WO2023013031A1 - 回転翼機、回転翼部 - Google Patents

回転翼機、回転翼部 Download PDF

Info

Publication number
WO2023013031A1
WO2023013031A1 PCT/JP2021/029300 JP2021029300W WO2023013031A1 WO 2023013031 A1 WO2023013031 A1 WO 2023013031A1 JP 2021029300 W JP2021029300 W JP 2021029300W WO 2023013031 A1 WO2023013031 A1 WO 2023013031A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
functional
propeller
aircraft
landing
Prior art date
Application number
PCT/JP2021/029300
Other languages
English (en)
French (fr)
Inventor
雅喜 大河内
Original Assignee
株式会社エアロネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアロネクスト filed Critical 株式会社エアロネクスト
Priority to PCT/JP2021/029300 priority Critical patent/WO2023013031A1/ja
Priority to JP2023539541A priority patent/JPWO2023013031A1/ja
Priority to CN202221537800.3U priority patent/CN219192547U/zh
Priority to CN202210695671.9A priority patent/CN115703538A/zh
Publication of WO2023013031A1 publication Critical patent/WO2023013031A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/66Convertible alighting gear; Combinations of different kinds of ground or like engaging elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C7/00Structures or fairings not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • B64D33/10Radiator arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/90Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors

Definitions

  • the present invention relates to a rotary wing aircraft and a rotary wing section having a functional section connected to a motor.
  • flying objects such as drones and unmanned aerial vehicles (UAVs).
  • UAVs unmanned aerial vehicles
  • the specifications required for the flying object change, including size, weight, and flight characteristics.
  • Patent Literature 1 discloses an aircraft capable of stable landing. (See Patent Document 1, for example).
  • the landing gears of the unmanned aerial vehicle are provided at a position away from the center of the fuselage to enable stable landing, and the lower structure of the unmanned aerial vehicle equipped with the landing legs serves as a buffer for shock absorption.
  • a landing leg provided in a lower structure of an aircraft having a towing type (pull type) rotary wing allows landing without grounding the main body and the payload on the landing surface. Equipped with a hydraulic damper or an air damper as a buffer, it can absorb the impact of the landing of the unmanned aerial vehicle and reduce the impact transmitted to the body of the aircraft and the cargo on board.
  • Landing legs are installed under the motor, which is the farthest position from the center of the fuselage as long as it can be connected without extending the frame for installing the landing legs, and the landing legs are installed near the center of the fuselage. Compared to the airframe, the distance between each landing leg is wider, making it possible to provide stable landing.
  • connection position so that it does not come into contact with the rotating propeller.
  • the distance between the landing legs becomes narrower and the landing performance deteriorates.
  • the frame must be extended to install the landing gear, which may increase the size and weight of the aircraft.
  • the present invention provides a function to be connected to a motor that improves the efficiency and landing stability of an aircraft when providing a landing gear or the like to the aircraft, and that can be used for an aircraft having propulsion type rotor blades.
  • the purpose is to provide
  • a rotary wing portion including a motor and a propeller, a connecting portion connected to a rotating portion of the rotary wing portion and rotating together with the rotating portion, at least a portion of which is held by the connecting portion, and the It is possible to provide a rotary wing aircraft having a functional part that is held in a state where the number of rotations is lower than the number of rotations of the connection part.
  • FIG. 3 is a conceptual diagram of a motor provided in the flying object according to the present invention, viewed from below;
  • FIG. 2 is a side view of the motor of FIG. 1 connected to a propeller and a functional unit;
  • FIG. 3 is a conceptual diagram of the components of FIG. 2 exploded and viewed from the side;
  • 1 is a side view of an embodiment of an air vehicle according to the invention;
  • FIG. FIG. 6 is a diagram when the aircraft of FIG. 5 is landing; 1 is a functional block diagram of an aircraft of the present invention;
  • FIG. FIG. 4 is a diagram showing a functional part provided under the motor of the towed aircraft.
  • FIG. 2 is a diagram of a conventional airframe in which a propellant-type aircraft is provided with functional units;
  • FIG. 2 is a diagram of a conventional airframe in which a propellant-type aircraft is provided with functional units;
  • FIG. 4 is a side view showing an example of a method of connecting a motor and a functional unit according to the present invention;
  • FIG. 4 is a side view and other views showing an example of a method of connecting a motor and a functional unit according to the present invention;
  • FIG. 10 is a side view when a slide bearing is used to connect the functional parts;
  • FIG. 10 is a side view when a rolling bearing is used to connect the functional parts; It is a figure when connecting a connection part to a shaft.
  • FIG. 4 is a side view and other views showing an example of a method of connecting a motor and a functional unit according to the present invention
  • 1 is a side view of an embodiment in which a propeller guard is used as a functional part of an aircraft according to the present invention
  • FIG. 15 is a top view of the aircraft of FIG. 14
  • FIG. FIG. 11 is a side view showing a flying object according to existing technology when it is equipped with a propeller guard
  • 16 is a top view of the aircraft of FIG. 15
  • FIG. 1 is a side view of an embodiment in which a rectifier is used as a functional part of an aircraft according to the present invention
  • a rotary wing machine and a rotary wing section having a functional section connected to a motor have the following configuration.
  • a rotor section including a motor and a propeller; a connecting portion that is connected to the rotating portion of the rotating blade portion and rotates together with the rotating portion; a functional part at least partially held by the connection part and held in a state where the number of rotations is smaller than the number of rotations of the rotation of the connection part;
  • the rotary wing section is of a propulsion type, 3.
  • a rotorcraft according to claim 1 or 2 characterized in that: [Item 4] The functional portion is held by the connecting portion via an auxiliary member, The rotorcraft according to any one of claims 1 to 3, characterized in that: [Item 5] wherein the auxiliary member is a bearing structure, A rotorcraft according to claim 4, characterized in that: [Item 6] A state in which the number of rotations is less than the number of rotations of the connection portion is a substantially stationary state.
  • the rotorcraft according to any one of claims 1 to 5 characterized in that: [Item 7]
  • the functional part includes a ground part that contacts the ground during landing,
  • the functional unit includes a propeller guard,
  • the functional unit includes a straightening mechanism for the rotating blade unit,
  • a rotary wing section characterized by:
  • a motor 20 included in an aircraft according to an embodiment of the present invention is connected to a propeller 110, and the propeller 110 can be rotated by rotation of the motor 20 to generate lift. is.
  • the motor 20 includes a connecting portion 11 and a functional portion 10 connected in such a manner that the connecting portion 11 does not fall off unintentionally.
  • the functional part provided in the flying object according to the first embodiment of the present invention is connected to the motor 20 of the flying object 100 via the connecting part 11, and the propeller 110 generates lift. configured to protrude from the surface.
  • the functional part 10 is provided so as to reduce the influence of rotation using an auxiliary member 25 such as a bearing, as will be described later. Therefore, the functional part 10 directly under the motor 20 is not affected by the rotation of the motor, and can be suitably used for applications such as landing gear.
  • a flying object that performs vertical take-off and landing such as the flying object 100 in the first embodiment of the present invention
  • the functional part 10 when the functional part 10 is a landing leg, when the flying object touches the landing surface , the distance between the landing legs widens and stabilizes.
  • the installation position of the landing gear that can secure a wide interval without extending the holding part such as the arm is the propeller. and a motor connected to the propeller (hereinafter referred to as a lift generating section), a holding section provided with the lift generating section, and below the motor mount.
  • the rotor is a propulsion type, it is not possible to connect the landing gear directly to the bottom of the motor or propeller with existing methods.
  • the functional section 10 can be provided below the lift generating section. Further, by providing the connection portion 11 and the function portion 10 outside the motor, the configuration can be used for various motor sizes.
  • the rotor portion of the flying object 100 has at least a motor 20 and a propeller 110, and may include plates and screws for assembly as necessary.
  • the portion that rotates with the rotation of the motor eg, propeller, shaft, rotor portion of the motor
  • the portion that does not rotate with the rotation of the motor is called the non-rotating portion 24.
  • the connecting portion 11 is fixedly connected to the rotating portion 23 and rotated by the rotation of the motor 20 .
  • the functional part 10 further connected to the connecting part 11 reduces (more preferably connected to the connecting part 11 via an auxiliary member 25 that can independently maintain a state (more preferably a substantially stationary state) at a lower rotational speed than the rotational speed of the rotating part 23. be done. Therefore, in the flying object 100 having propulsion-type rotary wings, the functional part 10 does not rotate and remains stationary, so that it can be suitably used as a landing leg of the flying object 100 below the motor 20, and , are connected so as to prevent unintentional drop-off during flight, takeoff and landing of the aircraft 100 .
  • the object Frictional force acting between and the functional part reduces the number of revolutions and can be almost stationary.
  • the auxiliary member 25 By providing the auxiliary member 25, the frictional force required to reduce the number of rotations of the functional portion is reduced.
  • the functional unit 10 may be positively brought into contact with an object to cause friction and reduce the rotation speed.
  • the functional part 10 when used as a landing leg, the functional part 10 is substantially stationary due to friction with the landing surface when and after landing is completed. As a result, the landing leg contacting the landing surface can be prevented from rotating and damaging or gouging the landing surface.
  • the auxiliary member 25 is used to connect the connecting portion 11 and the functioning portion 10, as illustrated in FIGS.
  • a lubricant such as grease or oil is used between the connecting portion 11 and the functional portion 10, or an oil-impregnated bearing is used as the bearing to provide better sliding characteristics and quietness. You can do it.
  • the auxiliary member 25 is desirably determined according to the size, application, usage environment, etc. of the aircraft 100 .
  • rolling elements 25 such as balls and rollers, retainers 26, bearing washers 27, etc. are used, so that friction is reduced compared to plain bearings, and it is strong against high-speed rotation. It has characteristics such as being complicated. Also, when a plain bearing is used, the friction is greater than that of a rolling bearing, but the structure is simple and the cost of maintenance and the like can be reduced.
  • An example of the member of the rotating portion 23 that contacts when the connecting portion 11 is connected may be a member that constitutes the propeller 110 of the rotating blade portion as illustrated in FIG. 1-3, but is not limited to this.
  • a fixture 12 screw or the like for connecting the connecting portion 11 to the rotor blade, and a fixture 12 (screw or the like) for connecting the connecting portion 11 and the functional portion 10 via the auxiliary member 25 may be provided.
  • the functional part 10 may be fixed to the connection part 11 by the fixture 12 so as not to be affected by the rotating part 23.
  • connection part 11 is For example, it may have a downwardly convex configuration, and when the connecting portion 11 is connected to the rotor blade portion, a space is formed to accommodate the head of the screw, and the cylindrical portion of the screw (the portion without threads) is formed. By being located in the through portion of the connecting portion 11, even if the rotating portion 23 rotates, the fixture 12 and the functional portion 10 are not affected by the rotation.
  • a bearing (a ball bearing, a roller bearing, or the like, which is a rolling bearing) may be further provided.
  • the connecting portion 11 When using the connecting portion 11, it is possible to add the functional portion 10, which is not affected by the rotation of the rotating portion 23, to a general motor or propeller. Since there is no need to use a dedicated motor or the like, it is possible to easily add the functional unit 10 to the existing flying object and to suppress an increase in manufacturing cost.
