at a plurality of locations between the adherends, or over the entire surface between the adherends. From the viewpoint of improving the adhesive strength between the adherends, it is preferable to sandwich the high-frequency dielectric heating adhesive over the entire joint surface between the adherends.
Further, as one aspect of sandwiching the high-frequency dielectric heating adhesive in part between the adherends, the high-frequency dielectric heating adhesive is arranged in a frame shape along the outer periphery of the bonding surface between the adherends, A mode in which it is sandwiched between adherends is exemplified. By arranging the high-frequency dielectric heating adhesive in a frame shape in this way, the bonding strength between the adherends can be obtained, and the structure can be compared with the case where the high-frequency dielectric heating adhesive is arranged over the entire bonding surface. can be made lighter.
In addition, according to one mode in which the high-frequency dielectric heating adhesive is sandwiched between parts of the adherends, the amount of the high-frequency dielectric heating adhesive to be used can be reduced and the size can be reduced. The high-frequency dielectric heating treatment time can be shortened compared to the case where the high-frequency dielectric heating adhesive is used.
・工程P2
 工程P2は、工程P1において、各部材を配置した後、高周波誘電加熱用接着剤に高周波電界を印加して、被着体(X)を接合する工程である。工程P2において、被着体(X)を含む2つ以上の被着体を接合させる場合、工程P1において、被着体間に配置した高周波誘電加熱用接着剤に高周波電界を印加して、2つ以上の被着体を接合する工程である。印加する高周波電界の周波数は、一実施形態において、3MHz以上、300MHz以下である。例えば、誘電加熱装置を用いることにより、高周波電界を高周波誘電加熱用接着剤に印加することができる。前記工程P2においては、被着体(X)と高周波誘電加熱用接着剤とを電極で加圧しながら高周波電界を印加して、被着体(X)を接合してもよい。
・Process P2
Step P2 is a step of applying a high-frequency electric field to the high-frequency dielectric heating adhesive to join the adherend (X) after arranging each member in the step P1. When bonding two or more adherends including the adherend (X) in step P2, in step P1, a high-frequency electric field is applied to the high-frequency dielectric heating adhesive placed between the adherends. It is a step of joining two or more adherends. In one embodiment, the frequency of the applied high-frequency electric field is 3 MHz or more and 300 MHz or less. For example, by using a dielectric heating device, a high frequency electric field can be applied to the high frequency dielectric heating adhesive. In step P2, the adherend (X) may be joined by applying a high-frequency electric field while pressing the adherend (X) and the high-frequency dielectric heating adhesive with an electrode.
(高周波誘電加熱条件)
 高周波誘電加熱条件は、適宜変更できるが、以下の条件であることが好ましい。
(High-frequency dielectric heating conditions)
Although the high-frequency dielectric heating conditions can be changed as appropriate, the following conditions are preferred.
 高周波電界の出力は、10W以上であることが好ましく、30W以上であることがより好ましく、50W以上であることがさらに好ましく、80W以上であることがよりさらに好ましい。
 高周波電界の出力は、50,000W以下であることが好ましく、20,000W以下であることがより好ましく、15,000W以下であることがさらに好ましく、10,000W以下であることがよりさらに好ましく、1,000W以下であることがさらになお好ましい。
 高周波電界の出力が10W以上であれば、誘電加熱処理時に温度が上昇し難いという不具合を防止できるので、良好な接合強度を得やすい。
 高周波電界の出力が50,000W以下であれば、誘電加熱処理による温度制御が困難となる不具合を防ぎ易い。
The output of the high-frequency electric field is preferably 10 W or higher, more preferably 30 W or higher, even more preferably 50 W or higher, and even more preferably 80 W or higher.
The output of the high-frequency electric field is preferably 50,000 W or less, more preferably 20,000 W or less, even more preferably 15,000 W or less, even more preferably 10,000 W or less, 1,000 W or less is even more preferable.
If the output of the high-frequency electric field is 10 W or more, it is possible to prevent the problem that the temperature is difficult to rise during the dielectric heating treatment, so it is easy to obtain good bonding strength.
If the output of the high-frequency electric field is 50,000 W or less, it is easy to prevent the problem of difficulty in temperature control due to dielectric heating treatment.
 高周波電界の印加時間は、1秒以上であることが好ましい。
 高周波電界の印加時間は、300秒以下であることが好ましく、240秒以下であることがより好ましく、180秒以下であることがさらに好ましく、120秒以下であることがよりさらに好ましく、90秒以下であることがさらになお好ましく、50秒以下であることが特に好ましい。
 高周波電界の印加時間が1秒以上であれば、誘電加熱処理時に温度が上昇し難いという不具合を防止できるので、良好な接着力を得やすい。
 高周波電界の印加時間が300秒以下であれば、構造体の製造効率が低下したり、製造コストが高くなったり、さらには、被着体(X)が熱劣化するといった不具合を防ぎ易い。
The application time of the high-frequency electric field is preferably 1 second or longer.
The application time of the high-frequency electric field is preferably 300 seconds or less, more preferably 240 seconds or less, even more preferably 180 seconds or less, even more preferably 120 seconds or less, and 90 seconds or less. is even more preferable, and 50 seconds or less is particularly preferable.
If the application time of the high-frequency electric field is 1 second or longer, it is possible to prevent the problem that the temperature is difficult to rise during the dielectric heating treatment, so that it is easy to obtain good adhesive strength.
If the application time of the high-frequency electric field is 300 seconds or less, problems such as a decrease in manufacturing efficiency of the structure, an increase in manufacturing cost, and thermal deterioration of the adherend (X) can be easily prevented.
 印加する高周波電界の周波数は、1kHz以上であることが好ましく、1MHz以上であることがより好ましく、3MHz以上であることがさらに好ましく、5MHz以上であることがよりさらに好ましく、10MHz以上であることがさらになお好ましい。
 印加する高周波電界の周波数は、300MHz以下であることが好ましく、100MHz以下であることがより好ましく、80MHz以下であることがさらに好ましく、50MHz以下であることがよりさらに好ましい。具体的には、国際電気通信連合により割り当てられた工業用周波数帯13.56MHz、27.12MHz、又は40.68MHzが、本実施形態の高周波誘電加熱による製造方法及び接合方法にも利用される。
The frequency of the high-frequency electric field to be applied is preferably 1 kHz or higher, more preferably 1 MHz or higher, even more preferably 3 MHz or higher, even more preferably 5 MHz or higher, and 10 MHz or higher. Even more preferred.
The frequency of the high-frequency electric field to be applied is preferably 300 MHz or less, more preferably 100 MHz or less, even more preferably 80 MHz or less, and even more preferably 50 MHz or less. Specifically, the industrial frequency band of 13.56 MHz, 27.12 MHz, or 40.68 MHz allocated by the International Telecommunication Union is also used for the manufacturing method and joining method by high-frequency dielectric heating of this embodiment.
 また、加圧処理しながら、高周波電界を印加する場合、高周波を印加するときの押し付け圧力は、高周波誘電加熱用接着剤に負荷される圧力の初期設定値として、1kPa以上であることが好ましく、5kPa以上であることがより好ましく、10kPa以上であることがさらに好ましく、30kPa以上であることがよりさらに好ましく、50kPa以上であることがさらになお好ましい。
 加圧処理しながら、高周波電界を印加する場合、高周波を印加するときの押し付け圧力は、高周波誘電加熱用接着剤に負荷される圧力の初期設定値として、10MPa以下であることが好ましく、5MPa以下であることがより好ましく、1MPa以下であることがさらに好ましく、500kPa以下であることがよりさらに好ましく、100kPa以下であることがさらになお好ましい。
 ここで、高周波誘電加熱用接着剤に負荷される圧力の初期設定値の基準となる面積は、電極、被着体、及びスペーサーを平面視したときの面積のうち、最も小さい面積である。
Further, when a high-frequency electric field is applied while applying pressure, the pressing pressure when applying the high-frequency is preferably 1 kPa or more as an initial setting value of the pressure applied to the high-frequency dielectric heating adhesive. It is more preferably 5 kPa or more, still more preferably 10 kPa or more, even more preferably 30 kPa or more, and even more preferably 50 kPa or more.
When a high frequency electric field is applied while applying pressure, the pressing pressure when applying the high frequency is preferably 10 MPa or less, and 5 MPa or less as an initial set value of the pressure applied to the high frequency dielectric heating adhesive. is more preferably 1 MPa or less, even more preferably 500 kPa or less, and even more preferably 100 kPa or less.
Here, the reference area for the initial set value of the pressure applied to the high-frequency dielectric heating adhesive is the smallest area among the areas of the electrodes, the adherend, and the spacer when viewed from above.
 本実施形態に係る接合方法について、図面を参照して説明する。
 図1~図3は、本実施形態に係る接合方法の一例を説明する概略図である。図1~図3には、誘電加熱装置50を用いて、第1の被着体110と、第2の被着体120とを、高周波誘電加熱用接着剤11により、接合する方法の一例が示されている。
A joining method according to this embodiment will be described with reference to the drawings.
1 to 3 are schematic diagrams illustrating an example of the bonding method according to this embodiment. 1 to 3 show an example of a method of bonding a first adherend 110 and a second adherend 120 with a high-frequency dielectric heating adhesive 11 using a dielectric heating device 50. It is shown.
 図1~図3に示された誘電加熱装置50は、第1高周波電界印加電極51と、第2高周波電界印加電極52と、高周波電源53と、を備えている。
 第1高周波電界印加電極51と、第2高周波電界印加電極52とは、互いに対向配置されている。第1高周波電界印加電極51及び第2高周波電界印加電極52は、プレス機構を有している。誘電加熱装置50の電極(第1高周波電界印加電極51及び第2高周波電界印加電極52)のプレス機構により、当該電極の間に配置された2つ以上の被着体と高周波誘電加熱用接着剤とを加圧しながら高周波電界を印加することもできる。
The dielectric heating device 50 shown in FIGS. 1 to 3 includes a first high-frequency electric field applying electrode 51, a second high-frequency electric field applying electrode 52, and a high-frequency power source 53. FIG.
The first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 are arranged to face each other. The first high frequency electric field applying electrode 51 and the second high frequency electric field applying electrode 52 have a press mechanism. Two or more adherends arranged between the electrodes and the high-frequency dielectric heating adhesive are pressed by the press mechanism of the electrodes (the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52) of the dielectric heating device 50. It is also possible to apply a high frequency electric field while pressurizing the .
 誘電加熱装置50が、第1高周波電界印加電極51と第2高周波電界印加電極52とが互いに平行な1対の平板電極を構成している場合、このような電極配置の形式を平行平板タイプと称する場合がある。
 高周波電界の印加には平行平板タイプの高周波誘電加熱装置を用いることも好ましい。平行平板タイプの高周波誘電加熱装置であれば、高周波電界が電極間に位置する高周波誘電加熱用接着剤を貫通するので、高周波誘電加熱用接着剤全体を温めることができ、被着体(X)と高周波誘電加熱用接着剤とを短時間で接合できる。また、構造体としての積層体を製造する場合には、平行平板タイプの高周波誘電加熱装置を用いることが好ましい。
In the dielectric heating device 50, when the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 constitute a pair of parallel plate electrodes, such an electrode arrangement form is called a parallel plate type. sometimes referred to as
It is also preferable to use a parallel plate type high frequency dielectric heating device for applying the high frequency electric field. In the parallel plate type high frequency dielectric heating device, the high frequency electric field penetrates the high frequency dielectric heating adhesive located between the electrodes, so that the entire high frequency dielectric heating adhesive can be heated, and the adherend (X) can be heated. and the high-frequency dielectric heating adhesive can be bonded in a short time. Further, when manufacturing a laminate as a structure, it is preferable to use a parallel plate type high-frequency dielectric heating apparatus.
 第1高周波電界印加電極51及び第2高周波電界印加電極52のそれぞれに、例えば、周波数13.56MHz程度、周波数27.12MHz程度、又は周波数40.68MHz程度の高周波電界を印加するための高周波電源53が接続されている。 A high-frequency power source 53 for applying a high-frequency electric field with a frequency of about 13.56 MHz, about 27.12 MHz, or about 40.68 MHz to each of the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52. is connected.
 図2は、誘電加熱装置50の電極(第1高周波電界印加電極51及び第2高周波電界印加電極52)、第1の被着体110、高周波誘電加熱用接着剤11、被着体(X)としての第2の被着体120、及びスペーサー210を配置するときの状態を表している。第1の被着体110は、高周波誘電加熱用接着剤11側及び第1高周波電界印加電極51側の両面に、起伏面を有していない。第2の被着体120は、起伏面を第1面125に有しており、第1面125と反対側の第2面127は、起伏面を有していない。図2に示されるように、第1高周波電界印加電極51及び第2高周波電界印加電極52の一対の電極の間に、スペーサー210、第2の被着体120、高周波誘電加熱用接着剤11、及び第1の被着体110を、第2高周波電界印加電極52側から、この順で配置する。第2の被着体120の第1面125は、スペーサー210に対向させて配置される。 FIG. 2 shows the electrodes of the dielectric heating device 50 (the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52), the first adherend 110, the high-frequency dielectric heating adhesive 11, and the adherend (X). The second adherend 120 and the spacer 210 are arranged. The first adherend 110 does not have undulating surfaces on both the high-frequency dielectric heating adhesive 11 side and the first high-frequency electric field applying electrode 51 side. The second adherend 120 has an undulating surface on a first surface 125 and a second surface 127 opposite the first surface 125 does not have an undulating surface. As shown in FIG. 2, a spacer 210, a second adherend 120, a high-frequency dielectric heating adhesive 11, and the first adherend 110 are arranged in this order from the second high-frequency electric field applying electrode 52 side. The first surface 125 of the second adherend 120 is arranged to face the spacer 210 .
 図3は、誘電加熱装置50の電極、第1の被着体110、高周波誘電加熱用接着剤11、第2の被着体120、及びスペーサー210を配置した後の状態を表している。第2高周波電界印加電極52と、第2の被着体120との間に、スペーサー210を配置すると、第2の被着体120の起伏面とスペーサーとの間に空間部31が形成される。誘電加熱装置50は、第1高周波電界印加電極51及び第2高周波電界印加電極52の少なくとも一方の方向から加圧処理が可能である。図3では、誘電加熱装置50により、第1高周波電界印加電極51と第2高周波電界印加電極52との間で、第1の被着体110、高周波誘電加熱用接着剤11、第2の被着体120、及びスペーサー210に対して、矢印の方向に加圧処理する。 FIG. 3 shows the state after the electrodes of the dielectric heating device 50, the first adherend 110, the high-frequency dielectric heating adhesive 11, the second adherend 120, and the spacer 210 are arranged. When the spacer 210 is arranged between the second high-frequency electric field applying electrode 52 and the second adherend 120, a space 31 is formed between the undulating surface of the second adherend 120 and the spacer. . The dielectric heating device 50 can apply pressure from at least one of the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 . In FIG. 3 , the dielectric heating device 50 heats the first adherend 110 , the high-frequency dielectric heating adhesive 11 and the second adherend between the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 . The adherend 120 and the spacer 210 are pressurized in the direction of the arrow.
 図1は、誘電加熱装置50の電極、第1の被着体110、高周波誘電加熱用接着剤11、第2の被着体120、及びスペーサー210を配置した後、誘電加熱装置50によって、加圧処理するとともに誘電加熱処理を行う状態を示している。誘電加熱装置50によって加圧処理すると、スペーサー210が変形し、スペーサー210が空間部31の形状に沿って追従する。そして、空間部31がスペーサー210によって埋められる。 In FIG. 1, after arranging the electrodes of the dielectric heating device 50, the first adherend 110, the high-frequency dielectric heating adhesive 11, the second adherend 120, and the spacer 210, heating is performed by the dielectric heating device 50. It shows a state in which pressure treatment and dielectric heat treatment are performed. When pressurized by the dielectric heating device 50 , the spacer 210 deforms and follows the shape of the space 31 . Space 31 is filled with spacer 210 .
 誘電加熱装置50は、図1~図3に示されるように、スペーサー210を用いて、第1の被着体110、及び第2の被着体120の間に挟持した高周波誘電加熱用接着剤11を介して、誘電加熱処理する。さらに、誘電加熱装置50は、誘電加熱処理に加えて、第1高周波電界印加電極51及び第2高周波電界印加電極52による加圧処理によって、第1の被着体110、及び第2の被着体120を接合する。第1の被着体110、及び第2の被着体120の接合は、誘電加熱装置50の電極により加圧しながら高周波電界を印加してもよい。また、第1の被着体110、及び第2の被着体120の接合は、誘電加熱装置50の電極により加圧して、空間部31をスペーサー210によって埋めた後、高周波電界を印加してもよい。 As shown in FIGS. 1 to 3, the dielectric heating device 50 uses a spacer 210 to sandwich a high-frequency dielectric heating adhesive between a first adherend 110 and a second adherend 120. 11, dielectric heat treatment. Furthermore, the dielectric heating device 50 applies pressure to the first adherend 110 and the second adherend by pressure treatment using the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 in addition to the dielectric heating treatment. The body 120 is joined. The bonding of the first adherend 110 and the second adherend 120 may be performed by applying a high-frequency electric field while applying pressure with electrodes of the dielectric heating device 50 . The bonding of the first adherend 110 and the second adherend 120 is performed by applying pressure from the electrode of the dielectric heating device 50, filling the space 31 with the spacer 210, and then applying a high-frequency electric field. good too.
 ここで、誘電加熱装置50の電極により加圧しながら高周波電界を印加する状態において、初期の状態としては、加圧によって、空間部31がスペーサー210によって埋められるのとほぼ同時期に高周波電界が印加される状態となる。加圧とは、例えば、A.誘電加熱装置50のプレス機構による加圧処理を指すか、B.誘電加熱装置50のプレス機構などによる加圧処理は行わず、誘電加熱装置50の電極の自重のみによる押圧によって加圧する加圧処理を指すか、又はC.誘電加熱装置50のプレス機構などによる加圧処理と、誘電加熱装置50の電極の自重による加圧処理との両方を複合した加圧処理を指す。第1の被着体110、高周波誘電加熱用接着剤11、スペーサー210、及び第2の被着体120に対して、誘電加熱装置50の電極により加圧しながら高周波電界を印加する状態の一態様としては、例えば、以下の(E1)から(E3)の態様が挙げられる。 Here, in the state in which the high-frequency electric field is applied while applying pressure by the electrodes of the dielectric heating device 50, as an initial state, the high-frequency electric field is applied at approximately the same time as the space 31 is filled with the spacer 210 by the pressure. It will be in a state where Pressurization means, for example, A.I. It refers to pressure treatment by the press mechanism of the dielectric heating device 50, or B. It refers to a pressure treatment in which pressure is applied only by the weight of the electrodes of the dielectric heating device 50 without performing pressure treatment by a press mechanism of the dielectric heating device 50, or C. It refers to a combination of pressure treatment by the press mechanism of the dielectric heating device 50 and pressure treatment by the weight of the electrode of the dielectric heating device 50 . One aspect of a state in which a high-frequency electric field is applied to the first adherend 110, the high-frequency dielectric heating adhesive 11, the spacer 210, and the second adherend 120 while being pressurized by the electrodes of the dielectric heating device 50. Examples thereof include the following aspects (E1) to (E3).
