WO2023013497A1 - ヒドリドイオン伝導体 - Google Patents
ヒドリドイオン伝導体 Download PDFInfo
- Publication number
- WO2023013497A1 WO2023013497A1 PCT/JP2022/028955 JP2022028955W WO2023013497A1 WO 2023013497 A1 WO2023013497 A1 WO 2023013497A1 JP 2022028955 W JP2022028955 W JP 2022028955W WO 2023013497 A1 WO2023013497 A1 WO 2023013497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydride ion
- ion conductor
- sample
- conductivity
- present
- Prior art date
Links
- 239000010416 ion conductor Substances 0.000 title claims abstract description 66
- 150000004678 hydrides Chemical class 0.000 title claims abstract description 64
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 8
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 4
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 description 28
- 239000000463 material Substances 0.000 description 20
- 239000000843 powder Substances 0.000 description 18
- 239000011812 mixed powder Substances 0.000 description 15
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- -1 Hydride ions Chemical class 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052903 pyrophyllite Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910002150 La0.6Sr1.4LiH1.6O2 Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- ZGLFRTJDWWKIAK-UHFFFAOYSA-M [2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]-triphenylphosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(CC(=O)OC(C)(C)C)C1=CC=CC=C1 ZGLFRTJDWWKIAK-UHFFFAOYSA-M 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910012375 magnesium hydride Inorganic materials 0.000 description 1
- 238000009931 pascalization Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/24—Hydrides containing at least two metals; Addition complexes thereof
- C01B6/246—Hydrides containing at least two metals; Addition complexes thereof also containing non-metals other than hydrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/04—Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/24—Hydrides containing at least two metals; Addition complexes thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/20—Halides
- C01F11/22—Fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/88—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to hydride ion conductors.
- Hydride ions which are composed of a hydrogen atom and two electrons, are lighter than lithium ions and have many characteristics such as an ionic radius equivalent to that of fluoride ions (F ⁇ ). are attractive charge carriers.
- Non-Patent Documents 1 and 2 So far, several hydride ion conductors exhibiting high ionic conductivity have been reported (for example, Non-Patent Documents 1 and 2).
- Keiga Fukui, et al. "Characteristic fast H-ion conduction in oxygen-substituted lanthanum hydride", Nature Communications, (2019) 10: 2578 Maarten C.I. Verbraeken, et al. , "High H-ionic conductivity in barium hydride", nature materials, vol. 14, p. 95-p. 100, January, 2015
- Conventional hydride ion conductors have problems in terms of stability. That is, conventional hydride ion conductors have the problem of being rapidly decomposed when exposed to the atmospheric environment.
- the present invention has been made in view of such a background, and an object of the present invention is to provide a hydride ion conductor that is more stable in an atmospheric environment.
- a hydride ion conductor The general formula is MAMBH 4-x F x (1)
- MA is selected from the group consisting of Ca, Sr, and Ba
- MB is selected from the group consisting of Mg and Ca and, unlike MA, Hydride ion conductors are provided wherein 0 ⁇ x ⁇ 4.
- a hydride ion conductor has a BaZnF4 -type structure, A hydride ion conductor having a conductivity of 10 ⁇ 5 S/cm or more at 300° C. is provided.
- the present invention can provide a more stable hydride ion conductor in an atmospheric environment.
- FIG. 1 is a diagram schematically showing the crystal structure of a hydride ion conductor according to one embodiment of the present invention
- FIG. 1 is a reference diagram collectively showing the temperature dependence of conductivity of BaH 2 , LaH 1.92 O 0.54 , La 0.6 Sr 1.4 LiH 1.6 O 2 , and SrMgH 4
- FIG. FIG. 2 is a diagram summarizing the temperature dependence of the conductivity of SrMgH 4-x F x -based materials, which is a type of hydride ion conductor according to one embodiment of the present invention.
- 1 is a diagram schematically showing the flow of a method for manufacturing a hydride ion conductor according to one embodiment of the present invention
- FIG. 4 is a diagram showing X-ray diffraction results after exposure to air of a hydride ion conductor (Sample 1) according to an embodiment of the present invention
- FIG. 4 is a diagram showing X-ray diffraction results before and after air exposure of a hydride ion conductor (Sample 2) according to an embodiment of the present invention
- FIG. 4 is a diagram showing X-ray diffraction results before and after air exposure of a hydride ion conductor (Sample 3) according to an embodiment of the present invention
- 4 is a graph showing the temperature dependence of conductivity of a hydrid ion conductor (Sample 2) according to one embodiment of the present invention.