  • the functional part 10 performs grooving or the like on a part of the rod-shaped member, and processes the connection part 11 (for example, deformation of a single part, adhesion of multiple parts, welding etc.), a part of the function part 10 may be stored in the space in the connection part 11 and may be held so as to be hooked on the through part, as illustrated in FIGS. 2-3 and 15.
  • the fixture 12 such as a screw to the rod-like member as shown in FIG. This prevents the connecting portion 11 and the functional portion 10 from unintentionally separating during flight, takeoff and landing of the aircraft 100 .
  • auxiliary member 25 rolling element, retainer, bearing washer, etc.
  • surface treatment to reduce friction may be applied to the connecting portion 11 or the functional portion 10. and it is preferable that the rotation of the connecting portion 11 is less likely to be transmitted to the functional portion 10 .
  • the functional unit 10 may be a combination of a plurality of members.
  • a base member that is caught in the connection part 11 and a tip side member are separated from each other, so that suitable materials can be used according to the application.
  • a tip side member for example, a grounding part as a landing leg
  • the function part 10 is given the role of a landing leg, it reduces the impact on the body part of the flying object and the contacting object during hard landing or contact with the structure, and increases the rigidity and reliability of the connection part. In order to avoid impairing may be With such a configuration, the impact can be absorbed by actively deforming or destroying the landing leg portion, and the impact transmitted to the main body portion and the contact object can be reduced.
  • the functional part 10 When the functional part 10 is used as a landing leg, the functional part 10 has a ground contact part that contacts the ground, and also has a damper or the like that mitigates the impact during landing or when the aircraft 100 is placed. good too.
  • the functional part 10 can have various functions in addition to the function as a landing leg.
  • a heat sink function for the motor it is also possible to provide a heat sink function for the motor. It is possible.
  • the functional unit 10 may be configured so that multiple types of attachments can be connected and replaced according to requirements. In order to allow replacement, it is desirable that the mounting portion be standardized so that multiple types of attachments can be easily replaced.
  • the functional unit 10 can operate independently of the rotation of the motor 20, it can be rotated and oscillated in a predetermined manner by a servo, motor, or the like provided separately from the motor 20. For example, change the direction of the nozzle or change the angle of the aerodynamic parts.
  • the attachment connection of the mounting part can be easily replaced by providing a well-known connection method such as a connector or screw.
  • the functional part 10 when providing the functional part 10 that acts as a guard for the aircraft 100 that uses a towing propeller, the functional part 10 connected to the motor 20 covers the propeller as illustrated in FIGS. 16 and 17. , and can be provided above the aircraft 100 .
  • landing gears and propeller guards have been described as examples of extending the functional part below the motor of an aircraft with propulsion type rotors and above the motor of an aircraft with traction type rotors, that is, on the connection side of the propeller.
  • these do not limit the form of utilization of the present invention.
  • effects such as reducing the weight increase of the airframe, improving the efficiency of the aircraft, and efficiently utilizing the propeller wake are expected.
  • the flying object is a VTOL aircraft
  • the motors are used in the front-back direction during horizontal flight, etc., other than during vertical takeoff and landing and during hovering.
  • the flight efficiency of the aircraft is improved by providing an airflow straightening device on the propeller connection side of the motor, which is in front of and behind the motor.
  • the motor 20 connected to the propeller 110 and the holding part such as the arm are generally attached firmly from the viewpoint of the assumed load.
  • the flying object 100 takes off from the takeoff point and flies to the destination. For example, when a flying object performs an inspection or survey, the flying object that has reached its destination acquires information using a sensor or the like, and then moves toward another destination or landing point.
  • an aircraft 100 has at least a main body, a propeller 110, a plurality of rotors comprising a motor 20, and a motor supporting the rotors. It is desirable to have flying parts, including elements such as mounts and frame 120, and to carry energy (eg, secondary batteries, fuel cells, fossil fuels, etc.) to operate them.
  • energy eg, secondary batteries, fuel cells, fossil fuels, etc.
  • the illustrated flying object 100 is drawn in a simplified manner in order to facilitate the description of the structure of the present invention, and for example, detailed configurations such as a control unit are not illustrated.
  • the flying object 100 advances in the direction of arrow D (-Y direction) in the drawing (details will be described later).
  • Forward/backward direction +Y direction and -Y direction
  • Vertical direction or vertical direction
  • Left/right direction or horizontal direction
  • the propeller 110 rotates upon receiving the output from the motor 20 . Rotation of the propeller 110 generates a propulsive force for taking off, moving, and landing the aircraft 100 from the starting point.
  • the propeller 110 can rotate rightward, stop, and rotate leftward.
  • the propeller 110 of the flying object of the present invention has one or more blades. Any number of blades (rotors) may be used (eg, 1, 2, 3, 4, or more blades). Also, the vane shape can be any shape, such as flat, curved, twisted, tapered, or combinations thereof. It should be noted that the shape of the wing can be changed (for example, stretched, folded, bent, etc.). The vanes may be symmetrical (having identical upper and lower surfaces) or asymmetrical (having differently shaped upper and lower surfaces). The airfoil, wing, or airfoil can be formed into a geometry suitable for generating dynamic aerodynamic forces (eg, lift, thrust) as the airfoil is moved through the air. The geometry of the blades can be selected to optimize the dynamic air properties of the blades, such as increasing lift and thrust and reducing drag.
  • the geometry of the blades can be selected to optimize the dynamic air properties of the blades, such as increasing lift and thrust and reducing drag.
  • the propeller provided in the flying object of the present invention may be fixed pitch, variable pitch, or a mixture of fixed pitch and variable pitch, but is not limited to this.
  • the motor 20 causes rotation of the propeller 110, and the drive unit can include, for example, an electric motor or an engine.
  • the vanes are drivable by a motor and rotate about the axis of rotation of the motor (eg, the longitudinal axis of the motor).
  • All the blades can rotate in the same direction, and they can also rotate independently. Some of the vanes rotate in one direction and others rotate in the other direction.
  • the blades can all rotate at the same number of revolutions, or can each rotate at different numbers of revolutions. The number of rotations can be determined automatically or manually based on the dimensions (eg, size, weight) and control conditions (speed, direction of movement, etc.) of the moving body.
  • the flight object 100 determines the number of rotations of each motor and the flight angle according to the wind speed and direction by means of a flight controller, radio, etc. As a result, the flying object can move such as ascending/descending, accelerating/decelerating, and changing direction.
  • the flying object 100 can perform autonomous flight according to the route and rules set in advance or during flight, and flight by control using propo.
  • a flight controller is a so-called processing unit.
  • a processing unit may have one or more processors, such as a programmable processor (eg, central processing unit (CPU)).
  • the processing unit has a memory (not shown) and can access the memory.
  • the memory stores logic, code, and/or program instructions executable by the processing unit to perform one or more steps.
  • the memory may include, for example, removable media or external storage devices such as SD cards and random access memory (RAM). Data acquired from cameras and sensors may be communicated directly to and stored in memory. For example, still image/moving image data captured by a camera or the like is recorded in a built-in memory or an external memory.
  • the processing unit includes a control module configured to control the state of the rotorcraft.
  • the control module may adjust the spatial orientation, velocity, and/or acceleration of a rotorcraft having six degrees of freedom (translational motions x, y, and z, and rotational motions ⁇ x , ⁇ y , and ⁇ z ). control the propulsion mechanism (motor, etc.) of the rotorcraft.
  • the control module can control one or more of the states of the mount, sensors.
  • the processing unit can communicate with a transceiver configured to send and/or receive data from one or more external devices (eg, terminals, displays, or other remote controls).
  • the transceiver may use any suitable means of communication such as wired or wireless communication.
  • the transceiver utilizes one or more of local area networks (LAN), wide area networks (WAN), infrared, wireless, WiFi, point-to-point (P2P) networks, telecommunications networks, cloud communications, etc. be able to.
  • the transceiver is capable of transmitting and/or receiving one or more of data acquired by sensors, processing results generated by the processing unit, predetermined control data, user commands from a terminal or remote controller, and the like. .
  • Sensors according to the present embodiment may include inertial sensors (acceleration sensors, gyro sensors), GPS sensors, proximity sensors (eg lidar), or vision/image sensors (eg cameras).
  • inertial sensors acceleration sensors, gyro sensors, GPS sensors, proximity sensors (eg lidar), or vision/image sensors (eg cameras).
  • the plane of rotation of the propeller 110 of the flying object 100 tilts forward toward the direction of travel during travel.
  • the forward-leaning plane of rotation of propeller 110 produces upward lift and forward thrust, which propels vehicle 100 forward.
  • the flying object 100 may have a main body that can contain a processing unit to be mounted, a battery, and the like.
  • the main body optimizes the shape of the aircraft 100 during cruising, which is expected to be maintained for a long time while the aircraft 100 is moving, and improves the flight speed, thereby effectively shortening the flight time. It is possible to
  • the main body has an outer skin that is strong enough to withstand flight, takeoff and landing.
  • plastics, FRP, and the like are suitable as materials for the outer skin because of their rigidity and waterproofness. These materials may be the same materials as the frame 120 (including the arms) included in the flight section, or may be different materials.
  • the motor mount, frame 120, and main body included in the flight section may be configured by connecting the respective parts, or may be integrally molded using a monocoque structure or integral molding. Good (for example, the motor mount and the frame 120 are integrally molded, the motor mount, the frame 120 and the main body are all integrally molded, etc.). By integrating the parts, it is possible to smooth the joints of each part, so it can be expected to reduce drag and improve fuel efficiency of flying objects such as blended wing bodies and lifting bodies.
  • the shape of the flying object 100 may have directivity. For example, there is a shape that improves flight efficiency when the nose of the aircraft faces the wind, such as a streamlined main body that has less drag when the aircraft 100 is cruising in no wind.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)

