WO2023012855A1 - 磁気波動歯車装置 - Google Patents

磁気波動歯車装置 Download PDF

Info

Publication number
WO2023012855A1
WO2023012855A1 PCT/JP2021/028562 JP2021028562W WO2023012855A1 WO 2023012855 A1 WO2023012855 A1 WO 2023012855A1 JP 2021028562 W JP2021028562 W JP 2021028562W WO 2023012855 A1 WO2023012855 A1 WO 2023012855A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
magnetic wave
gear device
wave gear
Prior art date
Application number
PCT/JP2021/028562
Other languages
English (en)
French (fr)
Inventor
洋介 内田
亮治 宮武
篤史 山本
晴之 米谷
昇 新口
勝弘 平田
一晶 高原
寛典 鈴木
拓哉 伊東
Original Assignee
三菱電機株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 国立大学法人大阪大学 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/028562 priority Critical patent/WO2023012855A1/ja
Priority to JP2023539228A priority patent/JPWO2023012855A1/ja
Priority to CN202180100810.2A priority patent/CN117652081A/zh
Priority to US18/551,711 priority patent/US20240097547A1/en
Priority to EP21952686.0A priority patent/EP4383532A1/en
Publication of WO2023012855A1 publication Critical patent/WO2023012855A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/223Rotor cores with windings and permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This application relates to a magnetic wave gear device.
  • a magnetic wave gear device that integrates a magnetic reduction gear and a rotating machine is known as a generator for a wind power generator.
  • a magnetic wave gear device is composed of a low-speed rotor, a high-speed rotor provided coaxially with the low-speed rotor, and a stator having stator windings and permanent magnets.
  • a magnetic wave gear device can change the rotation speed of a rotor in a non-contact manner without using a mechanical transmission that causes mechanical wear. Therefore, in the magnetic wave gear device, the load of maintenance against mechanical wear is reduced. Further, when the magnetic wave gear device is used as a generator for a wind power generator, a single device can perform both speed change and power generation, so that the power generation system can be made smaller and space-saving.
  • a magnetic wave gear in which a stator having a plurality of permanent magnets, a high-speed rotor having a plurality of rotor magnets, and a low-speed rotor having a plurality of magnetic pole pieces are concentrically arranged.
  • a device has been disclosed (see, for example, Patent Literature 1).
  • the multiple permanent magnets of the stator are radially magnetized so as to create poles in the same direction.
  • a magnetic attractive force acts between the permanent magnets of the stator and the rotor magnets of the high-speed rotor.
  • This magnetic attraction force acts in a direction perpendicular to the insertion direction with respect to the high-speed rotor. Therefore, in the conventional magnetic wave gear device, it is difficult to accurately insert the high-speed rotor into the stator, and there is a problem that the efficiency of the assembly work is low.
  • the present application was made to solve the above-mentioned problems, and aims to provide a magnetic wave gear device that can improve the efficiency of assembly work and suppress the decrease in energy conversion efficiency.
  • the magnetic wave gearing of the present application includes a stator core having a plurality of slots in the circumferential direction, stator windings and stator magnets arranged in the slots, and a stator having a gap on the inner diameter side of the stator. and a second rotor concentric with the rotation axis of the first rotor and disposed on the inner diameter side of the first rotor with a gap therebetween.
  • the second rotor includes a second rotor core having a plurality of rotor magnet insertion holes arranged in a circumferential direction, and a plurality of rotor magnets respectively inserted into the plurality of rotor magnet insertion holes.
  • the first rotor has a cylindrical first rotor core, and a first rotor that fastens the first rotor core and the rotating shaft outside the second rotor in the rotating shaft direction.
  • the first rotor end plate has rotor magnet passage holes that allow the rotor magnets to be inserted into the rotor magnet insertion holes of the second rotor core from the outside in the rotation axis direction. ing.
  • the first rotor end plate has the rotor magnet passage holes through which the rotor magnets can be inserted into the rotor insertion holes of the second rotor core from the outside in the rotation axis direction. Therefore, the rotor magnets can be inserted into the rotor insertion holes of the second rotor core after the second rotor core is inserted into the inner peripheral side of the stator. Therefore, the magnetic wave gear device of the present application can both improve the efficiency of the assembly work and suppress the decrease in the energy conversion efficiency.
  • FIG. 1 is a front view of a magnetic wave gear device according to Embodiment 1;
  • FIG. 1 is a partial cross-sectional view of a magnetic wave gear device according to Embodiment 1.
  • FIG. 1 is a perspective view of a magnetic wave gear device according to Embodiment 1.
  • FIG. 11 is a front view of a magnetic wave gear device according to Embodiment 2;
  • FIG. 11 is a front view of a magnetic wave gear device according to Embodiment 3;
  • FIG. 11 is a front view of a magnetic wave gear device according to Embodiment 4;
  • FIG. 11 is a configuration diagram of a rotor magnet according to Embodiment 4;
  • FIG. 11 is a partial cross-sectional view of a magnetic wave gear device according to Embodiment 4;
  • FIG. 11 is a perspective view of a magnetic wave gear device according to Embodiment 4;
  • FIG. 11 is a front view of a magnetic wave gear device according to Embodiment 5;
  • FIG. 11 is a front view of a magnetic wave gear device according to Embodiment 6;
  • Embodiment 1. 1 is a front view of a magnetic wave gear device according to Embodiment 1.
  • FIG. A magnetic wave gearing 1 of this embodiment has a cylindrical frame 2 , a stator 3 , a low speed rotor 4 and a high speed rotor 5 .
  • the stator 3 includes a stator core 31 having a plurality of slots in the circumferential direction, stator windings 32 and stator magnets 33 arranged in the slots.
  • the stator 3 is fixed to the frame 2 on the inner peripheral side of the frame 2 .
  • the low-speed rotor 4 has a cylindrical low-speed rotor core arranged on the inner diameter side of the stator 3 with a gap therebetween.
  • the high-speed rotor 5 is concentric with the rotating shaft 41 of the low-speed rotor 4 and arranged on the inner diameter side of the low-speed rotor core with a gap therebetween.
  • the high-speed rotor 5 includes a cylindrical high-speed rotor core 51 and rotor magnets 52 arranged side by side in the circumferential direction.
  • the low-speed rotor 4 includes a low-speed rotor end plate 42 that fastens the low-speed rotor core and the rotating shaft 41 outside the high-speed rotor 5 in the direction of the rotating shaft 41 .
  • the low-speed rotor end plate 42 of this embodiment is composed of a plurality of spokes 42a. Openings are provided between the plurality of spokes 42a.