- 4 is a graph showing the temperature dependence of the conductivity of a hydrid ion conductor (Sample 3) according to one embodiment of the present invention.
- a hydride ion conductor In one embodiment of the invention, a hydride ion conductor, The general formula is MAMBH 4-x F x (1) Formula is represented by here, MA is selected from the group consisting of Ca, Sr, and Ba; MB is selected from the group consisting of Mg and Ca and, unlike MA, Hydride ion conductors are provided wherein 0 ⁇ x ⁇ 4.
- a hydride ion conductor has a BaZnF4 -type structure, A hydride ion conductor having a conductivity of 10 ⁇ 5 S/cm or more at 300° C. is provided.
- a hydride ion conductor according to one embodiment of the present invention has a BaZnF4 - type structure.
- FIG. 1 schematically shows the crystal structure of BaZnF4 , which is the structure of the hydride ion conductor according to one embodiment of the present invention.
- a hydride ion conductor according to an embodiment of the present invention has significantly higher stability in an atmospheric environment than conventional hydride ion conductors.
- the hydride ion conductor according to one embodiment of the present invention does not lose its conductivity at 300°C even after being left in the atmosphere for one week.
- SrMgH4 -xFx system In the material SrMgH 4 having a BaZnF 4 -type structure, a SrMgH 4-x F x- based material is obtained by substituting a portion of the hydrogen atoms (H) with fluorine atoms (F).
- x is preferably 1 or more. Also, if the value of x is 3 or less, good conductivity of the SrMgH 4-x F x- based material can be obtained.
- Fig. 2 summarizes the temperature dependence of conductivity in various hydride ion conductors.
- FIG. 2 shows the temperature dependence of BaH 2 , LaH 1.92 O 0.54 , La 0.6 Sr 1.4 LiH 1.6 O 2 and SrMgH 4 .
- FIG. 3 summarizes the temperature dependence of the conductivity of SrMgH 4-x F x- based materials.
- (i) is SrMgH4 material
- (ii) is SrMgH3F1 material
- (iii) is SrMgH2F2 material
- (iv) is SrMgH1F3 material
- (v) is SrMgF4 material. behavior.
- the conductivity of the SrMgH 4-x F x -based material at 300° C. is preferably greater than or equal to 10 ⁇ 5 S/cm.
- BaMgH 4-x F x system In the material BaMgH 4 having a BaZnF 4 type structure, a BaMgH 4-x F 2 -based material is obtained by substituting some of the hydrogen atoms (H) with fluorine atoms (F).
- x is 3 or less.
- x is in the range of 1-3.
- FIG. 4 schematically shows the flow of the method for producing a hydrid ion conductor according to one embodiment of the present invention.
- a method for producing a hydride ion conductor comprises: (i) a step of mixing predetermined raw materials to prepare a mixed powder (step S110); (ii) heat-treating the mixed powder (step S120); have
- each step is performed under a non-air atmosphere such as an inert gas atmosphere or a hydrogen atmosphere.
- Step S110 First, raw materials are prepared.
- raw materials for example, hydrides of metal MA and MB, and fluorides of metal MA and metal MB are used.
- SrH 2 powder, MgH 2 powder, SrF 2 powder, MgF 2 powder, etc. may be used when manufacturing a SrMgH 4-x F x -based hydride ion conductor.
- BaH 2 powder, MgH 2 powder, BaF 2 powder, MgF 2 powder, etc. may be used when manufacturing a BaMgH 4-x F x -based hydride ion conductor.
- Each raw material may be sufficiently mixed using a ball mill device or the like.
- the obtained mixed powder may be molded.
- the hydride ion conductor can be provided as a molded body.
- Step S120 The resulting mixed powder is then heat treated at a high temperature to produce a hydride ion conductor.
- a cubic anvil high pressure apparatus may be used for this process.
- a cube called a pyrophyllite cell is used, and the inside of this cell is filled with mixed powder. After that, by generating ultra-high hydrostatic pressure with a cubic anvil high-pressure device, it is possible to isotropically pressurize the six surfaces of the pyrophyllite cell installed inside.
- the pressure applied to the pyrophyllite cell is, for example, in the range of 1 GPa to 6 GPa.