Abstract

【課題】本発明によれば、飛行体の効率低下を抑えつつ、推進式または牽引式のどちらの方式の回転翼を有する飛行体にも適応可能である機能部を提供し得る。 【解決手段】本発明の回転翼機は、モータ及びプロペラを含む回転翼部と、前記回転翼部の回転部に接続され、当該回転部と共に回動する接続部と、前記接続部に少なくとも一部が保持され、前記接続部の回動における回転数よりも回転数が減った状態で保持される機能部と、を有する。

Description

回転翼機、回転翼部
 本発明は、モータに接続される機能部を備える回転翼機、回転翼部に関する。
 近年、ドローン(Drone)や無人航空機(UAV:Unmanned Aerial Vehicle)などの飛行体(以下、「飛行体」と総称する)を利用したサービスの実用化に向けた取り組みが進んでいる。それに伴い、飛行体の性能向上や専門性の向上が求められている。目的によって飛行体に求められる仕様は変化し、これには大きさや重さ、飛行特性も含まれる。実務においては、飛行時だけでなく離着陸時の飛行体の安定性向上も重視される。特許文献1には、安定した着陸が可能な飛行体が開示されている。(例えば、特許文献1参照)。
 特許文献1では、無人航空機が備える着陸脚を機体の中心から離れた位置に設けることで安定した着陸を可能にし、また、着陸脚を備える無人機航空機の下部構造が、衝撃緩衝のためのバッファを備えることにより、飛行体が着陸する際の飛行体本体への衝撃を防止することが可能である飛行体を提供する。
国際公開第2016/179827公報
 特許文献1においては、牽引式(プル式)の回転翼を有する飛行体の下部構造に設けられている着陸脚により機体本体や搭載物を着陸面に接地させることなく着陸し、また、着陸脚にはバッファとして油圧ダンパーやエアダンパーを備えることで、無人航空機の着陸時の衝撃を緩衝させ、機体本体や搭載した荷物などへ伝わる衝撃を低減させることができる。着陸脚は、着陸脚設置のためのフレームの延伸なく接続することが可能な範囲で最も機体の中心から離れた位置である、モータ下部に設けられており、機体の中心付近に着陸脚を備える機体に比較して、各着陸脚の距離が広くなるため、安定した着陸を提供すること可能となっている。
 また、飛行する上で燃費や安全性の向上に必要となる機体軽量化のため、着陸脚の取り付け座を省略可能とし、着陸脚の支持部材を直接機体のアームやフレーム(以下、「保持部」と総称する)に取り付けることにより、軽量化を実現する方法が開示されている。
しかしながら、特許文献1の着陸脚の支持部材を直接機体保持部に取り付ける方法を用いる場合、回転翼が推進式(プッシャー式)に用いられる機体では、機体の中心から離れた位置となるモータ下部への取り付けは、モータやプロペラが障害となり、困難である。プロペラ後流の整流の観点から、飛行体の回転翼の構成は推進式が好適となる場合があるため、着陸脚は、推進式の回転翼を有する飛行体に使用可能な構成であることが望ましい。
 推進式の回転翼を有する飛行体へ着陸脚を設ける場合、接続位置を回転するプロペラと接触しない位置とすることで実現が可能である。しかし、飛行体内側にプロペラを避けた場合、着陸脚同士の間隔が狭くなり、着陸性能が低下する。また、飛行体外側にプロペラを避けた場合、着陸脚設置のためにフレームの延伸が必要となり、飛行体のサイズや重量が増加する可能性がある。
 そこで、本発明は、飛行体に着陸脚等を設ける際、機体の効率と着陸安定性を向上させ、且つ、推進式の回転翼を有する飛行体に使用可能である、モータに接続される機能部を提供することを一つの目的とする。
 本発明によれば、モータ及びプロペラを含む回転翼部と、前記回転翼部の回転部に接続され、当該回転部と共に回動する接続部と、前記接続部に少なくとも一部が保持され、前記接続部の回動における回転数よりも回転数が減った状態で保持される機能部と、を有する回転翼機を提供することができる。
 本発明によれば、飛行体の効率低下を抑えつつ、推進式または牽引式のどちらの方式の回転翼を有する飛行体にも適応可能である機能部を提供し得る。
本発明による飛行体が備えるモータを下面から見た概念図である。 図1のモータにプロペラ及び機能部を接続した側面図である。 図2の構成部品を分解し側面から見た概念図である。 本発明による飛行体の実施例の側面図である。 図5の飛行体が着陸している時の図である。 本発明の飛行体の機能ブロック図である。 牽引式飛行体のモータ下部に機能部が設けられた図である。 推進式飛行体に機能部を設けた従来機体の図である。 推進式飛行体に機能部を設けた従来機体の図である。 本発明によるモータ及び機能部の接続方法の例を示す側面図である。 本発明によるモータ及び機能部の接続方法の例を示す側その他の面図である。 機能部の接続にすべり軸受けを用いた時の側面図である。 機能部の接続に転がり軸受けを用いた時の側面図である。 接続部をシャフトに接続したときの図である。 本発明によるモータ及び機能部の接続方法の例を示す側その他の面図である。 本発明による飛行体の機能部をプロペラガードとした実施例の側面図である。 図14の飛行体の上面図である。 既存技術による飛行体がプロペラガードを備えたときを示す側面図である。 図15の飛行体の上面図である。 本発明による飛行体の機能部を整流装置とした実施例の側面図である。
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態によるモータに接続される機能部を備える回転翼機、回転翼部は、以下のような構成を備える。
[項目1]
 モータ及びプロペラを含む回転翼部と、
 前記回転翼部の回転部に接続され、当該回転部と共に回動する接続部と、
 前記接続部に少なくとも一部が保持され、前記接続部の回動における回転数よりも回転数が減った状態で保持される機能部と、
 を有する回転翼機。
[項目2]
 前記接続部は、回転翼部のプロペラ側に接続される、
 ことを特徴とする請求項1に記載の回転翼機。
[項目3]
 前記回転翼部は、推進式である、
 ことを特徴とする請求項1または請求項2のいずれかに記載の回転翼機。
[項目4]
 前記機能部は、前記接続部に補助部材を介して保持される、
 ことを特徴とする請求項1ないし請求項3のいずれかに記載の回転翼機。
[項目5]
 前記補助部材は、軸受け構造である、
 ことを特徴とする請求項4に記載の回転翼機。
[項目6]
 前記接続部の回動における回転数よりも回転数が減った状態は、略静止状態である、
 ことを特徴とする請求項1ないし請求項5のいずれかに記載の回転翼機。
[項目7]
 前記機能部は、着陸時に地面と接触する接地部を含む、
 ことを特徴とする請求項1ないし請求項6のいずれかに記載の回転翼機。
[項目8]
 前記機能部は、プロペラガードを含む、
 ことを特徴とする請求項1ないし請求項7のいずれかに記載の回転翼機。
[項目9]