  • FIG. 2 is a partial cross-sectional view of the magnetic wave gear device according to this embodiment.
  • the stator core 31 is composed of a cylindrical core back 31a and a plurality of teeth 31b that are arranged in the circumferential direction from the core back and protrude inward. Spaces called slots are provided between the plurality of teeth 31b, and the stator winding 32 is wound around the teeth 31b using these slots.
  • the stator magnets 33 are fixed to both ends of the tooth 31b on the inner peripheral side of the slot.
  • the low-speed rotor core 43 is arranged on the inner diameter side of the stator 3 with a gap therebetween.
  • the high-speed rotor core 51 is arranged on the inner diameter side of the low-speed rotor core 43 with a gap therebetween.
  • the high-speed rotor core 51 has a plurality of rotor magnet insertion holes 51a arranged side by side in the circumferential direction on the outer peripheral side.
  • a plurality of rotor magnets 52 are respectively inserted into the plurality of rotor magnet insertion holes 51a.
  • the low-speed rotor end plate 42 allows the rotor magnets 52 to be inserted into the rotor magnet insertion holes 51a from the outside in the direction of the rotating shaft 41. has a rotor magnet passing hole 42b. Since the low-speed rotor end plate 42 in this embodiment is composed of a plurality of spokes, as shown in FIG. has unequal pitch. By making the opening width 10a between the spokes 42a with the wider spacing larger than the width of the rotor magnet insertion hole 51a, the opening between the spokes 42a serves as the rotor magnet passage hole 42b.
  • the stator 3 is assembled by attaching the stator windings 32 and the stator magnets 33 to the stator core 31 .
  • This stator 3 is fixed to the inner peripheral side of the frame 2 .
  • the high-speed rotor core 51 is inserted into the inner peripheral side of the stator 3 from the rotation axis direction.
  • the rotor magnets 52 are not inserted into the rotor magnet insertion holes 51 a of the high-speed rotor core 51 .
  • the low-speed rotor 4 is inserted into the gap between the stator 3 and the high-speed rotor 5 from the rotation axis direction.
  • the rotor magnets 52 are passed through the rotor magnet passage holes 42b of the low-speed rotor end plate 42 and inserted into the rotor magnet insertion holes 51a of the high-speed rotor core 51 .
  • FIG. 3 is a perspective view of the magnetic wave gear device according to this embodiment.
  • the rotor magnets 52 pass through the rotor magnet passage holes 42b of the low speed rotor end plate 42 and are inserted into the rotor magnet insertion holes 51a of the high speed rotor core 51.
  • FIG. 3 is a perspective view of the magnetic wave gear device according to this embodiment.
  • the rotor magnets 52 pass through the rotor magnet passage holes 42b of the low speed rotor end plate 42 and are inserted into the rotor magnet insertion holes 51a of the high speed rotor core 51.
  • the rotor magnets are inserted into the rotor magnet insertion holes 51a of the high-speed rotor core 51. 52 is not inserted. Therefore, no magnetic attractive force is generated between the stator magnet 33 and the rotor magnet 52 when the high-speed rotor core 51 is inserted. As a result, when the high-speed rotor core 51 is inserted, no force acts in the direction perpendicular to the insertion direction, so that the high-speed rotor core 51 can be inserted into the stator 3 with high accuracy.
  • the rotor magnets 52 are attached to the high-speed rotor core 51 when the high-speed rotor core 51 is inserted into the inner circumference of the stator 3 .
  • a magnetic attractive force is generated between the stator magnet 33 and the rotor magnet 52 when the high-speed rotor core 51 is inserted. Therefore, when the high-speed rotor core 51 is inserted, a force acts on the high-speed rotor core 51 in a direction perpendicular to the insertion direction.
  • positioning accuracy is required to counteract the force acting in the direction perpendicular to the insertion direction, which reduces the efficiency of the assembly work.
  • the rotor magnets can be inserted into the rotor magnet insertion holes of the high-speed rotor core by passing through the rotor magnet passage holes, it is possible to improve the efficiency of the assembly work and suppress the decrease in the energy conversion efficiency. can.
  • the gap between the high-speed rotor core 51 and the stator 3 can be narrowed. Therefore, the space 10c between the stator magnets 33 and the rotor magnets 52 shown in FIG. 2 can be narrowed, so that the amount of rotor magnets required to obtain the same energy conversion efficiency as in the conventional art can be reduced.
  • FIG. 4 is a front view of a magnetic wave gear device according to Embodiment 2.
  • FIG. The magnetic wave gearing 1 of the present embodiment is the same as the magnetic wave gearing of the first embodiment except for the shape of the low-speed rotor end plate 42 .
  • the opening widths between the spokes of the low-speed rotor end plate are unequal pitches, and the opening width between the spokes with the wider opening width rotates. It was set larger than the width of the child magnet insertion hole.
  • the opening width 10a between the spokes of the low-speed rotor end plate 42 is made equal to two spokes 42a.
  • the openings between the spokes are used as rotor magnet passage holes 42b.
  • the opening width 10a between the spokes 42a of equal pitch is set larger than the width of the rotor magnet insertion holes 51a.
  • the low-speed rotor end is Since the rotor magnets can be passed through the rotor magnet passage holes 42b provided in the plate 42 and inserted into the rotor magnet insertion holes of the high-speed rotor core, the efficiency of assembly work is improved and the decrease in energy conversion efficiency is suppressed. can be compatible with
  • the low-speed rotor end plate 42 is composed of two spokes 42a with an equal pitch.
  • the number of spokes 42a of the low-speed rotor end plate 42 may be three or more as long as the width of the openings between spokes of equal pitch is set wider than the width of the rotor magnet insertion holes.
  • FIG. 5 is a front view of a magnetic wave gear device according to Embodiment 3.
  • FIG. The magnetic wave gearing 1 of the present embodiment is the same as the magnetic wave gearing of the first embodiment except for the shape of the low-speed rotor end plate 42 .
  • the low-speed rotor end plate 42 is disc-shaped, and a part of the end plate 42 has an opening wider than the width of the rotor magnet insertion hole. department is provided. In the magnetic wave gear device of the present embodiment, this opening is used as the rotor magnet passage hole 42b.
  • the low-speed rotor end is Since the rotor magnets can be passed through the rotor magnet passage holes 42b provided in the plate 42 and inserted into the rotor magnet insertion holes of the high-speed rotor core, the efficiency of assembly work is improved and the decrease in energy conversion efficiency is suppressed. can be compatible with
  • the low-speed rotor end plate 42 is provided with one rotor magnet passage hole 42b.