- the treatment temperature is, for example, in the range of 500°C to 1000°C.
- the hydride ion conductor according to one embodiment of the present invention can be produced.
- step S120 does not necessarily have to be performed. That is, the hydride ion conductor according to one embodiment of the present invention may be provided in the form of mixed powder.
- the above manufacturing method is merely an example, and the hydride ion conductor according to one embodiment of the present invention may be manufactured by another manufacturing method.
- a sample of the hydride ion conductor was prepared by the following method. Also, the characteristics of the produced samples were evaluated. In the following description, Examples 1 to 3 are examples, and Examples 11 and 12 are comparative examples.
- Example 1 A sample for evaluation was produced by the following method.
- the particle size of the SrH 2 powder is 0.1-200 ⁇ m
- the particle size of the MgH 2 powder is 0.1-200 ⁇ m
- the particle size of the MgF 2 powder is 0.1-200 ⁇ m.
- H:F 3:1 (molar ratio).
- the obtained mixed powder was put into a planetary ball mill device (containing zirconia balls) and ground and mixed at room temperature.
- the rotation speed was 600 rpm, and the treatment time was 48 hours.
- sample 1 a hydride ion conductor
- Example 2 A hydride ion conductor was produced in the same manner as in Example 1. However, in Example 2, H:F in the mixed powder was 2:2 (molar ratio). Other conditions are the same as in Example 1.
- sample 2 a hydride ion conductor (hereinafter referred to as “sample 2”) was produced.
- Example 3 A hydride ion conductor was produced in the same manner as in Example 1. However, in Example 3, H:F in the mixed powder was 1:3 (molar ratio). Other conditions are the same as in Example 1.
- sample 3 a hydride ion conductor
- Example 11 A hydride ion conductor was produced in the same manner as in Example 1. However, in Example 11, a mixed powder was prepared without adding MgF 2 powder. The composition of the mixed powder is SrMgH4 in stoichiometric ratio. Other conditions are the same as in Example 1.
- sample 11 a hydride ion conductor (hereinafter referred to as “sample 11") was produced.
- Example 12 A sample was prepared in the same manner as in Example 1. However, in Example 11, 1.337 g of SrF 2 powder and 0.663 g of MgF 2 powder were weighed and mixed in an Ar atmosphere to prepare a mixed powder. No hydride was added to the feed. The composition of the mixed powder is stoichiometric SrMgF4 . Other conditions are the same as in Example 1.
- Example 12 a sample (hereinafter referred to as “Sample 12") was produced.
- X-ray diffraction analysis X-ray diffraction analysis of each sample was performed using a desktop X-ray diffraction analyzer (MiniFlex600; manufactured by RIGAKU). The measurement before exposure to air was performed in an argon atmosphere, and the measurement after exposure to air was performed in an air atmosphere.
- AC impedance measurement Each sample was molded to produce a compact having a diameter of about 6 mm ⁇ and a thickness of about 2 mm. Gold electrodes were brought into contact with both bottom surfaces of this compact, and AC impedance was measured using an atmosphere control measurement cell.
- the VSP-300 (Biologic Inc.) was used as the measurement device.
- the measurement frequency was 1 Hz to 7 MHz, and the applied AC voltage was 50 to 500 mV. Measurements were performed in a hydrogen atmosphere. Conductivity was calculated from the measurement results (cole-cole-plot).
- Sample 11 began to decompose immediately after being exposed to the atmosphere, and deteriorated very quickly.
- Samples 1 to 3 started to deteriorate later than Sample 11 and were relatively stable.
- Samples 2 and 3 showed almost no deterioration even after one week of exposure to the atmosphere.
- FIG. 5 shows the X-ray diffraction analysis results of Sample 1.
- 6 and 7 show the X-ray diffraction analysis results of samples 2 and 3, respectively.
- the X-ray diffraction analysis results of Sample 1 were measured one hour after being exposed to the atmosphere.
- the X-ray diffraction analysis results of samples 2 and 3 were measured one week after opening to the atmosphere. It should be noted that sample 11 could not be subjected to X-ray diffraction analysis because it started to decompose immediately after being exposed to the atmosphere.
- Figures 6 and 7 simultaneously show the results of X-ray diffraction analysis before opening to the atmosphere.
- FIG. 3 shows the temperature dependence of the conductivity obtained in Sample 1 before being exposed to the atmosphere.
