WO2023013589A1 - 放射性金属錯体及びその製造方法、並びに放射性金属捕捉剤 - Google Patents

放射性金属錯体及びその製造方法、並びに放射性金属捕捉剤 Download PDF

Info

Publication number
WO2023013589A1
WO2023013589A1 PCT/JP2022/029509 JP2022029509W WO2023013589A1 WO 2023013589 A1 WO2023013589 A1 WO 2023013589A1 JP 2022029509 W JP2022029509 W JP 2022029509W WO 2023013589 A1 WO2023013589 A1 WO 2023013589A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
substituent
radioactive metal
groups
Prior art date
Application number
PCT/JP2022/029509
Other languages
English (en)
French (fr)
Inventor
大 細田
憲史 小林
敏之 横藤田
智之 今井
聡 岸本
祐太 大塚
Original Assignee
住友化学株式会社
日本メジフィジックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021127632A external-priority patent/JP2024125438A/ja
Application filed by 住友化学株式会社, 日本メジフィジックス株式会社 filed Critical 住友化学株式会社
Publication of WO2023013589A1 publication Critical patent/WO2023013589A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table

Definitions

  • the present invention relates to a radioactive metal complex, a method for producing the same, and a radioactive metal scavenger.
  • Linking moieties used in such conjugates include substituent moieties that can be chemically bonded to structures that have affinity for cancer cells, and chelate moieties that can form stable complexes with radionuclides.
  • a multidentate ligand having a structure having moieties is suitable (for example, Patent Document 1, Non-Patent Documents 1 and 2).
  • Alpha-emitting radionuclides or beta-emitting radionuclides can be used in the treatment of cancer, and gamma-emitting radionuclides or positron-emitting radionuclides can be used in cancer diagnosis.
  • 89 Zr and 225 Ac are attracting attention as a combination of radionuclides for achieving radio-theranostics.
  • 89 Zr which has a half-life of 3 days
  • 225 Ac which has a half-life of 10 days
  • Either the 89 Zr complex or the 225 Ac complex may be less stable. Therefore, a ligand that coordinates to both 89 Zr and 225 Ac is desired.
  • the radioactive metal elements are dissociated from the 89 Zr complex or the 225 Ac complex, these radioactive metal elements may indiscriminately destroy tissues or cells in the body. Therefore, the 89 Zr complex or the 225 Ac complex is required to exist stably in medical applications.
  • An object of the present invention is to provide a radioactive metal complex that can stably exist in medical applications after forming a complex with a radioactive metal element of 89 Zr or 225 Ac, and a method for producing the same.
  • Another object of the present invention is to provide a radioactive metal scavenger that traps a radioactive metal element such as 89 Zr or 225 Ac.
  • the present inventors have made intensive studies to solve the above problems, and found that a specific compound having three or more partial structures containing a pyridinecarboxylic acid derivative or a pyrimidinecarboxylic acid derivative is coordinated to both 89 Zr and 225 Ac. and that a complex containing 89 Zr or 225 Ac can stably exist in a composition that can be used for medical purposes, and have completed the present invention.
  • the present invention provides the following radioactive metal complexes [1] to [5], methods for producing the radioactive metal complexes [6] to [9], and radioactive metal scavengers [10].
  • [1] having a radioactive metal element and a ligand derived from a compound represented by the following formula (1),
  • the radioactive metal complex wherein the radioactive metal element is 89 Zr or 225 Ac.
  • n represents an integer of 1 to 3.
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a hydrogen atom, a group selected from Group A, or a substituent. However, at least three of Q 1 , Q 2 , Q 3 and Q 4 are groups selected from Group A.
  • Group A includes the following formula (A1), formula (A2), formula (A3), formula (A4), formula (A5), formula (A6), formula (A7), formula (A8), and formula (A9) It is a group consisting of groups represented by (In Formula (A1), Formula (A2), Formula (A3), Formula (A4), Formula (A5), Formula (A6), Formula (A7), Formula (A8), and Formula (A9), R 1 to R 22 each independently represent a hydrogen atom or a substituent (* represents a bond).
  • Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or a divalent linking group which may have a substituent.
  • R represents a divalent linking group which may have a substituent.
  • Q 1 , Q 2 , Q 3 and Q 4 are groups represented by formula (A1), R is a hydro It is a divalent group containing a carbylene group or a group selected from Group B as a partial structure.
  • Group B is a group consisting of groups represented by the following formulas (B1), (B2), (B3), and (B4).
  • R 23 to R 28 each independently represent a hydrogen atom or a substituent. show.
  • n 2 or 3
  • multiple R's may be the same or different.
  • [2] The radioactive metal complex according to [1], wherein the compound represented by the formula (1) is a compound represented by the following formula (1A).
  • [In Formula (1A), Q 1 , Q 2 , Q 3 , Q 4 , Z 1 , Z 2 , Z 3 , Z 4 and R are as defined above.
  • [3] The radioactive metal complex according to [1] or [2], wherein the compound represented by the formula (1) is a compound represented by the following formula (2).
  • R 29 to R 37 each independently represent a hydrogen atom or a substituent.
  • R, Z 1A , Z 2A , Z 3A , and R 29 to R 37 are the same as defined above.
  • R 38 to R 40 each independently represent a hydrogen atom or a substituent.
  • a radioactive metal scavenger comprising a compound represented by the following formula (1), A radioactive metal scavenger, wherein the capture target of the radioactive metal scavenger is 89 Zr or 225 Ac.
  • n represents an integer of 1 to 3.
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a hydrogen atom, a group selected from Group A, or a substituent. However, at least three of Q 1 , Q 2 , Q 3 and Q 4 are groups selected from Group A. When n is 2 or 3, multiple Q 4 may be the same or different, and Q 2 and Q 3 are bonded to each other or via a divalent linking group A ring structure may be formed.
  • Group A includes the following formula (A1), formula (A2), formula (A3), formula (A4), formula (A5), formula (A6), formula (A7), formula (A8), and formula (A9) It is a group consisting of groups represented by (In Formula (A1), Formula (A2), Formula (A3), Formula (A4), Formula (A5), Formula (A6), Formula (A7), Formula (A8), and Formula (A9), R 1 to R 22 each independently represent a hydrogen atom or a substituent (* represents a bond).
  • Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or a divalent linking group which may have a substituent. When n is 2 or 3, multiple Z 4 may be the same or different.
  • R represents a divalent linking group which may have a substituent.
  • R is a hydro It is a divalent group containing a carbylene group or a group selected from Group B as a partial structure.
  • Group B is a group consisting of groups represented by the following formulas (B1), (B2), (B3), and (B4).
  • R 23 to R 28 each independently represent a hydrogen atom or a substituent. show.
  • a radiometal complex that can exist stably in pharmaceutical applications after complexing with a radiometal element of 89 Zr or 225 Ac and a method for producing the same are provided. Moreover, according to the present invention, a radioactive metal complex complexed with 89 Zr or 225 Ac is provided in a short time and in a high yield. Furthermore, according to the present invention, there is provided a radioactive metal scavenger that captures a radioactive metal element such as 89 Zr or 225 Ac.
  • substituteduents are classified into four types, unless otherwise specified.
  • the first is a group having a structure that has affinity with the targeting molecule (hereinafter sometimes referred to as “substituent A”).
  • the second group is a group having a site capable of cross-linking with a structure having affinity for the targeting molecule (hereinafter sometimes referred to as “substituent B”).
  • the third group is a group that can generally be taken in the field of organic chemistry (organic ligands) (hereinafter sometimes referred to as “substituent C”).
  • the fourth group is a group containing a monocyclic heterocyclic ring and having a group on the heterocyclic ring capable of coordinating to a metal element (hereinafter sometimes referred to as "substituent D").
  • a structure having affinity with a targeting molecule in Substituent A and Substituent B means a structure that selectively interacts with a specific tissue or surface of a cell. For example, it is a structure that has affinity with an antigen, more preferably a structure that has affinity with an antigen derived from cancer cells.
  • Antigen is a general term for substances that induce an immune response in vivo. "Antigen” is not particularly limited, but includes, for example, antigens derived from cancer cells.
  • Examples of structures that have affinity for targeting molecules include antibodies, antibody fragments (sometimes referred to as “antibody fragments”), peptide chains, cyclic peptides, enzymes, nucleobase-containing components (e.g., oligonucleotides, DNA vectors, RNA vectors, aptamers) and the like.
  • Substituent A has a "structure that has affinity with the targeting molecule” and a “site that can be crosslinked with the structure that has affinity with the targeting molecule” in Substituent B (hereinafter simply referred to as "crosslinkable site”). ) is preferably included in the partial structure chemically bonded to.
  • crosslinkable site hereinafter, in the present specification, a preferred embodiment will be described with an example of using an antigen as a targeting molecule, but as described above, this embodiment is not limited to the case where the targeting molecule is an antigen. do not have.
  • the "structure having affinity for the antigen" in Substituent A or Substituent B may be directly connected to the functional group or atom to which it is connected, or to the partial structure chemically bonded to the crosslinkable site. Alternatively, they may be linked via a linker or the like. When linked via a linker, a linker that may contain carbon atoms or other atoms such as nitrogen, oxygen, sulfur, halogen, etc., polyethylene glycol (PEG), peptides containing one or more amino acids, etc. known linkers can be used.
  • PEG polyethylene glycol
  • the linker can be introduced not only for the purpose of connecting the "structure having affinity for the antigen” and the ligand, but also for the purpose of controlling the dynamics of the "structure having affinity for the antigen” in vivo.
  • peptide linkers described in International Publication No. 2017/150549, International Publication No. 2019/065774, etc. can be used.
  • the "structure having affinity for the antigen" in Substituent A or Substituent B is an antibody or antibody fragment
  • the binding position to the bound partial structure is randomly selected for some of the amino acid residues constituting the antibody or antibody fragment (e.g., thiol group of cysteine residue, side chain terminal amino group of lysine residue, etc.) or may be site-specifically bound to an amino acid residue in a specific site such as the Fab region or Fc region.
  • a known amine coupling method a method described in International Publication No. 2019/125982, or the like can be used.
  • the antibody or antibody fragment is treated with a glycosyltransferase (transglutaminase) described in WO 2019/125982 to introduce a "crosslinkable site” described later. and a method of site-specific binding to an amino acid residue having a sugar chain structure that is affected by glycosyltransferase, or a method of using a peptide capable of specifically binding to a lysine residue in the Fc region of an antibody.
  • peptides include IgG binding peptides described in WO2016/186206.
  • crosslinkable site in the substituent B is a selective covalent bond to a "specific site” (e.g., thiol group, azide group, terminal amino group, etc.) in the structure that has affinity for the antigen. It means a structure that can be formed.
  • a specific site e.g., thiol group, azide group, terminal amino group, etc.
  • crosslinkable sites include groups represented by the following formulas (a-1) to (a-14).
  • a straight line extending from the center of the ring structure represents a bond at any position of the ring structure.
  • * represents a bond, which is a binding site with L2 in formula (25) described later. These groups or between these groups and bonds may have substituents or the above-described linkers.
  • a preferred embodiment of Substituent A a partial structure in which a "structure having affinity with an antigen" and a "crosslinkable site” in Substituent B are chemically bonded (hereinafter sometimes referred to as "crosslinked structure”). ) can be formed, for example, by click chemistry.
  • An example of click chemistry includes a reaction in which an azide group and an alkynyl group represented by the following formula (20) are reacted in the presence of a catalyst to form a 1,2,3-triazole ring. Note that * represents a bond.
  • click chemistry is the reaction between an azide group and a cyclooctyne group, represented by the following formula (21), or the reaction between a tetrazine group and an alkynyl group, represented by the following formula (22). mentioned. Note that * represents a bond.
  • a crosslinker having two or more sites selected from the group consisting of "crosslinkable sites” and “specific sites” can be used.
  • examples of such a cross-linking agent include a cross-linking agent represented by the following formula (23).
  • the cross-linking agent for example, one of the sites selected from the group consisting of "crosslinkable site” and “specific site” is derived from the compound represented by the radioactive metal element and formula (1) in the radioactive metal complex described later.
  • the other one of the sites selected from the group consisting of the "crosslinkable site” and the “specific site” is added to the structure-containing site of the ligand, and the structure-containing site of the "structure having affinity for the antigen” is added, respectively. can be used for conjugation reactions.
  • substituent A examples include groups represented by the following formula (24).
  • L 1 represents a direct bond, a hydrocarbylene group optionally having a substituent C, or a heteroarylene group optionally having a substituent C; When multiple L 1 are present, they may be the same or different.
  • R e1 , R e2 , R e3 and R e4 each represent a hydrogen atom or a hydrocarbyl group having 1 to 8 carbon atoms.
  • L2 When multiple L2 are present, they may be the same or different.
  • L3 represents the above "crosslinked structure”. When multiple L3 are present, they may be the same or different.
  • Sp represents the above-mentioned "structure having affinity with antigen”.
  • n20 represents an integer of 1 to 10
  • n21 represents 1 or 2; Note that * represents a bond.
  • L 1 is a direct bond, a hydrocarbylene group optionally having a substituent C or a heteroarylene group optionally having a substituent C, preferably a direct bond or having a substituent C is a hydrocarbylene group that may be
  • hydrocarbylene group of the hydrocarbylene group optionally having substituent C in L 1 examples include an alkylene group and an arylene group.
  • L 1 is preferably an alkylene group.
  • the alkylene group in the hydrocarbylene group of L 1 is a divalent group in which two hydrogen atoms directly bonded to the carbon atoms constituting the saturated aliphatic hydrocarbon are removed.
  • Alkylene groups include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, tert-butylene, pentylene, and hexylene groups.
  • a portion of —CH 2 — in these alkylene groups may be substituted with —O—.
  • the number of carbon atoms in the alkylene group is not particularly limited, it is preferably 1 to 8.
  • the arylene group in the hydrocarbylene group of L1 is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting the aromatic hydrocarbon are removed.
  • Arylene groups include phenylene groups, biphenylene groups, terphenylene groups, naphthylene groups, anthracenylene groups and the like.
  • Arylene groups are preferably phenylene groups.
  • the number of carbon atoms in the arylene group is not particularly limited, it is preferably 6 to 12.
  • Heteroarylene groups optionally having a substituent C of L 1 are, for example, pyridine, pyrazine, pyrimidine, pyrrole, N-alkylpyrrole, furan, thiophene, thiazole, imidazole, oxazole, benzofuran, benzothiophene, isoquinoline, It is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting a heterocyclic compound such as quinazoline are removed.
  • a heteroarylene group is preferably a pyridylene group.
  • hydrocarbyl groups having 1 to 8 carbon atoms in R e1 , R e2 , R e3 and R e4 include alkyl groups, aryl groups and aralkyl groups having 1 to 8 carbon atoms.
  • Hydrocarbyl groups of 1 to 8 carbon atoms are preferably alkyl groups of 1 to 8 carbon atoms.
  • L3 is the above "crosslinked structure".
  • Examples of L 3 include divalent groups represented by the following formulas (a-15) to (a-23).
  • the divalent groups represented by formulas (a-15) to (a-23) may have a substituent.
  • * represents a bond.
  • n20 is an integer of 1-20, preferably an integer of 1-10, more preferably an integer of 1-6.
  • n21 is 1 or 2, and n21 is preferably 2 when using a cross-linking agent such as the cross-linking agent exemplified by formula (23) above, and preferably 1 when no cross-linking agent is used.
  • Sp is a "structure that has affinity with an antigen".
  • the "structure having an affinity for an antigen” is exemplified by the structures described above.
  • one "antigen-affinity structure” when there are a plurality of structures having a substituent A from an intramolecular and intermolecular point of view, one "antigen-affinity structure" has a plurality of radioactive substances of the present application. It may be bound to a metal complex. In this case, one "antigen-affinity structure" may be shared among a plurality of substituents A.
  • Examples of the substituent B include a group represented by the following formula (25) and a group represented by the following formula (26).
  • L 1 , L 2 and n20 are as defined above.
  • Lk represents the above "crosslinkable site”. Note that * represents a bond.
  • L 1 , L 2 , L 3 , and n20 are as defined above.
  • Lk represents the above "crosslinkable site”. Note that * represents a bond.
  • Substituent C includes, for example, a halogen atom, a hydroxy group, a carboxyl group, an amino group, a sulfonic acid group, a nitro group, a phosphonic acid group, a hydrocarbyl group, a silyl group, a heteroaryl group, an alkyloxy group, an aryloxy group, an aralkyl An oxy group and a silyloxy group are mentioned.
  • Substituent C is preferably a hydroxy group, a carboxyl group, an amino group, a sulfonic acid group, a phosphonic acid group, or an alkoxy group from the viewpoint of being easily dissolved in an aqueous solution and used. A portion of these groups may be substituted with halogen atoms, for example, a hydrogen atom of a methyl group may be substituted with fluorine to form a trifluoromethyl group.
  • the halogen atom represented by the substituent C includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a halogen atom is preferably a fluorine atom.
  • the hydrogen atom on the nitrogen atom may be substituted with a hydrocarbon group.
  • the amino group includes, for example, unsubstituted amino group, dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group and diphenylamino group.
  • the amino group is preferably an unsubstituted amino group.
  • hydrocarbyl groups represented by substituent C include alkyl groups, aryl groups, and aralkyl groups. Hydrocarbyl groups are preferably alkyl groups.
  • alkyl group in the hydrocarbyl group represented by the substituent C examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, norbornyl group, Nonyl group, decyl group, 3,7-dimethyloctyl group, dodecyl group, pentadecyl group, octadecyl group, docosyl group and other saturated aliphatic hydrocarbon groups can be mentioned.