  • another rotor magnet passage hole having the same shape may be provided at a position rotationally symmetrical with the one rotor magnet passage hole 42b.
  • Embodiment 4 In the magnetic wave gearing of Embodiments 1 to 3, since the low-speed rotor end plate has the rotor magnet passage hole, the rotor magnet is inserted after the high-speed rotor core is inserted into the inner peripheral side of the stator. can be inserted into the rotor magnet insertion hole of the high-speed rotor core. Therefore, the space between the stator magnets and the rotor magnets can be narrowed. However, as the distance between the stator magnet and the rotor magnet becomes narrower, the loss caused by the eddy current generated on the surface of the rotor magnet due to the magnetic flux received from the stator magnet increases. If the loss caused by this eddy current increases, the energy conversion efficiency of the magnetic wave gearing will decrease. A loss caused by an eddy current is called an eddy current loss.
  • the magnetic wave gear device according to Embodiment 4 can reduce the eddy current loss of the rotor magnet.
  • FIG. 6 is a front view of the magnetic wave gear device according to this embodiment.
  • the magnetic wave gearing 1 of the present embodiment is the same as the magnetic wave gearing of the first embodiment except for the rotor magnet 52 .
  • FIG. 7 is a configuration diagram of the rotor magnet in this embodiment.
  • the rotor magnet 52 of this embodiment is composed of a base 52a and a plurality of split magnet pieces 52b fixed to the outer circumference of the base 52a.
  • the base 52a is made of a magnetic material such as iron.
  • a plurality of split magnet pieces 52b are arranged in the circumferential direction and the axial direction of the high-speed rotor 5 and fixed to the base 52a. There is a gap between the divided magnet pieces 52b.
  • the rotor magnet 52 composed of the base 52a and the plurality of divided magnet pieces 52b fixed to the outer peripheral side of the base 52a will be referred to as a modularized rotor magnet.
  • the rotor magnet 52 is composed of the split magnet pieces 52b, so the apparent electrical conductivity of the surface of the rotor magnet 52 through which eddy currents flow is reduced. Therefore, eddy currents are less likely to flow, and eddy current loss in the rotor magnets 52 can be reduced.
  • FIG. 8 is a partial cross-sectional view of the magnetic wave gear device according to this embodiment.
  • the distance 10c between the stator magnet 33 and the rotor magnet 52 is smaller than that in the case where the rotor magnet is not modularized under the design condition that the eddy current loss is set to a certain value or less. can be further narrowed. Therefore, the amount of rotor magnets required to obtain the same energy conversion efficiency can be further reduced.
  • FIG. 9 is a perspective view of a magnetic wave gear device according to this embodiment. As shown in FIG. 9, the modularized rotor magnets 52 pass through the rotor magnet passage holes 42b of the low speed rotor end plate 42 and are inserted into the rotor magnet insertion holes 51a of the high speed rotor core 51. .
  • the magnetic wave gear device 1 configured as described above, when the high-speed rotor core 51 is inserted into the inner peripheral side of the stator 3, the rotor magnets are inserted into the rotor magnet insertion holes 51a of the high-speed rotor core 51. 52 is not inserted. Therefore, no magnetic attractive force is generated between the stator magnet 33 and the rotor magnet 52 when the high-speed rotor core 51 is inserted. As a result, when the high-speed rotor core 51 is inserted, no force acts in the direction perpendicular to the insertion direction, so that the high-speed rotor core 51 can be inserted into the stator 3 with high precision. Therefore, in the magnetic wave gear device according to the present embodiment, as in the first embodiment, it is possible to improve the efficiency of the assembly work and suppress the decrease in the energy conversion efficiency.
  • the rotor magnet 52 is composed of the divided magnet pieces 52b, the eddy current loss in the rotor magnet 52 can be reduced.
  • Embodiment 5 is a front view of a magnetic wave gear device according to Embodiment 5.
  • FIG. The magnetic wave gearing 1 of the present embodiment is the same as the magnetic wave gearing of the fourth embodiment except for the shape of the low speed rotor end plate 42 .
  • the rotor magnet 52 is modularized as in the fourth embodiment.
  • the low-speed rotor end plate 42 of the present embodiment is composed of two spokes with the opening width 10a between the spokes 42a having an equal pitch.
  • the space between the spokes is used as the rotor magnet passing hole 42b.
  • the width of the openings 10a between spokes of equal pitch is set larger than the width of the rotor magnet insertion holes 51a.
  • the low-speed rotor end is Since the rotor magnets 52 can be inserted into the rotor magnet insertion holes of the high-speed rotor core through the rotor magnet passage holes 42b provided in the plate 42, the efficiency of assembly work is improved and the energy conversion efficiency is reduced. can be compatible with suppression.
  • the rotor magnets 52 are modularized, so eddy current loss in the rotor magnets 52 can be reduced.
  • Embodiment 6. 11 is a front view of a magnetic wave gear device according to Embodiment 6.
  • the magnetic wave gearing 1 of the present embodiment is the same as the magnetic wave gearing of the fourth embodiment except for the shape of the low speed rotor end plate 42 .
  • the rotor magnet 52 is modularized as in the fourth embodiment.
  • the low-speed rotor end plate 42 of the present embodiment has a plate-like shape, and a part of the plate-like opening has an opening width wider than the width of the rotor magnet insertion hole. department is provided. In the magnetic wave gear device of the present embodiment, this opening is used as the rotor magnet passage hole 42b.
  • the low-speed rotor end is Since the rotor magnets can be passed through the rotor magnet passage holes 42b provided in the plate 42 and inserted into the rotor magnet insertion holes of the high-speed rotor core, the efficiency of assembly work is improved and the decrease in energy conversion efficiency is suppressed. can be compatible with
  • the rotor magnets 52 are modularized, so eddy current loss in the rotor magnets 52 can be reduced.
  • the split magnet 52 is inserted into the rotor magnet insertion hole 51a of the high-speed rotor core through the rotor magnet passage hole 42b. Since the piece 52b does not separate, it is easy to insert. If the divided magnet pieces 52b can be inserted into the rotor magnet insertion holes 51a, the base 52a of the modularized rotor magnet 52 may be omitted. Further, in Embodiments 4 to 6, the split magnet pieces 52b are arranged side by side in the circumferential and axial directions of the high-speed rotor 5. FIG. The split magnet pieces 52b may be arranged side by side in at least one of the circumferential direction and the axial direction of the high-speed rotor 5 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