 (E1):スペーサー210として、弾性変形しやすい材質のスペーサーを用い、誘電加熱装置50の電極によって加圧して、スペーサー210を変形させた状態を維持しながら、高周波電界を印加する態様。
 (E2):スペーサー210として、塑性変形しやすい材質のスペーサーを用い、誘電加熱装置50の電極によって加圧して、スペーサー210を変形させた状態を維持しながら、高周波電界を印加する態様。
 (E3):スペーサー210として、塑性変形しやすい材質のスペーサーを用い、誘電加熱装置50の電極によって加圧して、スペーサー210を変形させた後、電極による加圧を解除した状態で、高周波電界を印加する態様。
 (E3)の態様においては、プレス機構による加圧処理を解除し、電極の自重による押圧は維持されていてもよい。
 スペーサーを再利用しやすいという観点で、誘電加熱装置50の電極により加圧しながら高周波電界を印加する状態の態様は、上記の態様(E1)であることが好ましい。
(E1): A mode in which a high-frequency electric field is applied while maintaining a deformed state of the spacer 210 by applying pressure from the electrode of the dielectric heating device 50 using a spacer made of a material that is easily elastically deformed as the spacer 210 .
(E2): A mode in which a high-frequency electric field is applied while maintaining a deformed state of the spacer 210 by using a spacer made of a material that is easily plastically deformed as the spacer 210 and applying pressure with the electrodes of the dielectric heating device 50 .
(E3): A spacer made of a material that is easily plastically deformed is used as the spacer 210. After the spacer 210 is deformed by applying pressure with the electrode of the dielectric heating device 50, the high-frequency electric field is applied while the pressure from the electrode is released. Mode of application.
In the aspect of (E3), the pressurizing process by the pressing mechanism may be canceled, and the pressing due to the weight of the electrode may be maintained.
From the viewpoint of facilitating the reuse of the spacer, the aspect of applying the high-frequency electric field while applying pressure by the electrodes of the dielectric heating device 50 is preferably the above aspect (E1).
 上記のような接合方法によって、第1面125に起伏面を有する第2の被着体120を備えた構造体100が得られる。 By the joining method as described above, the structure 100 having the second adherend 120 having the undulating surface on the first surface 125 is obtained.
 なお、誘電加熱装置50による加圧処理を行わずに、例えば、高周波誘電加熱用接着剤及び被着体の自重のみによる押圧により、2つ以上の被着体を接合してもよい。この場合、誘電加熱処理の前に、スペーサー210を変形させて、予め空間部31を埋めるようにしておけばよい。例えば、取り外し可能なパテなどの材料をスペーサー210として用い、スペーサー210を変形させて空間部を予め埋めておくようにしてもよい。 It should be noted that two or more adherends may be joined by pressing only with the high-frequency dielectric heating adhesive and the weight of the adherends, for example, without performing the pressure treatment by the dielectric heating device 50 . In this case, the spacer 210 may be deformed to fill the space 31 in advance before the dielectric heating treatment. For example, a material such as removable putty may be used as the spacer 210, and the spacer 210 may be deformed to fill the space in advance.
 第1高周波電界印加電極51及び第2高周波電界印加電極52の間に、高周波電界を印加すると、高周波誘電加熱用接着剤11が、高周波エネルギーを吸収する。本実施形態では、第2の被着体120の第1面125を第2高周波電界印加電極52側に配置しても、スペーサー210を用いることで、空間部31がスペーサー210の変形によって埋められる。このため、高周波誘電加熱用接着剤11が、均一に近い状態で高周波エネルギーを吸収できる。これによって、高周波誘電加熱用接着剤11中の熱可塑性樹脂成分がほぼ一様に溶融し、短時間処理であっても、第1の被着体110、及び第2の被着体120を強固に接合できる。 When a high frequency electric field is applied between the first high frequency electric field application electrode 51 and the second high frequency electric field application electrode 52, the high frequency dielectric heating adhesive 11 absorbs high frequency energy. In this embodiment, even if the first surface 125 of the second adherend 120 is arranged on the side of the second high-frequency electric field applying electrode 52, the use of the spacer 210 fills the space 31 by deformation of the spacer 210. . Therefore, the high-frequency dielectric heating adhesive 11 can absorb high-frequency energy in a nearly uniform manner. As a result, the thermoplastic resin component in the high-frequency dielectric heating adhesive 11 is almost uniformly melted, and the first adherend 110 and the second adherend 120 are firmly attached even if the treatment is performed for a short period of time. can be joined to
 なお、高周波誘電加熱用接着剤11が誘電材料(図示せず)を含有する場合、接着剤成分としての熱可塑性樹脂成分中に分散された誘電材料が高周波エネルギーを吸収する。そして、誘電材料は、発熱源として機能し、誘電材料の発熱によって、熱可塑性樹脂成分を溶融させ、短時間処理であっても、最終的には、第1の被着体110、及び第2の被着体120を強固に接合できる。 When the high-frequency dielectric heating adhesive 11 contains a dielectric material (not shown), the dielectric material dispersed in the thermoplastic resin component as the adhesive component absorbs high-frequency energy. The dielectric material functions as a heat source, and the heat generated by the dielectric material melts the thermoplastic resin component. , the adherend 120 can be strongly bonded.
 第1高周波電界印加電極51及び第2高周波電界印加電極52は、プレス機構を有することから、プレス装置としても機能する。そのため、第1高周波電界印加電極51及び第2高周波電界印加電極52による圧縮方向への加圧、並びに高周波誘電加熱用接着剤11の加熱溶融によって、第1の被着体110、及び第2の被着体120をより強固に接合できる。 Since the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 have a press mechanism, they also function as a press device. Therefore, by applying pressure in the compression direction by the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52 and heating and melting the high-frequency dielectric heating adhesive 11, the first adherend 110 and the second adherend The adherend 120 can be more strongly bonded.
 以上、図1~図3を参照して本実施形態に係る接合方法の一例を説明したが、本実施形態に係る接合方法は、この例に限定されない。他の態様としては、被着体(X)を少なくとも1つ用いていれば、被着体の数は、特に限定されない。例えば、2つの被着体とも、被着体(X)を用いてもよい。図1~図3では、一方の被着体として、被着体(X)としての第2の被着体120を用い、他方の被着体として、起伏面を有さない第1の被着体110を用いた。
 図1~図3に示される例においては、他の態様として、平行平板タイプの高周波誘電加熱装置を用い、2つの被着体とも、被着体(X)としての第2の被着体120を用いてもよい。この場合、いずれの第2の被着体120とも、第1面125を、誘電加熱装置50の各電極側(第1高周波電界印加電極51及び第2高周波電界印加電極52)に向けて配置する。そして、誘電加熱装置の各電極と、2つの第2の被着体120との間にスペーサー210をそれぞれ配置して、2つの第2の被着体120を高周波誘電加熱用接着剤11で接合する。
An example of the joining method according to the present embodiment has been described above with reference to FIGS. 1 to 3, but the joining method according to the present embodiment is not limited to this example. In another aspect, the number of adherends is not particularly limited as long as at least one adherend (X) is used. For example, the adherend (X) may be used for both adherends. In FIGS. 1 to 3, the second adherend 120 as the adherend (X) is used as one adherend, and the first adherend having no undulating surface is used as the other adherend. A body 110 was used.
In the examples shown in FIGS. 1 to 3, as another aspect, a parallel plate type high-frequency dielectric heating device is used, and both the two adherends are the second adherend 120 as the adherend (X). may be used. In this case, any second adherend 120 is arranged with the first surface 125 facing each electrode side of the dielectric heating device 50 (the first high-frequency electric field applying electrode 51 and the second high-frequency electric field applying electrode 52). . Spacers 210 are placed between the electrodes of the dielectric heating device and the two second adherends 120, respectively, and the two second adherends 120 are bonded with the high-frequency dielectric heating adhesive 11. do.
 高周波誘電加熱処理は、上記で説明した電極を対向配置させた誘電加熱装置に限定されず、格子電極タイプの高周波誘電加熱装置を用いてもよい。格子電極タイプの高周波誘電加熱装置は、一定間隔ごとに第1極性の電極と、第1極性の電極とは反対極性の第2極性の電極とを同一平面上に交互に配列した格子電極を有する。なお、図1~図3においては、簡略化のために電極を対向配置させた誘電加熱装置を用いた態様を例示した。格子電極タイプの誘電加熱装置を用いる場合でも、被着体(X)を短時間で強固に接合することができる。 The high-frequency dielectric heating treatment is not limited to the above-described dielectric heating device in which electrodes are arranged opposite to each other, and a lattice electrode type high-frequency dielectric heating device may be used. A grid electrode type high-frequency dielectric heating device has a grid electrode in which electrodes of a first polarity and electrodes of a second polarity opposite to the electrodes of the first polarity are alternately arranged on the same plane at regular intervals. . For the sake of simplification, FIGS. 1 to 3 exemplify a mode using a dielectric heating device in which electrodes are arranged opposite to each other. Even when a lattice electrode type dielectric heating device is used, the adherend (X) can be strongly bonded in a short time.
 高周波電界の印加には格子電極タイプの高周波誘電加熱装置を用いることも好ましい。格子電極タイプの高周波誘電加熱装置を用いることで、被着体(X)の厚さの影響を受けず、接合できる。また、格子電極タイプの高周波誘電加熱装置を用いることで、接合する際の省エネルギー化を実現できる。 It is also preferable to use a lattice electrode type high frequency dielectric heating device for applying a high frequency electric field. By using a lattice electrode type high-frequency dielectric heating device, bonding can be performed without being affected by the thickness of the adherend (X). Also, by using a lattice electrode type high-frequency dielectric heating device, it is possible to save energy during bonding.
 格子電極タイプの誘電加熱装置によって接合する場合、被着体(X)の起伏面を有する第1面側、及び、第1面と反対側の第2面側のいずれか一方に格子電極を配置して、高周波を印加してもよい。また、被着体(X)の第1面側、及び、第2面側の両方に格子電極を配置して、高周波電界を印加してもよい。さらに、被着体(X)の第1面側に配置して高周波電界を印加し、その後、第2面側に格子電極を配置して高周波電界を印加してもよい。 When bonding with a grid electrode type dielectric heating device, the grid electrode is arranged on either the first surface side having the undulating surface of the adherend (X) or the second surface side opposite to the first surface. Then, a high frequency may be applied. Alternatively, a high-frequency electric field may be applied by arranging lattice electrodes on both the first surface side and the second surface side of the adherend (X). Further, a high-frequency electric field may be applied by arranging on the first surface side of the adherend (X), and then a grid electrode may be arranged on the second surface side to apply a high-frequency electric field.
 以下、本実施形態に係る接合方法に用いる各部材について説明する。 Each member used in the joining method according to this embodiment will be described below.
<被着体>
 本実施形態に係る接合方法に用いる被着体(X)は、第1面に起伏面を有しており、起伏面は、隆起した部位である凸部と、陥没した部位である凹部とを有している。本実施形態において、起伏面における相対的に隆起している部位を凸部と称し、起伏面の凸部によって区画される相対的に陥没している部位を凹部と称する場合がある。
<Adherend>
The adherend (X) used in the bonding method according to the present embodiment has an undulating surface on the first surface, and the undulating surface has a convex portion that is a raised portion and a concave portion that is a depressed portion. have. In the present embodiment, a relatively protruding portion of the undulating surface may be referred to as a convex portion, and a relatively depressed portion defined by the convex portion of the undulating surface may be referred to as a concave portion.
 図4A及び図4Bは、本実施形態に係る接合方法に用いる被着体の一例を表す断面図である。例えば、図4Aに示される被着体120Bは、第1面に起伏面を有しており、凸部121A、凸部121B、及び凸部121Cが、起伏面の隆起している部位であり、凹部123A、凹部123B、凹部123C、及び凹部123Dが、起伏面の陥没している部位である。凹部と凸部の断面形状は、図4A及び図4Bに示されるような矩形に限られず、例えば、凸部の頂部Tから凹部の底部Lに向かって傾斜していてもよく、湾曲していてもよく、段差を有していてもよい。また、例えば、起伏面における隆起している部位が半円状の形状であってもよい。この場合、半円状の部位が凸部となり、当該凸部における両側の陥没している部位が凹部になる。さらに、例えば、起伏面における陥没している部位が半円状の場合、半円状の部位が凹部となり、半円状に陥没した両側の隆起している部位が凸部になる。 4A and 4B are cross-sectional views showing an example of an adherend used in the bonding method according to this embodiment. For example, the adherend 120B shown in FIG. 4A has an undulating surface on the first surface, and the convex portions 121A, 121B, and 121C are raised portions of the undulating surface, The concave portion 123A, the concave portion 123B, the concave portion 123C, and the concave portion 123D are the depressed portions of the undulating surface. The cross-sectional shape of the recesses and protrusions is not limited to the rectangular shape shown in FIGS. 4A and 4B. and may have steps. Further, for example, the protruding portion of the undulating surface may be semicircular. In this case, the semicircular portion becomes a convex portion, and the recessed portions on both sides of the convex portion become concave portions. Furthermore, for example, when the recessed portion of the undulating surface is semicircular, the semicircular portion becomes a concave portion, and the raised portions on both sides of the semicircular recessed portion become convex portions.
 被着体(X)において、起伏面の起伏の最大高低差は、1mm以上であることが好ましく、2mm以上であることがより好ましく、3mm以上であることがさらに好ましく、4mm以上であることがよりさらに好ましい。起伏面の起伏の最大高低差が1mm以上であれば、スペーサーを用いて、被着体(X)と高周波誘電加熱用接着剤とが短時間で強固に接合させる効果が高まりやすい。
 被着体の起伏面の起伏の高低差の上限値は、スペーサーを用いて、被着体(X)と高周波誘電加熱用接着剤とが短時間で強固に接合できれば、特に限定されない。被着体の起伏面の起伏の最大高低差は、例えば、40mm以下であってもよく、20mm以下であってもよく、10mm以下であってもよい。
In the adherend (X), the maximum height difference of the undulations of the undulating surface is preferably 1 mm or more, more preferably 2 mm or more, even more preferably 3 mm or more, and 4 mm or more. Even more preferable. If the maximum height difference of the undulations of the undulating surface is 1 mm or more, the effect of using the spacer to firmly bond the adherend (X) and the high-frequency dielectric heating adhesive in a short time tends to increase.
The upper limit of the height difference of the undulations of the undulating surface of the adherend is not particularly limited as long as the adherend (X) and the high-frequency dielectric heating adhesive can be firmly bonded in a short time using a spacer. The maximum height difference of the undulations of the undulating surface of the adherend may be, for example, 40 mm or less, 20 mm or less, or 10 mm or less.
 起伏面の起伏の最大高低差は、起伏面が有する凸部の数が1つである場合、凸部の頂部から凹部の底部との高低差の最大値を表す。凸部の頂部とは、凸部の最も高い部位であり、凹部の底部とは、凹部の最も低い部位である。なお、例えば、起伏面における隆起している部位又は陥没している部位が1つの半円状の場合、起伏の高低差は、半円状の半径となる。 The maximum height difference of the undulations of the undulating surface represents the maximum value of the height difference from the top of the projection to the bottom of the recess when the undulation surface has one projection. The top of the protrusion is the highest portion of the protrusion, and the bottom of the recess is the lowest portion of the recess. Note that, for example, in the case where the undulating surface has one raised portion or depressed portion in the shape of a single semicircle, the height difference of the undulations is the radius of the semicircle.
 起伏面の起伏の最大高低差は、起伏面が有する凸部の数が2つ以上である場合、凸部と凹部との高低差の最大値を表す。例えば、図4Aを参照すると、凹部123A、凹部123B、凹部123C、及び凹部123Dは、それぞれ、凸部121Cの頂部Tから凹部123Dの底部Lまでの距離が同じである。したがって、図4Aに示される、起伏の最大高低差は、例えば、隣り合う凸部121Cの頂部Tから凹部123Dの底部Lまでの最大高低差Dで表される。
 一方、例えば、図4Bを参照すると、被着体120Dは、凸部122A、凸部122B、凸部122C、及び凸部122Dの高さが、それぞれ異なっており、凸部122Bが最も突出している。また、被着体120Dは、凹部124A、凹部124B、凹部124C、及び凹部124Dの深さが、それぞれ異なっており、凹部124Dが最も陥没している。したがって、図4Bに示される、起伏の最大高低差は、最も突出している凸部122Bの頂部Tから最も陥没している凹部124Dの底部Lまでの最大高低差Dで表される。
The maximum height difference of the undulations of the undulating surface represents the maximum value of the height difference between the projections and the recesses when the number of projections on the undulation surface is two or more. For example, referring to FIG. 4A, recess 123A, recess 123B, recess 123C, and recess 123D each have the same distance from the top T of protrusion 121C to the bottom L of recess 123D. Therefore, the maximum height difference of the undulations shown in FIG. 4A is represented by, for example, the maximum height difference D from the top T of the adjacent convex portion 121C to the bottom L of the concave portion 123D.
On the other hand, referring to FIG. 4B, for example, in the adherend 120D, the heights of the protrusions 122A, 122B, 122C, and 122D are different, and the protrusion 122B projects the most. . In the adherend 120D, the recesses 124A, 124B, 124C, and 124D have different depths, and the recess 124D is the most recessed. Therefore, the maximum height difference of the undulations shown in FIG. 4B is represented by the maximum height difference D from the top T of the projection 122B that protrudes the most to the bottom L of the recess 124D that sinks the most.
 被着体(X)において、被着体(X)の第1面を平面視したとき、第1面に占める凹部の面積割合が、20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることがさらに好ましく、50%以上であることがよりさらに好ましく、60%以上であることがさらになお好ましい。
 第1面に占める凹部の面積割合の上限値は特に限定されず、例えば、90%以下であることがよい。
 第1面に占める凹部の面積割合が20%以上であると、スペーサーを用いることによる効果が高まり、被着体(X)を短時間で強固に接合しやすくなる。
In the adherend (X), when the first surface of the adherend (X) is viewed in plan, the area ratio of the recesses occupying the first surface is preferably 20% or more, and 30% or more. is more preferably 40% or more, even more preferably 50% or more, and even more preferably 60% or more.
The upper limit of the area ratio of the recesses in the first surface is not particularly limited, and is preferably 90% or less, for example.
When the area ratio of the concave portions to the first surface is 20% or more, the effect of using the spacer is enhanced, and the adherend (X) can be easily and firmly bonded in a short time.
 本実施形態に係る接合方法において、被着体(X)の材質は、特に限定されない。被着体の材質は、有機材料、及び無機材料(金属材料等を含む。)のいずれの材料でもよく、有機材料と無機材料との複合材料でもよい。 In the bonding method according to this embodiment, the material of the adherend (X) is not particularly limited. The material of the adherend may be either an organic material or an inorganic material (including a metal material, etc.), or may be a composite material of an organic material and an inorganic material.