 前記機能部は、前記回転翼部に対する整流機構を含む、
 ことを特徴とする請求項1ないし請求項8のいずれかに記載の回転翼機。
[項目10]
 モータ及びプロペラを含む回転翼部であって、
 前記回転翼部の回転部に接続され、当該回転部と共に回動する接続部と、
 前記接続部に少なくとも一部が保持され、前記接続部の回動における回転数よりも回転数が減った状態で保持される機能部と、を有する、
 ことを特徴とする回転翼部。
<本発明による実施形態の詳細>
以下、本発明の実施の形態によるモータに接続される機能部を備える回転翼機、回転翼部について、図面を参照しながら説明する。
<第1の実施の形態の詳細>
 図1-3に例示されるように、本発明の実施の形態による飛行体が備えるモータ20は、プロペラ110に接続し、プロペラ110はモータ20の回転によって回転し、揚力を発生させることが可能である。
 モータ20は、図2及び図3に例示されるように、接続部11と、接続部11から意図せず脱落しない方法で接続される機能部10を備えている。
 本発明の第一の実施の形態による飛行体の備える機能部は、図4-5に例示されるように、飛行体100のモータ20に接続部11を介して接続され、プロペラ110による揚力発生面より突き出るよう構成される。
 機能部10は、後述するようにベアリング等の補助部材25を用いて回転の影響が少なくなるように設けられる。このため、モータ20の直下に機能部10はモータの回転の影響を受けることがなく、着陸脚等の用途に好適に利用できる。そうすることで、本発明の第一の実施の形態における飛行体100のような、垂直離着陸を行う飛行体において、機能部10が着陸脚である場合には、飛行体が着陸面に接する時、着陸脚同士の間隔が広くなり安定する。
 すなわち、例えば、図7に示されるように、牽引式の回転翼を有する場合においては、アーム等の保持部の伸長などをせずに間隔を広く取ることができる着陸脚の設置位置は、プロペラとプロペラに接続するモータ(以下、揚力発生部と記述する)や、揚力発生部が備えられる保持部、モータマウントの下方とすることができる。
 しかしながら、回転翼が推進式である場合、既存の方法では、モータやプロペラの下部に直接着陸脚を接続することはできない。
 そのため、着陸脚は推進式であるプロペラと接触しないように、プロペラ回転面を避けて設ける必要がある。図8のように機体中心側に避ける場合には着陸脚の間隔が狭くなり、図9のように機体外側に避ける場合には着陸脚接続のためにアーム等の保持部の伸長が必要となる。着陸の安定性向上と機体の効率向上を両立することは困難である。
 そこで、本発明における飛行体が備えるモータ20においては、図1-5に例示されるように、モータ20に固定して接続される、接続部11を設けることにより、推進式の回転翼を有する飛行体100においても揚力発生部下方に機能部10を設けることを可能としている。また、接続部11や機能部10をモータ外部に設けることにより、様々なモータのサイズに利用できる構成としている。
 飛行体100が備える回転翼部は、少なくともモータ20及びプロペラ110を備えており、必要に応じて組み立て用のプレートやねじを含んでもよい。このうち、モータの回転により回転する部分(例えば、プロペラやシャフト、モータのロータ部分)を回転部23、モータの回転により回転を行わない部分(例えば、モータのステータ部分)を非回転部24と総称する。
 接続部11は、回転部23と固定して接続され、モータ20の回転により回転する。一方、接続部11にさらに接続される機能部10は、図1-3に例示されるように、回転部23が回転している状態においても、機能部10はその影響を減らし(より好ましくは影響を受けず)、独立して回転部23の回転数よりも回転数が減った状態(より好ましくは略静止した状態)を保つことを可能とする補助部材25を介して接続部11に接続される。そのため、推進式の回転翼を有する飛行体100において、機能部10は回転せずに静止した状態を保つため、モータ20の下方で飛行体100の着陸脚として好適に用いることが可能となり、且つ、飛行体100の飛行時や離着陸時に意図しない脱落が発生しないように接続される。
 機能部10は、モータ20の回転の影響を受けない物体(例えば、飛行体における回転部23を除いたパーツや、飛行体周辺の構造物、着陸面など)と接している間、接した物体と機能部との間に働く摩擦力によって、回転数が減少し、略静止となることが可能である。補助部材25を備えることにより、機能部の回転数を減少させる為に必要な摩擦力は、小さくなる。
 また、機能部10の回転数低下や静止が必要となるタイミングにおいて、機能部10へ積極的に物体を接触させることにより摩擦を生じさせ、回転数の減少を起こすこととしてもよい。例えば、機能部10を着陸脚として用いる場合には、着陸完了時及びその後において、機能部10が着陸面との摩擦によって略静止する。これにより、着陸面に接地する着陸脚が回転して着陸面を傷つけたり、抉ったりすることを防ぐことが出来る。
 補助部材25は、図1-3に例示されるように、接続部11と機能部10の接続に用いられ、回転翼部(モータ20やプロペラ110など)及び接続部11の回転の影響を機能部10へ与えないように、互いに独立した受動回転部及び非回転部を有する部材であって、例えば、すべり軸受けであるスリーブやブッシュ、転がり軸受けである玉軸受けやころ軸受け等であり得、接続部11等の回転に応じて補助部材25の受動回転部が回転する一方、補助部材25の非回転部は静止を維持し、当該非回転部に機能部10が接続されていてもよい。
 軸受け構造を用いる場合、接続部11と機能部10との間にグリースや油等の潤滑剤を用いる、もしくは、軸受けを含油軸受けとすることで、より優れた摺動特性や静音性を持たせることとしてもよい。
 また、補助部材25は、飛行体100の大きさや用途、使用環境等により決定されることが望ましい。例えば、転がり軸受けを用いる場合には、玉やころ等の転動体25、保持機26、軌道盤27等を用いるため、すべり軸受けと比較して摩擦が少なくなり、高速回転に強いが、構造は複雑となる等の特性がある。また、すべり軸受けを用いる場合には、転がり軸受けに比較して摩擦が大きくなるが、構造は単純であり、メンテナンス等のコストを減少させ得る特性がある。
 接続部11の接続時に接触する回転部23の部材の例として、図1-3に例示されるように回転翼部のプロペラ110を構成する部材であってもよいが、これに限らない。また、接続部11を回転翼に接続する固定具12(ねじなど)や、接続部11と機能部10を補助部材25を介して接続する固定具12(ねじなど)を備えるようにしてもよい。このとき、機能部10は、回転部23の影響を受けないように、固定具12により接続部11に固定されていればよく、特に固定具12がねじである場合には、接続部11が例えば下に凸状の構成であってもよく、接続部11が回転翼部に接続されるとねじの頭部が収納される空間が形成され、ねじの円筒部(ねじ山が無い部分)が接続部11の貫通部に位置することで、回転部23が回転しても、固定具12及び機能部10には回転の影響がない構成とすることも可能であり、接続部11の貫通部にベアリング(転がり軸受けである玉軸受けやころ軸受け等)をさらに設けてもよい。