組み立て作業の効率向上とエネルギー変換効率の低下抑制とを両立できる磁気波動歯車装置を提供する。 固定子鉄心(31)、固定子巻線(32)および固定子磁石(33)を有する固定子(3)と、第1回転子(4)と、第2回転子(5)とを有する磁気波動歯車装置(1)であって、第2回転子は、複数の回転子磁石挿入孔を備えた第2回転子鉄心(51)と、複数の回転子磁石挿入孔にそれぞれ挿入された複数の回転子磁石(52)とを有しており、第1回転子は、円筒状の第1回転子鉄心と第1回転子端板(42)とを備えており、第1回転子端板は、回転軸方向の外側から回転子磁石を回転子挿入孔に挿入可能とする回転子磁石通過孔(42b)を有する。

Description

磁気波動歯車装置
 本願は、磁気波動歯車装置に関する。
 風力発電装置の発電機として磁気減速機と回転機とを一体化させた磁気波動歯車装置が知られている。磁気波動歯車装置は、低速回転子と、低速回転子と同軸状に設けられた高速回転子と、固定子巻線および永久磁石を有する固定子とで構成されている。磁気波動歯車装置は、機械的な摩耗が発生する機械式変速機を用いることなく、非接触で回転子の回転速度を変えることができる。そのため、磁気波動歯車装置においては、機械的な摩耗に対するメンテナンスの負荷が軽減される。また、磁気波動歯車装置を風力発電装置の発電機として用いる場合、1つの装置で変速と発電とが可能となるので、発電システムの小型化、省スペース化が実現できる。
 従来の磁気波動歯車装置として、複数の永久磁石を有する固定子と、複数の回転子磁石を有する高速回転子と、複数の磁極片を有する低速回転子とが同心状に配置された磁気波動歯車装置が開示されている(例えば、特許文献1参照)。
特開2016-135014号公報
 固定子の複数の永久磁石は、同一方向に極を作るように径方向に着磁されている。磁気波動歯車装置においては、高速回転子を固定子に挿入した後に固定子巻線への通電によって高速回転子の回転子磁石を着磁することは困難である。そのため、従来の磁気波動歯車装置においては、着磁された回転子磁石が組み込まれた高速回転子を固定子に挿入する必要がある。着磁された回転子磁石が組み込まれた高速回転子を固定子に挿入するときに、固定子の永久磁石と高速回転子の回転子磁石との間に磁気吸引力が働く。この磁気吸引力は、高速回転子に対して挿入方向と直角な方向の力となる。そのため、従来の磁気波動歯車装置においては、精度よく高速回転子を固定子に挿入することが困難であり、組み立て作業の効率が低いという問題があった。
 組み立て作業の効率を向上させるために、高速回転子と固定子との間の空隙を広げることが考えられる。しかしながら、高速回転子と固定子との間の空隙を広げると固定子磁石と回転子磁石との間隔が広くなり、磁気波動歯車装置のエネルギー変換効率が低下するという問題がある。つまり、従来の磁気波動歯車装置においては、組み立て作業の効率向上とエネルギー変換効率の低下抑制とが両立できないという問題があった。
 本願は上述のような課題を解決するためになされたもので、組み立て作業の効率向上とエネルギー変換効率の低下抑制とを両立できる磁気波動歯車装置を提供することを目的とする。
 本願の磁気波動歯車装置は、周方向に複数のスロットを備えた固定子鉄心、スロット内に配置された固定子巻線および固定子磁石を有する固定子と、固定子の内径側に空隙を介して配置された第1回転子と、第1回転子の回転軸と同心で、第1回転子の内径側に空隙を介して配置された第2回転子とを有している。そして、第2回転子は、周方向に並んで配置された複数の回転子磁石挿入孔を備えた第2回転子鉄心と、複数の回転子磁石挿入孔にそれぞれ挿入された複数の回転子磁石とを有しており、第1回転子は、円筒状の第1回転子鉄心と、第2回転子より回転軸方向の外側で第1回転子鉄心と回転軸とを締結する第1回転子端板とを備えており、第1回転子端板は、回転軸方向の外側から回転子磁石を第2回転子鉄心の回転子磁石挿入孔に挿入可能とする回転子磁石通過孔を有している。
 本願の磁気波動歯車装置においては、第1回転子端板が回転軸方向の外側から回転子磁石を第2回転子鉄心の回転子挿入孔に挿入可能とする回転子磁石通過孔を有しているので、第2回転子鉄心を固定子の内周側に挿入した後に回転子磁石を第2回転子鉄心の回転子挿入孔に挿入できる。そのため、本願の磁気波動歯車装置は、組み立て作業の効率向上とエネルギー変換効率の低下抑制とを両立できる。
実施の形態1に係る磁気波動歯車装置の正面図である。 実施の形態1に係る磁気波動歯車装置の部分断面図である。 実施の形態1に係る磁気波動歯車装置の斜視図である。 実施の形態2に係る磁気波動歯車装置の正面図である。 実施の形態3に係る磁気波動歯車装置の正面図である。 実施の形態4に係る磁気波動歯車装置の正面図である。 実施の形態4に係る回転子磁石の構成図である。 実施の形態4に係る磁気波動歯車装置の部分断面図である。 実施の形態4に係る磁気波動歯車装置の斜視図である。 実施の形態5に係る磁気波動歯車装置の正面図である。 実施の形態6に係る磁気波動歯車装置の正面図である。
 以下、本願を実施するための実施の形態に係る磁気波動歯車装置について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。
実施の形態1.
 図1は、実施の形態1に係る磁気波動歯車装置の正面図である。本実施の形態の磁気波動歯車装置1は、円筒形状のフレーム2と、固定子3と、低速回転子4と、高速回転子5とを有している。固定子3は、周方向に複数のスロットを備えた固定子鉄心31、スロット内に配置された固定子巻線32および固定子磁石33を備えている。固定子3は、フレーム2の内周側でフレーム2に固定されている。低速回転子4は、固定子3の内径側に空隙を介して配置された円筒状の低速回転子鉄心を有している。高速回転子5は、低速回転子4の回転軸41と同心で、低速回転子鉄心の内径側に空隙を介して配置されている。高速回転子5は、円筒状の高速回転子鉄心51と周方向に並んで配置された回転子磁石52とを備えている。低速回転子4は、高速回転子5より回転軸41方向の外側で低速回転子鉄心と回転軸41とを締結する低速回転子端板42を備えている。図1に示すように、本実施の形態の低速回転子端板42は、複数のスポーク42aで構成されている。複数のスポーク42aの間は開口部となっている。
 図2は、本実施の形態に係る磁気波動歯車装置の部分断面図である。図2に示すように、固定子鉄心31は、円筒形状のコアバック31aとコアバックから周方向に並んで内周側に突出した複数のティース31bとで構成されている。複数のティース31bの間はスロットと呼ばれる空間になっており、固定子巻線32はこのスロットを利用してティース31bに巻かれている。固定子磁石33は、スロットの内周側のティース31bの両端部に固定されている。低速回転子鉄心43は、固定子3の内径側に空隙を介して配置されている。高速回転子鉄心51は、低速回転子鉄心43の内径側に空隙を介して配置されている。高速回転子鉄心51には、外周側に周方向に並んで配置された複数の回転子磁石挿入孔51aが形成されている。この複数の回転子磁石挿入孔51aには、複数の回転子磁石52がそれぞれ挿入されている。
 本実施の形態の磁気波動歯車装置1においては、図1に示すように、低速回転子端板42が、回転軸41の方向の外側から回転子磁石52を回転子磁石挿入孔51aに挿入可能とする回転子磁石通過孔42bを有している。本実施の形態における低速回転子端板42は、複数のスポークで構成されているので、図1に示すように、低速回転子端板42の複数のスポーク42aの間の開口部幅10a、10bが不等ピッチとなっている。間隔が広い方のスポーク42aの間の開口部幅10aを回転子磁石挿入孔51aの幅より大きくすることで、そのスポーク42aの間の開口部を回転子磁石通過孔42bとする。
 次に、本実施の形態の磁気波動歯車装置の組み立て方法について説明する。固定子鉄心31に固定子巻線32および固定子磁石33を取り付けて固定子3を組み立てる。この固定子3をフレーム2の内周側に固定する。次に、高速回転子鉄心51を固定子3の内周側に回転軸方向から挿入する。このとき、高速回転子鉄心51の回転子磁石挿入孔51aには回転子磁石52は挿入されていない。次に、低速回転子4を固定子3と高速回転子5との間の空隙に回転軸方向から挿入する。最後に、回転子磁石52を低速回転子端板42の回転子磁石通過孔42bを通過させて高速回転子鉄心51の回転子磁石挿入孔51aに挿入する。
 図3は、本実施の形態に係る磁気波動歯車装置の斜視図である。図3に示すように、回転子磁石52は、低速回転子端板42の回転子磁石通過孔42bを通過されて高速回転子鉄心51の回転子磁石挿入孔51aに挿入される。
 このように構成された磁気波動歯車装置1においては、高速回転子鉄心51が固定子3の内周側に挿入されるときには、高速回転子鉄心51の回転子磁石挿入孔51aには回転子磁石52は挿入されていない。そのため、高速回転子鉄心51を挿入するときに固定子磁石33と回転子磁石52との間の磁気吸引力は発生しない。その結果、高速回転子鉄心51を挿入するときに挿入方向と直角な方向の力は作用しないので、精度よく高速回転子鉄心51を固定子3に挿入することができる。
 高速回転子鉄心51を固定子3の内周側に挿入するときに、高速回転子鉄心51に回転子磁石52が取り付けられていたと仮定する。この場合、高速回転子鉄心51を挿入するときに固定子磁石33と回転子磁石52との間に磁気吸引力が発生する。そのため、高速回転子鉄心51を挿入するときに高速回転子鉄心51に対して挿入方向と直角な方向に力が作用する。そうすると、高速回転子鉄心51を固定子3の内周側に挿入するときに挿入方向と直角な方向に作用する力に対抗した位置合わせ精度が要求されるので組み立て作業の効率が低下する。組み立て作業の効率を向上させるために、高速回転子鉄心51と固定子3との空隙を広げることが考えられる。しかしながら、この空隙を広げると固定子磁石33と回転子磁石52との間隔が広くなり、磁気波動歯車装置のエネルギー変換効率が低下するという問題がある。つまり、高速回転子鉄心51に回転子磁石52が取り付けられた状態で高速回転子鉄心51を固定子3の内周側に挿入する従来の方法では、組み立て作業の効率向上とエネルギー変換効率の低下抑制とが両立できないという問題があった。
 上述のように、本実施の形態の磁気波動歯車装置においては、回転子磁石が取り付けられていない状態の高速回転子鉄心を固定子の内周側に挿入した後に低速回転子端板に設けられた回転子磁石通過孔を通過させて高速回転子鉄心の回転子磁石挿入孔に回転子磁石を挿入することができるので、組み立て作業の効率向上とエネルギー変換効率の低下抑制とを両立させることができる。
 また、本実施の形態の磁気波動歯車装置においては、高速回転子鉄心51を固定子3の内周側に挿入するときに高速回転子鉄心51と固定子3との間の空隙を狭くできる。そのため、図2に示す固定子磁石33と回転子磁石52との間隔10cを狭くできるので、従来と同じエネルギー変換効率を得るために必要な回転子磁石の使用量を低減することもできる。
実施の形態2.
 図4は、実施の形態2に係る磁気波動歯車装置の正面図である。本実施の形態の磁気波動歯車装置1は、低速回転子端板42の形状以外は、実施の形態1の磁気波動歯車装置と同じである。
 実施の形態1の磁気波動歯車装置においては、低速回転子端板のスポークの間の開口部幅が不等ピッチとなっており、開口部幅が広い方のスポークの間の開口部幅が回転子磁石挿入孔の幅より大きく設定されていた。本実施の形態の磁気波動歯車装置においては、図4に示すように、低速回転子端板42のスポークの間の開口部幅10aを等ピッチとして2本のスポーク42aで構成し、2本のスポーク間の開口部を回転子磁石通過孔42bとしたものである。等ピッチのスポーク42aの間の開口部幅10aは回転子磁石挿入孔51aの幅より大きく設定されている。
 このように構成された磁気波動歯車装置においては、実施の形態1と同様に、回転子磁石が取り付けられていない状態の高速回転子鉄心を固定子の内周側に挿入した後に低速回転子端板42に設けられた回転子磁石通過孔42bを通過させて高速回転子鉄心の回転子磁石挿入孔に回転子磁石を挿入することができるので、組み立て作業の効率向上とエネルギー変換効率の低下抑制とを両立させることができる。
 なお、本実施の形態において、低速回転子端板42は等ピッチの2本のスポーク42aで構成されている。等ピッチのスポークの間の開口部幅が回転子磁石挿入孔の幅よりも広く設定されていれば、低速回転子端板42のスポーク42aの数は3本以上であってもよい。
実施の形態3.
 図5は、実施の形態3に係る磁気波動歯車装置の正面図である。本実施の形態の磁気波動歯車装置1は、低速回転子端板42の形状以外は、実施の形態1の磁気波動歯車装置と同じである。
 本実施の形態の磁気波動歯車装置においては、図5に示すように、低速回転子端板42は円板形状でありその一部に回転子磁石挿入孔の幅よりも広い開口幅を有する開口部が設けられている。本実施の形態の磁気波動歯車装置においては、この開口部を回転子磁石通過孔42bとしたものである。
 このように構成された磁気波動歯車装置においては、実施の形態1と同様に、回転子磁石が取り付けられていない状態の高速回転子鉄心を固定子の内周側に挿入した後に低速回転子端板42に設けられた回転子磁石通過孔42bを通過させて高速回転子鉄心の回転子磁石挿入孔に回転子磁石を挿入することができるので、組み立て作業の効率向上とエネルギー変換効率の低下抑制とを両立させることができる。
 なお、本実施の形態において、低速回転子端板42には1つの回転子磁石通過孔42bが設けられている。低速回転子端板42の回転対称性を確保するために、1つの回転子磁石通過孔42bと回転対称な位置に同じ形状の別の回転子磁石通過孔が設けられてもよい。
実施の形態4.
 実施の形態1~3の磁気波動歯車装置においては、低速回転子端板が回転子磁石通過孔を有しているので、高速回転子鉄心を固定子の内周側に挿入した後に回転子磁石を高速回転子鉄心の回転子磁石挿入孔に挿入できる。そのため、固定子磁石と回転子磁石との間隔を狭くできる。しかしながら、固定子磁石と回転子磁石との間隔が狭くなるにしたがって、固定子磁石から受ける磁束の影響で回転子磁石の表面に発生する渦電流に起因する損失が大きくなっていく。この渦電流に起因する損失が大きくなると、磁気波動歯車装置のエネルギー変換効率が低下する。なお、渦電流に起因する損失を渦電流損と呼ぶ。実施の形態4に係る磁気波動歯車装置は、回転子磁石の渦電流損を低減することができるものである。
 図6は、本実施の形態に係る磁気波動歯車装置の正面図である。本実施の形態の磁気波動歯車装置1は、回転子磁石52以外は、実施の形態1の磁気波動歯車装置と同じである。
 図7は、本実施の形態における回転子磁石の構成図である。図7に示すように、本実施の形態の回転子磁石52は、基台52aとこの基台52aの外周側に固定された複数の分割磁石片52bとで構成されている。基台52aは、例えば鉄などの磁性体で構成されている。複数の分割磁石片52bは、高速回転子5の周方向におよび軸方向に並べられて基台52aに固定されている。分割磁石片52b同士の間には隙間がある。これ以降、基台52aとこの基台52aの外周側に固定された複数の分割磁石片52bとで構成された回転子磁石52をモジュール化された回転子磁石と呼ぶ。
 このように構成された磁気波動歯車装置においては、回転子磁石52が分割磁石片52bで構成されているので、渦電流が流れる回転子磁石52の表面の見かけの電気伝導率が低下する。そのため、渦電流が流れにくくなり、回転子磁石52における渦電流損を低減することができる。
 図8は、本実施の形態に係る磁気波動歯車装置の部分断面図である。本実施の形態の磁気波動歯車装置は、渦電流損を一定値以下とする設計条件において、回転子磁石がモジュール化されていない場合に比べて固定子磁石33と回転子磁石52との間隔10cをさらに狭くできる。そのため、同じエネルギー変換効率を得るために必要な回転子磁石の使用量をさらに低減することができる。
 図9は、本実施の形態に係る磁気波動歯車装置の斜視図である。図9に示すように、モジュール化された回転子磁石52は、低速回転子端板42の回転子磁石通過孔42bを通過して高速回転子鉄心51の回転子磁石挿入孔51aに挿入される。
 このように構成された磁気波動歯車装置1においては、高速回転子鉄心51が固定子3の内周側に挿入されるときには、高速回転子鉄心51の回転子磁石挿入孔51aには回転子磁石52は挿入されていない。そのため、高速回転子鉄心51を挿入するときに固定子磁石33と回転子磁石52との間の磁気吸引力は発生しない。その結果、高速回転子鉄心51を挿入するときに挿入方向と直角な方向の力は作用しないので、精度よく高速回転子鉄心51を固定子3に挿入することができる。そのため、本実施の形態に係る磁気波動歯車装置は、実施の形態1と同様に、組み立て作業の効率向上とエネルギー変換効率の低下抑制とを両立させることができる。
 また、このように構成された磁気波動歯車装置においては、回転子磁石52が分割磁石片52bで構成されているので、回転子磁石52における渦電流損を低減することができる。
実施の形態5.
 図10は、実施の形態5に係る磁気波動歯車装置の正面図である。本実施の形態の磁気波動歯車装置1は、低速回転子端板42の形状以外は、実施の形態4の磁気波動歯車装置と同じである。本実施の形態の磁気波動歯車装置においては、実施の形態4と同様に、回転子磁石52がモジュール化されている。
 本実施の形態の低速回転子端板42は、実施の形態2の低速回転子端板と同様に、スポーク42aの間の開口部幅10aを等ピッチとして2本のスポークで構成し、2本のスポーク間の空間を回転子磁石通過孔42bとしたものである。等ピッチのスポークの間の開口部幅10aの幅は回転子磁石挿入孔51aの幅より大きく設定されている。
 このように構成された磁気波動歯車装置においては、実施の形態2と同様に、回転子磁石が取り付けられていない状態の高速回転子鉄心を固定子の内周側に挿入した後に低速回転子端板42に設けられた回転子磁石通過孔42bを通過させて高速回転子鉄心の回転子磁石挿入孔に回転子磁石52を挿入することができるので、組み立て作業の効率向上とエネルギー変換効率の低下抑制とを両立させることができる。
 また、本実施の形態の磁気波動歯車装置においては、実施の形態4と同様に、回転子磁石52がモジュール化されているので、回転子磁石52における渦電流損を低減することができる。
実施の形態6.
 図11は、実施の形態6に係る磁気波動歯車装置の正面図である。本実施の形態の磁気波動歯車装置1は、低速回転子端板42の形状以外は、実施の形態4の磁気波動歯車装置と同じである。本実施の形態の磁気波動歯車装置においては、実施の形態4と同様に、回転子磁石52がモジュール化されている。
 本実施の形態の低速回転子端板42は、実施の形態3の低速回転子端板と同様に、板状でありその一部に回転子磁石挿入孔の幅よりも広い開口幅を有する開口部が設けられている。本実施の形態の磁気波動歯車装置においては、この開口部を回転子磁石通過孔42bとしたものである。
 このように構成された磁気波動歯車装置においては、実施の形態3と同様に、回転子磁石が取り付けられていない状態の高速回転子鉄心を固定子の内周側に挿入した後に低速回転子端板42に設けられた回転子磁石通過孔42bを通過させて高速回転子鉄心の回転子磁石挿入孔に回転子磁石を挿入することができるので、組み立て作業の効率向上とエネルギー変換効率の低下抑制とを両立させることができる。
 また、本実施の形態の磁気波動歯車装置においては、実施の形態4と同様に、回転子磁石52がモジュール化されているので、回転子磁石52における渦電流損を低減することができる。
 なお、実施の形態4~6において、回転子磁石52がモジュール化されているため、回転子磁石通過孔42bを通過させて高速回転子鉄心の回転子磁石挿入孔51aに挿入するときに分割磁石片52bが分離しないので挿入が容易である。分割磁石片52bが回転子磁石挿入孔51aに挿入できるのであれば、モジュール化された回転子磁石52の基台52aはなくてもよい。また、実施の形態4~6においては、分割磁石片52bは高速回転子5の周方向および軸方向に並んで配置されている。分割磁石片52bは、高速回転子5の周方向および軸方向の少なくとも一方に並んで配置されていてもよい。
 本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1 磁気波動歯車装置、2 フレーム、3 固定子、4 低速回転子、5 高速回転子、10a、10b 開口部幅、10c 間隔、31 固定子鉄心、31a コアバック、31b ティース、32 固定子巻線、33 固定子磁石、41 回転軸、42 低速回転子端板、42a スポーク、42b 回転子磁石通過孔、43 低速回転子鉄心、51 高速回転子鉄心、51a 回転子磁石挿入孔、52 回転子磁石、52a 基台、52b 分割磁石片。

Claims (4)

  1.  周方向に複数のスロットを備えた固定子鉄心、前記スロット内に配置された固定子巻線および固定子磁石を有する固定子と、
     前記固定子の内径側に空隙を介して配置された第1回転子と、
     前記第1回転子の回転軸と同心で、前記第1回転子の内径側に空隙を介して配置された第2回転子とを有する磁気波動歯車装置であって、
     前記第2回転子は、周方向に並んで配置された複数の回転子磁石挿入孔を備えた第2回転子鉄心と、複数の前記回転子磁石挿入孔にそれぞれ挿入された複数の回転子磁石とを有しており、
     前記第1回転子は、円筒状の第1回転子鉄心と、前記第2回転子より前記回転軸方向の外側で前記第1回転子鉄心と前記回転軸とを締結する第1回転子端板とを備えており、
     前記第1回転子端板は、前記回転軸方向の外側から前記回転子磁石を前記第2回転子鉄心の前記回転子磁石挿入孔に挿入可能とする回転子磁石通過孔を有することを特徴とする磁気波動歯車装置。
  2.  前記回転子磁石は、前記第2回転子の周方向および軸方向の少なくとも一方に並んで配置された複数の分割磁石片で構成されていることを特徴とする請求項1に記載の磁気波動歯車装置。
  3.  前記第1回転子端板は複数のスポークを有する形状であり、複数の前記スポークの間の少なくとも1つの開口部の幅が前記回転子磁石挿入孔の幅よりも大きく、当該1つの開口部が前記回転子磁石通過孔であることを特徴とする請求項1または2に記載の磁気波動歯車装置。
  4.  前記第1回転子端板は円板形状であり、前記第1回転子端板は前記回転子磁石挿入孔の幅よりも広い幅を有する少なくとも1つの開口部を有し、当該1つの開口部が前記回転子磁石通過孔であることを特徴とする請求項1または2に記載の磁気波動歯車装置。
PCT/JP2021/028562 2021-08-02 2021-08-02 磁気波動歯車装置 WO2023012855A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/028562 WO2023012855A1 (ja) 2021-08-02 2021-08-02 磁気波動歯車装置
JP2023539228A JPWO2023012855A1 (ja) 2021-08-02 2021-08-02
CN202180100810.2A CN117652081A (zh) 2021-08-02 2021-08-02 磁波动齿轮装置
US18/551,711 US20240097547A1 (en) 2021-08-02 2021-08-02 Magnetic strain wave gear device
EP21952686.0A EP4383532A1 (en) 2021-08-02 2021-08-02 Magnetic strain wave gear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028562 WO2023012855A1 (ja) 2021-08-02 2021-08-02 磁気波動歯車装置

Publications (1)

Publication Number Publication Date
WO2023012855A1 true WO2023012855A1 (ja) 2023-02-09

Family

ID=85155404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028562 WO2023012855A1 (ja) 2021-08-02 2021-08-02 磁気波動歯車装置

Country Status (5)

Country Link
US (1) US20240097547A1 (ja)
EP (1) EP4383532A1 (ja)
JP (1) JPWO2023012855A1 (ja)
CN (1) CN117652081A (ja)
WO (1) WO2023012855A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075353A (ja) * 2002-08-21 2004-03-11 Mitsubishi Electric Corp エレベータ用巻上機
JP2007129839A (ja) * 2005-11-04 2007-05-24 Fuji Electric Fa Components & Systems Co Ltd ブレーキ内蔵形回転電機
JP2016135014A (ja) 2015-01-20 2016-07-25 株式会社Ihi 磁気波動歯車装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075353A (ja) * 2002-08-21 2004-03-11 Mitsubishi Electric Corp エレベータ用巻上機
JP2007129839A (ja) * 2005-11-04 2007-05-24 Fuji Electric Fa Components & Systems Co Ltd ブレーキ内蔵形回転電機
JP2016135014A (ja) 2015-01-20 2016-07-25 株式会社Ihi 磁気波動歯車装置

Also Published As

Publication number Publication date
CN117652081A (zh) 2024-03-05
US20240097547A1 (en) 2024-03-21
JPWO2023012855A1 (ja) 2023-02-09
EP4383532A1 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
EP2200154B1 (en) Axial gap motor
JP2991705B1 (ja) クローポール形発電機及び自転車
US7595575B2 (en) Motor/generator to reduce cogging torque
US20090224628A1 (en) Twin rotor type motor
JPH09508520A (ja) 永久磁石ロータを含むモータ
JP5159228B2 (ja) 磁気誘導子形同期回転機およびそれを用いた自動車用過給機
JP2010525774A (ja) 同心円状に配置された回転子を有するモータ及び前記モータを備える駆動装置
JP7357805B2 (ja) 回転電機および固定子の製造方法
JP5697566B2 (ja) 磁気ギアおよびその製造方法
JP2013059178A (ja) 磁気ギア
JP2006262603A (ja) 回転電機
WO2023012855A1 (ja) 磁気波動歯車装置
JP2007129892A (ja) モータ及びモータの製造方法
JP7262623B2 (ja) 固定子およびこれを用いた回転電機
JP2010093928A (ja) アキシャルギャップ型モータ
JP2005341794A (ja) タービン駆動電気機械用の最適ドライブトレイン
WO2023100274A1 (ja) 回転子および磁気波動歯車装置
WO2023199460A1 (ja) 回転装置
JP6804699B1 (ja) 固定子およびこれを用いた回転電機
WO2023105551A1 (ja) 回転電機、およびその回転電機を備えた航空機
US20230101565A1 (en) Rotary electric machine
US20240235360A1 (en) Magnetic geared rotating machine, power generation system, and drive system
WO2021131298A1 (ja) 回転電機
CN118285039A (zh) 转子及磁波齿轮装置
JP2009095086A (ja) アキシャルギャップ型モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952686

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539228

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18551711

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180100810.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952686

Country of ref document: EP

Effective date: 20240304