- FIG. 3 shows the temperature dependence of the conductivity obtained in Sample 2 before opening to the atmosphere, and (iv) in FIG. The temperature dependence of the obtained conductivity is shown.
- FIG. 3 shows the temperature dependence of the conductivity obtained in the sample 11 before opening to the atmosphere, and (v) in FIG. temperature dependence of degrees.
- the conductivity at each temperature was lowest in sample 12, and increased in order of sample 3, sample 2, sample 1, and sample 11.
- FIG. 8 shows the temperature dependence of conductivity obtained after sample 2 was exposed to the atmosphere. For comparison, FIG. 8 also shows the results measured before atmospheric exposure (ie curve (iii) in FIG. 3).
- Sample 2 maintained high conductivity even after being exposed to the atmosphere.
- the conductivity at 300° C. after atmospheric exposure was about 10 ⁇ 7.0 S/cm.
- FIG. 9 shows the temperature dependence of conductivity obtained after sample 3 was exposed to the atmosphere.
- FIG. 9 also shows the results measured before atmospheric exposure (that is, curve (iv) in FIG. 3).
- Sample 3 maintained high conductivity even after being exposed to the atmosphere.
- the conductivity at 300° C. after atmospheric exposure was about 10 ⁇ 4.5 S/cm.
- samples 1 to 3 were confirmed to have better atmospheric stability than sample 11.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Conductive Materials (AREA)
Abstract
Description
ヒドリドイオン伝導体であって、
一般式が
MAMBH4-xFx (1)式
で表され、
ここで、
MAは、Ca、Sr、およびBaからなる群から選定され、
MBは、MgおよびCaからなる群から選定され、MAとは異なり、
0<x<4である、ヒドリドイオン伝導体が提供される。
ヒドリドイオン伝導体であって、
BaZnF4型構造を有し、
300℃における伝導度が10-5S/cm以上である、ヒドリドイオン伝導体が提供される。
本発明の一実施形態では、
ヒドリドイオン伝導体であって、
一般式が
MAMBH4-xFx (1)式
で表され、
ここで、
MAは、Ca、Sr、およびBaからなる群から選定され、
MBは、MgおよびCaからなる群から選定され、MAとは異なり、
0<x<4である、ヒドリドイオン伝導体が提供される。
ヒドリドイオン伝導体であって、
BaZnF4型構造を有し、
300℃における伝導度が10-5S/cm以上である、ヒドリドイオン伝導体が提供される。
次に、前述のような特徴を有する本発明の一実施形態によるヒドリドイオン伝導体の具体例について説明する。
BaZnF4型構造を有する材料SrMgH4において、水素原子(H)の一部をフッ素原子(F)に置換することにより、SrMgH4-xFx系材料が得られる。SrMgH4-xFx系材料は、前述の(1)式において、MA=Sr、MB=Mgとした場合に相当する。
BaZnF4型構造を有する材料BaMgH4において、水素原子(H)の一部をフッ素原子(F)に置換することにより、BaMgH4-xFx系材料が得られる。BaMgH4-xFx系材料は、前述の(1)式において、MA=Ba、MB=Mgとした場合に相当する。
以下、図4を参照して、本発明の一実施形態によるヒドリドイオン伝導体の製造方法について、簡単に説明する。
(i)所定の原料を混合して、混合粉末を調製する工程(工程S110)と、
(ii)混合粉末を熱処理する工程(工程S120)と、
を有する。
まず、原料が準備される。
次に、得られた混合粉末が高温で熱処理され、ヒドリドイオン伝導体が製造される。
この装置を使用する際には、パイロフィライトセルと呼ばれる立方体が使用され、このセルの内部に混合粉末が充填される。その後、キュービックアンビル高圧装置により、超高圧の静水圧を発生させることにより、内部に設置されたパイロフィライトセルの6面を等方的に加圧することができる。
以下の方法により、評価用のサンプルを作製した。
Ar雰囲気下において、1.338gのSrH2粉末(三津和化学社製)と、0.197gのMgH2粉末(和光純薬社製)と、0.465gのMgF2粉末(三津和化学社製)とを秤量、混合し、混合粉末を調製した。
例1と同様の方法により、ヒドリドイオン伝導体を作製した。ただし、この例2では、混合粉末におけるH:Fは、2:2(モル比)とした。その他の条件は、例1と同様である。
例1と同様の方法により、ヒドリドイオン伝導体を作製した。ただし、この例3では、混合粉末におけるH:Fは、1:3(モル比)とした。その他の条件は、例1と同様である。
例1と同様の方法により、ヒドリドイオン伝導体を作製した。ただし、この例11では、MgF2粉末を添加せずに、混合粉末を調製した。混合粉末の組成は、化学量論比のSrMgH4である。その他の条件は、例1と同様である。
例1と同様の方法により、サンプルを作製した。ただし、この例11では、Ar雰囲気下において、1.337gのSrF2粉末と、0.663gのMgF2粉末とを秤量、混合し、混合粉末を調製した。原料に、水素化物は添加しなかった。混合粉末の組成は、化学量論比のSrMgF4である。その他の条件は、例1と同様である。
(大気暴露試験)
製造後の各サンプルを、相対湿度が50~60%の大気環境下に暴露し、サンプルの状態を観察した。
卓上X線回折分析装置(MiniFlex600;RIGAKU社製)を用いて、各サンプルのX線回折分析を行った。なお、大気暴露前の測定は、アルゴン雰囲気で実施し、大気暴露後の測定は、大気雰囲気で実施した。
各サンプルを成形して、直径約6mmφ、厚さ約2mmの成形体を作製した。この成形体の両底面に金電極を接触させ、雰囲気制御測定セルを用いて交流インピーダンス測定を実施した。
各サンプルにおいて得られた評価結果をまとめて以下の表1に示す。
Claims (3)
- ヒドリドイオン伝導体であって、
一般式が
MAMBH4-xFx (1)式
で表され、
ここで、
MAは、Ca、Sr、およびBaからなる群から選定され、
MBは、MgおよびCaからなる群から選定され、MAとは異なり、
0<x<4である、ヒドリドイオン伝導体。 - ヒドリドイオン伝導体であって、
BaZnF4型構造を有し、
300℃における伝導度が10-5S/cm以上である、ヒドリドイオン伝導体。 - 一般式がSrMgH4-xFxまたはBaMgH4-xFxで表される、請求項1または2に記載のヒドリドイオン伝導体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023540285A JPWO2023013497A1 (ja) | 2021-08-06 | 2022-07-27 | |
CN202280053825.2A CN117794849A (zh) | 2021-08-06 | 2022-07-27 | 氢负离子导体 |
EP22852920.2A EP4382479A1 (en) | 2021-08-06 | 2022-07-27 | Hydride ion conductor |
US18/427,393 US20240166513A1 (en) | 2021-08-06 | 2024-01-30 | Hydride ion conductor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021130271 | 2021-08-06 | ||
JP2021-130271 | 2021-08-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/427,393 Continuation US20240166513A1 (en) | 2021-08-06 | 2024-01-30 | Hydride ion conductor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023013497A1 true WO2023013497A1 (ja) | 2023-02-09 |
Family
ID=85154506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/028955 WO2023013497A1 (ja) | 2021-08-06 | 2022-07-27 | ヒドリドイオン伝導体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240166513A1 (ja) |
EP (1) | EP4382479A1 (ja) |
JP (1) | JPWO2023013497A1 (ja) |
CN (1) | CN117794849A (ja) |
WO (1) | WO2023013497A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011204632A (ja) * | 2010-03-26 | 2011-10-13 | Tokyo Institute Of Technology | ヒドリドイオン導電体およびその製造方法 |
JP2017098067A (ja) * | 2015-11-24 | 2017-06-01 | 国立大学法人東京工業大学 | ヒドリドイオン導電体およびその製造方法 |
JP2021130271A (ja) | 2020-02-20 | 2021-09-09 | 大日本印刷株式会社 | 熱転写シート |
-
2022
- 2022-07-27 JP JP2023540285A patent/JPWO2023013497A1/ja active Pending
- 2022-07-27 WO PCT/JP2022/028955 patent/WO2023013497A1/ja active Application Filing
- 2022-07-27 EP EP22852920.2A patent/EP4382479A1/en active Pending
- 2022-07-27 CN CN202280053825.2A patent/CN117794849A/zh active Pending
-
2024
- 2024-01-30 US US18/427,393 patent/US20240166513A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011204632A (ja) * | 2010-03-26 | 2011-10-13 | Tokyo Institute Of Technology | ヒドリドイオン導電体およびその製造方法 |
JP2017098067A (ja) * | 2015-11-24 | 2017-06-01 | 国立大学法人東京工業大学 | ヒドリドイオン導電体およびその製造方法 |
JP2021130271A (ja) | 2020-02-20 | 2021-09-09 | 大日本印刷株式会社 | 熱転写シート |
Non-Patent Citations (3)
Title |
---|
EMILIO ORGAZ; JESÚS HERNÁNDEZ‐TRUJILLO: "Chemical bonding in ternary magnesium hydrides", INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, WILEY, NEW YORK, NY, US, vol. 94, no. 3, 5 June 2003 (2003-06-05), US , pages 150 - 164, XP071302581, ISSN: 0020-7608, DOI: 10.1002/qua.10621 * |
KEIGA FUKUI ET AL.: "Characteristic fast H- ion conduction in oxygen-substituted lanthanum hysride", NATURE COMMUNICATIONS, vol. 10, 2019, pages 2578 |
MAARTEN C. VERBRAEKEN ET AL., HIGH H- IONIC CONDUCTIVITY IN BARIUMU HYDRIDE'', NATURE MATERIALS, vol. 14, January 2015 (2015-01-01), pages 95 - 100 |
Also Published As
Publication number | Publication date |
---|---|
EP4382479A1 (en) | 2024-06-12 |
JPWO2023013497A1 (ja) | 2023-02-09 |
US20240166513A1 (en) | 2024-05-23 |
CN117794849A (zh) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Courtney et al. | Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2 BPO 6 glass | |
EP3719881A1 (en) | Anode active material for nonaqueous electrolyte secondary battery comprising silicon oxide composite and method for producing same | |
EP0685896B1 (en) | Carbonaceous host compounds and use as anodes in rechargeable batteries | |
EP3505500B1 (en) | Sulfide solid electrolyte | |
Liu et al. | SnF2-based fluoride ion electrolytes MSnF4 (M= Ba, Pb) for the application of room-temperature solid-state fluoride ion batteries | |
CN109065858B (zh) | 一种表面改性三元正极材料及其制备方法和其制成的电池 | |
US12087905B2 (en) | Ionic conductor and electricity storage device | |
JP4511343B2 (ja) | リチウム電池用正極材料およびその製造法 | |
EP4206124A1 (en) | Active material, method for producing same, electrode mixture and battery | |
KR20100008786A (ko) | 리튬 이온 배터리용 캐소드 활성 물질 및 이를 제조하는 방법 | |
WO2019212026A1 (ja) | イオン伝導性粉末、イオン伝導性成形体および蓄電デバイス | |
EP2058879A1 (en) | Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell | |
Sang et al. | One stone, three birds: an air and interface stable argyrodite solid electrolyte with multifunctional nanoshells | |
JP3706718B2 (ja) | リチウムイオン二次電池用コバルト酸リチウム系正極活物質、この製造方法及びリチウムイオン二次電池 | |
WO2023013497A1 (ja) | ヒドリドイオン伝導体 | |
Kim et al. | Analogous Design of a Microlayered Silicon Oxide‐Based Electrode to the General Electrode Structure for Thin‐Film Lithium‐Ion Batteries | |
Yu et al. | A High‐Voltage Solid State Electrolyte Based on Spinel‐Like Chloride Made of Low‐Cost and Abundant Resources | |
CN115699389A (zh) | 锂混合无机电解质 | |
CA2332826C (en) | Transition metal based ceramic material and electrodes fabricated therefrom | |
CN110828904A (zh) | 卤化锂与二维材料复合固态电解质材料及制备方法和应用 | |
WO2023013496A1 (ja) | ヒドリドイオン伝導体 | |
JP2002373657A (ja) | 非水電解質二次電池用負極の製造方法及び非水電解質二次電池 | |
Chen et al. | Uniaxial compressive strain along c-axis elevates the performance of LiMn2O4 cathode in lithium-ion batteries | |
KR20240143492A (ko) | 할라이드계 고체전해질-양극활물질 복합체의 제조 및 이의 응용 | |
KR20240081221A (ko) | 음극소재용 그래파이트 복합체의 제조방법, 이에 의해 제조된 음극소재용 그래파이트 복합체 및 이를 이용한 리튬이온전지용 음극 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22852920 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023540285 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280053825.2 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022852920 Country of ref document: EP Effective date: 20240306 |