 接続部11を用いる場合、回転部23の回転の影響を受けない機能部10を、一般的なモータやプロペラに追加して設けることが可能となる。専用のモータ等を用いる必要がないことから、既存の飛行体に対する機能部10の追加を容易にし、製作コスト増加を抑制することが期待できる。
 機能部10は、図10-図14に例示されるように棒状部材の一部に溝掘り等を行い、これを接続部11を加工(例えば、単一部品の変形や複数部品の接着、溶接など)することにより、機能部10の一部が接続部11内の空間に格納されて貫通部に引っ掛かるように保持が可能な構成としてもよいし、図2-3や図15に例示されるように棒状部材へネジ等の固定具12を固定することで、ネジの頭部が接続部11内の空間に格納されて貫通部に引っ掛かるように保持が可能な構成としてもよい。これにより、接続部11と機能部10とが、飛行体100の飛行時や離着陸時において意図せず分離することを防止する。また、図13に例示されるように、さらに上述の補助部材25(転動体、保持機、軌道盤等)と組み合わせて用いてもよいし、摩擦を減らす表面加工を接続部11か機能部10の少なくとも何れか一方に施してもよく、接続部11の回転が機能部10に伝わりにくくするのが好ましい。
 また、機能部10は、複数の部材を組み合わせていてもよい。例えば、図10のように、接続部11に引っかかる根本部材と、その先の先端側部材(例えば着陸脚としての接地部)を別体とすることで、用途に応じた好適な素材を用いることが可能となるほか、メンテナンス性の向上が期待できる。機能部10に着陸脚の役割を持たせる場合には、ハードランディング時や構造物との接触時に、飛行体の本体部や接触物へ与える影響を低減し、且つ、接続部の剛性や信頼性を損なわないようにするため、着陸脚として機能する部材の構成素材(例えば、ABS樹脂やプライ数の低いCFRP)に比較して、根本部材を高強度の構成素材(例えば、金属や強化樹脂)としてもよい。このような構成により、着陸脚部分を積極的に変形または破壊させることで衝撃を吸収させ、本体部や接触物に伝わる衝撃を緩和できる。
 機能部10に着陸脚の役割をさせる場合、機能部10は、地面と接触する接地部を備えており、また、着陸時や飛行体100を置く際の衝撃緩和を行うダンパー等を備えていてもよい。
 なお、機能部10は、着陸脚としての作用だけでなく、様々な作用を持つことができる。例えば、プロペラガード、ノズル、整流装置、灯火装置、車輪、空力パーツ、アンテナ、搭載物の支持用部材などの機体の機能への作用を追加する物のほか、モータのヒートシンク作用を持たせることも可能である。
 機能部10は、要件等に合わせて更に複数種のアタッチメントを接続および取り換え可能な構成としてもよい。付け替えを可能とする場合には、取り付け部が規格化され、複数種類のアタッチメントを容易に付け替えられるようにしていることが望ましい。
 また、機能部10は、モータ20の回転と独立した動作が可能なため、モータ20とは別に設けられたサーボやモータ等により、所定の回動や揺動を行うことが可能である。例えば、ノズルの向きを変更したり、空力パーツの角度を変更したりする。
 取り付け部のアタッチメント接続は、コネクターやネジ等の、周知の接続方法を備えることにより、簡便に付け替えを行うことが可能となる。
 また、牽引式にプロペラを使用する飛行体100のガードとして作用する機能部10を設ける場合には、図16及び図17に例示されるように、モータ20に接続した機能部10がプロペラを覆うように延伸させ、飛行体100の上方に設けることができる。
 ガード取り付け作業に際して飛行体上面からアクセスが可能なため、図18及び図19のような側方や下方からの取り付けに比べ、飛行体が着陸した状態でのガードの取り付けおよび取り外し作業が容易となる。
 プロペラを推進式に使用する飛行体の場合にも、同様の構成でガード効果を備えた機能部10を設けることが可能である他、さらに着陸脚など他の機能を兼ねさせることとしてもよい。
 ここまで推進式の回転翼を有する飛行体のモータ下方や牽引式の回転翼を有する飛行体のモータ上方、つまり、プロペラの接続側へ機能部を伸長する例として着陸脚やプロペラガードについて述べたが、これらは本発明の利用の形態を限定するものではない。先述の構成例以外の機能部においても、機体の重量増加を減らして飛行体の効率を向上する、効率よくプロペラ後流を利用する等の効果が見込まれる。
 飛行体100が備えるプロペラ110が回転した時、プロペラ後流が発生する。図20に示されるように、後流が発生する側に気流の整流装置を設けることにより、飛行効率低下につながる後流の渦の発生を防止し、飛行効率の向上を可能にする。
 また、飛行体がVTOL機体であった場合、垂直離着陸時およびホバリング時以外の、水平飛行時等ではモータを前後方向に向かって使用する。この時、モータの前後となる、モータのプロペラ接続側に気流の整流装置を設けることで、飛行体の飛行効率を向上させる。
 また、飛行体100の設計において、プロペラ110に接続されるモータ20と、アーム等の保持部とは、想定される負荷の観点から堅牢に取り付けることが一般的である。着陸時に負荷のかかる着陸脚を、モータや保持部の近傍に取り付けることにより、堅牢とする場所を集中させることが出来るため、重量増加や重心の分散を抑えることができる。
 飛行体100は、離陸地点から離陸を行い、目的地まで飛行する。例えば、飛行体が検査や調査を行う場合には、目的地に到達した飛行体が、センサ等を用いて情報を取得した後、他の目的地や着陸地点に向かい移動を行う。
 図4及び図5に示されるように、本発明の実施の形態による飛行体100は飛行を行うために少なくとも本体部、プロペラ110及びモータ20からなる複数の回転翼部、回転翼部を支えるモータマウントやフレーム120等の要素を含む飛行部を備えており、それらを動作させるためのエネルギー(例えば、二次電池や燃料電池、化石燃料等)を搭載していることが望ましい。
 なお、図示されている飛行体100は、本発明の構造の説明を容易にするため簡略化されて描かれており、例えば、制御部等の詳しい構成は図示していない。
 飛行体100は図の矢印Dの方向(-Y方向)を前進方向としている(詳しくは後述する)。
 なお、以下の説明において、以下の定義に従って用語を使い分けることがある。前後方向:+Y方向及び-Y方向、上下方向(または鉛直方向):+Z方向及び-Z方向、左右方向(または水平方向):+X方向及び-X方向、進行方向(前方):-Y方向、後退方向(後方):+Y方向、上昇方向(上方):+Z方向、下降方向(下方):-Z方向