 被着体(X)の材質は、有機材料であることが好ましい。被着体の材質としての有機材料は、例えば、プラスチック材料、及びゴム材料が挙げられる。プラスチック材料としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体、エポキシ樹脂、ポリウレタン樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS樹脂)、未水添スチレン-共役ジエン共重合体(スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-ブタジエン/ブチレン-スチレン共重合体、スチレン-イソプレン共重合体、スチレン-イソプレン-スチレン共重合体(SIS)、スチレン-エチレン/イソプレン-スチレン共重合体等)、水添スチレン-共役ジエン共重合体(スチレン-エチレン/プロピレン-スチレン共重合体(SEPS)、及びスチレン-エチレン/ブチレン-スチレン共重合体(SEBS)等)、ポリカーボネート樹脂(PC樹脂)、ポリアミド樹脂(ナイロン6及びナイロン66等)、ポリエステル樹脂(ポリエチレンテレフタレート(PET樹脂)及びポリブチレンテレフタレート樹脂(PBT樹脂)等)、ポリアセタール樹脂(POM樹脂)、ポリメチルメタクリレート樹脂、及びポリスチレン樹脂等が挙げられる。ゴム材料としては、スチレン-ブタジエンゴム(SBR)、エチレンプロピレンゴム(EPR)、ブタジエンゴム(BR)、及びシリコーンゴム等が挙げられる。また、被着体(X)は、有機材料の発泡材でもよい。被着体の材質が熱可塑性樹脂である場合、接着性の観点で、被着体(X)が含有する熱可塑性樹脂の主たる組成は、高周波誘電加熱用接着剤が含有する熱可塑性樹脂(A)の主たる組成と、同一であることが好ましい。 The material of the adherend (X) is preferably an organic material. Organic materials for the adherend include, for example, plastic materials and rubber materials. Examples of plastic materials include polypropylene resin, polyethylene resin, ethylene-vinyl acetate copolymer, epoxy resin, polyurethane resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), unhydrogenated styrene-conjugated diene copolymer. coalescence (styrene-butadiene-styrene copolymer (SBS), styrene-butadiene/butylene-styrene copolymer, styrene-isoprene copolymer, styrene-isoprene-styrene copolymer (SIS), styrene-ethylene/isoprene- styrene copolymer, etc.), hydrogenated styrene-conjugated diene copolymer (styrene-ethylene/propylene-styrene copolymer (SEPS), and styrene-ethylene/butylene-styrene copolymer (SEBS), etc.), polycarbonate resin (PC resin), polyamide resin (nylon 6 and nylon 66, etc.), polyester resin (polyethylene terephthalate (PET resin) and polybutylene terephthalate resin (PBT resin), etc.), polyacetal resin (POM resin), polymethyl methacrylate resin, and A polystyrene resin etc. are mentioned. Rubber materials include styrene-butadiene rubber (SBR), ethylene propylene rubber (EPR), butadiene rubber (BR), and silicone rubber. Also, the adherend (X) may be an organic foam material. When the material of the adherend is a thermoplastic resin, from the viewpoint of adhesion, the main composition of the thermoplastic resin contained in the adherend (X) is the thermoplastic resin (A ) is preferably the same as the main composition.
 本明細書において、「熱可塑性樹脂の主たる組成」とは、例えば、熱可塑性樹脂が重合体である場合は、当該重合体が含む繰り返し単位の内、当該重合体中でも最も多く含まれる繰り返し単位である。熱可塑性樹脂が単独のモノマー由来の重合体であれば、当該モノマー単位(繰り返し単位)が「熱可塑性樹脂の主たる組成」である。熱可塑性樹脂が共重合体である場合は、当該重合体中でも最も多く含まれる繰り返し単位が「熱可塑性樹脂の主たる組成」である。熱可塑性樹脂が共重合体である場合、当該共重合体中、「熱可塑性樹脂の主たる組成」は、30質量%以上含まれる繰り返し単位(モノマー単位)であり、一態様においては、30質量%超含まれる繰り返し単位であり、別の一態様においては、40質量%以上含まれる繰り返し単位であり、さらに別の一態様においては、50質量%以上含まれる繰り返し単位である。また、熱可塑性樹脂が共重合体である場合、最も多く含まれる繰り返し単位が、2種以上であってもよい。 In the present specification, the term "main composition of the thermoplastic resin" means, for example, when the thermoplastic resin is a polymer, among the repeating units contained in the polymer, the repeating unit that is the most contained in the polymer. be. If the thermoplastic resin is a polymer derived from a single monomer, the monomer unit (repeating unit) is the "main composition of the thermoplastic resin". When the thermoplastic resin is a copolymer, the repeating unit that is the most contained in the polymer is the "main composition of the thermoplastic resin". When the thermoplastic resin is a copolymer, the "main composition of the thermoplastic resin" in the copolymer is a repeating unit (monomer unit) containing 30% by mass or more, and in one aspect, 30% by mass. It is a repeating unit that is contained in excess, and in another aspect, it is a repeating unit that is included in an amount of 40% by mass or more, and in another aspect, it is a repeating unit that is included in an amount of 50% by mass or more. Moreover, when the thermoplastic resin is a copolymer, two or more kinds of repeating units may be included most.
 被着体(X)の材質としての無機材料としては、ガラス材料、セメント材料、セラミック材料、及び金属材料等が挙げられる。また、被着体(X)は、繊維と上述したプラスチック材料との複合材料である繊維強化樹脂(Fiber Reinforced Plastics,FRP)でもよい。この繊維強化樹脂におけるプラスチック材料は、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、ポリウレタン樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS樹脂)、ポリカーボネート樹脂(PC樹脂)、ポリアミド樹脂(ナイロン6及びナイロン66等)、ポリエステル樹脂(ポリエチレンテレフタレート(PET樹脂)及びポリブチレンテレフタレート樹脂(PBT樹脂)等)、ポリアセタール樹脂(POM樹脂)、ポリメチルメタクリレート樹脂、エポキシ樹脂、及びポリスチレン樹脂等からなる群から選択される少なくとも一種である。繊維強化樹脂における繊維は、例えば、ガラス繊維、ケブラー繊維、及び炭素繊維等が挙げられる。 Examples of inorganic materials for the adherend (X) include glass materials, cement materials, ceramic materials, and metal materials. Also, the adherend (X) may be fiber reinforced plastics (FRP), which is a composite material of fibers and the plastic material described above. Plastic materials in this fiber-reinforced resin include, for example, polypropylene resin, polyethylene resin, polyurethane resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polycarbonate resin (PC resin), polyamide resin (nylon 6 and nylon 66, etc.). ), polyester resin (polyethylene terephthalate (PET resin) and polybutylene terephthalate resin (PBT resin), etc.), polyacetal resin (POM resin), polymethyl methacrylate resin, epoxy resin, and at least selected from the group consisting of polystyrene resin, etc. It is one kind. Examples of fibers in the fiber-reinforced resin include glass fiber, Kevlar fiber, and carbon fiber.
 被着体(X)は、導電性が低いことが好ましい。 The adherend (X) preferably has low conductivity.
 本実施形態に係る接合方法において、高周波誘電加熱用接着剤を用いて、2つ以上の複数の被着体同士を接合させる場合、複数の被着体のうち、少なくとも1つの被着体は、被着体(X)を用いる。複数の被着体の材質は、互いに同じ材質であるか、又は異なる材質である。 In the bonding method according to the present embodiment, when two or more adherends are bonded together using a high-frequency dielectric heating adhesive, at least one adherend among the plurality of adherends is An adherend (X) is used. The materials of the plurality of adherends are the same material or different materials.
 被着体の形状は、特に限定されないが、本実施形態に係る高周波誘電加熱用接着剤が接着シートである場合、被着体は、接着シートを貼り合わせることのできる面を有することが好ましく、シート状、板状、又はブロック状であることが好ましい。複数の被着体同士を接合させる場合は、それら被着体の形状及び寸法は、互いに同じでもよく、異なっていてもよい。 The shape of the adherend is not particularly limited, but when the high-frequency dielectric heating adhesive according to the present embodiment is an adhesive sheet, the adherend preferably has a surface on which the adhesive sheet can be attached. A sheet-like, plate-like or block-like shape is preferred. When a plurality of adherends are to be joined together, the shapes and dimensions of the adherends may be the same or different.
<スペーサー>
 本実施形態に係る接合方法に用いるスペーサーの材質は、変形可能であり、被着体(X)の第1面とスペーサーとによって形成される空間部を埋めることができれば、特に限定されない。スペーサーの材質は、例えば、ゴム、粘土、パテなどが挙げられる。ゴムとしては、特に限定されず、各種のゴムが挙げられる。スペーサーの材質がゴムである場合、ゴムの中でも、高周波電界の印加によって発熱しにくいために、熱劣化が生じ難く、被着体との溶着が起こり難い観点で、シリコーンゴムであることが好ましい。粘土としては、一般的に知られている粘土であればよく、例えば、シリコーン樹脂を含むシリコーン粘土などが挙げられる。パテとしては、不活性化学合成樹脂などが挙げられる。
<Spacer>
The material of the spacer used in the bonding method according to the present embodiment is not particularly limited as long as it is deformable and can fill the space formed by the first surface of the adherend (X) and the spacer. Materials for the spacer include, for example, rubber, clay, and putty. The rubber is not particularly limited, and includes various rubbers. When the material of the spacer is rubber, among rubbers, silicone rubber is preferable from the viewpoint that it is difficult to generate heat due to application of a high-frequency electric field, so that heat deterioration is less likely to occur, and welding to an adherend is less likely to occur. As the clay, any commonly known clay may be used, and examples thereof include silicone clay containing silicone resin. Examples of the putty include inert chemical synthetic resins and the like.
(厚さ)
 スペーサーの厚さは、被着体(X)の第1面が備える起伏面の起伏の最大高低差に対して、50%以上であることが好ましく、75%以上であることがより好ましく、100%以上であることがさらに好ましく、125%以上であることがよりさらに好ましく150%以上であることがよりさらに好ましく、175%以上であることがさらになお好ましい。スペーサーの厚さが、被着体が有する起伏面の最大高低差の50%以上であると、起伏面の凹部に埋め込みやすくなる。
 スペーサーの厚さの上限値は、空間部を埋めることができ、起伏面を有する被着体を短時間で強固に接合することができれば、特に限定されず、例えば、被着体(X)の第1面が備える起伏面の起伏の最大高低差に対して、500%以下であってもよく、400%以下であってもよく、300%以下であってもよい。
 スペーサーの厚さは、スペーサーにおける、電極側に対向する面、及び被着体(X)に対向する面との間の距離を表す。例えば、図2を参照すると、スペーサー210の厚さZは、スペーサー210の第2高周波電界印加電極52に対向する面と、スペーサー210の被着体(X)における第1面125に対向する面との距離である。
(thickness)
The thickness of the spacer is preferably 50% or more, more preferably 75% or more, with respect to the maximum height difference of the undulations of the undulation surface provided on the first surface of the adherend (X). % or more, more preferably 125% or more, even more preferably 150% or more, and even more preferably 175% or more. When the thickness of the spacer is 50% or more of the maximum height difference of the undulating surface of the adherend, the spacer can be easily embedded in the concave portions of the undulating surface.
The upper limit of the thickness of the spacer is not particularly limited as long as it can fill the space and firmly bond an adherend having an undulating surface in a short time. It may be 500% or less, 400% or less, or 300% or less of the maximum height difference of the undulations of the undulation surface of the first surface.
The thickness of the spacer represents the distance between the surface of the spacer facing the electrode side and the surface facing the adherend (X). For example, referring to FIG. 2, the thickness Z of the spacer 210 is determined by is the distance between
(誘電特性)
 スペーサーの誘電特性(tanδ/ε’r)は、0.003以下であることが好ましく、0.002以下であることがより好ましく、0.0010以下であることがさらに好ましい。本実施形態に係る接合方法に用いるスペーサーの誘電特性は、通常、0以上である。
(tanδは、23℃かつ周波数40.68MHzにおける誘電正接であり、
 ε’rは、23℃かつ周波数40.68MHzにおける比誘電率である。)
(dielectric properties)
The dielectric property (tan δ/ε'r) of the spacer is preferably 0.003 or less, more preferably 0.002 or less, and even more preferably 0.0010 or less. The spacer used in the bonding method according to this embodiment usually has a dielectric property of 0 or more.
(tan δ is the dielectric loss tangent at 23 ° C. and a frequency of 40.68 MHz,
ε′r is the dielectric constant at 23° C. and a frequency of 40.68 MHz. )
 スペーサーの誘電特性が小さいほど(0に近づくほど)、誘電加熱処理をした際に、スペーサーがより発熱しにくくなるため、スペーサーの意図しない変形(空間部を埋めるための変形ではない)及び溶融がより抑制される。このため、スペーサーの誘電特性が、0.003以下であれば、誘電加熱処理をした際に、スペーサーが発熱しにくくなり、起伏面を有する被着体と接着剤とを短時間で強固に接合しやすくなる。 The smaller the dielectric property of the spacer (the closer it is to 0), the more difficult it is for the spacer to generate heat when subjected to dielectric heat treatment. more restrained. Therefore, if the dielectric property of the spacer is 0.003 or less, the spacer is less likely to generate heat when subjected to dielectric heating treatment, and the adherend having an undulating surface and the adhesive can be firmly bonded in a short time. easier to do.
 誘電特性(tanδ/ε’r)は、インピーダンスマテリアル装置等を用いて測定される誘電正接(tanδ)を、インピーダンスマテリアル装置等を用いて測定される比誘電率(ε’r)で除した値である。
 スペーサーの誘電特性としての誘電正接(tanδ)、及び比誘電率(ε’r)は、インピーダンスマテリアルアナライザを用いて、簡便かつ正確に測定することができる。
 なお、スペーサーの測定方法の詳細は、次のとおりである。まず、スペーサーの測定用試験片を得る。スペーサーの厚さが厚い場合は、切削、研磨等により、厚さを調整してもよい。測定用シートの厚さは、例えば、10μm以上、2mm以下である。このようにして得たシートについて、RFインピーダンスマテリアルアナライザE4991A(Agilent社製)を用いて、23℃における周波数40.68MHzの条件下、比誘電率(ε’r)、及び誘電正接(tanδ)をそれぞれ測定し、誘電特性(tanδ/ε’r)の値を算出する。
The dielectric property (tan δ/ε'r) is a value obtained by dividing the dielectric loss tangent (tan δ) measured using an impedance material device or the like by the relative permittivity (ε'r) measured using an impedance material device or the like. is.
A dielectric loss tangent (tan δ) and a dielectric constant (ε′r) as dielectric properties of the spacer can be measured simply and accurately using an impedance material analyzer.
The details of the spacer measurement method are as follows. First, a test piece for spacer measurement is obtained. When the thickness of the spacer is thick, the thickness may be adjusted by cutting, polishing, or the like. The thickness of the measurement sheet is, for example, 10 μm or more and 2 mm or less. For the sheet thus obtained, using an RF impedance material analyzer E4991A (manufactured by Agilent), the dielectric constant (ε'r) and dielectric loss tangent (tan δ) were measured under the condition of a frequency of 40.68 MHz at 23 ° C. Each is measured and the value of the dielectric property (tan δ/ε'r) is calculated.
(絶縁特性)
 スペーサーは、絶縁体であることが好ましい。スペーサーが絶縁体であると、誘電加熱処理をした際に、スペーサーを介して電気が流れることがなく、高周波誘電加熱用接着剤に均一に近い状態で誘電加熱処理が施されるため、被着体(X)と高周波誘電加熱用接着剤とを短時間で強固に接合しやすくなる。
(Insulation properties)
The spacer is preferably an insulator. If the spacer is an insulator, electricity will not flow through the spacer during dielectric heating treatment, and the dielectric heating treatment will be performed in a state close to the uniformity of the high-frequency dielectric heating adhesive. It becomes easy to firmly bond the body (X) and the high-frequency dielectric heating adhesive in a short time.
 本実施形態において、スペーサーの絶縁性は、JIS K 6911:1995に準じて、測定電圧を500Vとし、体積抵抗率を測定する。測定開始1分後の体積抵抗率が10Ω・cmを超えた場合、スペーサーは絶縁体であると定義する。 In this embodiment, the insulating property of the spacer is determined by measuring the volume resistivity at a measurement voltage of 500 V according to JIS K 6911:1995. A spacer is defined as an insulator when the volume resistivity exceeds 10 8 Ω·cm one minute after the start of measurement.
(空間部追従性)
 本実施形態に係る接合方法において、スペーサーの空間部追従性が、50%以上になるように接合することが好ましく、60%以上になるように接合することがより好ましく、70%以上になるように接合することがさらに好ましく、80%以上になるように接合することがよりさらに好ましい。特に、スペーサーの空間部追従性が大きいほど、空間部に対して、スペーサーがより埋め込みやすくなる。例えば、スペーサーの空間部追従性が50%以上であると、高周波誘電加熱用接着剤がより均一に近い状態で高周波エネルギーを吸収できるため、被着体(X)と接着剤とをより短時間で強固に接合しやすくなる。
 スペーサーの空間部追従性の上限は特に限定されない。スペーサーの空間部追従性の上限は、100%以下でもよい。
(Spatial followability)
In the bonding method according to the present embodiment, the space followability of the spacer is preferably 50% or more, more preferably 60% or more, and more preferably 70% or more. It is more preferable to bond to 80% or more, and it is even more preferable to bond to 80% or more. In particular, the greater the followability of the spacer to the space, the easier it is to embed the spacer in the space. For example, if the spatial followability of the spacer is 50% or more, the high-frequency dielectric heating adhesive can absorb high-frequency energy in a more uniform state, so that the adherend (X) and the adhesive can be kept together for a short time. , making it easier to join firmly.
There is no particular upper limit to the spatial followability of the spacer. The upper limit of the space followability of the spacer may be 100% or less.
 スペーサーの空間部追従性FPは、下記数式1で表される。
 FP=(S2/S1)×100・・・(数式1)
 S1は、空間部(被着体(X)の第1面とスペーサーとによって形成される空間部)を平面視したとき、スペーサーを被着体(X)に追従させる前の状態で、被着体(X)の空間部の開口形状に対応する面積である。
 S2は、空間部の内部の表面に着色剤を付着させ、スペーサーの変形によって空間部の内部を埋めたとき、空間部を埋めた部分のスペーサーの表面に着色剤が付着した部位を平面視したときの面積である。
Space followability FP of the spacer is represented by the following Equation 1.
FP=(S2/S1)×100 (Equation 1)
S1 is the state before the spacer follows the adherend (X) when the space (the space formed by the first surface of the adherend (X) and the spacer) is viewed from above. This is the area corresponding to the shape of the opening of the space of the body (X).
S2 is a plane view of a portion where the coloring agent is attached to the surface of the spacer that fills the space when the space is filled by deformation of the spacer by attaching the colorant to the surface inside the space. It is the area of time.
 ここで、スペーサーの空間部追従性について、図面を参照して説明する。図5A~図7Bは、空間部追従性の測定方法を説明する概念図である。図5A~図7Bに示される被着体120Cは、被着体(X)としての被着体である。図5A、図6A、図5B、及び図6Bは、被着体120Cの起伏面側を有する第1面を、スペーサー210Aに向けて配置した状態を表している。図5A及び図6Aは、加圧する前の状態であり、図5Aは、被着体120Cの第2面側から見た平面図を表し、図6Aは、図5AのA-A断面図を表している。図5B及び図6Bは、加圧した後の状態を表し、図5Bは被着体120Cの第2面側から見た平面図を表し、図6Bは、図5BのB-B断面図を表している。なお、図5A及び図5Bに示す破線は、被着体120Cの第1面側に備える凹部の位置と、凹部の内部に塗布した着色剤Vと、スペーサー210Aの位置を表している。また、図6A及び図6Bに示すとおり、図5A及び図5Bにおいて、空間部31Aを形成する凹部の底部側(つまり、破線で囲まれた内側の部分)にも、着色剤Vが付着している。図5A及び図5Bにおいては、被着体120Cの位置と、スペーサー210Aの位置との位置関係を表すため、便宜上、凹部の底部側に塗布した着色剤Vの図示を省略している。 Here, the space followability of the spacer will be explained with reference to the drawings. 5A to 7B are conceptual diagrams for explaining a method of measuring spatial followability. An adherend 120C shown in FIGS. 5A to 7B is an adherend as the adherend (X). 5A, 6A, 5B, and 6B show a state in which the first surface having the undulating surface side of the adherend 120C is placed facing the spacer 210A. 5A and 6A show the state before pressurization, FIG. 5A represents a plan view seen from the second surface side of the adherend 120C, and FIG. 6A represents a cross-sectional view along AA in FIG. 5A. ing. 5B and 6B show the state after pressurization, FIG. 5B shows a plan view of the adherend 120C viewed from the second surface side, and FIG. 6B shows a cross-sectional view along the line BB in FIG. 5B. ing. The dashed lines shown in FIGS. 5A and 5B represent the positions of the recesses provided on the first surface side of the adherend 120C, the coloring agent V applied inside the recesses, and the positions of the spacers 210A. Further, as shown in FIGS. 6A and 6B, in FIGS. 5A and 5B, the coloring agent V adheres also to the bottom side of the recess forming the space 31A (that is, the inner portion surrounded by the dashed line). there is In FIGS. 5A and 5B, the illustration of the coloring agent V applied to the bottom side of the recess is omitted for convenience to show the positional relationship between the position of the adherend 120C and the position of the spacer 210A.
 図5A~図6Bに示されるように、被着体120Cは、スペーサー210A側に配置されている第1面を有している。被着体120Cの第1面は、凹部と凸部とを有する起伏面を備えている。被着体120Cの凹部は、被着体120Cの第1面を平面視したときの矩形の開口と、被着体120Cの側面から断面視したときの矩形の断面を有する。つまり、被着体120Cの第1面は、矩形の平面と矩形の断面とで囲まれた凹部の形状を備えている。図6Aに示されるように、被着体120Cの第1面と、スペーサー210Aとを重ねて配置すると、加圧していない状態では、被着体120Cの凹部とスペーサー210Aとの間で空間部31Aが形成される。空間部31Aは、スペーサー210Aと被着体120Cの凹部とで区画されている。 As shown in FIGS. 5A-6B, the adherend 120C has a first surface located on the side of the spacer 210A. The first surface of the adherend 120C has an undulating surface having concave portions and convex portions. The concave portion of the adherend 120C has a rectangular opening when viewed from the top of the first surface of the adherend 120C and a rectangular cross section when viewed from the side of the adherend 120C. That is, the first surface of the adherend 120C has a concave shape surrounded by a rectangular plane and a rectangular cross section. As shown in FIG. 6A, when the first surface of the adherend 120C and the spacer 210A are overlapped, the space 31A is formed between the recess of the adherend 120C and the spacer 210A in a non-pressurized state. is formed. The space 31A is defined by the spacer 210A and the recess of the adherend 120C.
 空間部追従性FPは、次のようにして測定する。まず、空間部31Aを形成する凹部の内部の全面に、予め着色剤Vを塗布して付着させる。着色剤Vの種類は特に限定されない。着色剤Vは、被着体120C、及びスペーサー210Aに対する着色剤Vのはじきを抑制し、着色剤Vの付着性を高める点で、例えば、印章用の朱肉インクを用いることが好ましい。 The spatial followability FP is measured as follows. First, the coloring agent V is applied in advance to adhere to the entire interior surface of the recess forming the space 31A. The type of coloring agent V is not particularly limited. For the coloring agent V, it is preferable to use vermillion ink for stamps, for example, in order to suppress the repelling of the coloring agent V against the adherend 120C and the spacer 210A and improve the adhesion of the coloring agent V.
 次に、被着体120Cの第1面に向けて、スペーサー210Aを配置する。そして、スペーサー210Aに対し、被着体120Cに向けて圧力を加える。スペーサー210Aに対して、被着体120Cに向けて圧力を加えると、圧力が加えられたスペーサー210Aは変形し、スペーサー210Aの一部が、空間部31Aの内部に埋め込まれる。スペーサー210Aに対して加えられる圧力は、特に限定されず、被着体の空間部追従性が50%以上になる圧力であればよい。当該圧力の一例としては、被着体(X)と高周波誘電加熱用接着剤とを電極で加圧しながら高周波電界を印加するときの圧力が挙げられる。スペーサー210の一部が空間部内に埋め込まれた部分の表面には、空間部の内部の表面に付着させた着色剤Vが付着される。 Next, the spacer 210A is placed facing the first surface of the adherend 120C. Then, pressure is applied to the spacer 210A toward the adherend 120C. When pressure is applied to the spacer 210A toward the adherend 120C, the spacer 210A to which the pressure is applied is deformed, and part of the spacer 210A is embedded inside the space 31A. The pressure applied to the spacer 210A is not particularly limited, and may be any pressure that makes the conformability to the space of the adherend 50% or more. An example of the pressure is the pressure applied when applying a high-frequency electric field while pressing the adherend (X) and the high-frequency dielectric heating adhesive with electrodes. The coloring agent V attached to the inner surface of the space is attached to the surface of the part of the spacer 210 embedded in the space.
 図7Aは、被着体120Cの第1面(すなわち空間部側)から見た平面図を表している。図7Aに示される被着体120Cは、スペーサー210Aの一部を被着体120Cの空間部に追従させる前の状態であり、かつ、凹部の内部の全面に着色剤Vを塗布する前の状態である。図7Bは、凹部の内部の全面に着色剤Vを塗布し、スペーサー210Aを被着体120Cに追従させた後、空間部31Aから取り出したスペーサー210Aにおける着色剤Vが付着した面から見た平面図を表している。 FIG. 7A shows a plan view of the adherend 120C viewed from the first surface (that is, the space portion side). The adherend 120C shown in FIG. 7A is in a state before part of the spacer 210A follows the space of the adherend 120C, and before the coloring agent V is applied to the entire interior of the recess. is. FIG. 7B is a plane of the spacer 210A taken out from the space 31A after the coloring agent V is applied to the entire interior of the recess, and the spacer 210A is made to follow the adherend 120C, as viewed from the surface of the spacer 210A to which the coloring agent V is attached. represents the figure.
 図7Aに示される面積S1A及び面積S1Bは、それぞれ、被着体120Cの空間部31Aの開口ROの形状に対応する面積の一部である。図7Bに示される面積S2A及び面積S2Bは、それぞれ、空間部31Aの内部の表面に付着させた着色剤Vを、スペーサー210Aの表面に付着させた面積の一部である。具体的には、以下のとおりである。まず、空間部31Aの内部の表面に着色剤Vを付着させ、スペーサー210Aの変形によって空間部31Aの内部を埋めたとき、空間部31Aを埋めた部分のスペーサー210Aの表面に着色剤Vが付着する。次に、スペーサー210Aを変形させるための圧力を解除して、被着体120Cとスペーサー210Aとを分離する。その後、スペーサー210Aの表面に着色剤Vが付着した部位を平面視する。当該平面視したときの面積の一部が、面積S2A及び面積S2Bである。面積S2A及び面積S2Bは、それぞれ、図7Bに示す、着色剤Vが付着した略クロス状形状の部分が該当する。 The area S1A and the area S1B shown in FIG. 7A are each part of the area corresponding to the shape of the opening RO of the space 31A of the adherend 120C. An area S2A and an area S2B shown in FIG. 7B are each part of the area where the colorant V attached to the inner surface of the space 31A is attached to the surface of the spacer 210A. Specifically, it is as follows. First, when the coloring agent V is attached to the inner surface of the space 31A and the interior of the space 31A is filled by deformation of the spacer 210A, the coloring agent V adheres to the surface of the spacer 210A that fills the space 31A. do. Next, the pressure for deforming the spacers 210A is released to separate the adherend 120C and the spacers 210A. After that, the portion where the coloring agent V is attached to the surface of the spacer 210A is viewed from above. A part of the area when viewed in plan is the area S2A and the area S2B. The area S2A and the area S2B respectively correspond to the substantially cross-shaped portions to which the coloring agent V is adhered, as shown in FIG. 7B.
 そして、空間部追従性FPは、前述の数式1にしたがって、面積S2A及び面積S2Bの合計の面積(S2)を、面積S1A及び面積S1Bの合計の面積(S1)で除した百分率で表される。 Then, according to the above-mentioned formula 1, the spatial followability FP is expressed as a percentage obtained by dividing the total area (S2) of the areas S2A and S2B by the total area (S1) of the areas S1A and S1B. .
<高周波誘電加熱用接着剤>
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、熱可塑性樹脂(A)を含む。高周波誘電加熱用接着剤は、熱可塑性樹脂(A)を含むとともに、さらに、誘電材料を含んでいてもよく、誘電材料を含んでいなくてもよい。高周波誘電加熱用接着剤の発熱性を高めやすくする観点から、高周波誘電加熱用接着剤は、誘電材料を含んでいることが好ましい。誘電材料は、特に限定されず、誘電樹脂、及び誘電フィラーのいずれでもよい。誘電材料は、成形時による劣化が少なく、安定した発熱性が得られる観点で、例えば、誘電フィラー(B)であることが好ましい。
<Adhesive for high-frequency dielectric heating>
The high-frequency dielectric heating adhesive used in the bonding method according to this embodiment contains a thermoplastic resin (A). The high-frequency dielectric heating adhesive contains the thermoplastic resin (A) and may or may not contain a dielectric material. From the viewpoint of facilitating the enhancement of the heat generation property of the high-frequency dielectric heating adhesive, the high-frequency dielectric heating adhesive preferably contains a dielectric material. The dielectric material is not particularly limited, and may be either dielectric resin or dielectric filler. The dielectric material is preferably a dielectric filler (B), for example, from the viewpoint of less deterioration during molding and stable heat generation.
 本明細書中、本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤が含有する熱可塑性樹脂が熱可塑性樹脂(A)と表記され、誘電フィラーが誘電フィラー(B)と表記される場合がある。 In this specification, the thermoplastic resin contained in the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is referred to as thermoplastic resin (A), and the dielectric filler is referred to as dielectric filler (B). There is
(熱可塑性樹脂(A))
 熱可塑性樹脂(A)の種類は、特に制限されない。
 熱可塑性樹脂(A)は、例えば、融解し易いとともに、所定の耐熱性を有する等の観点から、ポリオレフィン系樹脂、スチレン系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリ酢酸ビニル系樹脂、フェノキシ系樹脂、及びポリエステル系樹脂からなる群から選択される少なくとも一種であることが好ましい。
(Thermoplastic resin (A))
The type of thermoplastic resin (A) is not particularly limited.
The thermoplastic resin (A) is, for example, polyolefin-based resin, styrene-based resin, polyacetal-based resin, polycarbonate-based resin, acrylic-based resin, polyamide-based resin, from the viewpoint of being easy to melt and having predetermined heat resistance. It is preferably at least one selected from the group consisting of polyimide-based resins, polyvinyl acetate-based resins, phenoxy-based resins, and polyester-based resins.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤において、熱可塑性樹脂(A)は、ポリオレフィン系樹脂又はスチレン系樹脂であることが好ましく、ポリオレフィン系樹脂であることがより好ましい。熱可塑性樹脂(A)がポリオレフィン系樹脂又はスチレン系樹脂であれば、高周波電界の印加時に高周波誘電加熱用接着剤が溶融し易く、本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤と被着体(X)とを容易に接着できる。
 本明細書において、ポリオレフィン系樹脂は、極性部位を有するポリオレフィン系樹脂及び極性部位を有さないポリオレフィン系樹脂を含み、極性部位の有無を特定する場合に、極性部位を有するポリオレフィン系樹脂又は極性部位を有さないポリオレフィン系樹脂のように記載される。
In the high-frequency dielectric heating adhesive used in the bonding method according to this embodiment, the thermoplastic resin (A) is preferably a polyolefin resin or a styrene resin, more preferably a polyolefin resin. If the thermoplastic resin (A) is a polyolefin-based resin or a styrene-based resin, the high-frequency dielectric heating adhesive is likely to melt when a high-frequency electric field is applied, and the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment can be easily melted. It can be easily adhered to the adherend (X).
In the present specification, polyolefin resin includes polyolefin resins having polar sites and polyolefin resins having no polar sites. is described as a polyolefin-based resin that does not have
 熱可塑性樹脂(A)が、極性部位を有するポリオレフィン系樹脂であることも好ましい。熱可塑性樹脂(A)が、極性部位を有さないポリオレフィン系樹脂でもよい。 It is also preferable that the thermoplastic resin (A) is a polyolefin resin having a polar site. The thermoplastic resin (A) may be a polyolefin resin that does not have a polar site.
[ポリオレフィン系樹脂]
 熱可塑性樹脂(A)としてのポリオレフィン系樹脂は、例えば、ポリエチレン、ポリプロピレン、ポリブテン、及びポリメチルペンテン等のホモポリマーからなる樹脂、並びにエチレン、プロピレン、ブテン、ヘキセン、オクテン、及び4-メチルペンテン等からなる群から選択されるモノマーの共重合体からなるα-オレフィン樹脂等が挙げられる。熱可塑性樹脂(A)としてのポリオレフィン系樹脂は、一種単独の樹脂でもよいし、二種以上の樹脂の組み合わせでもよい。
[Polyolefin resin]
Polyolefin resins as the thermoplastic resin (A) include, for example, homopolymer resins such as polyethylene, polypropylene, polybutene, and polymethylpentene, and ethylene, propylene, butene, hexene, octene, 4-methylpentene, and the like. Examples include α-olefin resins composed of copolymers of monomers selected from the group consisting of The polyolefin-based resin as the thermoplastic resin (A) may be a single resin or a combination of two or more resins.
[極性部位を有するポリオレフィン系樹脂]
 極性部位を有するポリオレフィン系樹脂における極性部位は、ポリオレフィン系樹脂に対して極性を付与できる部位であれば特に限定されない。
 また、高周波誘電加熱用接着剤が熱可塑性樹脂(A)として極性部位を有するポリオレフィン系樹脂を含有することで、誘電特性が高くなりやすくなり、被着体(X)に対する接着力が高まるため好ましい。
 極性部位を有するポリオレフィン系熱可塑性樹脂は、オレフィン系モノマーと極性部位を有するモノマーとの共重合体であってもよい。また、極性部位を有するポリオレフィン系熱可塑性樹脂は、オレフィン系モノマーの重合によって得られたオレフィン系ポリマーに極性部位を付加反応等の変性により導入させた樹脂でもよい。
[Polyolefin-based resin having a polar site]
The polar site in the polyolefin resin having a polar site is not particularly limited as long as it can impart polarity to the polyolefin resin.
Further, when the high-frequency dielectric heating adhesive contains a polyolefin-based resin having a polar site as the thermoplastic resin (A), the dielectric properties are likely to be improved, and the adhesive strength to the adherend (X) is increased, which is preferable. .
The polyolefinic thermoplastic resin having a polar site may be a copolymer of an olefinic monomer and a monomer having a polar site. The polyolefinic thermoplastic resin having a polar site may also be a resin obtained by introducing a polar site into an olefinic polymer obtained by polymerization of an olefinic monomer through modification such as an addition reaction.
 極性部位を有するポリオレフィン系樹脂を構成するオレフィン系モノマーの種類については、特に制限されない。オレフィン系モノマーとしては、例えば、エチレン、プロピレン、ブテン、ヘキセン、オクテン、及び4-メチル-1-ペンテン等が挙げられる。オレフィン系モノマーは、これらの一種単独で用いられてもよく、二種以上の組み合わせで用いられてもよい。
 オレフィン系モノマーは、機械的強度に優れ、安定した接着特性が得られるという観点から、エチレン及びプロピレンの少なくともいずれかが好ましい。
 極性部位を有するポリオレフィン系樹脂におけるオレフィン由来の構成単位は、エチレン又はプロピレンに由来する構成単位であることが好ましい。
There are no particular restrictions on the type of olefinic monomer that constitutes the polyolefinic resin having a polar site. Examples of olefinic monomers include ethylene, propylene, butene, hexene, octene, 4-methyl-1-pentene, and the like. These olefinic monomers may be used singly or in combination of two or more.
At least one of ethylene and propylene is preferable as the olefin-based monomer from the viewpoint of excellent mechanical strength and stable adhesive properties.
The olefin-derived structural unit in the polyolefin-based resin having a polar site is preferably a structural unit derived from ethylene or propylene.
 極性部位としては、例えば、水酸基、カルボキシ基、酢酸ビニル構造、及び酸無水物構造等が挙げられる。極性部位としては、酸変性によってポリオレフィン系樹脂に導入される酸変性構造等も挙げられる。 Polar sites include, for example, hydroxyl groups, carboxyl groups, vinyl acetate structures, acid anhydride structures, and the like. Examples of polar sites include acid-modified structures that are introduced into polyolefin resins by acid modification.
 極性部位としての酸変性構造は、熱可塑性樹脂(例えば、ポリオレフィン系樹脂)を酸変性することによって導入される部位である。熱可塑性樹脂(例えば、ポリオレフィン系樹脂)を酸変性する際に用いる化合物としては、不飽和カルボン酸、不飽和カルボン酸の酸無水物、及び不飽和カルボン酸のエステルのいずれかから導かれる不飽和カルボン酸誘導体成分が挙げられる。本明細書において、酸変性構造を有するポリオレフィン系樹脂を酸変性ポリオレフィン系樹脂と称する場合がある。 The acid-modified structure as a polar site is a site introduced by acid-modifying a thermoplastic resin (eg, polyolefin resin). Compounds used for acid-modifying thermoplastic resins (e.g., polyolefin resins) include unsaturated carboxylic acids, unsaturated carboxylic acid anhydrides, and unsaturated carboxylic acid esters. A carboxylic acid derivative component may be mentioned. In this specification, a polyolefin resin having an acid-modified structure may be referred to as an acid-modified polyolefin resin.
 不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、及びシトラコン酸などが挙げられる。 Examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid.
 不飽和カルボン酸の酸無水物としては、例えば、無水マレイン酸、無水イタコン酸、及び無水シトラコン酸等の不飽和カルボン酸の酸無水物などが挙げられる。 Examples of acid anhydrides of unsaturated carboxylic acids include acid anhydrides of unsaturated carboxylic acids such as maleic anhydride, itaconic anhydride, and citraconic anhydride.
 不飽和カルボン酸のエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、マレイン酸ジメチル、マレイン酸モノメチル、フマル酸ジメチル、フマル酸ジエチル、イタコン酸ジメチル、イタコン酸ジエチル、シトラコン酸ジメチル、シトラコン酸ジエチル、及びテトラヒドロ無水フタル酸ジメチル等の不飽和カルボン酸のエステルなどが挙げられる。 Examples of unsaturated carboxylic acid esters include methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dimethyl maleate, monomethyl maleate, dimethyl fumarate, diethyl fumarate, and dimethyl itaconate. , diethyl itaconate, dimethyl citraconate, diethyl citraconate, and esters of unsaturated carboxylic acids such as dimethyl tetrahydrophthalate anhydride.
(誘電フィラー(B))
 誘電材料として好ましい材料である、誘電フィラー(B)について説明する。
 誘電フィラー(B)は、高周波電界の印加により発熱するフィラーである。高周波電界とは、高周波で向きが反転する電界である。
 誘電フィラー(B)は、周波数域が3MHz以上、300MHz以下の高周波電界を印加した時に発熱するフィラーであることが好ましい。誘電フィラー(B)は、周波数域3MHz以上、300MHz以下のうち、例えば、周波数13.56MHz、27.12MHz又は40.68MHz等の高周波電界の印加により発熱するフィラーであることが好ましい。
(Dielectric filler (B))
The dielectric filler (B), which is a preferred dielectric material, will now be described.
The dielectric filler (B) is a filler that generates heat when a high frequency electric field is applied. A high-frequency electric field is an electric field whose direction is reversed at high frequencies.
The dielectric filler (B) is preferably a filler that generates heat when a high-frequency electric field with a frequency range of 3 MHz or more and 300 MHz or less is applied. The dielectric filler (B) is preferably a filler that generates heat upon application of a high-frequency electric field having a frequency of 13.56 MHz, 27.12 MHz, or 40.68 MHz, within a frequency range of 3 MHz or higher and 300 MHz or lower.
 誘電フィラー(B)は、酸化亜鉛、炭化ケイ素(SiC)、アナターゼ型酸化チタン、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸鉛、ニオブ酸カリウム、ルチル型酸化チタン、水和ケイ酸アルミニウム、アルカリ金属の水和アルミノケイ酸塩等の結晶水を有する無機材料又はアルカリ土類金属の水和アルミノケイ酸塩等の結晶水を有する無機材料等の一種単独又は二種以上の組み合わせが好適である。 Dielectric filler (B) is zinc oxide, silicon carbide (SiC), anatase titanium oxide, barium titanate, barium zirconate titanate, lead titanate, potassium niobate, rutile titanium oxide, hydrated aluminum silicate, Inorganic materials having water of crystallization such as hydrated aluminosilicate of alkali metals or inorganic materials having water of crystallization such as hydrated aluminosilicates of alkaline earth metals are preferably used singly or in combination of two or more.
 誘電フィラー(B)は、より高い発熱性が得られる観点から、酸化亜鉛、炭化ケイ素、チタン酸バリウム及び酸化チタンからなる群から選択される少なくともいずれかを含むことが好ましく、酸化亜鉛、チタン酸バリウム及び酸化チタンからなる群から選択される少なくともいずれかであることがより好ましい。 From the viewpoint of obtaining higher heat build-up, the dielectric filler (B) preferably contains at least one selected from the group consisting of zinc oxide, silicon carbide, barium titanate and titanium oxide. At least one selected from the group consisting of barium and titanium oxide is more preferable.
 例示した誘電フィラーの中でも、種類が豊富であり、様々な形状及びサイズから選択でき、高周波誘電加熱用接着剤の接着特性及び機械特性を用途に合わせて改良できるため、誘電フィラー(B)は、酸化亜鉛であることがさらに好ましい。誘電フィラー(B)として酸化亜鉛を用いることで、無色の高周波誘電加熱用接着剤を得ることができる。酸化亜鉛は、誘電フィラーの中でも密度が小さいため、誘電フィラー(B)として酸化亜鉛を含有する高周波誘電加熱用接着剤を用いて被着体(X)を接合した場合、他の誘電フィラーを含有する接着剤を用いた場合と比べて、構造体の総重量が増大し難い。酸化亜鉛は、セラミックの中でも硬度が高過ぎないため、高周波誘電加熱用接着剤の製造装置を傷つけ難い。酸化亜鉛は、不活性な酸化物であるため、熱可塑性樹脂と配合しても、熱可塑性樹脂に与えるダメージが少ない。
 また、誘電フィラー(B)としての酸化チタンは、アナターゼ型酸化チタン及びルチル型酸化チタンの少なくともいずれかであることが好ましく、誘電特性に優れるという観点から、アナターゼ型酸化チタンであることがより好ましい。
Among the dielectric fillers exemplified, there are many types, and various shapes and sizes can be selected, and the adhesive properties and mechanical properties of the high-frequency dielectric heating adhesive can be improved according to the application. Zinc oxide is more preferred. By using zinc oxide as the dielectric filler (B), a colorless adhesive for high-frequency dielectric heating can be obtained. Zinc oxide has a low density among dielectric fillers, so when the adherend (X) is bonded using a high-frequency dielectric heating adhesive containing zinc oxide as the dielectric filler (B), other dielectric fillers are included. The total weight of the structure is less likely to increase as compared with the case of using an adhesive that adheres to the structure. Zinc oxide is not too hard among ceramics, so it is less likely to damage the production equipment for high-frequency dielectric heating adhesives. Since zinc oxide is an inactive oxide, even if it is blended with a thermoplastic resin, it causes little damage to the thermoplastic resin.
In addition, the titanium oxide as the dielectric filler (B) is preferably at least one of anatase-type titanium oxide and rutile-type titanium oxide, and from the viewpoint of excellent dielectric properties, anatase-type titanium oxide is more preferable. .
 高周波誘電加熱用接着剤中の誘電フィラー(B)の体積含有率は、5体積%以上であることが好ましく、8体積%以上であることがより好ましく、10体積%以上であることがさらに好ましい。
 高周波誘電加熱用接着剤中の誘電フィラー(B)の体積含有率は、50体積%以下であることが好ましく、40体積%以下であることがより好ましく、35体積%以下であることがさらに好ましく、25体積%以下であることがよりさらに好ましい。
 高周波誘電加熱用接着剤中の誘電フィラー(B)の体積含有率が5体積%以上であることで、発熱性が向上し、高周波誘電加熱用接着剤と被着体(X)とを強固に接合し易い。
 高周波誘電加熱用接着剤中の誘電フィラー(B)の体積含有率が50体積%以下であることで、接着剤の強度低下を防ぐことができ、その結果、当該接着剤を用いることにより接合強度の低下を防ぐことができる。また、本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤が接着シートである場合、接着シート中の誘電フィラー(B)の体積含有率が50体積%以下であることで、シートとしてのフレキシブル性を得やすく、靱性の低下も防止しやすくなるので、後工程で高周波誘電加熱用接着シートを所望の形状に加工しやすい。
The volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is preferably 5% by volume or more, more preferably 8% by volume or more, and even more preferably 10% by volume or more. .
The volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is preferably 50% by volume or less, more preferably 40% by volume or less, and even more preferably 35% by volume or less. , 25% by volume or less.
When the volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is 5% by volume or more, heat generation is improved, and the high-frequency dielectric heating adhesive and the adherend (X) are firmly bonded. Easy to join.
Since the volume content of the dielectric filler (B) in the high-frequency dielectric heating adhesive is 50% by volume or less, it is possible to prevent the strength of the adhesive from decreasing, and as a result, the bonding strength is increased by using the adhesive. can prevent a decline in Further, when the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is an adhesive sheet, the volume content of the dielectric filler (B) in the adhesive sheet is 50% by volume or less. Flexibility can be easily obtained and toughness can be easily prevented from being lowered, so that the adhesive sheet for high-frequency dielectric heating can be easily processed into a desired shape in a subsequent step.
 なお、本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤が、熱可塑性樹脂(A)及び誘電フィラー(B)を含む場合、熱可塑性樹脂(A)及び誘電フィラー(B)の合計体積に対して、誘電フィラー(B)の体積含有率は、5体積%以上であることが好ましく、8体積%以上であることがより好ましく、10体積%以上であることがさらに好ましい。熱可塑性樹脂(A)及び誘電フィラー(B)の合計体積に対して、誘電フィラー(B)の体積含有率は、50体積%以下であることが好ましく、40体積%以下であることがより好ましく、35体積%以下であることがさらに好ましく、25体積%以下であることがよりさらに好ましい。 In addition, when the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment contains the thermoplastic resin (A) and the dielectric filler (B), the total volume of the thermoplastic resin (A) and the dielectric filler (B) In contrast, the volume content of the dielectric filler (B) is preferably 5% by volume or more, more preferably 8% by volume or more, and even more preferably 10% by volume or more. The volume content of the dielectric filler (B) is preferably 50% by volume or less, more preferably 40% by volume or less, relative to the total volume of the thermoplastic resin (A) and the dielectric filler (B). , more preferably 35% by volume or less, and even more preferably 25% by volume or less.
 誘電フィラー(B)の体積平均粒子径は、1μm以上であることが好ましく、2μm以上であることがより好ましく、3μm以上であることがさらに好ましい。
 誘電フィラー(B)の体積平均粒子径は、30μm以下であることが好ましく、25μm以下であることがより好ましく、20μm以下であることがさらに好ましい。
 誘電フィラー(B)の体積平均粒子径が1μm以上であることで、高周波誘電加熱用接着剤は、高周波電界の印加時に高い発熱性能を発現し、被着体(X)と短時間で強固に接着できる。
 誘電フィラー(B)の体積平均粒子径が30μm以下であることで、高周波誘電加熱用接着剤は、高周波電界の印加時に高い発熱性能を発現し、被着体(X)と短時間で強固に接着できる。また、本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤が接着シートである場合、誘電フィラー(B)の体積平均粒子径が30μm以下であることで、高周波誘電加熱用接着シートの強度低下を防止できる。
The volume average particle size of the dielectric filler (B) is preferably 1 μm or more, more preferably 2 μm or more, and even more preferably 3 μm or more.
The volume average particle size of the dielectric filler (B) is preferably 30 μm or less, more preferably 25 μm or less, and even more preferably 20 μm or less.
Since the dielectric filler (B) has a volume average particle size of 1 μm or more, the high-frequency dielectric heating adhesive exhibits high heat generation performance when a high-frequency electric field is applied, and is firmly attached to the adherend (X) in a short time. Can be glued.
Since the dielectric filler (B) has a volume average particle size of 30 μm or less, the high-frequency dielectric heating adhesive exhibits high heat generation performance when a high-frequency electric field is applied, and is firmly attached to the adherend (X) in a short time. Can be glued. Further, when the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is an adhesive sheet, the volume average particle size of the dielectric filler (B) is 30 μm or less, so that the strength of the high-frequency dielectric heating adhesive sheet You can prevent the decline.
 誘電フィラー(B)の体積平均粒子径は、次のような方法によって測定される。レーザー回折・散乱法により、誘電フィラー(B)の粒度分布測定を行い、当該粒度分布測定の結果からJIS Z 8819-2:2001に準じて体積平均粒子径を算出する。 The volume average particle size of the dielectric filler (B) is measured by the following method. The particle size distribution of the dielectric filler (B) is measured by a laser diffraction/scattering method, and the volume average particle size is calculated from the results of the particle size distribution measurement according to JIS Z 8819-2:2001.
<添加剤>
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、添加剤を含んでいてもよいし、添加剤を含んでいなくてもよい。
<Additive>
The high-frequency dielectric heating adhesive used in the bonding method according to this embodiment may or may not contain an additive.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤が添加剤を含む場合、添加剤としては、例えば、粘着付与剤、可塑剤、ワックス、着色剤、酸化防止剤、紫外線吸収剤、抗菌剤、カップリング剤、粘度調整剤、有機充填剤、及び無機充填剤等が挙げられる。添加剤としての有機充填剤及び無機充填剤は、誘電材料(誘電フィラー)とは異なる。 When the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment contains additives, the additives include, for example, tackifiers, plasticizers, waxes, colorants, antioxidants, ultraviolet absorbers, antibacterial agents, coupling agents, viscosity modifiers, organic fillers, inorganic fillers, and the like. Organic and inorganic fillers as additives are different from dielectric materials (dielectric fillers).
 粘着付与剤及び可塑剤は、高周波誘電加熱用接着剤の溶融特性、及び接着特性を改良できる。
 粘着付与剤としては、例えば、ロジン誘導体、ポリテルペン樹脂、芳香族変性テルペン樹脂、芳香族変性テルペン樹脂の水素化物、テルペンフェノール樹脂、クマロン・インデン樹脂、脂肪族石油樹脂、芳香族石油樹脂、及び芳香族石油樹脂の水素化物が挙げられる。
 可塑剤としては、例えば、石油系プロセスオイル、天然油、二塩基酸ジアルキル、及び低分子量液状ポリマーが挙げられる。石油系プロセスオイルとしては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、及び芳香族系プロセスオイル等が挙げられる。天然油としては、例えば、ひまし油、及びトール油等が挙げられる。二塩基酸ジアルキルとしては、例えば、フタル酸ジブチル、フタル酸ジオクチル、及びアジピン酸ジブチル等が挙げられる。低分子量液状ポリマーとしては、例えば、液状ポリブテン、及び液状ポリイソプレン等が挙げられる。
Tackifiers and plasticizers can improve the melting and adhesion properties of high frequency dielectric heating adhesives.
Examples of tackifiers include rosin derivatives, polyterpene resins, aromatic modified terpene resins, hydrides of aromatic modified terpene resins, terpene phenol resins, coumarone-indene resins, aliphatic petroleum resins, aromatic petroleum resins, and aromatic and hydrides of family petroleum resins.
Plasticizers include, for example, petroleum-based process oils, natural oils, dialkyl dibasic acids, and low molecular weight liquid polymers. Petroleum-based process oils include, for example, paraffinic process oils, naphthenic process oils, and aromatic process oils. Natural oils include, for example, castor oil, tall oil, and the like. Dialkyl dibasic acids include, for example, dibutyl phthalate, dioctyl phthalate, and dibutyl adipate. Examples of low molecular weight liquid polymers include liquid polybutene and liquid polyisoprene.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤が添加剤を含む場合、高周波誘電加熱用接着剤中の添加剤の含有率は、通常、高周波誘電加熱用接着剤の全体量基準で、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。また、高周波誘電加熱用接着剤中の添加剤の含有率は、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 When the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment contains an additive, the content of the additive in the high-frequency dielectric heating adhesive is usually based on the total amount of the high-frequency dielectric heating adhesive. , is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and even more preferably 0.1% by mass or more. The content of the additive in the high-frequency dielectric heating adhesive is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、溶剤を含有しないことが好ましい。溶剤を含有しない高周波誘電加熱用接着剤によれば、被着体(X)との接着に用いる接着剤に起因するVOC(Volatile Organic Compounds)の問題が発生し難い。 The high-frequency dielectric heating adhesive used in the bonding method according to this embodiment preferably does not contain a solvent. According to the solvent-free high-frequency dielectric heating adhesive, the problem of volatile organic compounds (VOC) caused by the adhesive used for adhesion to the adherend (X) is less likely to occur.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、炭素又は炭素を主成分とする炭素化合物(例えば、カーボンブラック等)及び金属等の導電性物質を含有しないことが好ましい。本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、例えば、炭素鋼、α鉄、γ鉄、δ鉄、銅、酸化鉄、黄銅、アルミニウム、鉄-ニッケル合金、鉄-ニッケル-クロム合金、カーボンファイバー及びカーボンブラックを含有しないことが好ましい。 The high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment preferably does not contain carbon or a carbon compound containing carbon as a main component (for example, carbon black, etc.) and a conductive substance such as metal. High-frequency dielectric heating adhesives used in the bonding method according to the present embodiment include, for example, carbon steel, α-iron, γ-iron, δ-iron, copper, iron oxide, brass, aluminum, iron-nickel alloy, iron-nickel-chromium. It is preferably free of alloys, carbon fibers and carbon black.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤が導電性物質を含有する場合、接着剤中の導電性物質の含有率は、それぞれ独立に、接着剤の全体量基準で、7質量%以下であることが好ましく、6質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、1質量%以下であることがよりさらに好ましく、0.1質量%以下であることがさらになお好ましい。
 接着剤中の導電性物質の含有率は、0質量%であることが特に好ましい。
 接着剤中の導電性物質の含有率が7質量%以下であれば、誘電加熱処理した際に電気絶縁破壊して接着部及び被着体(X)の炭化という不具合を防止し易くなる。
When the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment contains a conductive substance, the content of the conductive substance in the adhesive is independently 7 mass based on the total amount of the adhesive. % or less, more preferably 6% by mass or less, even more preferably 5% by mass or less, even more preferably 1% by mass or less, and 0.1% by mass or less. is even more preferred.
It is particularly preferable that the content of the conductive substance in the adhesive is 0% by mass.
If the content of the conductive substance in the adhesive is 7% by mass or less, it becomes easy to prevent the problem of carbonization of the bonding portion and the adherend (X) due to electrical breakdown during the dielectric heat treatment.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤中、熱可塑性樹脂(A)及び誘電フィラー(B)の合計含有率は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、93質量%以上であることがさらに好ましく、95質量%以上であることがよりさらに好ましく、99質量%以上であることがさらになお好ましい。 The total content of the thermoplastic resin (A) and the dielectric filler (B) in the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably 80% by mass or more, and 90% by mass or more. It is more preferably 93% by mass or more, even more preferably 95% by mass or more, and even more preferably 99% by mass or more.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の形状は、特に限定されず、シート状であることが好ましい。すなわち、本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、接着シート(高周波誘電加熱用接着シートと称する場合がある。)であることが好ましい。高周波誘電加熱用接着剤が接着シートであることで、構造体の製造工程の時間をさらに短縮することができる。シート状の高周波誘電加熱用接着剤は、互いに対向する面における一方の面から他方の面に向かって貫通する開口部を備える枠状シートの形状でもよい。当該開口部は、1つ有していてもよく、又は2つ以上有していてもよい。シート状の高周波誘電加熱用接着剤は、当該開口部を有さないシートでもよい。 The shape of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is not particularly limited, and is preferably sheet-like. That is, the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably an adhesive sheet (sometimes referred to as a high-frequency dielectric heating adhesive sheet). Since the high-frequency dielectric heating adhesive is an adhesive sheet, it is possible to further shorten the time required for the manufacturing process of the structure. The sheet-like high-frequency dielectric heating adhesive may be in the form of a frame-like sheet having openings penetrating from one surface to the other surface of the surfaces facing each other. The opening may have one, or may have two or more. The sheet-like high-frequency dielectric heating adhesive may be a sheet without the opening.