  • a portion of —CH 2 — in these alkyl groups may be substituted with —O—.
  • the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1 to 8 from the viewpoint of availability and cost.
  • Examples of the aryl group in the hydrocarbyl group represented by the substituent C include aromatic hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group, naphthyl group, phenanthryl group and anthracenyl group.
  • Aryl groups are preferably phenyl groups. Although the number of carbon atoms in the aryl group is not particularly limited, it is preferably 6 to 18.
  • Examples of the aralkyl group in the hydrocarbyl group represented by the substituent C include a benzyl group, (2-methylphenyl)methyl group, (3-methylphenyl)methyl group, (4-methylphenyl)methyl group, (2, 4-dimethylphenyl)methyl group, (ethylphenyl)methyl group and naphthylmethyl group.
  • Aralkyl groups are preferably benzyl groups. Although the number of carbon atoms in the aralkyl group is not particularly limited, it is preferably 7 to 18.
  • the hydrogen atom on the silicon atom may be substituted with a hydrocarbon group.
  • substituted silyl groups include monosubstituted silyl groups substituted with one hydrocarbon group having 1 to 18 carbon atoms such as methylsilyl group, ethylsilyl group and phenylsilyl group; Silyl group, disubstituted silyl group substituted with two hydrocarbon groups having 1 to 18 carbon atoms such as diphenylsilyl group; trimethylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, tri-tert- a trisubstituted silyl group substituted with three hydrocarbon groups having 1 to 18 carbon atoms such as a butylsilyl group, a tri-isobutylsilyl group, a tert-butyl-dimethylsilyl group, a tri-n-pentylsilyl
  • heteroaryl group represented by the substituent C examples include pyridyl group, pyrazyl group, pyrimidyl group, pyrrolyl group, N-alkylpyrrolyl group, furyl group, thiophenyl group, thiazolyl group, imidazolyl group, oxazolyl group, A benzofuranyl group, a benzothiophenyl group, and an isoquinolinyl group can be mentioned.
  • a heteroaryl group is preferably a pyridyl or pyrimidinyl group.
  • alkyloxy group represented by the substituent C examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group and n-pentyloxy group. , n-octyloxy group and the like. A portion of —CH 2 — in these alkyloxy groups may be substituted with —O—.
  • Alkyloxy groups are preferably methoxy groups. Although the number of carbon atoms in the alkyloxy group is not particularly limited, it is preferably 1 to 8.
  • aryloxy group represented by the substituent C examples include phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 2,4-dimethylphenoxy group and naphthoxy group.
  • Aryloxy groups are preferably phenoxy groups. Although the number of carbon atoms in the aryloxy group is not particularly limited, it is preferably 6 to 18.
  • Examples of the aralkyloxy group represented by the substituent C include a benzyloxy group, (2-methylphenyl)methoxy group, (3-methylphenyl)methoxy group, (4-methylphenyl)methoxy group, (2,4 -dimethylphenyl)methoxy group and naphthylmethoxy group.
  • An aralkyloxy group is preferably a benzyloxy group.
  • the number of carbon atoms in the aralkyloxy group is not particularly limited, it is preferably 7 to 18.
  • the hydrogen atom on the silicon atom may be substituted with a hydrocarbon group.
  • substituted silyloxy groups include trimethylsilyloxy, triethylsilyloxy, tri-n-butylsilyloxy, triphenylsilyloxy, triisopropylsilyloxy, and tert-butyldimethylsilyloxy groups. be done.
  • a substituted silyloxy group is preferably a trimethylsilyloxy group or a tert-butyldimethylsilyloxy group.
  • Substituent D is a group containing a monocyclic heterocyclic ring and having a group on the heterocyclic ring capable of coordinating to a metal element.
  • a heteroatom contained in the heterocyclic ring may be, for example, a nitrogen atom, an oxygen atom, or a sulfur atom, preferably a nitrogen atom.
  • the group capable of coordinating to a metal element may be, for example, a carboxy group, a hydroxy group, a phosphonic group, or a sulfo group, preferably a carboxy group or a hydroxy group. These groups may optionally release protons (H + ) to coordinate to the metal element.
  • substituent D for example, from the compounds represented by the following formulas (D-1) to (D-24), a monovalent monovalent groups.
  • the compounds represented by formulas (D-1) to (D-24) may have a substituent.
  • Compounds that provide substituent D are preferably formulas (D-1) to (D-4), formula (D-7), formula (D-8), or formulas (D-13) to formula (D -18).
  • the substituent is preferably substituent A, substituent C, or substituent D, more preferably substituent C or substituent D, and still more preferably substituent C, unless otherwise specifically described.
  • Me represents a methyl group
  • Et represents an ethyl group
  • t-Bu represents a tertiary butyl group
  • Bn represents a benzyl group
  • DMF represents N,N-dimethylformamide
  • alkyl groups such as propyl, butyl, pentyl, hexyl and octyl groups
  • alkylene groups such as propylene, butylene, pentylene, hexylene and octylene groups. If a chain structure or branched structure is not specified, these may be a straight chain structure or a branched structure. These groups preferably have a linear structure.
  • the number of carbon atoms means the number of carbon atoms excluding the number of carbon atoms of the substituent.
  • a radioactive metal complex of one embodiment has a radioactive metal element and a ligand derived from a compound represented by the following formula (1).
  • the radiometal element is 89 Zr or 225 Ac.
  • n represents an integer of 1 to 3.
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a hydrogen atom, a group selected from Group A, or a substituent. However, at least three of Q 1 , Q 2 , Q 3 and Q 4 are groups selected from Group A. When n is 2 or 3, multiple Q 4 may be the same or different, and Q 2 and Q 3 are bonded to each other or via a divalent linking group A ring structure may be formed.
  • Group A includes the following formula (A1), formula (A2), formula (A3), formula (A4), formula (A5), formula (A6), formula (A7), formula (A8), and formula (A9) It is a group consisting of groups represented by (In Formula (A1), Formula (A2), Formula (A3), Formula (A4), Formula (A5), Formula (A6), Formula (A7), Formula (A8), and Formula (A9), R 1 to R 22 each independently represent a hydrogen atom or a substituent (* represents a bond).
  • Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or a divalent linking group which may have a substituent. When n is 2 or 3, multiple Z 4 may be the same or different.
  • R represents a divalent linking group which may have a substituent.
  • R is a hydro It is a divalent group containing a carbylene group or a group selected from Group B as a partial structure.
  • Group B is a group consisting of groups represented by the following formulas (B1), (B2), (B3), and (B4).
  • R 23 to R 28 each independently represent a hydrogen atom or a substituent. show.
  • R 1 to R 22 are each independently a hydrogen atom or a substituent.
  • the substituent is preferably substituent A or substituent C.
  • the number of substituents A is R 1 to R 3 in formula (A1), R 4 to R 6 in formula (A2), R 7 to R 9 in formula (A3), R 10 to R 12 in formula (A4), R 13 and R 14 in formula (A5), R 15 and R 16 in formula (A6), R 17 and R 18 in formula (A7), and R in formula (A8) 19 , R 20 , and R 21 and R 22 in formula (A9) are each independently preferably 0 or 1.
  • R 1 to R 22 are preferably hydrogen atoms.
  • the number of hydrogen atoms is R 1 to R 3 in formula (A1), R 4 to R 6 in formula (A2), R 7 to R 9 in formula (A3), and R 10 to R 12 in formula (A4). , each independently, preferably two or three.
  • the number of hydrogen atoms is R 13 and R 14 in formula (A5), R 15 and R 16 in formula (A6), R 17 and R 18 in formula (A7), R 19 and R 20 in formula (A8), and R 21 and R 22 in formula (A9) are preferably 1 or 2.
  • Groups selected from Group A are preferably groups represented by formulas (A1) to (A5), more preferably groups represented by formulas (A1) to (A4), and still more preferably It is a group represented by the formula (A1).
  • Groups selected from Group A include, for example, groups represented by the following formulas (AA-1) to (AA-37). Note that * represents a bond. In the groups represented by formulas (AA-1) to (AA-37), when the heterocyclic ring having a bond has a hydrogen atom, the hydrogen atom may be substituted with a substituent.
  • a group selected from Group A is preferably of formula (AA-1), formula (AA-5) to formula (AA-16), formula (AA-17), formula (AA-22), or formula (AA -27) to groups represented by formulas (AA-37).
  • R 23 to R 28 are each independently a hydrogen atom or a substituent.
  • the substituent is preferably substituent A or substituent C.
  • the number of substituents A is R 23 and R 24 in formula (B1), R 25 and R 26 in formula (B2), R 27 in formula (B3), and formula ( R 28 in B4) is each independently preferably 0 or 1.
  • the number of substituents C is R 23 and R 24 in formula (B1), R 25 and R 26 in formula (B2), R 27 in formula (B3), and formula ( R 28 in B4) is each independently preferably 0 or 1.
  • R 23 to R 28 are preferably hydrogen atoms.
  • the number of hydrogen atoms is each independently preferably 1 or 2 in R 23 and R 24 in formula (B1) and R 25 and R 26 in formula (B2).
  • Group B is preferably a group represented by formula (B1) or formula (B2).
  • Groups selected from Group B include, for example, groups represented by the following formulas (BB-1) to (BB-20). Note that * represents a bond. In the groups represented by formulas (BB-1) to (BB-20), when the heterocyclic ring having a bond has a hydrogen atom, the hydrogen atom may be substituted with a substituent.
  • Groups selected from Group B are preferably groups represented by formulas (BB-1) to (BB-6) or formulas (BB-13) to (BB-16).
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a hydrogen atom, a group selected from Group A, or a substituent. However, at least three of Q 1 , Q 2 , Q 3 and Q 4 are groups selected from Group A. Among Q 1 , Q 2 , Q 3 and Q 4 , the number of groups selected from Group A is preferably 4 or more, more preferably 4. When n is 2 or 3, multiple Q4 's may be the same or different, and are preferably the same.
  • the substituents are each independently substituent A, substituent B, substituent C, or substituent D, preferably substituent A, substituent C, or substituent D, more preferably substituent D.
  • Q 1 , Q 2 , Q 3 and Q 4 are preferably groups selected from group A or substituents D, more preferably groups selected from group A.
  • the total number of substituents may be, for example, 0 to 3, preferably 0 to 2, more preferably 0 or 1. be.
  • Q 2 and Q 3 may be bonded to each other or form a ring structure via a divalent linking group.
  • divalent linking groups include alkylene groups such as a methylene group, ethylene group, propylene group, butylene group, and pentyl group.
  • Q 1 , Q 2 , Q 3 and Q 4 preferably do not contain a monovalent group obtained by removing one hydrogen atom from the quinoline ring from 8-hydroxyquinoline. That is, the compound represented by formula (1) preferably does not contain a monovalent group obtained by removing one hydrogen atom from the quinoline ring from 8-hydroxyquinoline.
  • n may be 1 or 2, and may be 1; In this case, Q 2 and Q 3 preferably do not form a ring structure. On the other hand, n may be three. In this case, Q2 and Q3 preferably form a ring structure.
  • R is a divalent linking group optionally having a substituent. provided that when n is 1 and all of Q 1 , Q 2 , Q 3 and Q 4 are groups represented by formula (A1), R is a hydrocarbylene group optionally having a substituent or It is a divalent group containing a group selected from group B as a partial skeleton.
  • the number of substituents A is preferably 0 or 1.
  • Examples of the divalent linking group for R include a hydrocarbylene group and a heteroarylene group, preferably a hydrocarbylene group optionally having a substituent.
  • the divalent linking group may be a group formed by combining these.
  • the hydrocarbylene group R is preferably an alkylene group or an arylene group, more preferably an alkylene group.
  • the number of carbon atoms in R is not particularly limited, but preferably 1 to 18.
  • the alkylene group for R is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting a saturated aliphatic hydrocarbon are removed.
  • Alkylene groups include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, tert-butylene, pentylene, and hexylene groups. A portion of —CH 2 — in these alkylene groups may be substituted with —O—.
  • the number of carbon atoms in the alkylene group is not particularly limited, it is preferably 1 to 8.
  • the arylene group in R is a divalent group excluding two hydrogen atoms directly bonded to the carbon atoms constituting the aromatic hydrocarbon.
  • Arylene groups include phenylene groups, biphenylene groups, terphenylene groups, naphthylene groups, anthracenylene groups and the like.
  • Arylene groups are preferably phenylene groups.
  • the number of carbon atoms in the arylene group is not particularly limited, it is preferably 6 to 18.
  • Heteroarylene groups in R are for example heterocyclic groups such as pyridine, pyrazine, pyrimidine, pyrrole, N-alkylpyrrole, furan, thiophene, thiazole, imidazole, oxazole, benzofuran, benzothiophene, isoquinoline, quinazoline, benzimidazole, quinoline. It is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting a compound are removed. Although the number of carbon atoms in the heteroarylene group is not particularly limited, it is preferably 3 to 18.
  • the divalent linking group formed by combining an alkylene group, an arylene group, and a heteroarylene group includes a combination in which a phenylene group, a methylene group, and a phenylene group are linked in order, and a combination in which a methylene group, a phenylene group, and a methylene group are linked in order.
  • a combination, a combination in which a pyridylene group, a methylene group and a pyridylene group are bonded in order, and the like can be mentioned.
  • R is optionally substituted hydrocarbylene group or a divalent group containing a group selected from Group B as a partial structure.
  • Examples of the divalent group containing a group selected from group B as a partial structure include a divalent group in which a group selected from group B and a hydrocarbylene group are combined. A portion of —CH 2 — in the hydrocarbylene group in the divalent group containing a group selected from Group B as a partial structure may be substituted with —O— or —C( ⁇ O)—.
  • Examples of the divalent group containing a group selected from Group B as a partial structure include groups represented by the following formulas (Bb-1) to (Bb-32). Note that * represents a bond.
  • a divalent group containing a group selected from Group B as a partial structure includes a group represented by the above formula (B1) or formula (B2), so that formulas (Bb-1) to formula (Bb-8) or groups represented by formulas (Bb-17) to (Bb-24).
  • R is preferably a hydrocarbylene group.
  • a hydrocarbylene group as R is preferably an alkylene group or an arylene group, more preferably an alkylene group.
  • the number of carbon atoms in the hydrocarbylene group for R is not particularly limited, but preferably 1 to 18.
  • Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or an optionally substituted divalent linking group, preferably optionally substituted 2 is a valent linking group.
  • a hydrocarbylene group as a divalent linking group is preferably unsubstituted.
  • the substituent that the divalent linking group may have is preferably substituent A, substituent C, or substituent D.
  • the number of substituents A is preferably 0 or 1.
  • Substituent C is preferably a hydrocarbyl group, an aryl group, or a heteroaryl group, more preferably a hydrocarbyl group.
  • Examples of compounds represented by formula (1) include the following formulas (1Aa-1) to (1Aa-24), formulas (1Ab-1) to (1Ab-12), and formulas (1B-1) to Examples include compounds represented by formula (1B-3) and formulas (1C-1) to (1C-13).
  • R is a hydrocarbylene group in which a part of —CH 2 — is optionally substituted
  • the compounds represented by the formulas (1Aa-1) to (1Aa-) are preferably 24), compounds represented by formulas (1B-1) to (1B-3), or formulas (1C-1) to (1C-13), wherein n in the compound represented by formula (1) is 1, the compounds are represented by formulas (1Aa-1) to (1Aa-24).
  • Sp represents "a structure having an affinity for an antigen".
  • the compound represented by formula (1) is preferably a compound represented by formula (1A) below.
  • the compound represented by formula (1A) is a compound represented by formula (1) in which n is 1.
  • the compound represented by formula (1) is preferably a compound represented by formula (2) below.
  • R 29 to R 37 each independently represent a hydrogen atom or a substituent.
  • the compound represented by Formula (2) is preferably a compound represented by Formula (3) below.
  • R, Z 1A , Z 2A , Z 3A , and R 29 to R 37 are the same as defined above.
  • R 38 to R 40 each independently represent a hydrogen atom or a substituent.
  • the compound represented by formula (1) includes compounds represented by formulas (1-1) to (1-79) below. These compounds may have a substituent.
  • Sp represents "a structure having an affinity for an antigen".
  • the compound represented by formula (1) is preferably a hydrocarbylene group in which R is an optionally substituted hydrocarbylene group, formulas (1-1) to (1-28) or formula (1- 33) to compounds represented by formulas (1-79), more preferably the compounds represented by formula (1A), wherein R is an optionally substituted hydrocarbylene group, (1-1) to formula (1-28), formula (1-33) to formula (1-37), formula (1-43), formula (1-45) to formula (1-51), formula ( 1-55) to formula (1-60), or compounds represented by formulas (1-62) to (1-73).
  • the compound represented by formula (1) of the present embodiment may form a salt by interacting with an acid or a base, or may be hydrated.
  • acids that may form salts include hydrochloric acid, bromic acid, iodic acid, phosphoric acid, acetic acid, sulfuric acid, nitric acid, perchloric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and tetrafluoroboric acid. , hexafluorophosphoric acid, tetraphenylboric acid, and the like.
  • the acid is preferably hydrochloric acid or bromic acid.
  • the salt structure with an acid includes, for example, a salt structure in which the nitrogen site in the compound represented by Formula (1) of the present embodiment interacts with an acid.
  • Examples of the base that may form a salt include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; substances; quaternary ammonium hydroxides such as tetramethylammonium hydroxide and tetrabutylammonium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate and potassium carbonate; lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like and alkali metal hydrogen carbonate.
  • the salt structure with a base includes, for example, a salt structure in which the proton of the carboxylic acid site in the compound represented by formula (1) of the present embodiment is replaced with another cation.
  • some protons may move within the molecule.
  • one or two protons in the carboxylic acid are moved to the vicinity of the nitrogen atom in the ethylenediamine structure or the nitrogen atom in the pyridinecarboxylic acid structure. good too.
  • compounds that can be Q 1 , Q 2 , Q 3 and Q 4 can be linked to sites that can be Z 1 , Z 2 , Z 3 and Z 4 It can be produced by appropriately combining known methods.
  • a compound having a substituent of CH 2 Cl or CH 2 Br structure on an aromatic ring and a compound having an amino group in a solvent such as acetonitrile or N,N-dimethylformamide (DMF) in the presence of a base such as sodium carbonate or sodium hydrogen carbonate.
  • a solvent such as acetonitrile or N,N-dimethylformamide (DMF) in the presence of a base such as sodium carbonate or sodium hydrogen carbonate.
  • a compound having an aldehyde structure and a compound having an amino group are used. are mixed in a solvent such as ethanol and then reacted with a reducing agent such as sodium borohydride.
  • a compound having a carboxylic acid structure and a compound having an amino group are known to be used, as exemplified by the following formula (33). and mixing in a solvent such as DMF using a condensing agent.
  • the OH portion of the carboxylic acid that is not to be condensed with the amino group is protected by methyl esterification, and then deprotected by hydrolysis to derive the carboxylic acid.
  • a protecting group is introduced as appropriate, and the compound represented by formula (1) of the present embodiment is produced by deprotecting it later. can be done.
  • the compound represented by the formula (1) can be obtained by combining known techniques such as the methods of forming the binding sites exemplified by the above formulas (30) to (33).
  • a compound having a carboxylic acid structure and a compound having an amino group, which are examples of starting materials in each reaction, are also produced by appropriately combining methods for synthesizing known carboxylic acid derivatives and amino compound derivatives. can do.
  • a compound partially having the structure of the substituent B is synthesized. It can be produced by appropriately combining known methods.
  • a compound having a nitro group is used as a diamine compound to synthesize an intermediate product.
  • the nitro site is converted to an amine in a solvent such as ethanol by a common reducing agent such as palladium and hydrogen, and then mixed with thiophosgene in a solvent such as chloroform to obtain formula (a-1 ) can be prepared.
  • the compound represented by formula (1) having a substituent A having a "structure with affinity for an antigen” is a compound having a "structure having an affinity for an antigen” and a compound having a substituent B that is “cross-linked.” It can be manufactured by combining "possible moieties” by click chemistry.
  • a structure having an azide group that has an affinity for an antigen and a compound having a group represented by formula (a-10) as a substituent B, as exemplified in the following formula (37), can be obtained by click chemistry.
  • a compound represented by formula (1) having a group represented by formula (a-18-1) can be produced.
  • Sp represents "a structure having affinity with an antigen”.
  • Radioactive metal complex having a ligand derived from the compound represented by Formula (1) of this embodiment will be described.
  • the radioactive metal element interacts with the above compound. More specifically, the heteroatom in the compound interacts with the radioactive metal element, and interacts with the nitrogen atom and/or oxygen atom in the pyridinecarboxylic acid in the compound represented by formula (1). ing. Interactions are usually coordinate bonds.
  • the radioactive metal complex is a heteroatom of the compound represented by formula (1) (e.g., nitrogen atom in nitrogen-containing heterocyclic group, nitrogen atom in primary to tertiary amine, -OH (including -O- ) and oxygen atoms in —CO 2 H (including —CO 2 — ), and the number of coordinate bonds is preferably 4 to 12, more preferably 8 ⁇ 10.
  • the compound represented by the formula (1) of the present embodiment can three-dimensionally exhibit the above interaction when a radioactive metal element is bound. The presence or absence of the formation of coordinate bonds can be confirmed by specifying the distance between the radioactive metal element and the heteroatom by structural optimization calculation using software that can simulate the 3D molecular structure that is in widespread use. .
  • the radiometal element is 89 Zr or 225 Ac.
  • the radiometal element may be an uncharged or charged ion, preferably a charged ion.
  • the radioactive metal element When the radioactive metal element is charged, it preferably has a valence of 1 to 4, more preferably 2 to 4, and even more preferably 89 Zr 4+ or 225 Ac 3+ .
  • Both 89 Zr 4+ and 225 Ac 3+ are radioactive metal elements in which the outermost electron shell has a closed-shell structure. It is known that it is difficult to form a complex compared to
  • the number of radioactive metal elements present in one molecule of the radioactive metal complex may be one or two or more. It is preferably one or two, more preferably one.
  • the number of types of radioactive metal elements present in one molecule of the radioactive metal complex may be one or two or more. One type is preferable.
  • the radioactive metal complex may contain a counterion for making the radioactive metal complex electrically neutral. If the radiometal complex is positively charged, an anion is chosen to neutralize it.
  • Anions include, for example, fluoride ion, chloride ion, bromide ion, iodide ion, sulfide ion, oxide ion, hydroxide ion, hydride ion, phosphate ion, acetate ion, sulfate ion, nitric acid ions, bicarbonate ions, trifluoroacetate ions, trifluoromethanesulfonate ions, tetrafluoroborate ions, and the like.
  • the anion is preferably hydrochloride or acetate. If the metal complex is negatively charged, a cation is chosen to neutralize it. Examples of cations include protons, ammonium ions, tetraalkylammonium ions, tetraarylphosphonium ions, and the like. A plurality of counterions may be present, and they may be the same or different.
  • the radioactive metal complex may contain neutral molecules such as the solvent used during the reaction or purification of the radioactive metal complex.
  • neutral molecules include water, methanol, ethanol, n-propanol, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, acetone, chloroform, acetonitrile, benzonitrile, triethylamine, pyridine. , diethyl ether, acetic acid, propionic acid, hydrochloric acid, oxalic acid and the like.
  • a plurality of neutral molecules may exist, and they may be the same or different.
  • radioactive metal complexes of the present embodiment include radioactive metal complexes represented by the following formulas (J-1) to (J-79).
  • Radiometal complexes preferably have formulas (J-1) to (J-28) or formulas (J-33) to (J -79), more preferably, R in the compound represented by formula (1A) is a hydrocarbylene group optionally having a substituent, formula (J-1) ⁇ Formula (J-28), Formula (J-33) ⁇ Formula (J-37), Formula (J-43), Formula (J-45) ⁇ Formula (J-51), Formula (J-55) ⁇ Formula (J-60), or radioactive metal complexes represented by formulas (J-62) to (J-73).
  • M represents 89 Zr or 225 Ac. Dashed lines between M and heteroatoms represent possible interactions. Note that dashed lines between M and heteroatoms are for convenience and do not necessarily mean that interactions exist on all dashed lines.
  • the radioactive metal complex represented by the above formula may have a counterion and/or a neutral molecule as described above, and the ligand derived from the above compound has a substituent. good too.
  • Sp represents "a structure having an affinity for an antigen".
  • the method for producing a radioactive metal complex of the present embodiment includes a labeling step of mixing a reactant that imparts 89 Zr or 225 Ac and the compound represented by formula (1) to provide reaction conditions. According to the method for producing a radioactive metal complex of the present embodiment, a radioactive metal complex is provided with a high complex formation rate.
  • the radioactive metal complex of the present embodiment can be obtained, for example, by organically synthesizing the compound represented by formula (1) of the present embodiment, and then adding the resulting compound to a reactant for imparting a radioactive metal element (hereinafter referred to as may be referred to as a “radioactive metal imparting agent”), and reacted.
  • a radioactive metal imparting agent for imparting a radioactive metal element
  • the amount of the radioactive metal imparting agent to be reacted can be appropriately adjusted according to the desired radioactive metal complex.
  • radioactive metal imparting agent examples include acetates, fluorides, chlorides, bromides, iodides, sulfates, carbonates, nitrates, acetates, hydroxides, and perchlorates of the above-exemplified radioactive metal elements. , trifluoroacetate, trifluoromethanesulfonate, tetrafluoroborate, hexafluorophosphate, tetraphenylborate, oxalate and the like.
  • the radiometal donating agent is preferably a chloride of a radiometal element.
  • the radioactive metal donating agent may be a hydrate.
  • reaction between the compound and the radioactive metal imparting agent is preferably carried out in a solvent (that is, reaction solvent).
  • reaction solvents include water, acetic acid, propionic acid, hydrochloric acid, aqueous ammonia, methanol, ethanol, n-propanol, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, acetone, and chloroform. , acetonitrile, benzonitrile, triethylamine, pyridine, diethyl ether and the like.
  • the reaction solvent may be used singly or in combination of two or more.
  • the reaction solvent may contain other components such as acids, bases and buffers for adjusting the pH of the reaction solution. Examples of acids include acids that may form the above salts. Examples of bases include bases that may form the above salts.
  • buffering agents include linear amine monosulfonic acids such as N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES); 2-morpholinoethanesulfonic acid (MES) and 3-morpholinopropanesulfonic acid.
  • TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid
  • MES 2-morpholinoethanesulfonic acid
  • 3-morpholinopropanesulfonic acid 3-morpholinopropanesulfonic acid
  • monosulfonic acids having a morpholine ring such as (MOPS); 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid (HEPES), piperazine-1,4-bis(2-ethanesulfonic acid) ) (PIPES) disulfonic acid having a piperazine ring in its structure; linear aliphatic monocarboxylic acids such as acetic acid and lactic acid; aromatic monocarboxylic acids such as benzoic acid and salicylic acid; straight chain fatty acids such as malonic acid and tartaric acid aromatic dicarboxylic acids such as phthalic acid; inorganic acids such as carbonic acid; and salts of these acids.
  • MOPS 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid
  • PPES piperazine-1,4-bis(2-ethanesulfonic acid)
  • Salt forms include, for example, forms in which protons of these acids are substituted with metal ions.
  • metal ions include alkali metal ions such as sodium ions and potassium ions.
  • the metal ions are preferably sodium ions.
  • the labeling step is preferably performed in the presence of a reaction solvent containing a buffer in one embodiment.
  • the reaction temperature is usually -10 to 200°C, preferably 0 to 100°C, more preferably 10 to 40°C.
  • the labeling step is preferably performed at 40° C. or below in one embodiment.
  • the reaction time is generally 1 minute to 1 week, preferably 1 minute to 24 hours, more preferably 1 minute to 6 hours.
  • an appropriate pH can be selected according to each radioactive metal element.
  • the pH of the reaction solvent is preferably 2.0 to 7.5.
  • the concentration of the compound during the reaction is usually 1 nM to 100 mM, preferably 100 nM to 1 mM, more preferably 1 ⁇ M to 100 ⁇ M.
  • the molar concentration of the radioactive metal imparting agent during the reaction is usually 0.1 pM to 100 ⁇ M, preferably 1 pM to 10 ⁇ M.
  • the radioactivity of the radioactive metal imparting agent at the start of the reaction is usually 1 kBq to 1000 GBq, preferably 10 kBq to 100 GBq.
  • reaction solvent a radioactive metal complex
  • reaction temperature preferably 40° C. or lower, more preferably 37° C. or lower.
  • the concentration of the compound during the reaction is preferably less than 100 ⁇ M.
  • a desired amount of the radioactive metal complex can be obtained without aggregation, deposition, or precipitation of the “structure having affinity with the targeting molecule”.
  • the amount of radioactivity at the start of the reaction is set to an arbitrary amount or less with which the structure can stably react. is preferred. Thereby, a radiometal complex with high radiochemical purity can be obtained.
  • the method for purification after the reaction is selected from filtration filters, membrane filters, columns filled with various known fillers, various chromatographic methods, etc. be able to.
  • Radiometal donating agents that donate 89 Zr and 225 Ac can be produced, for example, using a cyclotron, or can be conveniently obtained from appropriate institutions that deal with radioactive elements.
  • the radioactive metal is 89 Zr
  • the 89 Y target is irradiated with protons, and a solution obtained by dissolving the irradiated 89 Y target with an acid is added to a scavenger capable of capturing 89 Zr.
  • the liquid is passed through the supported column cartridge or the like. After that, the column cartridge is washed, and acid is passed through it to recover 89 Zr.
  • the radioactive metal is 225 Ac
  • the 226 Ra target is irradiated with accelerated particles, and the 226 Ra target after irradiation is dissolved in an acid solution, which is then transferred to a column cartridge or the like carrying a scavenger capable of capturing 225 Ac. permeate the After that, the column cartridge is washed and 225 Ac can be recovered by passing an acid through it.
  • a radioactive metal complex having a substituent A can be obtained by reacting a compound having a substituent A with a radioactive metal-providing agent, and reacting a compound having a substituent B with a radioactive metal-providing agent to form a complex. After that, it can also be obtained by performing a binding reaction between the “structure having affinity for the antigen” and the “crosslinkable site” exemplified in the above formulas (20) to (22).
  • the radioactive metal complex having the substituent A is preferably obtained by reacting a compound having the substituent A with a radioactive metal imparting agent, from the viewpoint of reducing the number of steps using the radioactive metal.
  • the radioactive metal complex is stored in an appropriate buffer.
  • the storage time of the radioactive metal complex in the buffer solution is usually 1 minute to 10 days, preferably within 1 week, more preferably within 3 days.
  • a buffer for storing a radioactive metal complex is a solution of a buffer dissolved in a solvent.
  • the buffering agent the same buffering agents as exemplified above can be exemplified, and as the solvent, the same reaction solvent as exemplifying above can be exemplified.
  • the solution may contain acids or bases.
  • the buffer for storing the radiometal complex with 89 Zr preferably contains acetate ions, more preferably acetic acid.
  • Buffers for storing radiometal complexes with 225 Ac preferably contain acetate ions, more preferably ammonium acetate.
  • the radioactive metal complex can stably exist in the buffer solution and can be used as a cancer drug.
  • radioactive metal scavenger comprising the compound represented by formula (1) of this embodiment.
  • the capture target of the radioactive metal capture agent is 89 Zr or 225 Ac.
  • the compound represented by formula (1) can coordinate to both 89 Zr and 225 Ac, it can be suitably used as a radioactive metal scavenger targeting 89 Zr or 225 Ac. can. More specifically, it can be used as a radioactive metal trapping agent that traps 89 Zr, and can also be used as a radioactive metal trapping agent that traps 225 Ac.
  • Preferred aspects of the compound represented by formula (1) are the same as above. Therefore, redundant description is omitted here.
  • the radioactive metal scavenger for example, by mixing a composition containing the compound represented by formula (1) with a solution containing 89 Zr and/or 225 Ac, and 89 Zr and/or 225 Ac to form a complex to capture 89 Zr and/or 225 Ac as a complex.
  • the captured complex can be isolated and recovered by the same method as for isolating and purifying the radioactive metal complex in the production method of the radioactive metal complex.
  • the composition containing the compound represented by formula (1) may be, for example, a solution of the compound represented by formula (1). Such a solution may be obtained by dissolving the compound represented by formula (1) in the reaction solvent exemplified above.
  • the solution containing 89 Zr and/or 225 Ac may be, for example, a solution obtained by dissolving the above radioactive metal imparting agent in one of the above reaction solvents.
  • the conditions for using the radioactive metal scavenger can be appropriately optimized according to the type of compound, the type of radioactive metal imparting agent, etc.
  • Preferred aspects of the conditions (reaction solvent, reaction temperature, reaction time, concentration during reaction, etc.) when using the radioactive metal scavenger are the same as the preferred aspects of the conditions in the above method for producing a radioactive metal complex. you can
  • Example 1 ⁇ 89Zr Complex Synthesis of Compound (1-1) and Stability Evaluation of 89Zr Complex> 89 Zr was used as a radioactive metal element.
  • Compound (1-1) was used as a ligand.
  • Compound (1-1) was dissolved in water to prepare a solution containing 10 mmol/L of compound (1-1). 7.5 ⁇ L of this solution, 50 ⁇ L of an 89 Zr ion-containing solution (solvent: 0.1 mol/L hydrochloric acid aqueous solution, radioactivity concentration: 462 MBq/mL) as a radioactive metal imparting agent, and 0.78 mol containing 150 mmol/L of gentisic acid.
  • solvent 0.1 mol/L hydrochloric acid aqueous solution, radioactivity concentration: 462 MBq/mL
  • thin-layer chromatography manufactured by Agilent, model number: SGI0001, developing solvent: water/acetonitrile (1:1)
  • the labeling rate of the 89 Zr complex was 94%.
  • the reaction solution containing the obtained 89 Zr complex was allowed to stand at room temperature (25° C.), and after 1 hour, 24 hours, 48 hours, and 72 hours after standing, the labeling rate and Similarly, thin-layer chromatography was used to track changes in radiochemical purity over time. Table 1 shows the results.
  • Example 2 ⁇ 225 Ac Complex Synthesis of Compound (1-1) and Stability Evaluation of 225 Ac Complex> 225 Ac was used as the radioactive metal element.
  • Compound (1-1) was dissolved in water to prepare a solution containing 1 mmol/L of compound (1-1). 40 ⁇ L of this solution, 20 ⁇ L of 225 Ac ion-containing solution (solvent: 0.2 mol/L hydrochloric acid aqueous solution, radioactivity concentration: 30.6 MBq/mL) as a radioactive metal imparting agent, and 0.5 mol/L ammonium acetate buffer ( A reaction solution obtained by mixing 16 ⁇ L of pH: 6.0 and 4 ⁇ L of water was allowed to react at room temperature (25° C.) to obtain a 225 Ac complex solution.
  • solvent 0.2 mol/L hydrochloric acid aqueous solution, radioactivity concentration: 30.6 MBq/mL
  • ammonium acetate buffer A reaction solution obtained by mixing 16 ⁇ L of pH: 6.0 and 4 ⁇
  • the reaction time was 60 minutes.
  • the labeling rate of the 225 Ac complex calculated using thin layer chromatography in the same manner as in Example 1 was 98%.
  • the resulting reaction solution containing 225 Ac was allowed to stand at room temperature, and after 1 hour and 72 hours of standing, the radiochemical purity was determined using thin-layer chromatography in the same manner as the labeling rate. Tracked changes over time. Table 2 shows the results.
  • the radioactive metal complexes of Examples 1 and 2 existed stably in the buffer solution. From these results, it was confirmed that the radiometal complex of the present invention can exist stably in medical applications after complex formation. In addition, the radioactive metal complexes of Examples 1 and 2 formed complexes in a high yield after standing for 1 hour. From these facts, it was found that the radioactive metal complex of the present invention can be obtained in a short time and in a high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

放射性金属錯体が開示される。当該放射性金属錯体は、放射性金属元素と、下記式(1)で表される化合物に由来する配位子とを有する。放射性金属元素は、89Zr又は225Acである。[式(1)中、nは、1~3を表す。 Q1、Q2、Q3、及びQ4は、群Aから選ばれる基等を表し、これらの少なくとも3個は、群Aから選ばれる基である。 群Aは、下記式(A1)で表される基等からなる群である。(R1~R3は、水素原子等を表す。) Z1、Z2、Z3、及びZ4は、2価の連結基等を表す。 Rは、2価の連結基を表す。ただし、nが1であり、かつQ1、Q2、Q3、及びQ4のすべてが式(A1)で表される基であるとき、Rは、ヒドロカルビレン基等である。]

Description

放射性金属錯体及びその製造方法、並びに放射性金属捕捉剤
 本発明は、放射性金属錯体及びその製造方法、並びに放射性金属捕捉剤に関する。
 放射線を利用するがんの治療又は診断において、放射性核種を病巣へ効率よく届けるために、がん細胞と親和性のある構造体(抗体、ペプチド等)と、放射性核種とを結合させて得られる連結体を用いる手法が知られている。このような連結体に用いられる連結部位としては、がん細胞と親和性のある構造体と化学結合させることが可能な置換基部位と、放射性核種と安定な錯体を形成することが可能なキレート部位とを有する構造の多座配位子が好適である(例えば、特許文献1、非特許文献1、2)。
特表2020-515596号公報
Chem.Soc.Rev.,2014,43,260-290. Bioconjugate Chem.2017,28,2211-2223.
 α線を放出する放射性核種又はβ線を放出する放射性核種はがんの治療に使用され、γ線を放出する放射性核種又はポジトロンを放出する放射性核種はがんの診断に使用され得る。中でも、89Zr及び225Acは、核医学セラノスティクス(radio-theranostics)を実現する放射性核種の組合せとして、着目されている。
 ところで、半減期が3日である89Zr及び半減期が10日である225Acは、水溶液中において、それぞれ異なる価数を取り、またイオン半径も大きく異なるため、同一構造の配位子からなる89Zr錯体及び225Ac錯体のどちらか一方は安定性が低くなる場合がある。そのため、89Zr及び225Acのいずれにも配位する配位子が求められている。また、セラノスティクス用途において、89Zr錯体又は225Ac錯体から放射性金属元素が解離してしまうと、これらの放射性金属元素によって、体内の組織又は細胞が無差別に破壊されるおそれがある。そのため、89Zr錯体又は225Ac錯体においては、医薬用途において安定的に存在できることが求められている。
 本発明は、89Zr又は225Acの放射性金属元素と錯形成した後に、医薬用途において安定的に存在できる放射性金属錯体及びその製造方法を提供することを目的とする。また、本発明は、89Zr又は225Acの放射性金属元素を捕捉対象とした放射性金属捕捉剤を提供することを目的とする。
 本発明者らが、上記課題を解決すべく鋭意検討したところ、ピリジンカルボン酸誘導体又はピリミジンカルボン酸誘導体を含む部分構造を3個以上有する特定の化合物が、89Zr及び225Acの両方に配位することが可能であること、及び、89Zr又は225Acを有する錯体が、医薬用途において利用し得る組成で安定的に存在できることを見出し、本発明を完成するに至った。
 本発明は、以下の[1]~[5]の放射性金属錯体、[6]~[9]の放射性金属錯体の製造方法、及び[10]の放射性金属捕捉剤を提供する。
[1]放射性金属元素と、下記式(1)で表される化合物に由来する配位子とを有し、
 前記放射性金属元素が、89Zr又は225Acである、放射性金属錯体。
Figure JPOXMLDOC01-appb-C000010
[式(1)中、nは、1~3の整数を表す。
 Q、Q、Q、及びQは、それぞれ独立に、水素原子、群Aから選ばれる基、又は置換基を表す。ただし、Q、Q、Q、及びQの少なくとも3個は、群Aから選ばれる基である。
 nが2又は3である場合、複数存在するQは、それぞれ同一であっても異なっていてもよく、Q及びQは、互いに結合して、又は、2価の連結基を介して環構造を形成していてもよい。
 群Aは、下記式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、式(A6)、式(A7)、式(A8)、及び式(A9)で表される基からなる群である。
Figure JPOXMLDOC01-appb-C000011
(式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、式(A6)、式(A7)、式(A8)、及び式(A9)中、R~R22は、それぞれ独立に、水素原子又は置換基を表す。なお、*は、結合手を表す。)
 Z、Z、Z、及びZは、それぞれ独立に、単結合又は置換基を有していてもよい2価の連結基を表す。
 nが2又は3である場合、複数存在するZは、それぞれ同一であっても異なっていてもよい。
 Rは、置換基を有していてもよい2価の連結基を表す。ただし、nが1であり、かつQ、Q、Q、及びQのすべてが式(A1)で表される基であるとき、Rは、置換基を有していてもよいヒドロカルビレン基又は群Bから選ばれる基を部分構造として含む2価の基である。
 群Bは、下記式(B1)、式(B2)、式(B3)、及び式(B4)で表される基からなる群である。
Figure JPOXMLDOC01-appb-C000012
(式(B1)、式(B2)、式(B3)、及び式(B4)中、R23~R28は、それぞれ独立に、水素原子又は置換基を表す。なお、*は、結合手を表す。)
 nが2又は3である場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。]
[2]前記式(1)で表される化合物が、下記式(1A)で表される化合物である、[1]に記載の放射性金属錯体。
Figure JPOXMLDOC01-appb-C000013
[式(1A)中、Q、Q、Q、Q、Z、Z、Z、Z、及びRは、前記と同義である。]
[3]前記式(1)で表される化合物が、下記式(2)で表される化合物である、[1]又は[2]に記載の放射性金属錯体。
Figure JPOXMLDOC01-appb-C000014
[式(2)中、R、Z、及びQは、前記と同義である。
 R29~R37は、それぞれ独立に、水素原子又は置換基を表す。
 Z1A、Z2A、及びZ3Aは、-CH-又は-C(=O)-を表す。]
[4]前記式(2)で表される化合物が、下記式(3)で表される化合物である、[3]に記載の放射性金属錯体。
Figure JPOXMLDOC01-appb-C000015
[式(3)中、R、Z1A、Z2A、Z3A、及びR29~R37は、前記と同義である。
 Z4Aは、-CH-又は-C(=O)-を表す。
 R38~R40は、それぞれ独立に、水素原子又は置換基を表す。]
[5]前記Rが、置換基を有していてもよいヒドロカルビレン基である、[1]~[4]のいずれかに記載の放射性金属錯体。
[6][1]~[5]のいずれかに記載の放射性金属錯体の製造方法であって、
 89Zr又は225Acを付与する反応剤と前記式(1)で表される化合物とを混合して反応条件を与える標識工程を含む、放射性金属錯体の製造方法。
[7]前記反応剤が以下のいずれかである、[6]に記載の放射性金属錯体の製造方法。
(i)89Zrの塩化物
(ii)225Acの塩化物
[8]前記標識工程が40℃以下で実施される、[6]又は[7]に記載の放射性金属錯体の製造方法。
[9]前記標識工程が緩衝剤を含有する反応溶媒の存在下で実施され、
 前記反応剤が89Zrを付与する反応剤であるとき、前記反応溶媒のpHが2.0~6.0であり、
 前記反応剤が225Acを付与する反応剤であるとき、前記反応溶媒のpHが2.0~7.5である、[6]~[8]のいずれかに記載の放射性金属錯体の製造方法。
[10]下記式(1)で表される化合物からなる放射性金属捕捉剤であって、
 前記放射性金属捕捉剤の捕捉対象が、89Zr又は225Acである、放射性金属捕捉剤。
Figure JPOXMLDOC01-appb-C000016
[式(1)中、nは、1~3の整数を表す。
 Q、Q、Q、及びQは、それぞれ独立に、水素原子、群Aから選ばれる基、又は置換基を表す。ただし、Q、Q、Q、及びQの少なくとも3個は、群Aから選ばれる基である。
 nが2又は3である場合、複数存在するQは、それぞれ同一であっても異なっていてもよく、Q及びQは、互いに結合して、又は、2価の連結基を介して環構造を形成していてもよい。
 群Aは、下記式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、式(A6)、式(A7)、式(A8)、及び式(A9)で表される基からなる群である。
Figure JPOXMLDOC01-appb-C000017
(式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、式(A6)、式(A7)、式(A8)、及び式(A9)中、R~R22は、それぞれ独立に、水素原子又は置換基を表す。なお、*は、結合手を表す。)
 Z、Z、Z、及びZは、それぞれ独立に、単結合又は置換基を有していてもよい2価の連結基を表す。
 nが2又は3である場合、複数存在するZは、それぞれ同一であっても異なっていてもよい。
 Rは、置換基を有していてもよい2価の連結基を表す。ただし、nが1であり、かつQ、Q、Q、及びQのすべてが式(A1)で表される基であるとき、Rは、置換基を有していてもよいヒドロカルビレン基又は群Bから選ばれる基を部分構造として含む2価の基である。
 群Bは、下記式(B1)、式(B2)、式(B3)、及び式(B4)で表される基からなる群である。
Figure JPOXMLDOC01-appb-C000018
(式(B1)、式(B2)、式(B3)、及び式(B4)中、R23~R28は、それぞれ独立に、水素原子又は置換基を表す。なお、*は、結合手を表す。)
 nが2又は3である場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。]
 本発明によれば、89Zr又は225Acの放射性金属元素と錯形成した後に、医薬用途において安定的に存在できる放射性金属錯体及びその製造方法が提供される。また、本発明によれば、89Zr又は225Acと錯形成した放射性金属錯体が短時間かつ高収率で提供される。さらに、本発明によれば、89Zr又は225Acの放射性金属元素を捕捉対象とした放射性金属捕捉剤が提供される。
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 本明細書において、個々に特に説明がない限り、「置換基」は4種類に分類される。
 第一は、ターゲティング分子と親和性のある構造体を有する基である(以下、「置換基A」という場合がある。)。
 第二は、ターゲティング分子と親和性のある構造体と架橋可能な部位を有する基である(以下、「置換基B」という場合がある。)。
 第三は、有機化学(有機配位子)の分野で一般的に取り得る基である(以下、「置換基C」という場合がある。)。
 第四は、単環式の複素環を含む基であって、当該複素環上に金属元素に配位可能な基を有する基である(以下、「置換基D」という場合がある。)。
 置換基A及び置換基Bにおける「ターゲティング分子と親和性のある構造体」とは、細胞の特定の組織又は表面に対して選択的に相互作用する構造体を意味する。例えば、抗原と親和性のある構造体であり、より好ましくは、がん細胞に由来する抗原と親和性のある構造体である。「抗原」とは、生体内において免疫反応を引き起こさせる物質の総称を意味する。「抗原」は、特に限定されるものではないが、例えば、がん細胞に由来する抗原が挙げられる。ターゲティング分子と親和性のある構造体の例としては、抗体、抗体フラグメント(「抗体断片」という場合がある)、ペプチド鎖、環状ペプチド、酵素、核酸塩基含有成分(例えば、オリゴヌクレオチド、DNAベクター、RNAベクター、アプタマー)等が挙げられる。
 置換基Aは、「ターゲティング分子と親和性のある構造体」と、置換基Bにおける「ターゲティング分子と親和性のある構造体と架橋可能な部位」(以下、単に「架橋可能な部位」という場合がある。)とが化学結合した部分構造を含むことが好ましい。以下、本明細書中においては、ターゲティング分子として抗原を用いる場合を例に、好ましい実施形態を説明するが、上記のとおり、本実施形態は、ターゲティング分子が抗原である場合に限定されるものではない。
 置換基A又は置換基Bにおける「抗原と親和性を有する構造体」は、それが連結している官能基若しくは原子、又は架橋可能な部位と化学結合した部分構造と、直接連結していてもよく、リンカー等を介して連結されていてもよい。リンカーを介して連結されている場合、炭素原子、若しくは、窒素、酸素、硫黄、ハロゲン等の他の原子を含んでもよいリンカー、ポリエチレングリコール(PEG)、又は1若しくは2以上のアミノ酸を含むペプチド等の公知のリンカーを用いることができる。リンカーは、「抗原と親和性を有する構造体」と配位子とを連結させる目的に加えて、生体内における「抗原と親和性を有する構造体」の動態を制御する目的でも導入することができ、例えば、国際公開第2017/150549号、国際公開第2019/065774号等に記載のペプチドリンカーを用いることができる。
 置換基A又は置換基Bにおける「抗原と親和性を有する構造体」が抗体又は抗体断片である場合、抗体又は抗体断片と、それが連結している官能基若しくは原子又は架橋可能な部位と化学結合した部分構造との結合位置は、抗体又は抗体断片を構成するアミノ酸残基の一部(例えば、システイン残基のチオール基、リシン残基の側鎖末端アミノ基等)に対してランダムに選択されていてもよく、Fab領域、Fc領域等の特定の部位のアミノ酸残基に部位特異的に結合していてもよい。ランダムに結合する場合、例えば、公知のアミンカップリング法、国際公開第2019/125982号に記載の方法等を用いることができる。また、部位特異的に結合する場合は、例えば、国際公開第2019/125982号に記載の糖転移酵素(トランスグルタミナーゼ)による処理を経て抗体又は抗体断片に、後述する「架橋可能な部位」を導入し、糖転移酵素の影響を受ける糖鎖構造を有するアミノ酸残基に部位特異的に結合させる方法、又は抗体のFc領域のリシン残基に特異的に結合可能なペプチドを用いる方法等が挙げられる。そのようなペプチドの例として国際公開第2016/186206号に記載のIgG結合ペプチドが挙げられる。
 置換基Bにおける「架橋可能な部位」とは、抗原と親和性のある構造体中における「特定部位」(例えば、チオール基、アジド基、末端アミノ基等)に対して選択的に共有結合を形成できる構造を意味する。このような「架橋可能な部位」としては、例えば、下記式(a-1)~(a-14)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式(a-1)~式(a-14)中、環構造の中央から伸びている直線は、環構造の任意の位置における結合を表す。*は、結合手を表し、後述する式(25)におけるLとの結合部位である。これらの基又はこれらの基と結合手の間に、置換基又は上述のリンカーを有していてもよい。なお、Zは、-CH-又は-C(=O)-を表す。
 置換基Aの好ましい態様である、「抗原と親和性のある構造体」と、置換基Bにおける「架橋可能な部位」とが化学結合した部分構造(以下、「架橋構造」という場合がある。)は、例えば、クリックケミストリーによって形成することができる。クリックケミストリーの例としては、下記式(20)で表される、アジド基とアルキニル基とを、触媒存在下で反応させることで、1,2,3-トリアゾール環を形成させる反応が挙げられる。なお、*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000020
 クリックケミストリーの別の例としては、下記式(21)で表される、アジド基とシクロオクチン基との反応、又は、下記式(22)で表される、テトラジン基とアルキニル基との反応が挙げられる。なお、*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 また、「架橋構造」を形成するために、「架橋可能な部位」及び「特定部位」からなる群より選ばれる部位を2個以上有する架橋剤を用いることができる。このような架橋剤としては、例えば、下記式(23)で表される架橋剤が挙げられる。架橋剤は、例えば、「架橋可能な部位」及び「特定部位」からなる群より選ばれる部位の一方を、後述の放射性金属錯体における放射性金属元素及び式(1)で表される化合物に由来する配位子の構造含有部位に、「架橋可能な部位」及び「特定部位」からなる群より選ばれる部位のその他の一方を、「抗原と親和性のある構造体」の構造含有部位に、それぞれ結合させる反応に使用することができる。
Figure JPOXMLDOC01-appb-C000023
 置換基Aとしては、例えば、下記式(24)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 式(24)中、Lは、直接結合、置換基Cを有していてもよいヒドロカルビレン基、又は置換基Cを有していてもよいヘテロアリーレン基を表す。Lが複数存在する場合、それらは同一でも異なっていてもよい。Lは、直接結合、-C(=O)NRe1-、-C(=S)NRe2-、-OC(=O)NRe3-、-OC(=O)-、-C(=O)-、-C(=S)-、-NRe4-、-S-、又は-O-を表す。Re1、Re2、Re3、及びRe4は、それぞれ水素原子又は炭素原子数1~8個のヒドロカルビル基を表す。Lが複数存在する場合、それらは同一でも異なっていてもよい。Lは、上記「架橋構造」を表す。Lが複数存在する場合、それらは同一でも異なっていてもよい。Spは、上記「抗原と親和性のある構造体」を表す。n20は、1~10の整数を表し、n21は1又は2を表す。なお、*は、結合手を表す。
 Lは、直接結合、置換基Cを有していてもよいヒドロカルビレン基又は置換基Cを有していてもよいヘテロアリーレン基であり、好ましくは直接結合又は置換基Cを有していてもよいヒドロカルビレン基である。
 Lにおける置換基Cを有していてもよいヒドロカルビレン基のヒドロカルビレン基としては、例えば、アルキレン基、アリーレン基が挙げられる。Lは、好ましくはアルキレン基である。
 Lのヒドロカルビレン基におけるアルキレン基は、飽和脂肪族炭化水素を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。アルキレン基としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、tert-ブチレン基、ペンチレン基、へキシレン基等が挙げられる。これらのアルキレン基中の-CH-の一部は、-O-に置換されていてもよい。アルキレン基の炭素原子数は、特に限定されないが、好ましくは1~8個である。
 Lのヒドロカルビレン基におけるアリーレン基は、芳香族炭化水素を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。アリーレン基としては、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラセニレン基等が挙げられる。アリーレン基は、好ましくはフェニレン基である。アリーレン基の炭素原子数は、特に限定されないが、好ましくは6~12個である。
 Lの置換基Cを有していてもよいヘテロアリーレン基は、例えば、ピリジン、ピラジン、ピリミジン、ピロール、N-アルキルピロール、フラン、チオフェン、チアゾール、イミダゾール、オキサゾール、ベンゾフラン、ベンゾチオフェン、イソキノリン、キナゾリン等の複素環式化合物を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。ヘテロアリーレン基は、好ましくはピリジレン基である。
 Lは、直接結合、-C(=O)NRe1-、-C(=S)NRe2-、-OC(=O)NRe3-、-OC(=O)-、-C(=O)-、-C(=S)-、-NRe4-、-S-、又は-O-であり、-C(=O)NRe1-は、隣接する基と任意の方向で結合してもよい。例えば、-C(=O)NRe1-の隣接する基がL及びLである場合、-L-C(=O)NRe1-L-で結合してもよく、-L-C(=O)NRe1-L-で結合してもよい。-C(=S)NRe2-、-OC(=O)NRe3-、及び-OC(=O)-も同様である。Re1、Re2、Re3、及びRe4が複数存在する場合、それらは同一でも異なっていてもよい。Lは、好ましくは直接結合又は-C(=O)NH-である。
 Re1、Re2、Re3、及びRe4における炭素原子数1~8のヒドロカルビル基としては、例えば、炭素原子数が1~8個である、アルキル基、アリール基、アラルキル基が挙げられる。炭素原子数1~8個のヒドロカルビル基は、好ましくは炭素原子数1~8個のアルキル基である。
 Lは、上記「架橋構造」である。Lとしては、例えば、下記式(a-15)~式(a-23)で表される2価の基が挙げられる。式(a-15)~式(a-23)で表される2価の基は、置換基を有していてもよい。なお、*は、結合手を表す。Zは、-CH-又は-C(=O)-を表す。
Figure JPOXMLDOC01-appb-C000025
 n20は1~20の整数であり、好ましくは1~10の整数であり、より好ましくは1~6の整数である。
 n21は1又は2であり、上記式(23)で例示される架橋剤等の架橋剤を用いる場合、n21は好ましくは2であり、架橋剤を用いない場合、n21は好ましくは1である。
 Spは、「抗原と親和性のある構造体」である。「抗原と親和性のある構造体」は、上記の構造体が例示される。
 本実施形態の放射性金属錯体は、分子内・分子間を含めた視点で置換基Aを有する構造体が複数ある場合、1個の「抗原と親和性のある構造体」が複数の本願の放射性金属錯体と結合していてもよい。この場合、複数の置換基Aにおいて1個の「抗原と親和性のある構造体」が共有されていてもよい。
 置換基Bとしては、例えば、下記式(25)で表される基、下記式(26)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 式(25)中、L、L、及びn20は、前記と同義である。Lkは、上記「架橋可能な部位」を表す。なお、*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000027
 式(26)中、L、L、L、及びn20は、前記と同義である。Lkは、上記「架橋可能な部位」を表す。なお、*は、結合手を表す。
 置換基Cとしては、例えば、ハロゲン原子、ヒドロキシ基、カルボキシル基、アミノ基、スルホン酸基、ニトロ基、ホスホン酸基、ヒドロカルビル基、シリル基、ヘテロアリール基、アルキルオキシ基、アリールオキシ基、アラルキルオキシ基、シリルオキシ基が挙げられる。置換基Cは、水溶性の液中で溶解して使用し易い観点から、好ましくはヒドロキシ基、カルボキシル基、アミノ基、スルホン酸基、ホスホン酸基、又はアルコキシ基である。これらの基の一部はハロゲン原子で置換されていてもよく、例えば、メチル基の水素原子がフッ素置換されてトリフルオロメチル基になっていてもよい。
 置換基Cで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。ハロゲン原子は、好ましくはフッ素原子である。
 置換基Cで表されるアミノ基において、窒素原子上の水素原子は、炭化水素基で置換されていてもよい。アミノ基としては、例えば、無置換アミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジフェニルアミノ基が挙げられる。アミノ基は、好ましくは無置換アミノ基である。
 置換基Cで表されるヒドロカルビル基としては、例えば、アルキル基、アリール基、アラルキル基が挙げられる。ヒドロカルビル基は、好ましくはアルキル基である。
 置換基Cで表されるヒドロカルビル基におけるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、へキシル基、ノルボニル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ドデシル基、ペンタデシル基、オクタデシル基、ドコシル基等の飽和脂肪族炭化水素基が挙げられる。これらのアルキル基中の-CH-の一部は、-O-に置換されていてもよい。アルキル基の炭素原子数は、特に限定されないが、入手の容易性及びコストの観点から、好ましくは1~8個である。
 置換基Cで表されるヒドロカルビル基におけるアリール基としては、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フェナントリル基、アントラセニル基等の芳香族炭化水素基が挙げられる。アリール基は、好ましくはフェニル基である。アリール基の炭素原子数は、特に限定されないが、好ましくは6~18個である。
 置換基Cで表されるヒドロカルビル基におけるアラルキル基としては、例えば、ベンジル基、(2-メチルフェニル)メチル基、(3-メチルフェニル)メチル基、(4-メチルフェニル)メチル基、(2,4-ジメチルフェニル)メチル基、(エチルフェニル)メチル基、ナフチルメチル基が挙げられる。アラルキル基は、好ましくはベンジル基である。アラルキル基の炭素原子数は、特に限定されないが、好ましくは7~18個である。
 置換基Cで表されるシリル基において、ケイ素原子上の水素原子は、炭化水素基で置換されていてもよい。このような置換シリル基としては、例えば、メチルシリル基、エチルシリル基、フェニルシリル基等の1個の炭素原子数1~18個の炭化水素基で置換された一置換シリル基;ジメチルシリル基、ジエチルシリル基、ジフェニルシリル基等の2個の炭素原子数1~18個の炭化水素基で置換された二置換シリル基;トリメチルシリル基、トリイソプロピルシリル基、トリ-n-ブチルシリル基、トリ-tert-ブチルシリル基、トリ-イソブチルシリル基、tert-ブチル-ジメチルシリル基、トリ-n-ペンチルシリル基等の3個の炭素原子数1~18個の炭化水素基で置換された三置換シリル基などが挙げられる。置換シリル基は、好ましくはトリメチルシリル基又はtert-ブチルジメチルシリル基である。
 置換基Cで表されるヘテロアリール基としては、例えば、ピリジル基、ピラジル基、ピリミジル基、ピロリル基、N-アルキルピロリル基、フリル基、チオフェンニル基、チアゾリル基、イミダゾリル基、オキサゾリル基、ベンゾフラニル基、ベンゾチオフェニル基、イソキノリニル基が挙げられる。ヘテロアリール基は、好ましくはピリジル基又はピリミジニル基である。
 置換基Cで表されるアルキルオキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-オクチルオキシ基等が挙げられる。これらのアルキルオキシ基中の-CH-の一部は、-O-に置換されていてもよい。アルキルオキシ基は、好ましくはメトキシ基である。アルキルオキシ基の炭素原子数は、特に限定されないが、好ましくは1~8個である。
 置換基Cで表されるアリールオキシ基としては、例えば、フェノキシ基、2-メチルフェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、2,4-ジメチルフェノキシ基、ナフトキシ基が挙げられる。アリールオキシ基は、好ましくはフェノキシ基である。アリールオキシ基の炭素原子数は、特に限定されないが、好ましくは6~18個である。
 置換基Cで表されるアラルキルオキシ基としては、例えば、ベンジルオキシ基、(2-メチルフェニル)メトキシ基、(3-メチルフェニル)メトキシ基、(4-メチルフェニル)メトキシ基、(2,4-ジメチルフェニル)メトキシ基、ナフチルメトキシ基が挙げられる。アラルキルオキシ基は、好ましくはベンジルオキシ基である。アラルキルオキシ基の炭素原子数は、特に限定されないが、好ましくは7~18個である。
 置換基Cで表されるシリルオキシ基において、ケイ素原子上の水素原子は、炭化水素基で置換されていてもよい。このような置換シリルオキシ基としては、例えば、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリ-n-ブチルシリルオキシ基、トリフェニルシリルオキシ基、トリイソプロピルシリルオキシ基、tert-ブチルジメチルシリルオキシ基が挙げられる。置換シリルオキシ基は、好ましくはトリメチルシリルオキシ基又はtert-ブチルジメチルシリルオキシ基である。
 置換基Dは、単環式の複素環を含む基であって、当該複素環上に金属元素に配位可能な基を有する基である。複素環に含まれるヘテロ原子は、例えば、窒素原子、酸素原子、又は硫黄原子であってよく、好ましくは窒素原子である。また、金属元素に配位可能な基は、例えば、カルボキシ基、ヒドロキシ基、ホスホン基、又はスルホ基であってよく、好ましくはカルボキシ基又はヒドロキシ基である。これらの基は、必要に応じて、プロトン(H)を放出して、金属元素に配位してもよい。
 置換基Dとしては、例えば、下記式(D-1)~式(D-24)で表される化合物から、複素環を構成する炭素原子に直接結合する水素原子を1個除いた1価の基が挙げられる。式(D-1)~式(D-24)で表される化合物は、置換基を有していてもよい。置換基Dを与える化合物は、好ましくは、式(D-1)~式(D-4)、式(D-7)、式(D-8)、又は式(D-13)~式(D-18)である。
Figure JPOXMLDOC01-appb-C000028
 置換基は、個々に特に説明がない限り、好ましくは置換基A、置換基C、又は置換基D、より好ましくは置換基C又は置換基D、さらに好ましくは置換基Cである。
 本明細書において、Meはメチル基を表し、Etはエチル基を表し、t-Buはターシャリーブチル基を表し、Bnはベンジル基を表し、DMFはN,N-ジメチルホルムアミドを表す。
 本明細書において、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基等のアルキル基;プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、オクチレン基等のアルキレン基などの分岐可能な基が直鎖構造、分岐構造の指定なく記載されている場合、これらは直鎖構造であっても分岐構造であってもよい。これらの基は、好ましくは直鎖構造である。
 本明細書において、基の説明において炭素原子数を記載している場合、当該炭素原子数は、置換基の炭素原子数を含まない炭素原子数を意味する。
[放射性金属錯体及びその製造方法]
 一実施形態の放射性金属錯体は、放射性金属元素と、下記式(1)で表される化合物に由来する配位子とを有する。放射性金属元素は、89Zr又は225Acである。
<式(1)で表される化合物>
 まず、本実施形態の配位子に誘導される式(1)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000029
[式(1)中、nは、1~3の整数を表す。
 Q、Q、Q、及びQは、それぞれ独立に、水素原子、群Aから選ばれる基、又は置換基を表す。ただし、Q、Q、Q、及びQの少なくとも3個は、群Aから選ばれる基である。
 nが2又は3である場合、複数存在するQは、それぞれ同一であっても異なっていてもよく、Q及びQは、互いに結合して、又は、2価の連結基を介して環構造を形成していてもよい。
 群Aは、下記式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、式(A6)、式(A7)、式(A8)、及び式(A9)で表される基からなる群である。
Figure JPOXMLDOC01-appb-C000030
(式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、式(A6)、式(A7)、式(A8)、及び式(A9)中、R~R22は、それぞれ独立に、水素原子又は置換基を表す。なお、*は、結合手を表す。)
 Z、Z、Z、及びZは、それぞれ独立に、単結合又は置換基を有していてもよい2価の連結基を表す。
 nが2又は3である場合、複数存在するZは、それぞれ同一であっても異なっていてもよい。
 Rは、置換基を有していてもよい2価の連結基を表す。ただし、nが1であり、かつQ、Q、Q、及びQのすべてが式(A1)で表される基であるとき、Rは、置換基を有していてもよいヒドロカルビレン基又は群Bから選ばれる基を部分構造として含む2価の基である。
 群Bは、下記式(B1)、式(B2)、式(B3)、及び式(B4)で表される基からなる群である。
Figure JPOXMLDOC01-appb-C000031
(式(B1)、式(B2)、式(B3)、及び式(B4)中、R23~R28は、それぞれ独立に、水素原子又は置換基を表す。なお、*は、結合手を表す。)
 nが2又は3である場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。]
 群Aにおいて、R~R22は、それぞれ独立に、水素原子又は置換基である。置換基は、好ましくは置換基A又は置換基Cである。置換基が置換基Aである場合、置換基Aの数は、式(A1)におけるR~R、式(A2)におけるR~R、式(A3)におけるR~R、式(A4)におけるR10~R12、式(A5)におけるR13、R14、式(A6)におけるR15、R16、式(A7)におけるR17、R18、式(A8)におけるR19、R20、及び式(A9)におけるR21、R22において、それぞれ独立に、好ましくは0個又は1個である。置換基が置換基Cである場合、置換基Cの数は、式(A1)におけるR~R、式(A2)におけるR~R、式(A3)におけるR~R、式(A4)におけるR10~R12、式(A5)におけるR13、R14、式(A6)におけるR15、R16、式(A7)におけるR17、R18、式(A8)におけるR19、R20、及び式(A9)におけるR21、R22において、それぞれ独立に、好ましくは0個又は1個である。R~R22は、好ましくは水素原子である。水素原子の数は、式(A1)におけるR~R、式(A2)におけるR~R、式(A3)におけるR~R、及び式(A4)におけるR10~R12において、それぞれ独立に、好ましくは2個又は3個である。水素原子の数は、式(A5)におけるR13、R14、式(A6)におけるR15、R16、式(A7)におけるR17、R18、式(A8)におけるR19、R20、及び式(A9)におけるR21、R22において、好ましくは1個又は2個である。
 群Aから選ばれる基は、好ましくは式(A1)~式(A5)で表される基であり、より好ましくは式(A1)~式(A4)で表される基であり、さらに好ましくは式(A1)で表される基である。
 群Aから選ばれる基としては、例えば、下記式(AA-1)~式(AA-37)で表される基が挙げられる。なお、*は、結合手を表す。式(AA-1)~式(AA-37)で表される基は、結合手を有する複素環が水素原子を有しているとき、当該水素原子は置換基で置換されていてもよい。群Aから選ばれる基は、好ましくは、式(AA-1)、式(AA-5)~式(AA-16)、式(AA-17)、式(AA-22)、又は式(AA-27)~式(AA-37)で表される基である。
Figure JPOXMLDOC01-appb-C000032
 群Bにおいて、R23~R28は、それぞれ独立に、水素原子又は置換基である。置換基は、好ましくは置換基A又は置換基Cである。置換基が置換基Aである場合、置換基Aの数は、式(B1)におけるR23、R24、式(B2)におけるR25、R26、式(B3)におけるR27、及び式(B4)におけるR28において、それぞれ独立に、好ましくは0個又は1個である。置換基が置換基Cである場合、置換基Cの数は、式(B1)におけるR23、R24、式(B2)におけるR25、R26、式(B3)におけるR27、及び式(B4)におけるR28において、それぞれ独立に、好ましくは0個又は1個である。R23~R28は、好ましくは水素原子である。水素原子の数は、式(B1)におけるR23、R24及び式(B2)におけるR25、R26において、それぞれ独立に、好ましくは1個又は2個である。
 群Bは、好ましくは式(B1)又は式(B2)で表される基である。
 群Bから選ばれる基としては、例えば、下記式(BB-1)~式(BB-20)で表される基が挙げられる。なお、*は、結合手を表す。式(BB-1)~式(BB-20)で表される基は、結合手を有する複素環が水素原子を有しているとき、当該水素原子は置換基で置換されていてもよい。群Bから選ばれる基は、好ましくは、式(BB-1)~式(BB-6)又は式(BB-13)~式(BB-16)で表される基である。
Figure JPOXMLDOC01-appb-C000033
 Q、Q、Q、及びQは、それぞれ独立に、水素原子、群Aから選ばれる基、又は置換基を表す。ただし、Q、Q、Q、及びQの少なくとも3個は、群Aから選ばれる基である。Q、Q、Q、及びQのうち群Aから選ばれる基の数は、好ましくは4個以上であり、より好ましくは4個である。nが2又は3である場合、複数存在するQは、それぞれ同一であっても異なっていてもよく、同一であることが好ましい。
 Q、Q、Q、及びQが置換基であるとき、置換基は、それぞれ独立に、置換基A、置換基B、置換基C、又は置換基Dであり、好ましくは置換基A、置換基C、又は置換基D、より好ましくは置換基Dである。Q、Q、Q、及びQは、好ましくは、群Aから選ばれる基又は置換基Dであり、より好ましくは群Aから選ばれる基である。Q、Q、Q、及びQにおいて、置換基の合計数は、例えば、0~3個であってよく、好ましくは0~2個であり、より好ましくは0個又は1個である。
 Q及びQは、互いに結合して、又は、2価の連結基を介して環構造を形成していてもよい。2価の連結基は、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチル基等のアルキレン基などが挙げられる。
 Q、Q、Q、及びQは、いずれも8-ヒドロキシキノリンからキノリン環の水素原子を1個除いた1価の基を含まないことが好ましい。すなわち、式(1)で表される化合物は、8-ヒドロキシキノリンからキノリン環の水素原子を1個除いた1価の基を含まないことが好ましい。
 nは、1又は2であってよく、1であってもよい。この場合、Q及びQは、環構造を形成していないことが好ましい。他方、nは、3であってよい。この場合、Q及びQは、環構造を形成していることが好ましい。
 Rは、置換基を有していてもよい2価の連結基である。ただし、nが1かつQ、Q、Q、及びQの全てが式(A1)で表される基であるとき、Rは置換基を有していてもよいヒドロカルビレン基又は群Bから選ばれる基を部分骨格として含む2価の基である。置換基Aの数は、好ましくは0個又は1個である。
 Rにおける2価の連結基としては、例えば、ヒドロカルビレン基、ヘテロアリーレン基であり、好ましくは置換基を有していてもよいヒドロカルビレン基である。2価の連結基は、これらを組み合わせてなる基であってもよい。ヒドロカルビレン基であるRは、好ましくはアルキレン基、又はアリーレン基であり、より好ましくはアルキレン基である。Rにおける炭素原子数は、特に限定されないが、好ましくは1~18個である。
 Rにおけるアルキレン基は、飽和脂肪族炭化水素を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。アルキレン基としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、tert-ブチレン基、ペンチレン基、へキシレン基等が挙げられる。これらのアルキレン基中の-CH-の一部は、-O-に置換されていてもよい。アルキレン基の炭素原子数は、特に限定されないが、好ましくは1~8個である。
 Rにおけるアリーレン基は、芳香族炭化水素を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。アリーレン基としては、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラセニレン基等が挙げられる。アリ-レン基は、好ましくはフェニレン基である。アリーレン基の炭素原子数は、特に限定されないが、好ましくは6~18個である。
 Rにおけるヘテロアリーレン基は、例えば、ピリジン、ピラジン、ピリミジン、ピロール、N-アルキルピロール、フラン、チオフェン、チアゾール、イミダゾール、オキサゾール、ベンゾフラン、ベンゾチオフェン、イソキノリン、キナゾリン、ベンズイミダゾール、キノリン等の複素環式化合物を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。ヘテロアリーレン基の炭素原子数は、特に限定されないが、好ましくは3~18個である。
 アルキレン基、アリーレン基、及びヘテロアリーレン基を組み合わせてなる2価の連結基としては、フェニレン基とメチレン基とフェニレン基とが順に結合する組み合わせ、メチレン基とフェニレン基とメチレン基とが順に結合する組み合わせ、ピリジレン基とメチレン基とピリジレン基とが順に結合する組み合わせ等が挙げられる。
 nが1であり、かつQ、Q、Q、及びQのすべてが式(A1)で表される基であるとき、Rは、置換基を有していてもよいヒドロカルビレン基又は群Bから選ばれる基を部分構造として含む2価の基である。
 群Bから選ばれる基を部分構造として含む2価の基としては、例えば、群Bから選ばれる基とヒドロカルビレン基とを組み合わせた2価の基が挙げられる。群Bから選ばれる基を部分構造として含む2価の基におけるヒドロカルビレン基中の-CH-の一部は、-O-又は-C(=O)-に置換されていてもよい。組み合わせの例としては、エチレン基と式(B1)で表される基とエチレン基とが順に結合する組み合わせ、-C(=O)-基と式(B3)で表される基と-C(=O)-基とが順に結合する組み合わせ等が挙げられる。
 群Bから選ばれる基を部分構造として含む2価の基としては、例えば、下記式(Bb-1)~式(Bb-32)で表される基が挙げられる。なお、*は、結合手を表す。群Bから選ばれる基を部分構造として含む2価の基は、上記式(B1)又は式(B2)で表される基を含むことから、式(Bb-1)~式(Bb-8)又は式(Bb-17)~式(Bb-24)で表される基である。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 nが1であり、かつQ、Q、Q、及びQのすべてが式(A1)で表される基であるとき、Rは、好ましくはヒドロカルビレン基である。Rとしてのヒドロカルビレン基は、好ましくはアルキレン基又はアリーレン基であり、より好ましくはアルキレン基である。Rとしてのヒドロカルビレン基の炭素原子数は、特に限定されないが、好ましくは1~18個である。
 Z、Z、Z、及びZは、それぞれ独立に、単結合又は置換基を有していてもよい2価の連結基を表し、好ましくは置換基を有していてもよい2価の連結基である。2価の連結基としては、例えば、ヒドロカルビレン基が挙げられる。2価の連結基におけるヒドロカルビレン基中の-CH-の一部は、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されていてもよく、好ましくは-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されていてもよく、より好ましくは-C(=O)-に置換されていてもよい。2価の連結基としてのヒドロカルビレン基は、置換されていないことが好ましい。
 2価の連結基が有していてもよい置換基は、好ましくは置換基A、置換基C、又は置換基Dである。置換基Aの数は、好ましくは0個又は1個である。置換基Cは、好ましくはヒドロカルビル基、アリール基、又はヘテロアリール基であり、より好ましくはヒドロカルビル基である。
 式(1)で表される化合物としては、例えば、下記式(1Aa-1)~式(1Aa-24)、式(1Ab-1)~式(1Ab-12)、式(1B-1)~式(1B-3)、式(1C-1)~式(1C-13)で表される化合物が挙げられる。式(1)で表される化合物は、Rが-CH-の一部が置換されていてもよいヒドロカルビレン基であることから、好ましくは、式(1Aa-1)~式(1Aa-24)、式(1B-1)~式(1B-3)、又は式(1C-1)~式(1C-13)で表される化合物であり、式(1)で表される化合物におけるnが1であることから、式(1Aa-1)~式(1Aa-24)で表される化合物である。なお、Spは、「抗原と親和性のある構造体」を表す。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 式(1C-13)で表される化合物の具体例としては、下記式(1C-13a)及び式(1C-13b)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000043
 式(1)で表される化合物は、好ましくは下記式(1A)で表される化合物である。式(1A)で表される化合物は、式(1)で表される化合物において、nが1である化合物である。
Figure JPOXMLDOC01-appb-C000044
[式(1A)中、Q、Q、Q、Q、Z、Z、Z、Z、及びRは、前記と同義である。]
 式(1)で表される化合物は、好ましくは下記式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000045
[式(2)中、R、Z、及びQは、前記と同義である。
 R29~R37は、それぞれ独立に、水素原子又は置換基を表す。
 Z1A、Z2A、及びZ3Aは、-CH-又は-C(=O)-を表す。]
 式(2)で表される化合物は、好ましくは下記式(3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000046
[式(3)中、R、Z1A、Z2A、Z3A、及びR29~R37は、前記と同義である。
 Z4Aは、-CH-又は-C(=O)-を表す。
 R38~R40は、それぞれ独立に、水素原子又は置換基を表す。]
 式(1)で表される化合物の具体例としては、例えば、下記式(1-1)~式(1-79)で表される化合物が挙げられる。これら化合物は置換基を有していてもよい。なお、Spは、「抗原と親和性のある構造体」を表す。式(1)で表される化合物は、好ましくは、Rが置換基を有していてもよいヒドロカルビレン基である、式(1-1)~式(1-28)又は式(1-33)~式(1-79)で表される化合物であり、より好ましくは、式(1A)で表される化合物におけるRが置換基を有していてもよいヒドロカルビレン基である、式(1-1)~式(1-28)、式(1-33)~式(1-37)、式(1-43)、式(1-45)~式(1-51)、式(1-55)~式(1-60)、又は式(1-62)~式(1-73)で表される化合物である。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 本実施形態の式(1)で表される化合物は、酸又は塩基との相互作用で塩を形成していてもよく、水和していてもよい。塩を形成していてもよい酸の種類としては、例えば、塩酸、臭素酸、ヨウ素酸、リン酸、酢酸、硫酸、硝酸、過塩素酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、テトラフェニルホウ酸などが挙げられる。酸は、好ましくは塩酸又は臭素酸である。酸による塩構造としては、例えば、本実施形態の式(1)で表される化合物中の窒素部位が酸と相互作用している塩構造が挙げられる。
 塩を形成していてもよい塩基の種類としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物;水酸化テトラメチルアンモニウム、水酸化テトラブチルアンモニウム等の4級アンモニウムの水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩などが挙げられる。塩基による塩構造としては、例えば、本実施形態の式(1)で表される化合物中のカルボン酸部位のプロトンが別のカチオンで置き換わった塩構造が挙げられる。
 本実施形態の式(1)で表される化合物は、一部のプロトンが分子内で移動していてもよい。例えば、式(1-1)で表される化合物は、カルボン酸のうち1個又は2個のプロトンが、エチレンジアミン構造中の窒素原子又はピリジンカルボン酸構造中の窒素原子の近傍に移動していてもよい。
<式(1)で表される化合物の製造方法>
 次に、本実施形態の式(1)で表される化合物の製造方法について説明する。
 式(1)で表される化合物は、Z、Z、Z、及びZとなり得る部位に、それぞれQ、Q、Q、及びQとなり得る化合物を連結することができる公知の手法を適宜組み合わせて製造することができる。
 以下では、Z、Z、Z、及びZ(以下、Z、Z、Z、及びZを単に「Z」という場合がある。)となり得る部位に、それぞれQ、Q、Q、及びQとなり得る化合物を連結する方法を具体的に説明する。
 例えば、Zが-CH-である結合部位の形成方法としては、下記式(30)に例示するように、芳香族環にCHCl又はCHBr構造の置換基を有する化合物と、アミノ基を有する化合物とを、アセトニトリル、N,N-ジメチルホルムアミド(DMF)等の溶媒中で、炭酸ナトリウム、炭酸水素ナトリウム等の塩基存在下で反応させる方法等が挙げられる。
Figure JPOXMLDOC01-appb-C000057
 また、Zが-CH-である結合部位の他の形成方法としては、下記式(31)及び式(32)に例示するように、アルデヒド構造を有する化合物と、アミノ基を有する化合物とをエタノ-ル等の溶媒中で混合させた後、水素化ホウ素ナトリウム等の還元剤を反応させる方法等が挙げられる。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
 例えば、上記式(31)及び式(32)に記載した生成物を原料とし、式(30)、式(31)、及び式(32)と同様の手法で置換基を導入することにより、異なる置換基を有する式(1)で表される化合物が得られる。
 Zが-C(=O)-で表される結合部位の形成方法としては、下記式(33)に例示するように、カルボン酸構造を有する化合物と、アミノ基を有する化合物とを、公知の縮合化剤を用いてDMF等の溶媒中で混合させる方法等が挙げられる。
Figure JPOXMLDOC01-appb-C000060
 例えば、上記式(33)において、アミノ基を有する化合物として置換基を1個のみ有する化合物を用いることで、-CH-と-C(=O)-の数の組み合わせを変えることができる。
 式(33)においては、例えば、アミノ基と縮合させないカルボン酸のOH部位をメチルエステル化して保護しておき、後に加水分解を行い脱保護することによって、カルボン酸に誘導することができる。このように、Zの結合部位を形成する工程は、適宜保護基を導入しておいて、後に脱保護を行うことによって、本実施形態の式(1)で表される化合物を製造することができる。
 上記式(30)~式(33)に例示する結合部位の形成方法を例とした公知の手法を組み合わせることによって、式(1)で表される化合物を得ることができる。それぞれの反応における出発物質の例であるカルボン酸構造を有する化合物、及び、アミノ基を有する化合物についても、公知のカルボン酸誘導体の合成法、及び、アミノ化合物誘導体の合成法を適宜組み合わせることで製造することができる。
 なお、「抗原と親和性のある構造体と架橋可能な部位」を有する置換基Bを有する式(1)で表される化合物についても、部分的に置換基Bの構造を有する化合物を合成する公知の手法を適宜組み合わせることで製造することができる。
 例えば、置換基BがNCS構造(式(a-1)で表される基)を有する化合物の製造方法としては、下記式(35)に例示するように、上記式(30)及び式(31)の原料であるジアミン化合物として、ニトロ基を有する化合物を用い、中間生成物を合成する。続いて、パラジウムと水素を用いる等の一般的な還元剤によって、エタノール等の溶媒中でニトロ部位をアミンに変換した後、クロロホルム等の溶媒中でチオホスゲンと混合することによって、式(a-1)で表される基を有する式(1)で表される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000061
 また、置換基Bが式(a-10)で表される基を有する化合物の製造方法としては、下記式(36)に例示するように、上記式(30)及び式(31)の原料であるジアミン化合物として、カルボキシル基を有する化合物を用い、中間生成物を合成する。続いて、上記式(33)に例示する公知の縮合化剤を用いて、式(a-10)で表される基を有するアミン化合物と反応させてアミド結合を形成することによって、式(a-10)で表される基を有する式(1)で表される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000062
 なお、「抗原と親和性のある構造体」を有する置換基Aを有する式(1)で表される化合物は、「抗原と親和性のある構造体」と置換基Bを有する化合物における「架橋可能な部位」とをクリックケミストリーによって結合することで製造することができる。
 例えば、アジド基を有する抗原と親和性のある構造体と、置換基Bとして式(a-10)で表される基を有する化合物とを下記式(37)に例示するように、クリックケミストリーによって結合することで、式(a-18-1)で表される基を有する式(1)で表される化合物を製造することができる。なお、式(37)中、Spは、「抗原と親和性のある構造体」を表す。
Figure JPOXMLDOC01-appb-C000063
<放射性金属錯体>
 次に、本実施形態の式(1)で表される化合物に由来する配位子を有する放射性金属錯体について説明する。
 本実施形態の放射性金属錯体は、上記化合物に放射性金属元素が相互作用している。より具体的には、上記化合物中のヘテロ原子と放射性金属元素とが相互作用しており、式(1)で表される化合物におけるピリジンカルボン酸中の窒素原子及び/又は酸素原子と相互作用している。相互作用は、通常、配位結合である。
 放射性金属錯体は、式(1)で表される化合物のヘテロ原子(例えば、窒素含有複素環基中の窒素原子、1~3級アミン中の窒素原子、-OH(-Oを含む)中の酸素原子、-COH(-CO を含む)中の酸素原子等)のいずれかと配位結合しており、配位結合の数は、好ましくは4~12個、より好ましくは8~10個である。本実施形態の式(1)で表される化合物は、放射性金属元素を結合させたときに、三次元的に上述の相互作用を示すことが可能である。なお、配位結合の形成の有無は、普及している3D分子構造をシミュレーションできるソフトウェアを用いた構造最適化計算によって、放射性金属元素とヘテロ原子との距離を特定することにより確認することができる。
 放射性金属元素は、89Zr又は225Acである。放射性金属元素は、無電荷であっても荷電しているイオンであってもよく、好ましくは荷電しているイオンである。放射性金属元素が荷電している場合、好ましくは1~4価、より好ましくは2~4価、さらに好ましくは89Zr4+又は225Ac3+である。なお、89Zr4+又は225Ac3+はいずれも最外電子殻が閉殻構造をとる放射性金属元素であり、このような閉殻構造の放射性金属元素は一般的に閉殻構造ではない多くの放射性金属元素と比べて錯体を形成し難いことで知られている。
 放射性金属錯体1分子中に存在する放射性金属元素の数は、1個であっても2個以上であってもよい。好ましくは1個又は2個、より好ましくは1個である。
 放射性金属錯体1分子中に存在する放射性金属元素の種類は、1種類であっても2種類以上であってもよい。好ましくは1種類である。
 放射性金属錯体は、放射性金属錯体を電気的に中性にするための対イオンを含んでいてもよい。放射性金属錯体が正に帯電している場合、これを中和する陰イオンが選ばれる。陰イオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、硫化物イオン、酸化物イオン、水酸化物イオン、水素化物イオン、リン酸イオン、酢酸イオン、硫酸イオン、硝酸イオン、炭酸水素イオン、トリフルオロ酢酸イオン、トリフルオロメタンスルホン酸イオン、テトラフルオロホウ酸イオン等が挙げられる。陰イオンは、好ましくは塩酸イオン又は酢酸イオンである。金属錯体が負に帯電している場合、これを中和する陽イオンが選ばれる。陽イオンとしては、例えば、プロトン、アンモニウムイオン、テトラアルキルアンモニウムイオン、テトラリールホスホニウムイオン等が挙げられる。対イオンは複数存在していてもよく、それらは同一であっても異なっていてもよい。
 放射性金属錯体は、放射性金属錯体化の反応時又は精製時に使用した溶媒等の中性分子を含んでいてもよい。中性分子としては、例えば、水、メタノール、エタノール、n-プロパノール、N,N-ジメチルホルミアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、アセトン、クロロホルム、アセトニトリル、ベンゾニトリル、トリエチルアミン、ピリジン、ジエチルエーテル、酢酸、プロピオン酸、塩酸、シュウ酸等が挙げられる。なお、中性分子は、複数存在していてもよく、それらは同一であっても異なっていてもよい。
 本実施形態の放射性金属錯体の具体例としては、下記式(J-1)~下記式(J-79)で表される放射性金属錯体が挙げられる。放射性金属錯体は、好ましくは、Rが置換基を有していてもよいヒドロカルビレン基である、式(J-1)~式(J-28)又は式(J-33)~式(J-79)で表される放射性金属錯体、より好ましくは、式(1A)で表される化合物におけるRが置換基を有していてもよいヒドロカルビレン基である、式(J-1)~式(J-28)、式(J-33)~式(J-37)、式(J-43)、式(J-45)~式(J-51)、式(J-55)~式(J-60)、又は式(J-62)~式(J-73)で表される放射性金属錯体である。
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
 式中、Mは89Zr又は225Acを表す。Mとヘテロ原子との破線は、相互作用する可能性があることを表す。なお、Mとヘテロ原子との破線は、便宜的なものであり、必ずしも全ての破線において相互作用が存在することを意味するものではない。また、上記式で表される放射性金属錯体は、上記のとおり、対イオン及び/又は中性分子を有していてもよく、上記の化合物に由来する配位子は置換基を有していてもよい。なお、Spは、「抗原と親和性のある構造体」を表す。
<放射性金属錯体の製造方法>
 次に、本実施形態の放射性金属錯体の製造方法について説明する。本実施形態の放射性金属錯体の製造方法は、89Zr又は225Acを付与する反応剤と式(1)で表される化合物とを混合して反応条件を与える標識工程を含む。本実施形態の放射性金属錯体の製造方法によれば、高い錯形成率で放射性金属錯体が提供される。
 本実施形態の放射性金属錯体は、例えば、本実施形態の式(1)で表される化合物を有機化学的に合成した後、得られた化合物を、放射性金属元素を付与する反応剤(以下、「放射性金属付与剤」という場合がある。)と混合し、反応させることにより得られる。反応させる放射性金属付与剤の量は、目的とする放射性金属錯体に応じて適宜調整することができる。
 放射性金属付与剤としては、例えば、上記で例示した放射性金属元素の酢酸塩、フッ化物、塩化物、臭化物、ヨウ化物、硫酸塩、炭酸塩、硝酸塩、酢酸塩、水酸化物、過塩素酸塩、トリフルオロ酢酸塩、トリフルオロメタンスルホン酸塩、テトラフルオロホウ酸塩、ヘキサフルオロリン酸塩、テトラフェニルホウ酸塩、シュウ酸塩等が挙げられる。放射性金属付与剤は、好ましくは放射性金属元素の塩化物である。放射性金属付与剤は、水和物であってもよい。
 化合物と放射性金属付与剤との反応は、溶媒(すなわち、反応溶媒)中で行うことが好ましい。
 反応溶媒としては、例えば、水、酢酸、プロピオン酸、塩酸、アンモニア水、メタノール、エタノール、n-プロパノール、N,N-ジメチルホルミアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、アセトン、クロロホルム、アセトニトリル、ベンゾニトリル、トリエチルアミン、ピリジン、ジエチルエーテル等が挙げられる。反応溶媒は、1種単独で用いてもよく、2種以上混合して用いてもよい。反応溶媒は、例えば、反応液のpHを調整するための酸、塩基、緩衝剤等の別成分を含有していてもよい。酸としては、例えば、上記塩を形成していてもよい酸が挙げられる。塩基としては、例えば、上記塩を形成していてもよい塩基が挙げられる。緩衝剤としては、例えば、N-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸(TES)等の鎖状アミンモノスルホン酸;2-モルホリノエタンスルホン酸(MES)、3-モルホリノプロパンスルホン酸(MOPS)等のモルホリン環を有するモノスルホン酸;2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]-エタンスルホン酸(HEPES)、ピペラジン-1,4-ビス(2-エタンスルホン酸)(PIPES)などのピペラジン環を構造中に有するジスルホン酸;酢酸、乳酸等の直鎖脂肪族モノカルボン酸;安息香酸、サリチル酸等の芳香族モノカルボン酸;マロン酸、酒石酸等の直鎖脂肪族モノカルボン酸;フタル酸等の芳香族ジカルボン酸;炭酸等の無機酸;これらの酸の塩などが挙げられる。塩の形態としては、例えば、これらの酸のプロトンが金属イオンに置換された形態が挙げられる。金属イオンとしては、例えば、ナトリウムイオン、カリウムイオン等のアルカリ金属イオンなど挙げられる。金属イオンは、好ましくはナトリウムイオンである。標識工程は、一実施形態において、緩衝剤を含有する反応溶媒存在下で実施されることが好ましい。
 反応温度は、通常、-10~200℃であり、好ましくは0~100℃、より好ましくは10~40℃である。標識工程は、一実施形態において、40℃以下で実施されることが好ましい。反応時間は、通常、1分~1週間であり、好ましくは1分~24時間、より好ましくは1分~6時間である。
 反応時のpHは、各放射性金属元素に応じて適切なpHを選択できるが、例えば、放射性金属元素として89Zrを付与する反応剤であるとき、反応溶媒のpHが2.0~6.0であることが好ましく、放射性金属元素として225Acを付与する反応剤であるとき、反応溶媒のpHが2.0~7.5であることが好ましい。
 反応時の化合物の濃度は、通常、1nM~100mMであり、好ましくは100nM~1mM、より好ましくは1μM~100μMである。反応時の放射性金属付与剤のモル濃度は、通常、0.1pM~100μMであり、好ましくは1pM~10μMである。また、反応開始時の放射性金属付与剤の放射能量は、通常、1kBq~1000GBqであり、好ましくは10kBq~100GBqである。
 これらの反応溶媒、反応温度、反応時間、反応時の濃度等の条件は、化合物の種類、放射性金属付与剤の種類等に合わせて適宜最適化できる。例えば、置換基Aにおける「ターゲティング分子と親和性のある構造体」が熱に不安定である場合、より具体的には「ターゲティング分子と親和性のある構造体」が抗体又は抗体断片である場合、反応温度は、好ましくは40℃以下であり、より好ましくは37℃以下である。40℃以下で反応を行うことで、「ターゲティング分子と親和性のある構造体」が熱によってターゲティング分子への親和性を喪失することなく、放射性金属錯体が得られる。
 また、例えば、置換基Aにおける「ターゲティング分子と親和性のある構造体」が100μM以上で不安定である場合、反応時の化合物の濃度は、100μM未満であることが好ましい。100μM未満で反応を行うことで、「ターゲティング分子と親和性のある構造体」が凝集、析出又は沈殿等することなく、所望の量の放射性金属錯体が得られる。
 また、例えば、置換基Aにおける「ターゲティング分子と親和性のある構造体」が放射線によって分解し易い場合、反応開始時の放射能量を該構造体が安定的に反応できる任意の放射能量以下にすることが好ましい。これにより、放射化学的純度の高い放射性金属錯体を得ることができる。
 放射性金属錯体を単離精製する場合、反応後の精製方法としては、ろ過フィルター、メンブレンフィルター、種々の公知の充填剤を充填したカラム、各種クロマトグラフィー法等から適宜最適な手段を選択して用いることができる。
 89Zr及び225Acを付与する放射性金属付与剤は、例えば、サイクロトロンを用いて製造するか、放射性元素の取扱いを行っている適切な機関から適宜入手することができる。サイクロトロンを用いて製造する場合、放射性金属が89Zrであれば、89Yターゲットにプロトンを照射し、照射後の89Yターゲットを酸で溶解した溶解液を、89Zrを捕捉可能な捕捉剤を担持したカラムカートリッジ等に通液する。その後、該カラムカートリッジを洗浄し、酸を通液することで89Zrを回収することができる。また、放射性金属が225Acであれば、226Raターゲットに加速粒子を照射し、照射後の226Raターゲットを酸で溶解した溶解液を、225Acを捕捉可能な捕捉剤を担持したカラムカートリッジ等に通液する。その後、該カラムカートリッジを洗浄し、酸を通液することで225Acを回収することができる。
 置換基Aを有する放射性金属錯体は、置換基Aを有する化合物に対して放射性金属付与剤を反応させることにより得ることができ、置換基Bを有する化合物に対して放射性金属付与剤を反応させ錯体とした後、上記式(20)~式(22)に例示する、「抗原と親和性のある構造体」と、「架橋可能な部位」との結合反応を行うことによっても得ることができる。置換基Aを有する放射性金属錯体は、放射性金属を使用する工程が少なくなる観点から、置換基Aを有する化合物に対して放射性金属付与剤を反応させることにより得ることが好ましい。
 放射性金属錯体は、適切な緩衝液中で保存される。放射性金属錯体の緩衝液中での保存時間は、通常、1分~10日間であり、好ましくは1週間以内、より好ましくは3日以内である。
 放射性金属錯体を保存するための緩衝液は、緩衝剤を溶媒に溶解させた溶液である。緩衝剤としては、上記で例示した緩衝剤と同様のものを例示することができ、溶媒としては、上記で例示した反応溶媒と同様のものを例示することができる。溶液は、酸又は塩基を含有していてもよい。89Zrを有する放射性金属錯体を保存するための緩衝液は、好ましくは酢酸イオンを含有し、より好ましくは酢酸を含有する。225Acを有する放射性金属錯体を保存するための緩衝液は、好ましくは酢酸イオンを含有し、より好ましくは酢酸アンモニウムを含有する。
 式(1)で表される化合物が放射性金属元素を解離しないで保つことで、放射性金属錯体は、緩衝液中で安定的に存在でき、がん製剤として用いることができる。
[放射性金属捕捉剤]
 次に、本実施形態の式(1)で表される化合物からなる放射性金属捕捉剤について説明する。放射性金属捕捉剤の捕捉対象は、89Zr又は225Acである。
 式(1)で表される化合物は、89Zr及び225Acの両方に配位することが可能であることから、89Zr又は225Acを捕捉対象とした放射性金属捕捉剤として好適に用いることができる。より詳細には、89Zrを捕捉対象とした放射性金属捕捉剤として用いることができるとともに、225Acを捕捉対象とした放射性金属捕捉剤としても用いることができる。式(1)で表される化合物の好ましい態様は、上記と同様である。したがって、ここでは、重複する説明を省略する。
 放射性金属捕捉剤の使用方法としては、例えば、式(1)で表される化合物を含有する組成物と、89Zr及び/又は225Acを含有する溶液とを混合することで、式(1)で表される化合物と89Zr及び/又は225Acとを錯形成させて、89Zr及び/又は225Acを錯体として捕捉する方法が挙げられる。捕捉された錯体は、放射性金属錯体の製造方法の放射性金属錯体を単離精製する場合と同様の方法で単離・回収することができる。
 式(1)で表される化合物を含有する組成物は、例えば、式(1)で表される化合物の溶液であってよい。このような溶液は、式(1)で表される化合物を、上記の反応溶媒で例示したものに溶解させたものであってよい。
 89Zr及び/又は225Acを含有する溶液は、例えば、上記の放射性金属付与剤を、上記の反応溶媒で例示したものに溶解させたものであってよい。
 放射性金属捕捉剤を使用する際の条件は、化合物の種類、放射性金属付与剤の種類等に合わせて適宜最適化できる。なお、放射性金属捕捉剤を使用する際の条件(反応溶媒、反応温度、反応時間、反応時の濃度等)の好ましい態様は、上記の放射性金属錯体の製造方法における条件の好ましい態様と同様であってよい。
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。
合成例1
<化合物(1-1)の合成>
Figure JPOXMLDOC01-appb-C000074
 上記化合物(1-1)を、非特許文献Angewandte Chemie International Edition,2005,vol.44,p.7595-7598に記載の方法で合成した。
実施例1
<化合物(1-1)の89Zr錯体合成及び89Zr錯体の安定性評価>
 放射性金属元素として89Zrを用いた。化合物(1-1)を配位子として用いた。化合物(1-1)を水に溶解させて、化合物(1-1)を10mmol/L含む溶液とした。この溶液7.5μLと、放射性金属付与剤としての89Zrイオン含有溶液(溶媒:0.1mol/L塩酸水溶液、放射能濃度:462MBq/mL)50μLと、ゲンチジン酸を150mmol/L含む0.78mol/L酢酸緩衝液(pH:5.5)50μLと、水42.5μLとを混合した反応液を、37℃加温下で反応させて、89Zr錯体溶液を得た。反応時間は60分間とした。薄層クロマトグラフィー(Agilent社製、型番:SGI0001、展開溶媒:水/アセトニトリル(1:1))を用いて、未反応の89Zrを含む全89Zr放射能カウントに対する89Zr錯体の放射能カウントの百分率を標識率とした。89Zr錯体の標識率は、94%であった。得られた89Zr錯体を含む反応液を、室温(25℃)下で静置し、その後静置してから1時間後、24時間後、48時間後、及び72時間後において、標識率と同様に薄層クロマトグラフィーを用いて放射化学的純度の経時変化を追跡した。表1に結果を示す。
Figure JPOXMLDOC01-appb-T000075
実施例2
<化合物(1-1)の225Ac錯体合成及び225Ac錯体の安定性評価>
 放射性金属元素として225Acを用いた。化合物(1-1)を水に溶解させて、化合物(1-1)を1mmol/L含む溶液とした。この溶液40μLと、放射性金属付与剤としての225Acイオン含有溶液(溶媒:0.2mol/L塩酸水溶液、放射能濃度:30.6MBq/mL)20μLと、0.5mol/L酢酸アンモニウム緩衝液(pH:6.0)16μLと、水4μLとを混合した反応液を、室温(25℃)条件下で反応させて、225Ac錯体溶液を得た。反応時間は60分間とした。実施例1と同様にして、薄層クロマトグラフィーを用いて算出した、225Ac錯体の標識率は、98%であった。得られた225Acを含む反応液を、室温下で静置し、その後静置してから1時間後及び72時間後において、標識率と同様に薄層クロマトグラフィーを用いて放射化学的純度の経時変化を追跡した。表2に結果を示す。
Figure JPOXMLDOC01-appb-T000076
 表1及び表2に示すとおり、実施例1及び実施例2の放射性金属錯体は緩衝液中で安定的に存在していた。これらのことから、本発明の放射性金属錯体が、錯形成した後に、医薬用途において安定的に存在できることが確認された。また、実施例1及び実施例2の放射性金属錯体は、静置1時間の時点において高収率で錯形成していた。これらのことから、本発明の放射性金属錯体は、短時間かつ高収率で得られることが判明した。
合成例2
<化合物(K-1)の合成>
Figure JPOXMLDOC01-appb-C000077
 上記化合物(K-1)を、非特許文献Journal of the American Chemical Society,2010,vol.132,p.15726-15733に記載の方法で合成した。
比較例1
<化合物(K-1)の89Zr錯体合成>
 実施例1における化合物(1-1)の代わりに化合物(K-1)を用いた以外は、実施例1と同様の操作を行い、89Zr錯体溶液を得た。反応60分間の時点で、89Zr錯体の標識率は39%であった。上記のとおり、化合物(1-1)における89Zr錯体の標識率は94%であったことから、化合物(K-1)の標識率は化合物(1-1)の標識率に比べて極めて低いことが判明した。
比較例2
<化合物(K-1)の225Ac錯体合成及>
 実施例2における化合物(1-1)の代わりに化合物(K-1)を用いた以外は、実施例2と同様の操作を行い、225Ac錯体溶液を得た。反応60分間の時点で、225Ac錯体の標識率は38%であった。上記のとおり、化合物(1-1)における225Ac錯体の標識率は97%であったことから、化合物(K-1)の標識率は化合物(1-1)の標識率に比べて極めて低いことが判明した。

Claims (10)

  1.  放射性金属元素と、下記式(1)で表される化合物に由来する配位子とを有し、
     前記放射性金属元素が、89Zr又は225Acである、放射性金属錯体。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、nは、1~3の整数を表す。
     Q、Q、Q、及びQは、それぞれ独立に、水素原子、群Aから選ばれる基、又は置換基を表す。ただし、Q、Q、Q、及びQの少なくとも3個は、群Aから選ばれる基である。
     nが2又は3である場合、複数存在するQは、それぞれ同一であっても異なっていてもよく、Q及びQは、互いに結合して、又は、2価の連結基を介して環構造を形成していてもよい。
     群Aは、下記式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、式(A6)、式(A7)、式(A8)、及び式(A9)で表される基からなる群である。
    Figure JPOXMLDOC01-appb-C000002
    (式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、式(A6)、式(A7)、式(A8)、及び式(A9)中、R~R22は、それぞれ独立に、水素原子又は置換基を表す。なお、*は、結合手を表す。)
     Z、Z、Z、及びZは、それぞれ独立に、単結合又は置換基を有していてもよい2価の連結基を表す。
     nが2又は3である場合、複数存在するZは、それぞれ同一であっても異なっていてもよい。
     Rは、置換基を有していてもよい2価の連結基を表す。ただし、nが1であり、かつQ、Q、Q、及びQのすべてが式(A1)で表される基であるとき、Rは、置換基を有していてもよいヒドロカルビレン基又は群Bから選ばれる基を部分構造として含む2価の基である。
     群Bは、下記式(B1)、式(B2)、式(B3)、及び式(B4)で表される基からなる群である。
    Figure JPOXMLDOC01-appb-C000003
    (式(B1)、式(B2)、式(B3)、及び式(B4)中、R23~R28は、それぞれ独立に、水素原子又は置換基を表す。なお、*は、結合手を表す。)
     nが2又は3である場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。]
  2.  前記式(1)で表される化合物が、下記式(1A)で表される化合物である、請求項1に記載の放射性金属錯体。
    Figure JPOXMLDOC01-appb-C000004
    [式(1A)中、Q、Q、Q、Q、Z、Z、Z、Z、及びRは、前記と同義である。]
  3.  前記式(1)で表される化合物が、下記式(2)で表される化合物である、請求項1に記載の放射性金属錯体。
    Figure JPOXMLDOC01-appb-C000005
    [式(2)中、R、Z、及びQは、前記と同義である。
     R29~R37は、それぞれ独立に、水素原子又は置換基を表す。
     Z1A、Z2A、及びZ3Aは、-CH-又は-C(=O)-を表す。]
  4.  前記式(2)で表される化合物が、下記式(3)で表される化合物である、請求項3に記載の放射性金属錯体。
    Figure JPOXMLDOC01-appb-C000006
    [式(3)中、R、Z1A、Z2A、Z3A、及びR29~R37は、前記と同義である。
     Z4Aは、-CH-又は-C(=O)-を表す。
     R38~R40は、それぞれ独立に、水素原子又は置換基を表す。]
  5.  前記Rが、置換基を有していてもよいヒドロカルビレン基である、請求項1に記載の放射性金属錯体。
  6.  請求項1~5のいずれか一項に記載の放射性金属錯体の製造方法であって、
     89Zr又は225Acを付与する反応剤と前記式(1)で表される化合物とを混合して反応条件を与える標識工程を含む、放射性金属錯体の製造方法。
  7.  前記反応剤が以下のいずれかである、請求項6に記載の放射性金属錯体の製造方法。
    (i)89Zrの塩化物
    (ii)225Acの塩化物
  8.  前記標識工程が40℃以下で実施される、請求項6に記載の放射性金属錯体の製造方法。
  9.  前記標識工程が緩衝剤を含有する反応溶媒の存在下で実施され、
     前記反応剤が89Zrを付与する反応剤であるとき、前記反応溶媒のpHが2.0~6.0であり、
     前記反応剤が225Acを付与する反応剤であるとき、前記反応溶媒のpHが2.0~7.5である、請求項6に記載の放射性金属錯体の製造方法。
  10.  下記式(1)で表される化合物からなる放射性金属捕捉剤であって、
     前記放射性金属捕捉剤の捕捉対象が、89Zr又は225Acである、放射性金属捕捉剤。
    Figure JPOXMLDOC01-appb-C000007
    [式(1)中、nは、1~3の整数を表す。
     Q、Q、Q、及びQは、それぞれ独立に、水素原子、群Aから選ばれる基、又は置換基を表す。ただし、Q、Q、Q、及びQの少なくとも3個は、群Aから選ばれる基である。
     nが2又は3である場合、複数存在するQは、それぞれ同一であっても異なっていてもよく、Q及びQは、互いに結合して、又は、2価の連結基を介して環構造を形成していてもよい。
     群Aは、下記式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、式(A6)、式(A7)、式(A8)、及び式(A9)で表される基からなる群である。
    Figure JPOXMLDOC01-appb-C000008
    (式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、式(A6)、式(A7)、式(A8)、及び式(A9)中、R~R22は、それぞれ独立に、水素原子又は置換基を表す。なお、*は、結合手を表す。)
     Z、Z、Z、及びZは、それぞれ独立に、単結合又は置換基を有していてもよい2価の連結基を表す。
     nが2又は3である場合、複数存在するZは、それぞれ同一であっても異なっていてもよい。
     Rは、置換基を有していてもよい2価の連結基を表す。ただし、nが1であり、かつQ、Q、Q、及びQのすべてが式(A1)で表される基であるとき、Rは、置換基を有していてもよいヒドロカルビレン基又は群Bから選ばれる基を部分構造として含む2価の基である。
     群Bは、下記式(B1)、式(B2)、式(B3)、及び式(B4)で表される基からなる群である。
    Figure JPOXMLDOC01-appb-C000009
    (式(B1)、式(B2)、式(B3)、及び式(B4)中、R23~R28は、それぞれ独立に、水素原子又は置換基を表す。なお、*は、結合手を表す。)
     nが2又は3である場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。]
PCT/JP2022/029509 2021-08-03 2022-08-01 放射性金属錯体及びその製造方法、並びに放射性金属捕捉剤 WO2023013589A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021127632A JP2024125438A (ja) 2021-08-03 放射性金属錯体及びその製造方法、並びに放射性金属捕捉剤
JP2021-127632 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023013589A1 true WO2023013589A1 (ja) 2023-02-09

Family

ID=85155538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029509 WO2023013589A1 (ja) 2021-08-03 2022-08-01 放射性金属錯体及びその製造方法、並びに放射性金属捕捉剤

Country Status (1)

Country Link
WO (1) WO2023013589A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519692A (ja) * 2010-02-19 2013-05-30 ノルディオン (カナダ) インク. 二官能性キレート化剤
WO2018048879A1 (en) * 2016-09-07 2018-03-15 The Board Of Trustees Of The University Of Illinois Metal chelators for imaging, therapeutics, and bioanalysis
JP2019508482A (ja) * 2015-12-24 2019-03-28 ゲルベGuerbet ピコリナート基を有する大環状配位子、その錯体、及びその医学的使用
WO2020186328A1 (en) * 2019-03-20 2020-09-24 The University Of British Columbia Chelators and methods of making and using same
WO2020229974A1 (en) * 2019-05-10 2020-11-19 Janssen Biotech, Inc. Macrocyclic chelators and methods of use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519692A (ja) * 2010-02-19 2013-05-30 ノルディオン (カナダ) インク. 二官能性キレート化剤
JP2019508482A (ja) * 2015-12-24 2019-03-28 ゲルベGuerbet ピコリナート基を有する大環状配位子、その錯体、及びその医学的使用
WO2018048879A1 (en) * 2016-09-07 2018-03-15 The Board Of Trustees Of The University Of Illinois Metal chelators for imaging, therapeutics, and bioanalysis
WO2020186328A1 (en) * 2019-03-20 2020-09-24 The University Of British Columbia Chelators and methods of making and using same
WO2020229974A1 (en) * 2019-05-10 2020-11-19 Janssen Biotech, Inc. Macrocyclic chelators and methods of use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERIC W. PRICE, CHRIS ORVIG: "Matching chelators to radiometals for radiopharmaceuticals", CHEMICAL SOCIETY REVIEWS, vol. 43, no. 1, 7 January 2014 (2014-01-07), UK , pages 260 - 290, XP055397567, ISSN: 0306-0012, DOI: 10.1039/C3CS60304K *
SANDRA HESKAMP; RENÉ RAAVÉ; OTTO BOERMAN; MARK RIJPKEMA; VICTOR GONCALVES; FRANCK DENAT: "89 Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89 Zr Radiochemistry", BIOCONJUGATE CHEMISTRY, vol. 28, no. 9, 20 September 2017 (2017-09-20), US , pages 2211 - 2223, XP055734862, ISSN: 1043-1802, DOI: 10.1021/acs.bioconjchem.7b00325 *

Similar Documents

Publication Publication Date Title
ES2912753T3 (es) Método para la producción de ésteres activos marcados con 18F y su aplicación ejemplificada por la preparación de un marcador de PET específico de PSMA
JPH02501141A (ja) テトラ‐アザ大環状化合物およびその金属錯体
JP2007523902A (ja) テクネチウム−ビス(ヘテロアリール)錯体およびレニウム−ビス(ヘテロアリール)錯体、ならびにその使用方法
David et al. Cyclam Derivatives with a Bis (phosphinate) or a Phosphinato–Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper (II) Complexation for Nuclear Medical Applications
David et al. Improved conjugation, 64-cu radiolabeling, in vivo stability, and imaging using nonprotected Bifunctional macrocyclic ligands: Bis (Phosphinate) Cyclam (BPC) Chelators
JP2018536031A (ja) ジアリールヨードニウム塩を使用してヨード−又はアスタトアレーンを合成するための方法
EP3227272A1 (en) BIFUNCTIONAL do2pa DERIVATIVES, CHELATES WITH METALLIC CATIONS AND USE THEREOF
Lipowska et al. Coordination modes of multidentate ligands in fac-[Re (CO) 3 (polyaminocarboxylate)] analogues of 99mTc radiopharmaceuticals. Dependence on aqueous solution reaction conditions
Marti et al. Comparative Studies of Substitution Reactions of Rhenium (I) Dicarbonyl− Nitrosyl and Tricarbonyl Complexes in Aqueous Media
JP6051227B2 (ja) 金属放射性医薬品のためのケージアミン配位子の官能化
Hayes et al. Photo-initiated thiol-ene click reactions as a potential strategy for incorporation of [MI (CO) 3]+(M= Re, 99mTc) complexes
WO2023013589A1 (ja) 放射性金属錯体及びその製造方法、並びに放射性金属捕捉剤
US20050249662A1 (en) Marked maleimide compounds, method for preparing same and use thereof for marking macromolecules
JP2024125438A (ja) 放射性金属錯体及びその製造方法、並びに放射性金属捕捉剤
WO2022176954A1 (ja) 放射性金属錯体及びその製造方法、並びに放射性金属捕捉剤
Allali et al. Ethylenediamine-and propylenediaminediacetic acid derivatives as ligands for the “fac-[M (CO) 3]+” core (M= Re, 99mTc)
Makris et al. Rhenium (I) and Technetium (I) Tricarbonyl Complexes with [NSO]‐Type Chelators: Synthesis, Structural Characterization, and Radiochemistry
JP5581226B2 (ja) 金属錯体
WO2021096968A1 (en) Radiohalogen prosthetic moieties and radiolabeled biomolecules
US20070232521A1 (en) Fluoride carrier for positron emission tomography
JP2024045789A (ja) 化合物及び金属錯体
JP2023022647A (ja) 化合物及び金属錯体
Riss et al. Studies towards the development of lipophilic bifunctional N3S3 chelators for 68Ga
JP5349971B2 (ja) 有機金属化合物錯体の生体分子適用に関連する配位モチーフκ2−BH2またはκ3−BH3を有する3脚型リガンド
Nizou et al. Exploring the Limits of Ligand Rigidification in Transition Metal Complexes with Mono-N-Functionalized Pyclen Derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22853008

Country of ref document: EP

Kind code of ref document: A1