 プロペラ110は、モータ20からの出力を受けて回転する。プロペラ110が回転することによって、飛行体100を出発地から離陸させ、移動させ、目的地に着陸させるための推進力が発生する。なお、プロペラ110は、右方向への回転、停止及び左方向への回転が可能である。
 本発明の飛行体が備えるプロペラ110は、1以上の羽根を有している。任意の羽根(回転子)の数(例えば、1、2、3、4、またはそれ以上の羽根)でよい。また、羽根の形状は、平らな形状、曲がった形状、よじれた形状、テーパ形状、またはそれらの組み合わせ等の任意の形状が可能である。なお、羽根の形状は変化可能である(例えば、伸縮、折りたたみ、折り曲げ等)。羽根は対称的(同一の上部及び下部表面を有する)または非対称的(異なる形状の上部及び下部表面を有する)であってもよい。羽根はエアホイル、ウイング、または羽根が空中を移動される時に動的空気力(例えば、揚力、推力)を生成するために好適な幾何学形状に形成可能である。羽根の幾何学形状は、揚力及び推力を増加させ、抗力を削減する等の、羽根の動的空気特性を最適化するために適宜選択可能である。
 また、本発明の飛行体が備えるプロペラは、固定ピッチ、可変ピッチ、また固定ピッチと可変ピッチの混合などが考えられるが、これに限らない。
 モータ20は、プロペラ110の回転を生じさせるものであり、例えば、駆動ユニットは、電気モータ又はエンジン等を含むことが可能である。羽根は、モータによって駆動可能であり、モータの回転軸(例えば、モータの長軸)の周りに回転する。
 羽根は、すべて同一方向に回転可能であるし、独立して回転することも可能である。羽根のいくつかは一方の方向に回転し、他の羽根は他方方向に回転する。羽根は、同一回転数ですべて回転することも可能であり、夫々異なる回転数で回転することも可能である。回転数は移動体の寸法(例えば、大きさ、重さ)や制御状態(速さ、移動方向等)に基づいて自動又は手動により定めることができる。
 飛行体100は、フライトコントローラやプロポ等により、風速と風向に応じて、各モータの回転数や、飛行角度を決定する。これにより、飛行体は上昇・下降したり、加速・減速したり、方向転換したりといった移動を行うことができる。
 飛行体100は、事前または飛行中に設定されるルートやルールに準じた自律的な飛行や、プロポを用いた操縦による飛行を行うことができる。
 上述した飛行体100は、図6に示される機能ブロックを有している。なお、図6の機能ブロックは最低限の参考構成である。フライトコントローラは、所謂処理ユニットである。処理ユニットは、プログラマブルプロセッサ(例えば、中央処理ユニット(CPU))などの1つ以上のプロセッサを有することができる。処理ユニットは、図示しないメモリを有しており、当該メモリにアクセス可能である。メモリは、1つ以上のステップを行うために処理ユニットが実行可能であるロジック、コード、および/またはプログラム命令を記憶している。メモリは、例えば、SDカードやランダムアクセスメモリ(RAM)などの分離可能な媒体または外部の記憶装置を含んでいてもよい。カメラやセンサ類から取得したデータは、メモリに直接に伝達されかつ記憶されてもよい。例えば、カメラ等で撮影した静止画・動画データが内蔵メモリ又は外部メモリに記録される。
 処理ユニットは、回転翼機の状態を制御するように構成された制御モジュールを含んでいる。例えば、制御モジュールは、6自由度(並進運動x、y及びz、並びに回転運動θ、θ及びθ)を有する回転翼機の空間的配置、速度、および/または加速度を調整するために回転翼機の推進機構(モータ等)を制御する。制御モジュールは、搭載部、センサ類の状態のうちの1つ以上を制御することができる。
 処理ユニットは、1つ以上の外部のデバイス(例えば、端末、表示装置、または他の遠隔の制御器)からのデータを送信および/または受け取るように構成された送受信部と通信可能である。送受信機は、有線通信または無線通信などの任意の適当な通信手段を使用することができる。例えば、送受信部は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、電気通信ネットワーク、クラウド通信などのうちの1つ以上を利用することができる。送受信部は、センサ類で取得したデータ、処理ユニットが生成した処理結果、所定の制御データ、端末または遠隔の制御器からのユーザコマンドなどのうちの1つ以上を送信および/または受け取ることができる。
 本実施の形態によるセンサ類は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)、またはビジョン/イメージセンサ(例えば、カメラ)を含み得る。
 本発明の実施の形態における飛行体100が備えるプロペラ110の回転面は、進行時に進行方向に向かい前傾した角度となる。前傾したプロペラ110の回転面により、上方への揚力と、進行方向への推力とが生み出され、これにより飛行体100が前進する。
 飛行体100は、搭載する処理ユニットやバッテリー等を内包可能な本体部を備えていてもよい。本体部は、飛行体100の移動中、長時間維持されることが期待される巡航時の飛行体100の姿勢における形状を最適化し、飛行速度を向上させることで、効率的に飛行時間を短縮することが可能である。
 本体部は、飛行や離着陸に耐え得る強度を持つ外皮を備えていることが望ましい。例えば、プラスチック、FRP等は、剛性や防水性があるため、外皮の素材として好適である。これらの素材は、飛行部に含まれるフレーム120(アーム含む)と同じ素材であってもよいし、異なる素材であってもよい。
 また、飛行部が備えるモータマウント、フレーム120、及び本体部は、夫々の部品を接続して構成してもよいし、モノコック構造や一体成形を利用して、一体となるように成形してもよい(例えば、モータマウントとフレーム120を一体に成形する、モータマウントとフレーム120と本体部すべてを一体に成形する、等)。部品を一体とすることで、各部品のつなぎ目を滑らかにすることが可能となるため、ブレンデッドウィングボディやリフティングボディといった飛行体が持つ、抗力の軽減や燃費の向上が期待できる。
 飛行体100の形状は、指向性を持っていてもよい。例えば、飛行体100が無風下における巡航時の姿勢において抗力の少ない流線形の本体部等、飛行体の機首が風に正対した際に飛行効率を向上させる形状が挙げられる。
 上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。
10   機能部
11   接続部
12   ネジ
20a~20f   モータ
21   ロータ
22   コイル
23   回転部
24   非回転部
25   転動体
26   保持機
27   軌道盤
28   シャフト
100  飛行体
110a~100f  プロペラ
120a~120f  フレーム
 