(誘電特性)
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の誘電特性(tanδ/ε’r)について説明する。本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、高周波誘電加熱用接着剤の誘電特性(tanδ/ε’r)が、0.005以上である。(tanδは、23℃かつ周波数40.68MHzにおける誘電正接であり、
 ε’rは、23℃かつ周波数40.68MHzにおける比誘電率である。)
(dielectric properties)
The dielectric properties (tan δ/ε'r) of the high-frequency dielectric heating adhesive used in the bonding method according to this embodiment will be described. The high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment has a dielectric property (tan δ/ε′r) of 0.005 or more. (tan δ is the dielectric loss tangent at 23 ° C. and a frequency of 40.68 MHz,
ε′r is the dielectric constant at 23° C. and a frequency of 40.68 MHz. )
 高周波誘電加熱用接着剤の誘電特性が、0.005以上であれば、誘電加熱処理をした際に、高周波誘電加熱用接着剤が発熱し易く、高周波誘電加熱用接着剤と被着体(X)とを短時間で強固に接合し易くなる。 If the dielectric property of the high-frequency dielectric heating adhesive is 0.005 or more, the high-frequency dielectric heating adhesive easily generates heat when the dielectric heating treatment is performed, and the high-frequency dielectric heating adhesive and the adherend (X ) can be firmly joined in a short time.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の誘電特性は、0.008以上であることがより好ましく、0.010以上であることがさらに好ましい。
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の誘電特性が0.008以上であれば、誘電加熱処理をした際に、高周波誘電加熱用接着剤がより発熱しやすくなり、高周波誘電加熱用接着剤と被着体(X)とを短時間で強固に接合し易くなる。
The dielectric property of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is more preferably 0.008 or more, and even more preferably 0.010 or more.
If the dielectric property of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is 0.008 or more, the high-frequency dielectric heating adhesive is more likely to generate heat when the dielectric heating treatment is performed. It becomes easy to bond the heating adhesive and the adherend (X) firmly in a short time.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の誘電特性の上限は特に限定されない。本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の誘電特性は、例えば、0.1以下であってもよく、0.08以下であってもよく、0.05以下であってもよい。高周波誘電加熱用接着剤の誘電特性は、例えば、0.005以上、0.1以下を満たしてもよい。
 高周波誘電加熱用接着剤の誘電特性が、0.1以下であれば、過熱を抑制しやすくなり、被着体(X)と高周波誘電加熱用接着剤とが接する部分の損傷が起きにくい。
The upper limit of the dielectric properties of the high-frequency dielectric heating adhesive used in the bonding method according to this embodiment is not particularly limited. The dielectric property of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment may be, for example, 0.1 or less, 0.08 or less, or 0.05 or less. good. The dielectric properties of the high-frequency dielectric heating adhesive may satisfy, for example, 0.005 or more and 0.1 or less.
If the dielectric property of the high-frequency dielectric heating adhesive is 0.1 or less, overheating is easily suppressed, and damage to the portion where the adherend (X) and the high-frequency dielectric heating adhesive are in contact is less likely to occur.
 高周波誘電加熱用接着剤の誘電特性(tanδ/ε’r)の測定方法は、前述のスペーサーの誘電特性(tanδ/ε’r)で説明した測定方法と同様である。
 なお、高周波誘電加熱用接着剤の誘電特性(tanδ/ε’r)の測定において、高周波誘電加熱用接着剤の測定用シートを構造体から得る必要がある場合は、構造体から切り出したり、削り出したりすることにより、均一な厚さの測定用シートを得る。シート化されていない、例えば、ペレット状の高周波誘電加熱用接着剤については、熱プレス機などでシート化することにより測定用シートを得ればよい。
The method of measuring the dielectric properties (tan δ/ε'r) of the high-frequency dielectric heating adhesive is the same as the method of measuring the dielectric properties (tan δ/ε'r) of the spacer described above.
In addition, in the measurement of the dielectric properties (tan δ/ε'r) of the high-frequency dielectric heating adhesive, if it is necessary to obtain a measurement sheet for the high-frequency dielectric heating adhesive from the structure, cut it out from the structure or scrape it. A sheet for measurement with a uniform thickness is obtained by taking out the sheet. For example, a pellet-like high-frequency dielectric heating adhesive that is not formed into a sheet may be formed into a sheet using a heat press or the like to obtain a sheet for measurement.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の厚さは、5μm以上であることが好ましく、10μm以上であることがより好ましく、30μm以上であることがさらに好ましく、50μm以上であることが特に好ましい。
 接着シートの厚さが5μm以上であれば、被着体(X)と接する接着シートについて高周波印加時の発熱性が向上するので、接着シートと被着体(X)とを短時間で強固に接着し易い。また、被着体(X)と接合させる際に、接着シートが被着体の第2面の形状に追従しやすく、接着強度が発現しやすくなる。
The thickness of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably 5 μm or more, more preferably 10 μm or more, even more preferably 30 μm or more, and 50 μm or more. is particularly preferred.
When the thickness of the adhesive sheet is 5 μm or more, the adhesive sheet in contact with the adherend (X) is improved in heat generation when a high frequency is applied, so that the adhesive sheet and the adherend (X) can be firmly bonded in a short time. Easy to adhere. In addition, when the adhesive sheet is bonded to the adherend (X), the adhesive sheet easily conforms to the shape of the second surface of the adherend, and adhesive strength is easily exhibited.
 接着シートの厚さの上限は、特に限定されない。接着シートの厚さが増すほど、接着シートと被着体(X)とを接着して得られる構造体全体の重量も増加する。このため、接着シートは、例えば、加工性、取り扱い性など、実使用上問題ない範囲の厚さであることが好ましい。高周波誘電加熱用接着シートの実用性及び成形性も考慮すると、本実施形態に係る接合方法に用いる接着シートの厚さは、2000μm以下であることが好ましく、1000μm以下であることがより好ましく、600μm以下であることがさらに好ましい。 The upper limit of the thickness of the adhesive sheet is not particularly limited. As the thickness of the adhesive sheet increases, the weight of the entire structure obtained by bonding the adhesive sheet and the adherend (X) also increases. For this reason, the adhesive sheet preferably has a thickness within a range in which there is no practical problem in workability, handleability, or the like. Considering the practicality and moldability of the high-frequency dielectric heating adhesive sheet, the thickness of the adhesive sheet used in the bonding method according to the present embodiment is preferably 2000 μm or less, more preferably 1000 μm or less, and more preferably 600 μm. More preferably:
 高周波誘電加熱用接着剤としての接着シートは、塗布が必要な液状の接着剤を用いる場合と比べて、取り扱い易く、被着体(X)との接合時の作業性も向上する。 The adhesive sheet as the high-frequency dielectric heating adhesive is easier to handle and improves workability when bonding to the adherend (X), compared to the case of using a liquid adhesive that requires coating.
 また、高周波誘電加熱用接着剤としての接着シートは、シート厚さなどを適宜制御できる。そのため、接着シートをロール・ツー・ロール方式に適用することもでき、かつ、抜き加工等により、被着体(X)の第2面との接着面積、並びに被着体(X)の第2面の形状に合わせて、接着シートを任意の面積及び形状に加工できる。そのため、高周波誘電加熱用接着剤としての接着シートは、製造工程の観点からも、利点が大きい。 In addition, the sheet thickness and the like of the adhesive sheet used as the high-frequency dielectric heating adhesive can be appropriately controlled. Therefore, the adhesive sheet can be applied in a roll-to-roll system, and the adhesive area with the second surface of the adherend (X) and the second surface of the adherend (X) can be reduced by punching or the like. The adhesive sheet can be processed into an arbitrary area and shape according to the shape of the surface. Therefore, the adhesive sheet as an adhesive for high-frequency dielectric heating has a great advantage also from the viewpoint of the manufacturing process.
(高周波誘電加熱用接着剤の態様)
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の形状は、特に限定されず、シート状であることが好ましい。すなわち、本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、接着シート(高周波誘電加熱用接着シートと称する場合がある。)であることが好ましい。高周波誘電加熱用接着剤が接着シートであることで、構造体の製造工程の時間をさらに短縮することができる。
(Aspect of adhesive for high-frequency dielectric heating)
The shape of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is not particularly limited, and is preferably sheet-like. That is, the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably an adhesive sheet (sometimes referred to as a high-frequency dielectric heating adhesive sheet). Since the high-frequency dielectric heating adhesive is an adhesive sheet, it is possible to further shorten the time required for the manufacturing process of the structure.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、一態様では、本実施形態に係る接合方法に用いる高周波誘電加熱用接着シートからなる接着層の一層のみで構成される。高周波誘電加熱用接着剤が、接着層の一層のみからなる高周波誘電加熱用接着シートである場合、当該接着層そのもの(当該接着層自体)が高周波誘電加熱用接着シートに相当するため、高周波誘電加熱用接着シートの形態及び特性は、接着層の形態及び特性に相当する。高周波誘電加熱用接着シートは、単一の接着層のみからなることが好ましい。すなわち、本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、単一の接着層のみからなる高周波誘電加熱用接着シートであることが好ましい。これにより、高周波誘電加熱用接着シートの厚さを薄くすることができ、また、簡単に高周波誘電加熱用接着シートを成形することができる。 In one aspect, the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is composed of only one adhesive layer made of the high-frequency dielectric heating adhesive sheet used in the bonding method according to the present embodiment. When the high-frequency dielectric heating adhesive is a high-frequency dielectric heating adhesive sheet consisting of only one adhesive layer, the adhesive layer itself (the adhesive layer itself) corresponds to the high-frequency dielectric heating adhesive sheet. The morphology and properties of the adhesive sheet for adhesives correspond to the morphology and properties of the adhesive layer. The high-frequency dielectric heating adhesive sheet preferably consists of only a single adhesive layer. That is, the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably a high-frequency dielectric heating adhesive sheet consisting of only a single adhesive layer. As a result, the thickness of the high-frequency dielectric heating adhesive sheet can be reduced, and the high-frequency dielectric heating adhesive sheet can be easily molded.
 高周波誘電加熱用接着シートは、高周波誘電加熱接着性の接着層の一層のみからなる場合があるため、本明細書において、「高周波誘電加熱用接着シート」という用語と、「接着層」という用語は、場合によっては、互いに入れ替えることが可能である。 Since the adhesive sheet for high-frequency dielectric heating may consist of only one adhesive layer with high-frequency dielectric heating adhesiveness, the terms "adhesive sheet for high-frequency dielectric heating" and "adhesive layer" are used in this specification. , in some cases can be interchanged with each other.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、接着層の一層のみからなる高周波誘電加熱用接着シートの態様に限定されない。高周波誘電加熱用接着の別の態様では、被着体の少なくとも一方の面に予め高周波誘電加熱用接着層が設けられていてもよい。 The high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is not limited to the mode of the high-frequency dielectric heating adhesive sheet consisting of only one adhesive layer. In another aspect of the high-frequency dielectric heating adhesion, an adhesive layer for high-frequency dielectric heating may be provided in advance on at least one surface of the adherend.
 図8A~図8Cには、本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤の概略図であり、複数の態様が例示されている。 FIGS. 8A to 8C are schematic diagrams of the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment, exemplifying a plurality of modes.
 図8Aに示す高周波誘電加熱用接着剤11Aは、単一の接着層のみから構成される接着シート12である。 A high-frequency dielectric heating adhesive 11A shown in FIG. 8A is an adhesive sheet 12 composed of only a single adhesive layer.
 図8Bに示す高周波誘電加熱用接着剤付き被着体14は、接着層としての高周波誘電加熱用接着剤11Aと、被着体(X)としての被着体120Aとを備えており、高周波誘電加熱用接着剤11Aが、被着体120Aに一体に設けられている。被着体120Aは、第1面と、第2面とを備え、第1面は起伏面を有し、第2面は起伏面を有さない。高周波誘電加熱用接着剤11Aは、被着体120Aの第2面に、直接、接して設けられている。高周波誘電加熱用接着剤付き被着体14は、高周波誘電加熱用接着剤11Aと、被着体120Aとを、それぞれ準備して貼り合わせて一体としてもよく、被着体120Aを作成するときに、被着体120Aの第2面に高周波誘電加熱用接着剤11Aを設けて一体としてもよい。被着体120Aは、前述の被着体の材質で説明した材質と同様の材質が用いられる。 The adherend 14 with a high-frequency dielectric heating adhesive shown in FIG. A heating adhesive 11A is provided integrally with the adherend 120A. The adherend 120A has a first surface and a second surface, the first surface having an undulating surface and the second surface having no undulating surface. The high-frequency dielectric heating adhesive 11A is provided in direct contact with the second surface of the adherend 120A. The adherend 14 with the high-frequency dielectric heating adhesive may be prepared by separately preparing the high-frequency dielectric heating adhesive 11A and the adherend 120A and bonding them together to form an integral body. Alternatively, the second surface of the adherend 120A may be integrated with the high-frequency dielectric heating adhesive 11A. For the adherend 120A, the same material as the material described above for the material of the adherend is used.
 図8Cに示す高周波誘電加熱用接着剤付き被着体16は、接着層としての高周波誘電加熱用接着剤11Aと、被着体110Aとを備えており、高周波誘電加熱用接着剤11Aが、被着体110Aに一体に設けられている。被着体110Aは、第1面及び第2面のいずれも、起伏面を有さない。高周波誘電加熱用接着剤11Aは、被着体110Aの起伏面を有さない面に、直接、接して設けられている。高周波誘電加熱用接着剤付き被着体16は、高周波誘電加熱用接着剤11Aと、被着体110Aとを、それぞれ準備して貼り合わせて一体としてもよく、被着体110Aを作成するときに、被着体110Aの平坦面に高周波誘電加熱用接着剤11Aを設けて一体としてもよい。被着体110Aは、前述の被着体の材質で説明した材質と同様の材質が用いられる。 The adherend 16 with a high-frequency dielectric heating adhesive shown in FIG. 8C includes a high-frequency dielectric heating adhesive 11A as an adhesive layer and an adherend 110A. It is provided integrally with the adherend 110A. Neither the first surface nor the second surface of the adherend 110A has an undulating surface. The high-frequency dielectric heating adhesive 11A is provided in direct contact with the non-undulating surface of the adherend 110A. The adherend 16 with the high-frequency dielectric heating adhesive may be formed by preparing the high-frequency dielectric heating adhesive 11A and the adherend 110A and bonding them together to form an integral body. Alternatively, the flat surface of the adherend 110A may be integrated with the high-frequency dielectric heating adhesive 11A. For the adherend 110A, the same material as the material described above for the material of the adherend is used.
 なお、前述の配置工程において、高周波誘電加熱用接着剤11Aは、被着体120A、又は被着体110Aの電極側に配置される面と反対側の面に配置される。また、高周波誘電加熱用接着剤が、単一の接着層である高周波誘電加熱用接着剤11Aのみから構成される場合、前述の配置工程では、高周波誘電加熱用接着剤11Aと、被着体(X)(例えば、被着体120A)とがそれぞれ配置される。一方、高周波誘電加熱用接着剤が、被着体に一体に設けられている場合、前述の配置工程において、高周波誘電加熱用接着剤付き被着体14を配置すればよい。また、高周波誘電加熱用接着剤付き被着体16を用いる場合は、前述の配置工程において、被着体(X)(例えば、被着体120A)と、高周波誘電加熱用接着剤付き被着体16とを配置すればよい。いずれの場合においても、被着体(X)の第1面は、高周波誘電加熱用接着剤11Aと反対側に向けて配置される。 It should be noted that, in the placement step described above, the high-frequency dielectric heating adhesive 11A is placed on the surface of the adherend 120A or the surface of the adherend 110A opposite to the electrode-side surface. Further, when the high-frequency dielectric heating adhesive is composed of only the high-frequency dielectric heating adhesive 11A, which is a single adhesive layer, in the above-described placement step, the high-frequency dielectric heating adhesive 11A and the adherend ( X) (for example, adherend 120A) are placed respectively. On the other hand, when the high-frequency dielectric heating adhesive is provided integrally with the adherend, the adherend 14 with the high-frequency dielectric heating adhesive may be placed in the aforementioned placement step. When the adherend 16 with the high-frequency dielectric heating adhesive is used, the adherend (X) (for example, the adherend 120A) and the adherend with the high-frequency dielectric heating adhesive 16 should be arranged. In either case, the first surface of the adherend (X) is arranged facing away from the high-frequency dielectric heating adhesive 11A.
(厚さ)
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤が、接着層の一層のみからなる接着シートである場合、本実施形態に係る接合方法に用いる接着シートの厚さは、5μm以上であることが好ましく、10μm以上であることがより好ましく、30μm以上であることがさらに好ましく、50μm以上であることが特に好ましい。
 接着シートの厚さが5μm以上であれば、被着体(X)と接する接着シートについて高周波印加時の発熱性が向上するので、接着シートと被着体(X)とを短時間で強固に接着し易い。また、被着体(X)と接合させる際に、接着シートが被着体(X)の第2面に追従しやすく、接着強度が発現しやすくなる。
(thickness)
When the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is an adhesive sheet consisting of only one adhesive layer, the thickness of the adhesive sheet used in the bonding method according to the present embodiment is 5 μm or more. is preferably 10 μm or more, more preferably 30 μm or more, and particularly preferably 50 μm or more.
When the thickness of the adhesive sheet is 5 μm or more, the adhesive sheet in contact with the adherend (X) is improved in heat generation when a high frequency is applied, so that the adhesive sheet and the adherend (X) can be firmly bonded in a short time. Easy to adhere. In addition, when the adhesive sheet is bonded to the adherend (X), the adhesive sheet easily follows the second surface of the adherend (X), and adhesive strength is easily exhibited.
 接着シートが、高周波誘電加熱用接着剤付き被着体の接着剤である場合、接着層の厚さは、5μm以上であることが好ましく、10μm以上であることがより好ましく、30μm以上であることがさらに好ましく、50μm以上であることがよりさらに好ましい。
 高周波誘電加熱用接着剤付き被着体の接着剤である場合、接着層の厚さが5μm以上であれば、被着体と接合させる際に、接着層が被着体の接着層が設けられる面の表面に追従しやすく、接着強度が発現しやすくなる。
When the adhesive sheet is an adhesive for an adherend with an adhesive for high-frequency dielectric heating, the thickness of the adhesive layer is preferably 5 µm or more, more preferably 10 µm or more, and more preferably 30 µm or more. is more preferable, and 50 μm or more is even more preferable.
In the case of an adhesive for an adherend with a high-frequency dielectric heating adhesive, if the thickness of the adhesive layer is 5 μm or more, the adhesive layer is provided on the adherend when bonding to the adherend. It is easy to follow the surface of the surface, and it becomes easy to develop adhesive strength.
 接着シートの厚さの上限は、特に限定されない。接着シートの厚さが増すほど、接着シートと被着体(X)とを接着して得られる構造体全体の重量も増加する。このため、接着シートは、例えば、加工性、取り扱い性など、実使用上問題ない範囲の厚さであることが好ましい。高周波誘電加熱用接着シートの実用性及び成形性も考慮すると、本実施形態に係る接合方法に用いる接着シートの厚さは、2000μm以下であることが好ましく、1000μm以下であることがより好ましく、600μm以下であることがさらに好ましい。接着シートの厚さの上限は、接着層の一層のみからなる構成、接着層を含む複数の層からなる多層構成のいずれの場合にもかかわらず、上記の値であることが好ましい。 The upper limit of the thickness of the adhesive sheet is not particularly limited. As the thickness of the adhesive sheet increases, the weight of the entire structure obtained by bonding the adhesive sheet and the adherend (X) also increases. For this reason, the adhesive sheet preferably has a thickness within a range in which there is no practical problem in workability, handleability, or the like. Considering the practicality and moldability of the high-frequency dielectric heating adhesive sheet, the thickness of the adhesive sheet used in the bonding method according to the present embodiment is preferably 2000 μm or less, more preferably 1000 μm or less, and more preferably 600 μm. More preferably: The upper limit of the thickness of the adhesive sheet is preferably the above value regardless of whether the adhesive sheet has a structure consisting of only one adhesive layer or a multi-layer structure consisting of a plurality of layers including an adhesive layer.
 高周波誘電加熱用接着剤としての接着シートは、塗布が必要な液状の接着剤を用いる場合と比べて、取り扱い易く、被着体(X)との接合時の作業性も向上する。 The adhesive sheet as the high-frequency dielectric heating adhesive is easier to handle and improves workability when bonding to the adherend (X), compared to the case of using a liquid adhesive that requires coating.
 また、高周波誘電加熱用接着剤としての接着シートは、シート厚さなどを適宜制御できる。そのため、接着シートをロール・ツー・ロール方式に適用することもでき、かつ、抜き加工等により、被着体(X)の第2面との接着面積、並びに被着体(X)の第2面の形状に合わせて、接着シートを任意の面積及び形状に加工できる。そのため、高周波誘電加熱用接着剤としての接着シートは、製造工程の観点からも、利点が大きい。 In addition, the sheet thickness and the like of the adhesive sheet used as the high-frequency dielectric heating adhesive can be appropriately controlled. Therefore, the adhesive sheet can be applied in a roll-to-roll system, and the adhesive area with the second surface of the adherend (X) and the second surface of the adherend (X) can be reduced by punching or the like. The adhesive sheet can be processed into an arbitrary area and shape according to the shape of the surface. Therefore, the adhesive sheet as an adhesive for high-frequency dielectric heating has a great advantage also from the viewpoint of the manufacturing process.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、いわゆる短波から超短波と呼ばれる周波数帯(例えば、3MHz以上、300MHz以下)の高周波電界を印加して用いられることが好ましい。当該周波数帯の高周波電界を印加すると、加熱可能な深さが深いため、高周波印加時の発熱性が向上する。このため、高周波誘電加熱用接着剤の厚さが厚い場合でも、接着シートと被着体(X)とを短時間で強固に接着しやすい。 The high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is preferably used by applying a high-frequency electric field in a so-called short wave to ultra-short wave frequency band (for example, 3 MHz or more and 300 MHz or less). When a high-frequency electric field in this frequency band is applied, heat generation is improved when a high-frequency wave is applied, because the depth that can be heated is deep. Therefore, even when the high-frequency dielectric heating adhesive is thick, the adhesive sheet and the adherend (X) are easily and firmly bonded in a short time.
(高周波誘電加熱用接着剤の製造方法)
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、例えば、上述の各成分を混合することにより製造できる。本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤が接着シートである場合、例えば、上述の各成分を予備混合し、押出機、及び熱ロール等の公知の混練装置を用いて混練し、押出成形、カレンダー成形、インジェクション成形、及びキャスティング成形等の公知の成形方法により製造できる。
(Manufacturing method of adhesive for high-frequency dielectric heating)
The high-frequency dielectric heating adhesive used in the bonding method according to this embodiment can be produced, for example, by mixing the components described above. When the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment is an adhesive sheet, for example, the components described above are premixed and kneaded using a known kneading device such as an extruder and hot rolls. , extrusion molding, calendar molding, injection molding, and casting molding.
 高周波誘電加熱用接着剤は、一般的な粘着剤に比べて、耐水性及び耐湿性が優れる。 High-frequency dielectric heating adhesives have superior water resistance and moisture resistance compared to general adhesives.
 本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤は、高周波電界の印加により局所的に加熱される。それゆえ、本実施形態に係る接合方法に用いる高周波誘電加熱用接着剤によれば、被着体(X)との接合時に被着体(X)全体が損傷するという不具合を防ぎやすい。 The high-frequency dielectric heating adhesive used in the bonding method according to this embodiment is locally heated by application of a high-frequency electric field. Therefore, according to the high-frequency dielectric heating adhesive used in the bonding method according to the present embodiment, it is easy to prevent the problem that the entire adherend (X) is damaged during bonding with the adherend (X).
〔実施形態の変形〕
 本発明は、前記実施形態に限定されない。本発明は、本発明の目的を達成できる範囲での変形及び改良等を含むことができる。
[Modification of Embodiment]
The invention is not limited to the embodiments described above. The present invention can include modifications, improvements, and the like within the scope of achieving the object of the present invention.
 なお、本実施形態に係る接合方法において、空間部をスペーサーの変形によって埋められるときの加圧方向は、特に限定されない。加圧方向は、例えば、被着体(X)及びスペーサーの積層方向に沿っていることが好ましく、被着体(X)及びスペーサーの縦方向に積層して配置したときは、積層方向(縦方向)に沿う方向であり、被着体(X)及びスペーサーを横方向に積層して配置したときは、積層方向(横方向)に沿う方向である。加圧処理は、配置した被着体(X)及びスペーサーの両面側から加圧してもよく、いずれか一方の面側を固定し、他方の面側から加圧してもよい。ここでいう縦方向は、例えば、重力方向に沿う方向を指し、横方向は、重力方向と直交する方向に沿う方向を指す。
 また、本実施形態に係る接合方法において、空間部をスペーサーの変形によって埋められるときの加圧手段は、高周波誘電加熱装置の電極が有するプレス機構を例に挙げたが、この加圧手段に限定されない。加圧手段は、例えば、手による加圧でもよく、プレス機構を備えていない高周波誘電加熱装置の電極の自重のみによる押圧でもよく、高周波誘電加熱装置以外のプレス機構を備えた装置の加圧手段でもよい。
In addition, in the bonding method according to the present embodiment, there is no particular limitation on the direction of pressure when the space is filled by the deformation of the spacer. The pressurizing direction is preferably, for example, along the stacking direction of the adherend (X) and the spacer, and when the adherend (X) and the spacer are stacked in the vertical direction, direction), and when the adherend (X) and the spacer are laminated and arranged in the horizontal direction, it is the direction along the lamination direction (horizontal direction). The pressure treatment may be performed by applying pressure from both sides of the adherend (X) and the spacer placed, or by fixing one of the surfaces and applying pressure from the other side. The vertical direction here refers to, for example, a direction along the direction of gravity, and the horizontal direction refers to a direction perpendicular to the direction of gravity.
In addition, in the bonding method according to the present embodiment, the press mechanism of the electrode of the high-frequency dielectric heating device was exemplified as the pressurizing means when the space is filled by the deformation of the spacer, but the pressurizing means is limited to this pressurizing means. not. The pressurizing means may be, for example, pressurization by hand, pressurization by only the weight of the electrode of a high-frequency dielectric heating device not equipped with a press mechanism, or pressurizing means of a device equipped with a press mechanism other than the high-frequency dielectric heating device. It's okay.
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。 The present invention will be described in more detail below with reference to examples. The present invention is by no means limited to these examples.
<高周波誘電加熱用接着剤の作製>
 下記に示す熱可塑性樹脂(A)、及び誘電フィラー(B)を準備し、熱可塑性樹脂(A)を80体積%、及び誘電フィラー(B)を20体積%の割合となるように、それぞれ秤量した。
<Production of adhesive for high-frequency dielectric heating>
A thermoplastic resin (A) and a dielectric filler (B) shown below are prepared, and weighed so that the thermoplastic resin (A) is 80% by volume and the dielectric filler (B) is 20% by volume. bottom.
 次いで、熱可塑性樹脂(A)と誘電フィラー(B)とを予備混合した。熱可塑性樹脂(A)と誘電フィラー(B)とを予備混合した材料を30mmφ二軸押出機のホッパーに供給し、シリンダー設定温度を180℃以上230℃以下、ダイス温度を230℃に設定し、予備混合した材料を溶融混練した。溶融混練した材料を冷却した後に、当該材料をカットすることにより、粒状のペレットを作製した。次いで、作製した粒状ペレットを、Tダイを設置した単軸押出機のホッパーに投入し、シリンダー温度を200℃、ダイス温度を200℃の条件として、Tダイから、フィルム状溶融混練物を押出し、冷却ロールにて冷却させることにより、厚さ0.4mmのシート状の高周波誘電加熱用接着剤(高周波誘電加熱接着シートAS1)を作製した。 Next, the thermoplastic resin (A) and the dielectric filler (B) were premixed. A material obtained by pre-mixing the thermoplastic resin (A) and the dielectric filler (B) is supplied to the hopper of a 30 mm diameter twin-screw extruder, the cylinder temperature is set to 180 ° C. or higher and 230 ° C. or lower, and the die temperature is set to 230 ° C., The premixed materials were melt kneaded. After cooling the melt-kneaded material, granular pellets were produced by cutting the material. Next, the prepared granular pellets are put into a hopper of a single-screw extruder equipped with a T-die, and a cylinder temperature of 200 ° C. and a die temperature of 200 ° C. are used to extrude a film-like melt-kneaded product from the T-die, By cooling with a cooling roll, a sheet-like high-frequency dielectric heating adhesive (high-frequency dielectric heating adhesive sheet AS1) having a thickness of 0.4 mm was produced.
(熱可塑性樹脂(A))
 ポリプロピレン樹脂(日本ポリプロ株式会社製、ノバテックPPMH4、ポリプロピレンホモポリマー、融点:165℃)
(Thermoplastic resin (A))
Polypropylene resin (manufactured by Japan Polypropylene Corporation, Novatec PPMH4, polypropylene homopolymer, melting point: 165°C)
(誘電フィラー(B))
 ZnO:酸化亜鉛(堺化学工業株式会社製、製品名「LP-ZINC11」)
(Dielectric filler (B))
ZnO: zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., product name “LP-ZINC11”)
(誘電フィラーの体積平均粒子径)
 レーザー回折・散乱法により、誘電フィラーの粒度分布を測定した。粒度分布測定の結果からJIS Z 8819-2:2001に準じて体積平均粒子径を算出した。算出した酸化亜鉛(ZnO)の体積平均粒子径は、11μmであった。
(Volume average particle size of dielectric filler)
The particle size distribution of the dielectric filler was measured by a laser diffraction/scattering method. From the results of particle size distribution measurement, the volume average particle size was calculated according to JIS Z 8819-2:2001. The calculated volume average particle size of zinc oxide (ZnO) was 11 μm.
(誘電特性)
 作製した高周波誘電加熱接着シートを、30mm×30mmの大きさに切断した。切断した高周波誘電加熱接着シートについて、RFインピーダンスマテリアルアナライザE4991A(Agilent社製)に、誘電材料テスト・フィクスチャー 16453A(Agilent社製)を取り付け、平行板法にて、23℃における周波数40.68MHzの条件下、比誘電率(ε’r)及び誘電正接(tanδ)をそれぞれ測定した。測定結果に基づき、誘電特性(tanδ/ε’r)の値を算出した。高周波誘電加熱接着シートの誘電特性(tanδ/ε’r)は、0.011であった。
(dielectric properties)
The produced high-frequency dielectric heating adhesive sheet was cut into a size of 30 mm×30 mm. For the cut high-frequency dielectric heating adhesive sheet, a dielectric material test fixture 16453A (manufactured by Agilent) is attached to an RF impedance material analyzer E4991A (manufactured by Agilent), and a frequency of 40.68 MHz at 23 ° C. is measured by the parallel plate method. Under these conditions, the dielectric constant (ε'r) and dielectric loss tangent (tan δ) were measured. Based on the measurement results, the values of the dielectric properties (tan δ/ε'r) were calculated. The dielectric property (tan δ/ε'r) of the high-frequency dielectric heating adhesive sheet was 0.011.
<被着体の準備>
 被着体として、下記に示す第1の被着体WK1と、第2の被着体WK2とを準備した。
<Preparation of adherend>
As adherends, a first adherend WK1 and a second adherend WK2 shown below were prepared.
(第1の被着体WK1)
 第1の被着体WK1として、図9A及び図9Bに示すポリプロピレン樹脂製のブロック状の第1の被着体WK1を作製した。第1の被着体WK1は、凹部及び凸部を有する起伏面を有する第1面を備え、第1面と反対側の第2面は、起伏面を有さない。図9A及び図9Bは、実施例で用いた第1の被着体WK1の概略図を表している。図9Aは、第1の被着体WK1の第2面側から見た平面図を表しており、図9Bは、第1の被着体WK1の長手方向側から見た側面図を表している。第1の被着体WK1の短手方向である幅寸法Wは20mmである。第1の被着体WK1の凸部における長さ寸法L2は15mmであり、第1の被着体WK1の凹部における長さ寸法L1は10mmである。したがって、第1の被着体WK1の長手方向である長さ寸法は60mmである。第1の被着体WK1の凸部と凹部との最大高低差Dは5mmである。
(First adherend WK1)
As the first adherend WK1, a block-shaped first adherend WK1 made of polypropylene resin shown in FIGS. 9A and 9B was produced. The first adherend WK1 has a first surface having an undulating surface with recesses and protrusions, and a second surface opposite to the first surface does not have an undulating surface. 9A and 9B show schematic diagrams of the first adherend WK1 used in the examples. FIG. 9A shows a plan view of the first adherend WK1 seen from the second surface side, and FIG. 9B shows a side view of the first adherend WK1 seen from the longitudinal direction side. . The width dimension W in the lateral direction of the first adherend WK1 is 20 mm. The length L2 of the protrusions of the first adherend WK1 is 15 mm, and the length L1 of the recesses of the first adherend WK1 is 10 mm. Therefore, the length dimension in the longitudinal direction of the first adherend WK1 is 60 mm. The maximum height difference D between the convex portion and the concave portion of the first adherend WK1 is 5 mm.
(第2の被着体WK2)
 第2の被着体WK2として、ポリプロピレン樹脂製シートを準備した(幅20mm、長さ60mm、厚さ0.4mm)。
(Second adherend WK2)
A sheet made of polypropylene resin was prepared as the second adherend WK2 (width 20 mm, length 60 mm, thickness 0.4 mm).
<スペーサーの準備>
 スペーサーとして、表1に示す厚さのシリコーンゴム、パテ(不活性化学合成樹脂)、及びポリテトラフルオロエチレン(PTFE)(表1中、テフロン(登録商標)と表記)をそれぞれ準備した。
<Preparing the spacer>
As spacers, silicone rubber, putty (inert chemical synthetic resin), and polytetrafluoroethylene (PTFE) (indicated as Teflon (registered trademark) in Table 1) having thicknesses shown in Table 1 were prepared.
(誘電特性)
 スペーサーを、長さ30mm、幅30mmの大きさに切断した。切断したスペーサーについて、RFインピーダンスマテリアルアナライザE4991A(Agilent社製)に、誘電材料テスト・フィクスチャー 16453A(Agilent社製)を取り付け、平行板法にて、23℃における周波数40.68MHzの条件下、比誘電率(ε’r)及び誘電正接(tanδ)をそれぞれ測定した。測定結果に基づき、誘電特性(tanδ/ε’r)の値を算出した。なお、スペーサーの厚さが2mmを超える場合は、切削や研磨にて厚さ2mm以下に調整し測定を行った。
(dielectric properties)
The spacer was cut into pieces with a length of 30 mm and a width of 30 mm. For the cut spacer, a dielectric material test fixture 16453A (manufactured by Agilent) was attached to an RF impedance material analyzer E4991A (manufactured by Agilent), and the ratio was measured by the parallel plate method under the condition of a frequency of 40.68 MHz at 23 ° C. The dielectric constant (ε'r) and dielectric loss tangent (tan δ) were measured respectively. Based on the measurement results, the values of the dielectric properties (tan δ/ε'r) were calculated. When the thickness of the spacer exceeds 2 mm, the spacer is adjusted to a thickness of 2 mm or less by cutting or polishing before measurement.
(絶縁性)
 JIS K 6911:1995に準じて、スペーサーの体積抵抗率を測定した。測定電圧は500Vとし、測定開始1分後の体積抵抗率が1×10Ω・cmを超える場合を絶縁体と定義した。
(Insulation)
The volume resistivity of the spacer was measured according to JIS K 6911:1995. The measurement voltage was set to 500 V, and the case where the volume resistivity exceeded 1×10 8 Ω·cm one minute after the start of measurement was defined as an insulator.
(空間部追従性)
 接合に用いるスペーサーと第1の被着体WK1とを用いた。第1の被着体WK1の凹部の内面の表面に印章用の朱肉インクを塗布し、第1の被着体WK1とスペーサーとを対向して配置した。次に、後述の高周波誘電加熱を行う際の圧力条件で、第1の被着体WK1の凹部に対してスペーサー表面に押し付けた。次いで、第1の被着体WK1からスペーサーを取り外した。なお、圧力の条件は、実施例1及び実施例2で用いたスペーサーの空間部追従性が80%以上になる圧力として設定した。
 第1の被着体WK1の凹部によって形成される空間部を平面視したとき、スペーサーを第1の被着体WK1に追従させる前の状態で、第1の被着体WK1の空間部の開口形状に対応する面積の合計をS1とした。スペーサーの変形によって空間部の内部を埋めたとき、空間部を埋めた部分のスペーサーの表面に着色剤が付着した部位を平面視したときの面積の合計をS2とした。前述の数式1にしたがって、S2をS1で除した百分率によって、空間部追従性を求めた。
(Spatial followability)
A spacer used for bonding and the first adherend WK1 were used. The inner surface of the recess of the first adherend WK1 was coated with vermilion ink for a seal, and the first adherend WK1 and the spacer were arranged to face each other. Next, the surface of the spacer was pressed against the concave portion of the first adherend WK1 under the pressure conditions for high-frequency dielectric heating, which will be described later. Then, the spacer was removed from the first adherend WK1. The pressure conditions were set so that the space followability of the spacers used in Examples 1 and 2 was 80% or more.
When the space formed by the concave portion of the first adherend WK1 is viewed in plan, the opening of the space of the first adherend WK1 is shown before the spacer follows the first adherend WK1. The sum of the areas corresponding to the shapes was set to S1. S2 was the total area of the portions of the space filled with the colorant adhered to the surface of the spacer when the space was filled by deformation of the spacer. According to Equation 1 described above, the followability to the space was obtained from the percentage obtained by dividing S2 by S1.
・空間部追従性の評価基準
 A:80%以上。
 B:50%以上、80%未満。
 F:50%未満。
・Evaluation Criteria for Spatial Followability A: 80% or more.
B: 50% or more and less than 80%.
F: less than 50%.
<実施例1~3及び比較例1>
 高周波誘電加熱接着シートAS1を幅20mm、長さ10mmの寸法に切り出し、高周波誘電加熱装置(山本ビニター株式会社製、製品名「YRP-400T-A」)の第1電極と第2電極との電極の間に、幅20mm、長さ60mmの寸法に切断したスペーサーを配置し、スペーサー上に、第1の被着体WK1と、高周波誘電加熱接着シートAS1と、第2の被着体WK2とをこの順で積層して配置した。
 次に、このように配置したスペーサー、第1の被着体WK1、高周波誘電加熱接着シートAS1、及び第2の被着体WK2を、高周波誘電加熱装置の2つの電極の間に固定した。固定した状態で、下記の高周波印加条件で高周波電界を印加して、高周波誘電加熱用接着シートと被着体を接着させて、接合性評価用の試験片を作製した。高周波電界印加時の押し付け圧力は、接着シートに掛かる圧力の初期設定値である。
 図10は、接合性評価用の試験片の側面を表す概略図である。図10に示されるように、高周波誘電加熱接着シートAS1は、第1の被着体WK1と、第2の被着体WK2との間に配置されており、高周波誘電加熱接着シートAS1は、第1の被着体WK1の最も第2端部E1B側に位置する凹部が設けられている面の反対側の面と、当該面に対向する第2の被着体WK2の第2端部E2B側の面との間に配置されている。つまり、第1の被着体WK1と、第2の被着体WK2との間に配置される高周波誘電加熱接着シートAS1は、第1の被着体WK1における第2端部E1Bから、第1端部E1Aに向かって最初の凸部までの範囲に配置されている。
<Examples 1 to 3 and Comparative Example 1>
The high-frequency dielectric heating adhesive sheet AS1 is cut into a size of 20 mm in width and 10 mm in length, and is used as a first electrode and a second electrode of a high-frequency dielectric heating device (manufactured by Yamamoto Vinita Co., Ltd., product name "YRP-400T-A"). A spacer cut to a width of 20 mm and a length of 60 mm is placed between the two, and the first adherend WK1, the high-frequency dielectric heating adhesive sheet AS1, and the second adherend WK2 are placed on the spacer. They were stacked and arranged in this order.
Next, the spacer, first adherend WK1, high-frequency dielectric heating adhesive sheet AS1, and second adherend WK2 arranged in this way were fixed between two electrodes of a high-frequency dielectric heating device. In the fixed state, a high-frequency electric field was applied under the following high-frequency application conditions to adhere the high-frequency dielectric heating adhesive sheet to the adherend, thereby preparing a test piece for evaluation of bondability. The pressing pressure when applying a high-frequency electric field is the initial set value of the pressure applied to the adhesive sheet.
FIG. 10 is a schematic diagram showing a side surface of a test piece for bondability evaluation. As shown in FIG. 10, the high-frequency dielectric heating adhesive sheet AS1 is arranged between the first adherend WK1 and the second adherend WK2. 1, the surface of the adherend WK1 on the opposite side of the surface provided with the recess located closest to the second end E1B side, and the second end E2B side of the second adherend WK2 facing the surface. is placed between the faces of That is, the high-frequency dielectric heating adhesive sheet AS1 arranged between the first adherend WK1 and the second adherend WK2 extends from the second end E1B of the first adherend WK1 to the first It is arranged in the range up to the first protrusion toward the end E1A.
〔高周波電界印加条件〕
  周波数   :40.68MHz
  出力    :150W
  押し付け圧力:62kPa
[High-frequency electric field application conditions]
Frequency: 40.68MHz
Output: 150W
Pressing pressure: 62kPa
(接合性評価)
 接合強度の測定は、JIS Z 0237:2000に準じて行った。接合強度の測定は、具体的には、引張試験機を用い、図10に示される接合性評価用の試験片において、第1の被着体WK1の第1端部E1A側を固定しておき、第2の被着体WK2の第1端部E2A側を上方に移動させる180°剥離によって測定した。
 接合性評価は、接合性評価用の試験片を作製するときに、1N/20mm以上の接合強度が得られるまでに要した高周波誘電加熱処理の時間を測定した。
(Evaluation of bondability)
The bonding strength was measured according to JIS Z 0237:2000. Specifically, the bonding strength is measured using a tensile tester, and the first end E1A side of the first adherend WK1 is fixed in the test piece for bonding property evaluation shown in FIG. , was measured by 180° peeling by moving the first end E2A side of the second adherend WK2 upward.
For evaluation of bondability, the time required for high-frequency dielectric heat treatment to obtain a bond strength of 1 N/20 mm or more was measured when a test piece for bondability evaluation was produced.
〔評価基準〕
 A:1N/20mm以上の接合強度が得られるまでの時間が、30sec未満。
 B:1N/20mm以上の接合強度が得られるまでの時間が、30sec以上、60sec未満。
 F:60sec以上の高周波誘電加熱処理を行っても、接合強度が1N/20mm未満。
〔Evaluation criteria〕
A: The time required to obtain a bonding strength of 1 N/20 mm or more is less than 30 sec.
B: The time until a bonding strength of 1 N/20 mm or more is obtained is 30 sec or more and less than 60 sec.
F: Bonding strength is less than 1 N/20 mm even after high-frequency dielectric heat treatment for 60 seconds or longer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各実施例は、比較例1に比べ、接合性の評価がいずれも優れていた。以上の結果から、本実施形態に係る接合方法は、起伏面を有する被着体を短時間で強固に接合することが可能である。 Each example was superior in evaluation of bondability compared to Comparative Example 1. From the above results, the bonding method according to the present embodiment can firmly bond adherends having undulating surfaces in a short period of time.
 11,11A…高周波誘電加熱用接着剤、12…高周波誘電加熱接着シート、14…高周波誘電加熱用接着剤付き被着体、16…高周波誘電加熱用接着剤付き被着体、31,31A…空間部、50…誘電加熱装置、51…第1高周波電界印加電極、52…第2高周波電界印加電極、53…高周波電源、100…構造体、110,110A,120,120A,120B,120C,120D…被着体、121A,121B,121C,122A,122B,122C,122D…凸部、123A,123B,123C,123D,124A,124B,124C,124D…凹部、125…第1面、127…第2面、210,210A…スペーサー、AS1…接着シート、WK1…被着体、WK2…被着体、V…着色剤、E1A,E2A…第1端部、E1B,E2B…第2端部。 Reference Signs List 11, 11A High-frequency dielectric heating adhesive 12 High-frequency dielectric heating adhesive sheet 14 High-frequency dielectric heating adherend with adhesive 16 High-frequency dielectric heating adhesive with adherend 31, 31A Space Part 50 Dielectric heating device 51 First high-frequency electric field applying electrode 52 Second high-frequency electric field applying electrode 53 High-frequency power supply 100 Structure 110, 110A, 120, 120A, 120B, 120C, 120D ... Adherend 121A, 121B, 121C, 122A, 122B, 122C, 122D... Convex part 123A, 123B, 123C, 123D, 124A, 124B, 124C, 124D... Concave part 125... First surface 127... Second surface , 210, 210A... spacer, AS1... adhesive sheet, WK1... adherend, WK2... adherend, V... colorant, E1A, E2A... first end, E1B, E2B... second end.

Claims (15)

  1.  高周波誘電加熱用接着剤を用いて被着体を接合する接合方法であって、
     誘電加熱装置の電極、前記被着体及びスペーサーを配置する配置工程と、
     前記高周波誘電加熱用接着剤に高周波電界を印加して、前記被着体を接合する高周波電界印加工程と、を有し、
     前記被着体は、起伏面を有する第1面を備え、
     前記高周波誘電加熱用接着剤は、熱可塑性樹脂を含み、
     前記配置工程において、
     前記被着体及び前記スペーサーを配置したとき、前記被着体の前記第1面と、当該第1面に対向する前記スペーサーの面との間に、空間部が形成され、
     前記空間部が、前記スペーサーの変形によって埋められる、
     接合方法。
    A bonding method for bonding adherends using a high-frequency dielectric heating adhesive,
    an arranging step of arranging the electrode of the dielectric heating device, the adherend and the spacer;
    a high-frequency electric field application step of applying a high-frequency electric field to the high-frequency dielectric heating adhesive to bond the adherend;
    The adherend has a first surface having an undulating surface,
    The high-frequency dielectric heating adhesive contains a thermoplastic resin,
    In the arranging step,
    When the adherend and the spacer are arranged, a space is formed between the first surface of the adherend and the surface of the spacer facing the first surface,
    The space is filled by deformation of the spacer,
    Joining method.
  2.  前記空間部は、前記被着体及び前記スペーサーに対して前記電極で加圧したときに、前記スペーサーの変形によって、埋められる、
     請求項1に記載の接合方法。
    The space is filled by deformation of the spacer when the electrode presses against the adherend and the spacer.
    The joining method according to claim 1.
  3.  前記高周波電界印加工程において、
     前記被着体と前記高周波誘電加熱用接着剤とを前記電極で加圧しながら高周波電界を印加して、前記被着体を接合する、
     請求項1又は請求項2に記載の接合方法。
    In the high-frequency electric field application step,
    bonding the adherend by applying a high-frequency electric field while pressurizing the adherend and the high-frequency dielectric heating adhesive with the electrode;
    The joining method according to claim 1 or 2.
  4.  前記配置工程において、
     前記高周波誘電加熱用接着剤と、前記被着体とをそれぞれ配置する、
     請求項1又は請求項2に記載の接合方法。
    In the arranging step,
    respectively disposing the high-frequency dielectric heating adhesive and the adherend;
    The joining method according to claim 1 or 2.
  5.  前記配置工程において、
     前記被着体の前記第1面が、前記高周波誘電加熱用接着剤と反対側に向けて配置される、
     請求項1又は請求項2に記載の接合方法。
    In the arranging step,
    The first surface of the adherend is arranged facing away from the high-frequency dielectric heating adhesive.
    The joining method according to claim 1 or 2.
  6.  前記配置工程において、
     2つ以上の被着体を配置し、少なくとも1つの被着体は、前記第1面を備える前記被着体である、
     請求項1又は請求項2に記載の接合方法。
    In the arranging step,
    disposing two or more adherends, at least one adherend being said adherend comprising said first surface;
    The joining method according to claim 1 or 2.
  7.  前記被着体の前記起伏面において前記起伏面の起伏の最大高低差が1mm以上である、
     請求項1又は請求項2に記載の接合方法。
    The undulating surface of the adherend has a maximum height difference of 1 mm or more,
    The joining method according to claim 1 or 2.
  8.  前記被着体の前記第1面の起伏が、凹部と凸部とを備え、前記被着体の前記第1面を平面視したとき、前記第1面に占める前記凹部の面積割合が、20%以上、100%未満である、
     請求項1又は請求項2に記載の接合方法。
    The undulations of the first surface of the adherend include concave portions and convex portions, and when the first surface of the adherend is viewed in plan, the area ratio of the concave portions to the first surface is 20. % or more and less than 100%,
    The joining method according to claim 1 or 2.
  9.  前記スペーサーの厚さが、前記被着体の前記第1面に備える前記起伏面の前記起伏の最大高低差に対して50%以上である、
     請求項1又は請求項2に記載の接合方法。
    The thickness of the spacer is 50% or more of the maximum height difference of the undulations of the undulation surface provided on the first surface of the adherend.
    The joining method according to claim 1 or 2.
  10.  前記スペーサーの誘電特性(tanδ/ε’r)が、0.003以下である、
     請求項1又は請求項2に記載の接合方法。
    (tanδは、23℃かつ周波数40.68MHzにおける誘電正接であり、
     ε’rは、23℃かつ周波数40.68MHzにおける比誘電率である。)
    The spacer has a dielectric property (tan δ/ε'r) of 0.003 or less.
    The joining method according to claim 1 or 2.
    (tan δ is the dielectric loss tangent at 23 ° C. and a frequency of 40.68 MHz,
    ε′r is the dielectric constant at 23° C. and a frequency of 40.68 MHz. )
  11.  前記スペーサーが、絶縁体である、
     請求項1又は請求項2に記載の接合方法。
    the spacer is an insulator,
    The joining method according to claim 1 or 2.
  12.  下記数式1で表される前記スペーサーの空間部追従性FPが、50%以上になるように接合を行う、
     請求項1又は請求項2に記載の接合方法。
     FP=(S2/S1)×100・・・(数式1)
     S1:前記被着体の前記空間部を平面視したとき、前記スペーサーを前記被着体に追従させる前の状態で、前記被着体の前記空間部の開口形状に対応する面積
     S2:前記空間部の内部の表面に着色剤を付着させ、前記スペーサーの変形によって前記空間部の内部を埋めたとき、前記空間部を埋めた部分の前記スペーサーの表面に前記着色剤が付着した部位を平面視したときの面積
    Joining is performed so that the spatial followability FP of the spacer represented by the following formula 1 is 50% or more.
    The joining method according to claim 1 or 2.
    FP=(S2/S1)×100 (Equation 1)
    S1: an area corresponding to the shape of the opening of the space of the adherend before the spacer follows the adherend when the space of the adherend is viewed from above S2: the space When a coloring agent is attached to the inner surface of the portion and the interior of the space is filled by deformation of the spacer, a portion where the coloring agent is attached to the surface of the spacer in the portion that fills the space is viewed from above. area when
  13.  前記高周波誘電加熱用接着剤が、高周波電界の印加により発熱する誘電材料をさらに含む、
     請求項1又は請求項2に記載の接合方法。
    The high-frequency dielectric heating adhesive further comprises a dielectric material that generates heat when a high-frequency electric field is applied.
    The joining method according to claim 1 or 2.
  14.  前記誘電材料が、誘電フィラー(B)であり、
     前記誘電フィラー(B)は、酸化亜鉛、炭化ケイ素、酸化チタン及びチタン酸バリウムからなる群から選択される少なくとも1種である、
     請求項13に記載の接合方法。
    the dielectric material is a dielectric filler (B),
    The dielectric filler (B) is at least one selected from the group consisting of zinc oxide, silicon carbide, titanium oxide and barium titanate.
    The joining method according to claim 13.
  15.  前記高周波誘電加熱用接着剤の誘電特性(tanδ/ε’r)が、0.005以上である、
     請求項1又は請求項2に記載の接合方法。
    (tanδは、23℃かつ周波数40.68MHzにおける誘電正接であり、
     ε’rは、23℃かつ周波数40.68MHzにおける比誘電率である。)
    The dielectric property (tan δ/ε'r) of the high-frequency dielectric heating adhesive is 0.005 or more.
    The joining method according to claim 1 or 2.
    (tan δ is the dielectric loss tangent at 23 ° C. and a frequency of 40.68 MHz,
    ε′r is the dielectric constant at 23° C. and a frequency of 40.68 MHz. )
PCT/JP2022/029692 2021-08-06 2022-08-02 Bonding method WO2023013651A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023540370A JPWO2023013651A1 (en) 2021-08-06 2022-08-02
CN202280051134.9A CN117677483A (en) 2021-08-06 2022-08-02 Bonding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021129845 2021-08-06
JP2021-129845 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023013651A1 true WO2023013651A1 (en) 2023-02-09

Family

ID=85155643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029692 WO2023013651A1 (en) 2021-08-06 2022-08-02 Bonding method

Country Status (4)

Country Link
JP (1) JPWO2023013651A1 (en)
CN (1) CN117677483A (en)
TW (1) TW202328368A (en)
WO (1) WO2023013651A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148619A (en) * 1981-03-09 1982-09-14 Honshu Paper Co Ltd Method and apparatus for bonding of container or the like by high frequency induction heating
JPH08267586A (en) * 1995-03-31 1996-10-15 Takiron Co Ltd High frequency fusing method for polypropylene sheet and insulating material used therein
JP2004222990A (en) * 2003-01-23 2004-08-12 Nooteepu Kogyo Kk Bonding method for footwear, and footwear
JP2014037489A (en) * 2012-08-17 2014-02-27 Saitama Prefecture Adhesive and resin joint method
WO2018186297A1 (en) * 2017-04-03 2018-10-11 リンテック株式会社 High-frequency dielectric heating adhesive sheet, and adhesion method in which same is used

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148619A (en) * 1981-03-09 1982-09-14 Honshu Paper Co Ltd Method and apparatus for bonding of container or the like by high frequency induction heating
JPH08267586A (en) * 1995-03-31 1996-10-15 Takiron Co Ltd High frequency fusing method for polypropylene sheet and insulating material used therein
JP2004222990A (en) * 2003-01-23 2004-08-12 Nooteepu Kogyo Kk Bonding method for footwear, and footwear
JP2014037489A (en) * 2012-08-17 2014-02-27 Saitama Prefecture Adhesive and resin joint method
WO2018186297A1 (en) * 2017-04-03 2018-10-11 リンテック株式会社 High-frequency dielectric heating adhesive sheet, and adhesion method in which same is used

Also Published As

Publication number Publication date
CN117677483A (en) 2024-03-08
TW202328368A (en) 2023-07-16
JPWO2023013651A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
CN110300782A (en) Dielectric heating adhesive film and the adhering method for having used dielectric heating adhesive film
WO2021200686A1 (en) High-frequency dielectric heating adhesive sheet
WO2021200685A1 (en) High-frequency dielectric heating adhesive sheet
WO2022118826A1 (en) Adhesive for high-frequency dielectric heating, structure, and method for manufacturing structure
JP2020070365A (en) High-frequency dielectric heating adhesive sheet and heat insulation structure body
WO2021200684A1 (en) High-frequency dielectric heating adhesive sheet
WO2023013651A1 (en) Bonding method
JP2020070367A (en) High-frequency dielectric heating adhesive sheet
WO2021200687A1 (en) Method of bonding with adhesive sheets for high-frequency dielectric heating
JP7223553B2 (en) High-frequency dielectric heating adhesive sheet, pipe joining method, and pipe joint
WO2022118825A1 (en) Adhesive for high-frequency dielectric heating, structure, and method for manufacturing structure
JP2022045334A (en) Adhesion method
WO2021201173A1 (en) Adhesive for high-frequency dielectric heating, structure, and manufacturing method of structure
WO2022004606A1 (en) Adhesive agent for high-frequency induction heating
WO2022004604A1 (en) High-frequency dielectric heating adhesive sheet
WO2022004605A1 (en) High-frequency dielectric heating adhesive sheet, joining method, and joined body
WO2023054114A1 (en) High-frequency dielectric heating adhesive
EP4205952A1 (en) Molded body, joining method, and method for producing molded body
CN116547145A (en) Adhesive for high-frequency dielectric heating, structure, and method for producing structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280051134.9

Country of ref document: CN

Ref document number: 2023540370

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22853070

Country of ref document: EP

Kind code of ref document: A1