 
 

Claims (10)

  1.  モータ及びプロペラを含む回転翼部と、
     前記回転翼部の回転部に接続され、当該回転部と共に回動する接続部と、
     前記接続部に少なくとも一部が保持され、前記接続部の回動における回転数よりも回転数が減った状態で保持される機能部と、
     を有する回転翼機。
  2.  前記接続部は、回転翼部のプロペラ側に接続される、
     ことを特徴とする請求項1に記載の回転翼機。
  3.  前記回転翼部は、推進式である、
     ことを特徴とする請求項1または請求項2のいずれかに記載の回転翼機。
  4.  前記機能部は、前記接続部に補助部材を介して保持される、
     ことを特徴とする請求項1ないし請求項3のいずれかに記載の回転翼機。
  5.  前記補助部材は、軸受け構造である、
     ことを特徴とする請求項4に記載の回転翼機。
  6.  前記接続部の回動における回転数よりも回転数が減った状態は、略静止状態である、
     ことを特徴とする請求項1ないし請求項5のいずれかに記載の回転翼機。
  7.  前記機能部は、着陸時に地面と接触する接地部を含む、
     ことを特徴とする請求項1ないし請求項6のいずれかに記載の回転翼機。
  8.  前記機能部は、プロペラガードを含む、
     ことを特徴とする請求項1ないし請求項7のいずれかに記載の回転翼機。
  9.  前記機能部は、前記回転翼部に対する整流機構を含む、
     ことを特徴とする請求項1ないし請求項8のいずれかに記載の回転翼機。
  10.  モータ及びプロペラを含む回転翼部であって、
     前記回転翼部の回転部に接続され、当該回転部と共に回動する接続部と、
     前記接続部に少なくとも一部が保持され、前記接続部の回動における回転数よりも回転数が減った状態で保持される機能部と、を有する、
     ことを特徴とする回転翼部。

     
PCT/JP2021/029300 2021-08-06 2021-08-06 回転翼機、回転翼部 WO2023013031A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/029300 WO2023013031A1 (ja) 2021-08-06 2021-08-06 回転翼機、回転翼部
JP2023539541A JPWO2023013031A1 (ja) 2021-08-06 2021-08-06
CN202221537800.3U CN219192547U (zh) 2021-08-06 2022-06-20 旋翼机、旋翼部
CN202210695671.9A CN115703538A (zh) 2021-08-06 2022-06-20 旋翼机、旋翼部

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029300 WO2023013031A1 (ja) 2021-08-06 2021-08-06 回転翼機、回転翼部

Publications (1)

Publication Number Publication Date
WO2023013031A1 true WO2023013031A1 (ja) 2023-02-09

Family

ID=85155407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029300 WO2023013031A1 (ja) 2021-08-06 2021-08-06 回転翼機、回転翼部

Country Status (3)

Country Link
JP (1) JPWO2023013031A1 (ja)
CN (2) CN115703538A (ja)
WO (1) WO2023013031A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7874513B1 (en) * 2005-10-18 2011-01-25 Smith Frick A Apparatus and method for vertical take-off and landing aircraft
CN110861771A (zh) * 2019-11-08 2020-03-06 李峰 一种共轴飞行装置
US20200115045A1 (en) * 2018-09-28 2020-04-16 Airbus Helicopters Electrically or hybrid powered multirotor aircraft with optimized energy consumption

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7874513B1 (en) * 2005-10-18 2011-01-25 Smith Frick A Apparatus and method for vertical take-off and landing aircraft
US20200115045A1 (en) * 2018-09-28 2020-04-16 Airbus Helicopters Electrically or hybrid powered multirotor aircraft with optimized energy consumption
CN110861771A (zh) * 2019-11-08 2020-03-06 李峰 一种共轴飞行装置

Also Published As

Publication number Publication date
CN219192547U (zh) 2023-06-16
CN115703538A (zh) 2023-02-17
JPWO2023013031A1 (ja) 2023-02-09

Similar Documents

Publication Publication Date Title
JP6613423B1 (ja) 有人飛行体
JP2022162125A (ja) 飛行体
CN215590991U (zh) 飞行体以及动力装置
JP2024074891A (ja) 回転翼機
CN114313241A (zh) 飞行体
WO2023013031A1 (ja) 回転翼機、回転翼部
US20220274701A1 (en) Aerial vehicle and flying method of aerial vehicle
WO2022145045A1 (ja) 飛行体の制御方法
EP4212430A1 (en) Flying vehicle
WO2023053213A1 (ja) 飛行体
JP7514535B2 (ja) 飛行体及び動力装置
JP2020108997A (ja) 有人飛行体
JP7509427B2 (ja) 飛行体
CN220640232U (zh) 飞行器
WO2022219749A1 (ja) 飛行体、着陸方法、プログラム
JP6970479B1 (ja) 飛行体
CN218806519U (zh) 飞行体
WO2022215266A1 (ja) 飛行体の着陸方法、飛行体、情報処理装置、プログラム
WO2021053786A1 (ja) 飛行体
JP2021049965A (ja) 飛行体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952854

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539541

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE