WO2023011552A1 - 气雾生成装置 - Google Patents

气雾生成装置 Download PDF

Info

Publication number
WO2023011552A1
WO2023011552A1 PCT/CN2022/110083 CN2022110083W WO2023011552A1 WO 2023011552 A1 WO2023011552 A1 WO 2023011552A1 CN 2022110083 W CN2022110083 W CN 2022110083W WO 2023011552 A1 WO2023011552 A1 WO 2023011552A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction coil
susceptor
aerosol
generating device
aerosol generating
Prior art date
Application number
PCT/CN2022/110083
Other languages
English (en)
French (fr)
Inventor
张淑媛
武建
戚祖强
雷宝灵
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110886889.8A external-priority patent/CN115886338A/zh
Priority claimed from CN202110888333.2A external-priority patent/CN115918971A/zh
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Priority to EP22852264.5A priority Critical patent/EP4381974A1/en
Publication of WO2023011552A1 publication Critical patent/WO2023011552A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/20Cigarettes specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating

Definitions

  • the embodiments of the present application relate to the technical field of aerosol generation, and in particular to an aerosol generating device and a heater for the aerosol generating device.
  • Smoking articles eg, cigarettes, cigars, etc.
  • Burn tobacco during use to produce tobacco smoke.
  • Attempts have been made to replace these tobacco-burning products by making products that release compounds without burning them.
  • FIG. 1 An example of this type of product is a heating device. As shown in FIG. 1 , a magnetic field is generated by an induction coil 1 , and a susceptor 2 arranged in the coil induces heat to heat tobacco products.
  • the induction coil in this type of heating device occupies a large space, which is unfavorable for the miniaturization of the heating device.
  • an aerosol-generating device for heating an aerosol-generating article to generate an aerosol; comprising: a chamber for receiving an aerosol-generating article; a susceptor extending at least partially within the chamber, and configured to be penetrated by the varying magnetic field to generate heat, thereby heating the aerosol-generating article received in the chamber; and an induction coil disposed within the susceptor and configured to generate the varying magnetic field.
  • the induction coil and the susceptor are thermally conductive to each other; the material of the induction coil has a positive or negative temperature coefficient of resistance, which can be determined by detecting the resistance of the induction coil in use. The temperature of the susceptor.
  • the susceptor is configured in the shape of a pin or a needle, and has a hollow extending along the axial direction; the induction coil is located in the hollow.
  • the cross section of the wire material of the induction coil is configured such that the dimension extending in the axial direction is larger than the dimension extending in the radial direction.
  • the induction coil includes a first part and a second part arranged along the axial direction; wherein, along the axial direction of the induction coil, the number of windings or turns per unit length in the first part is less than The number of windings or turns per unit length in the second portion.
  • the susceptor is configured as a sheet, and includes a first surface and a second surface opposite to each other along the thickness direction; the induction coil is configured as a Flat helical coil.
  • the susceptor includes a first sheet-like portion and a second sheet-like portion facing each other along the thickness direction; the induction coil is located between the first sheet-like portion and the second sheet-like portion.
  • the first sheet-like part and the second sheet-like part are formed by folding a sheet-like precursor in half around an axis.
  • it further includes: a magnetic core at least partially located in the induction coil.
  • the magnetic core comprises at least any one of iron, cobalt or nickel.
  • the magnetic core is at least partially in contact with the susceptor.
  • the susceptor includes: a substrate at least partially extending in the receiving cavity, and a sensitive coating formed on the substrate.
  • the induction coil includes a first end and a second end opposite to each other in the axial direction; the magnetic core penetrates from the first end of the induction coil to the second end.
  • an aerosol generating device for heating an aerosol generating product to generate an aerosol; comprising: a receiving cavity for receiving an aerosol generating product; a heater at least partially in the receiving cavity extended to be used for heating the aerosol generating article; the heater includes: a housing configured to extend at least partially along the axial direction of the receiving cavity, and has a holding cavity extending axially; an induction coil located in the The holding cavity of the housing is configured to generate a changing magnetic field; the receptor is located at least partially within the induction coil and is configured to be penetrated by the changing magnetic field to generate heat; the housing is configured to generate heat by receiving the The heat from the receptor, in turn, heats the aerosol-generating article.
  • Yet another embodiment of the present application is used for a heater of an aerosol generating device, the heater comprising: a housing with a holding cavity extending in the axial direction; an induction coil located in the holding cavity of the housing and configured to A changing magnetic field is generated; the susceptor is at least partially located in the induction coil and is configured to be penetrated by the changing magnetic field to generate heat; the housing is configured to heat the aerosol in turn by receiving the heat from the susceptor Generate artifacts.
  • the induction coil is accommodated and packaged in the receptor, which is beneficial to the miniaturization of the device.
  • Fig. 1 is the structural representation of existing heating device
  • Fig. 2 is a schematic structural diagram of an aerosol generating device provided by an embodiment of the present application.
  • Fig. 3 is the structural representation of suceptor among Fig. 2;
  • Fig. 4 is a schematic structural diagram of the induction coil in Fig. 3;
  • Fig. 5 is a structural schematic diagram of a susceptor of another embodiment
  • Fig. 6 is a schematic cross-sectional view of the induction coil in Fig. 5 under a viewing angle
  • Fig. 7 is a schematic structural diagram of an induction coil in another embodiment
  • Fig. 8 is a schematic structural diagram of a susceptor in another embodiment
  • FIG. 9 is a schematic diagram of forming a susceptor precursor by etching on a sheet substrate during the susceptor preparation process of an embodiment
  • Fig. 10 is a schematic structural view of forming an induction coil on the susceptor precursor of Fig. 9;
  • FIG 11 is a schematic diagram of the susceptor precursor of Figure 10 being folded in half to form a susceptor
  • Fig. 12 is a schematic structural view of an aerosol generating device provided by yet another embodiment.
  • Fig. 13 is a schematic structural diagram of an aerosol generating device provided by an embodiment of the present application.
  • Fig. 14 is an exploded schematic view of each part of the heater in Fig. 13 before assembly;
  • Fig. 15 is a schematic cross-sectional view of a viewing angle of the heater in Fig. 14;
  • Fig. 16 is a schematic structural view of a heater proposed in yet another embodiment
  • Fig. 17 is an exploded view of the parts of the heater in Fig. 16 before assembly.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • An embodiment of the present application proposes an aerosol generating device, the structure of which can be seen in Figure 2 and Figure 3, including:
  • a chamber having an opening 50 through which an aerosol-generating article A is removably received within the chamber;
  • a magnetic field generator such as an induction coil 40, for generating a changing magnetic field under an alternating current
  • the cell 10 is a rechargeable DC cell that can output DC current
  • the circuit 20 is connected to the rechargeable battery cell 10 through proper electrical connection, and is used to convert the DC current output by the battery cell 10 into an alternating current with a suitable frequency and then supply it to the induction coil 40 .
  • the frequency of the alternating current supplied by the circuit 20 to the induction coil 40 is in the range of 80KHz-400KHz; more specifically, the frequency may be in the range of about 200KHz to 300KHz.
  • the DC power supply voltage provided by the battery cell 10 is in the range of about 2.5V to about 9.0V, and the amperage of the DC current provided by the battery cell 10 is in the range of about 2.5A to about 20A.
  • the susceptor 30 is substantially in the shape of a pin or needle, which in turn is advantageous for insertion into the aerosol-generating article A.
  • the susceptors 30 may have a length of about 12-19 mm, and a diameter of 2.0-2.6 mm; these susceptors 30 may be made of grade 430 stainless steel (SS430), and may also be made of grade 420 stainless steel (SS420), and iron-containing Nickel alloy material (such as Permalloy).
  • the aerosol-generating product A preferably uses a tobacco-containing material that releases volatile compounds from the matrix when heated; or it can also be a non-tobacco material that is suitable for electric heating and smoking after heating.
  • the aerosol-generating product A preferably adopts a solid substrate, which may include one or more of powder, granules, shredded strips, strips or flakes of one or more of vanilla leaves, tobacco leaves, homogenized tobacco, and expanded tobacco; Alternatively, the solid matrix may contain additional tobacco or non-tobacco volatile flavor compounds to be released when the matrix is heated.
  • susceptor 30 is the shape of the pin or needle shape that has holding cavity 310 inside;
  • the end is formed by the open structure of the holding cavity 310, which facilitates the assembly of the induction coil 40 inside;
  • the induction coil 40 is used to generate a magnetic field under an alternating current; specifically, the structure is a spiral shape extending along the axial direction of the susceptor 30 .
  • induction coil 40 is fully assembled and retained within holding cavity 310 of susceptor 30 , and induction coil 40 and susceptor 30 are thermally conductive to each other after assembly.
  • the induction coil 40 and the susceptor 30 are insulated from each other; in an optional implementation, the induction coil 40 is insulated by an insulating layer sprayed on the surface, or coated with varnish, etc.; Glue, surface oxidation, spray insulation layer, etc. to form insulation between the surfaces they contact.
  • the susceptor 30 made of susceptibility metal or alloy material forms a magnetic field shield to the induction coil 40; the susceptor 30 can basically completely absorb and shield the magnetic field generated by the induction coil 40 inside, which is useful for preventing the generation of aerosol It is advantageous for the device to generate magnetic flux leakage outwards.
  • the susceptor 30 includes a hollow and elongated substrate and a sensing and heating part bonded to the substrate.
  • the substrate includes a ceramic material, and the sensing and heating part is metal or metal bonded to the outer surface or inner wall surface of the ceramic substrate.
  • the alloy material layer, or the metal or alloy material embedded in the ceramic matrix, and the induction coil is accommodated in the hollow interior of the ceramic matrix.
  • a ceramic substrate may provide insulation between the induction coil and the heat-sensing part.
  • the receptor 30 can also be provided with some ceramic or PEEK flanges or bases (not shown in the figure) near the open end of the end, and then the aerosol generating device can support, clamp or hold the flange or The base is fixed, and then the susceptor 30 is stably installed and maintained.
  • the cross-section of the wire material of the induction coil 40 is circular.
  • the induction coil 40 has 6-20 windings or turns. And, the induction coil 40 has an extended length of about 8-12mm.
  • the induction coil 40 is configured as a helical tube with an outer diameter of about 2 mm.
  • the two ends of the induction coil 40 are connected to the first conductive pin 41 and the second conductive pin 42 respectively, and are connected to the circuit 20 through the first conductive pin 41 and the second conductive pin 42 in use. , and then make the circuit 20 provide an alternating current to the induction coil 40 .
  • the first conductive pin 41 is welded to the upper end of the induction coil 40 and then penetrates the hollow inside of the induction coil 40 to the bottom, which is convenient for connection and assembly with the circuit 20 .
  • the second conductive pin 42 is directly connected to the lower end of the induction coil 40 .
  • the first conductive pin 41 may also be located outside the induction coil 40 and extend from the upper end to the lower end along the axial direction of the induction coil 40 ; thereby facilitating connection with the circuit 20 .
  • the induction coil 40 and the susceptor 30 can be thermally conductive to each other, and the material of the induction coil 40 is preferably made of a material with an appropriate positive or negative temperature coefficient of resistance, such as nickel-aluminum alloy, nickel-silicon alloy , palladium-containing alloys, platinum-containing alloys, etc.
  • the temperature of the susceptor 30 can be determined by detecting the resistance of the induction coil 40 .
  • thermocouples it is also possible to fill the hollow cavity of the susceptor 30 with a sensor for sensing the temperature of the susceptor 30, such as welding at least two different materials on the inner wall of the holding cavity 310 of the susceptor 30.
  • the galvanic wires, thereby forming a thermocouple between them, can be used to detect the temperature of the susceptor 30, and it can be understood that the above-mentioned sensors are not limited to thermocouples.
  • the cross-sectional shape of the wire material of the induction coil 40 a packaged in the holding cavity 310 a of the susceptor 30 a is a wide or flat shape different from a conventional circle.
  • the cross-section of the wire material of the induction coil 40 a has a dimension extending in the axial direction larger than a dimension extending in the radial direction, so that the induction coil 40 a has a flat rectangular shape.
  • the above-constructed induction coil 40a is completely or at least flattened in form of the wire material compared to conventional helical heating coils formed from circular cross-section wire. Consequently, the wire material extends to a lesser extent in the radial direction. By this measure, it is advantageous that the current can be increased to increase the magnetic field strength.
  • the extension length of the section of the wire material of the induction coil 40a along the axial direction of the helical tube is approximately between 1-4 mm;
  • the extension length in the direction is about 0.1-1mm.
  • the induction coil 40b includes a first part 410b closest to the first end, a second part 420b arranged closest to the second end, and the first part 410b , and a third portion 430b between the second portion 420b; and wherein the number of windings or turns per unit length in the third portion 430b of the coil is less than in one or both of the first portion 410b and the second portion 420b Windings or turns per unit length.
  • the induction coil 40b in FIG. 7 can make the magnetic field substantially uniform or close to each part in the axial direction.
  • the induction coil 40b can be composed of other segments with at least two different turns densities, or a form in which the turns density gradually changes, so that the work of the induction coil 40b can be further adjusted or changed.
  • the distribution of the magnetic field can be composed of other segments with at least two different turns densities, or a form in which the turns density gradually changes, so that the work of the induction coil 40b can be further adjusted or changed.
  • Fig. 8 shows an exploded schematic view of a susceptor 30c with an induction coil 40c in another embodiment before assembly; specifically:
  • the prepared susceptor 30c is in the shape of a sheet, with a length of about 12-19 mm, a width of 4.9 mm, and a thickness of 0.5 mm;
  • the susceptor 30c includes a first sheet part 310c and a second sheet part 320c prepared by etching or cutting etc. before assembly, and their shapes are basically the same; then they are connected into one by laser welding or the like at the edge parts after being laminated. After that, the receptor 30c can be formed;
  • the planar induction coil 40c is formed on one of the first sheet part 310c or the second sheet part 320c by printing, depositing, attaching and the like.
  • the first conductive pin 41c and the second conductive pin 42c can also be welded to the two ends of the planar induction coil 40c, thereby facilitating the supply of alternating current to the induction coil 40c.
  • the end of the first sheet portion 310c of the susceptor 30c has a first base portion 311c extending in the width direction; and/or, the end of the second sheet portion 320c has a base portion extending in the width direction.
  • the second base portion 321c Then the aerosol generating device can stably install and hold the receptor 30c by supporting, clamping or holding the first base part 311c and/or the second base part 321c.
  • the planar induction coil 40c is made of a thin sheet-shaped sheet substrate, and the planar induction coil 40c with a thinner thickness is prepared by etching, cutting, etc.; and then the first sheet-shaped part 310c Or the second sheet part 320c is clamped or wrapped from both sides to form the susceptor 30c.
  • the planar induction coil 40c shown in FIG. 8 is basically a rectangular or square spiral; and in other variant implementations, the shape of the planar induction coil 40c may be a conventional circular spiral. Or in other more variable implementations, the number of planar induction coils 40c can be multiple, can be overlapped with each other, can also be staggered with each other, and can also be independently distributed on the surface of the first sheet portion 310c in different regions above. Alternatively, a plurality of planar induction coils 40c may be connected in series, or each may be connected to the circuit 20 independently. Or at least one of the plurality of planar induction coils 40c generates a stronger magnetic field or frequency or inductance than the other.
  • the embodiment of the present application also proposes a susceptor 30d with a planar induction coil 40d inside and a method for mass production thereof, as shown in FIGS. 9 to 11 , including:
  • the sheet-shaped susceptor substrate 100d is made of the susceptibility metal material described above, such as a 0.5 mm thick NiFe alloy soft magnetic sheet.
  • the manner of processing to form the susceptor precursor 300d may include chemical etching or laser cutting to remove excess parts, that is, to form the susceptor precursor 300d.
  • several susceptor precursors 300 d obtained through processing are arranged in a matrix.
  • the susceptor precursor 300d includes a first sheet-like portion 310d and a second sheet-like portion 320d in the same plane. Meanwhile, the first sheet portion 310d and the second sheet portion 320d are connected rather than separated. Moreover, the first sheet-like portion 310d and the second sheet-like portion 320d are preferably symmetrical, specifically left-right symmetrical along the central axis L in FIG. 9 .
  • a planar induction coil 40d is formed on the first sheet portion 310d of the susceptor precursor 300d by means of printing, depositing, mounting, etc.; further, conductive pins can be welded at both ends of the induction coil 40d;
  • the first sheet part 310d and the second sheet part 320d are folded in half along the central axis L, and then their edge parts are welded to connect them into one body, that is, the susceptor 30d with the induction coil 40d inside is obtained.
  • the susceptor front body 300d in order to facilitate the folding operation, also has several indentations or grooves 35 arranged along the central axis L arranged along the central axis L; The operation of turning over or folding in half the shaped portion 320d is advantageous.
  • Fig. 12 shows a schematic structural view of an aerosol generating device in another embodiment; including:
  • a susceptor 30e configured to surround and define a tubular or cylindrical shape for receiving the aerosol-generating article A;
  • a magnetic field generator such as an induction coil 40e, is located in the hollow of a pin or needle-shaped housing 43e extending along the axial direction of the chamber; the induction coil 40e is used to generate a changing magnetic field, thereby causing the tubular or cylindrical susceptor 30e to generate heat , to heat the aerosol-generating article A from the periphery.
  • the susceptor 30e surrounds the induction coil 40e, and basically shields or confines the magnetic field generated by the induction coil 40e inside the susceptor 30e.
  • the pin or needle-shaped shell 43e is made of non-magnetic materials such as glass and ceramics.
  • FIG. 13 Another embodiment of the present application proposes an aerosol generating device, the structure of which can be seen from Figure 13 to Figure 15, including:
  • a receiving chamber having an opening 50 through which an aerosol-generating article A, such as a cigarette, is removably received;
  • a magnetic field generator such as an induction coil 40, for generating a changing magnetic field under an alternating current
  • the cell 10 is a rechargeable DC cell that can output DC current
  • the circuit 20 is connected to the rechargeable battery core 10 through a suitable electrical connection, and is used to convert the DC current output by the battery core 10 into an alternating current with a suitable frequency and then supply it to the induction coil 40, so that the induction coil 40 generates changing magnetic field.
  • the frequency of the alternating current supplied by the circuit 20 to the induction coil is between 80 KHz and 400 KHz; more specifically, the frequency may be in the range of about 200 KHz to 300 KHz.
  • the DC power supply voltage provided by the battery cell 10 is in the range of about 2.5V to about 9.0V, and the amperage of the DC current provided by the battery cell 10 is in the range of about 2.5A to about 20A.
  • the susceptor 30 is substantially in the shape of a pin or needle, which in turn is advantageous for insertion into the aerosol-generating article A.
  • the susceptors 30 may have a length of about 12-19 mm, and a diameter of 2.0-2.6 mm; these susceptors 30 may be made of grade 430 stainless steel (SS430), and may also be made of grade 420 stainless steel (SS420), and iron-containing Nickel alloy material (such as Permalloy).
  • the aerosol-generating product A preferably uses a tobacco-containing material that releases volatile compounds from the matrix when heated; or it can also be a non-tobacco material that is suitable for electric heating and smoking after heating.
  • the aerosol-generating product A preferably adopts a solid substrate, which may include one or more of powder, granules, shredded strips, strips or flakes of one or more of vanilla leaves, tobacco leaves, homogenized tobacco, and expanded tobacco; Alternatively, the solid matrix may contain additional tobacco or non-tobacco volatile flavor compounds to be released when the matrix is heated.
  • the susceptor 30 is in the shape of a pin or needle with a retaining cavity 310 inside; Inserted into the aerosol generating article A, the end 312 includes an open structure formed by the retaining cavity 310 to facilitate the assembly of the induction coil 40 inside.
  • the wall thickness of the susceptor 30 with the holding cavity 310 is about 0.15-0.3 mm, which can be much larger than the skin depth of the susceptor 30 forming an eddy current in the magnetic field, so as to reduce magnetic flux leakage and limit the magnetic field in the susceptor 30 is advantageous.
  • the susceptor 30 includes an elongated substrate with a holding cavity 310 and a coating of a susceptibility material bonded to the substrate, for example, the substrate includes a ceramic material or a quartz lamp, and the coating of the susceptibility material is bonded to the ceramic substrate or A sensitive metal or alloy material layer (such as coating) on the outer surface or inner wall surface of the quartz substrate, the induction coil 40 is accommodated in the holding cavity 310 defined by the substrate.
  • a ceramic substrate may provide insulation between the induction coil 40 and the receptive coating.
  • the induction coil 40 is used to generate a magnetic field under an alternating current; specifically, the structure is a helical shape extending along the axial direction of the susceptor 30 .
  • the induction coil 40 is fully assembled and retained within the holding cavity 310 of the susceptor 30, and the induction coil 40 and the susceptor 30 are thermally conductive to each other after assembly.
  • the induction coil 40 and the susceptor 30 are insulated from each other; in an optional implementation, the induction coil 40 is insulated by an insulating layer sprayed on the surface, or coated with varnish, etc.; Glue, surface oxidation, spray insulation, etc. to form insulation between the surfaces they contact.
  • the induction coil 40 has 6-20 windings or turns. And, the induction coil 40 has an extended length of about 8-12 mm.
  • the induction coil 40 is configured as a helical tube with an outer diameter of about 2mm and an inner diameter of about 1.4mm.
  • the inner diameter of the holding cavity 310 is substantially equivalent to the outer diameter of the induction coil 40, so that the induction coil 40 and the inner surface of the holding cavity 310 are in contact or abut after assembly, and there is no or a very small gap.
  • the outer diameter of the induction coil 40 may be slightly smaller than the inner diameter of the holding cavity 310 within 0.5 mm, which is convenient for assembly and control to maintain the above clearance.
  • the susceptor 30 can basically absorb the magnetic field generated by the induction coil 40 by the susceptor 30 .
  • the magnetic field generated by the induction coil 40 is also substantially confined within the susceptor 30 .
  • the cross-sectional shape of the wire material of the induction coil 40 packaged in the holding cavity 310 of the susceptor 30 is different from the conventional circular shape, but the cross-sectional shape is wide or flat.
  • the cross-section of the wire material of the induction coil 40 has a dimension extending in the axial direction larger than a dimension extending in the radial direction, so that the induction coil 40 has a flat rectangular shape.
  • the induction coil 40 constructed above is completely or at least flattened in form of the wire material compared to conventional helical heating coils formed from circular cross-section wire. Consequently, the wire material extends to a lesser extent in the radial direction. By this measure, it is advantageous that the current can be increased to increase the magnetic field strength.
  • the extension length of the cross section of the wire material of the induction coil 40 along the axial direction of the helical coil is approximately between 1 to 4 mm; the length of the wire material of the induction coil 40 along the radial direction of the helical coil The extension length is about 0.1-1mm.
  • the cross-section of the wire material of the induction coil 40 is circular.
  • the induction coil 40 also includes:
  • the first conductive pin 41 and the second conductive pin 42 are connected to the circuit 20 through the first conductive pin 41 and the second conductive pin 42 in use, so as to provide an alternating current to the induction coil 40 .
  • the first conductive pin 41 is welded to the upper end of the induction coil 40 and then passes through the inner hollow 43 of the induction coil 40 to the lower end, thereby facilitating connection and assembly with the circuit 20 .
  • the second conductive pin 42 is directly connected to the lower end of the induction coil 40 .
  • the first conductive pin 41 may also be located outside the induction coil 40 and extend from the upper end to the lower end along the axial direction of the induction coil 40 ; thereby facilitating connection with the circuit 20 .
  • the induction coil 40 and the susceptor 30 can be thermally conductive to each other, and the material of the induction coil 40 is preferably made of a material with an appropriate positive or negative temperature coefficient of resistance, such as nickel-aluminum alloy, nickel-silicon alloy , palladium-containing alloys, platinum-containing alloys, etc.
  • the temperature of the susceptor 30 can be determined by detecting the resistance of the induction coil 40 .
  • the first conductive pin 41 and the second conductive pin 42 are respectively made of different galvanic wire materials, and then a thermoelectric sensor for detecting the temperature of the induction coil 40/receptor 30 can be formed between them.
  • the first conductive pin 41 and the second conductive pin 42 are made of two different materials of galvanic couple materials such as nickel, nickel-chromium alloy, nickel-silicon alloy, nickel-chromium-cold copper, constant bronze, and iron-chromium alloy. of.
  • thermocouples it is also possible to fill a sensor for sensing the temperature of the susceptor 30 inside the holding chamber 310 of the susceptor 30, such as a commonly used PTC temperature sensor, or for example, in the holding chamber 310 of the susceptor 30. At least two galvanic wires of different materials are welded on the inner wall of the sensor 30 to form a thermocouple between them, which can be used to detect the temperature of the susceptor 30. It can be understood that the above sensors are not limited to thermocouples.
  • the receptor 30 is also provided with:
  • the magnetic core 33 is roughly in the shape of a long and thin rod or column; it is positioned inside the induction coil 40 and is used to prevent the magnetic field inside the induction coil 40 from generating magnetic flux leakage outside the susceptor 30 .
  • the material of the magnetic core 33 is metal or alloy containing at least one of iron, cobalt, and nickel; for example, good soft magnetic material or semi-hard magnetic material, such as Permalloy, stainless steel, FeAl alloy, etc.
  • magnetic core 33 is preferably a material with high heat capacity and thermal conductivity; (mass percentage) is increased from the conventional 6% to 8-20%, preferably 10-12%. Since the thermal conductivity and specific heat capacity of Al are higher than that of Fe, higher heat conversion efficiency can be provided.
  • the magnetic core 33 needs to fill the inside of the coil as much as possible.
  • the magnetic core 33 is penetrated from the lower end of the induction coil 40 to the upper end of the induction coil 40;
  • the extension length of the core 33 along the axial direction of the induction coil 40 is greater than or equal to the axial extension length of the induction coil 40 .
  • at least part of the magnetic core 33 protrudes relative to the induction coil 40 after passing through the induction coil 40 .
  • the structure of the magnetic core 33 includes:
  • the elongated rod-shaped magnetic core body 331 is penetrated by the magnetic core body 331 from the lower end to the upper end of the induction coil 40 during assembly;
  • the magnetic core seat 332, the magnetic core seat 332 has an outer diameter or cross-sectional area greater than the hollow 43 of the magnetic core body 331 and/or the induction coil 40, and then forms a step 333 at the position combined with the magnetic core body 331; during assembly, The lower end of the induction coil 40 abuts against the step 333 , and the magnetic core holder 332 provides a stop.
  • the elongated magnetic core body 331 has an extended length of approximately 10-15 mm; the elongated magnetic core body 331 has an outer diameter of approximately less than 1.5 mm.
  • the magnetic core seat 332 is in contact with the inner wall of the holding cavity 310 of the susceptor 30 , and conducts heat with each other. Furthermore, the use of the magnetic core 33 to at least partially provide a buffer for the temperature change of the susceptor 30 is beneficial for preventing the airflow from flowing through the surface of the susceptor 30 during the suction process and causing the temperature of the susceptor 30 to drop suddenly, so as to keep the temperature of the susceptor 30 within an appropriate range , and finally make the amount of aerosol generated or the mouthfeel uniform during the inhalation process.
  • the device also includes:
  • Base or flange 34 in the figure the base or flange 34 is a heat resistant material such as PEEK, ceramics such as ZrO2 and Al2O3 ceramics.
  • the base or flange 34 is fixed on the lower end of the susceptor 30 by high-temperature adhesive bonding, molding such as in-mold injection molding, or welding, and is kept fixedly connected; then the aerosol generating device can be supported,
  • the susceptor 30 is stably installed and maintained on the base or the flange 34 by means of clamping or holding.
  • the base or flange 34 is in the shape of a ring and has a central hole 341; when the base or flange 34 is assembled with the lower end of the susceptor 30, the first conductive pin 41 And the second conductive pin 42 penetrates through the center hole 341 of the base or the flange 34 , thereby facilitating connection with the circuit 20 .
  • the inner diameter of the middle hole 341 of the base or the flange 34 is smaller than the outer diameter of the magnetic core seat 332 of the magnetic core 33, so that it can be fixed and kept on the susceptor 30 by supporting the magnetic core 33 Inside is beneficial.
  • FIG. 17 shows another preferred implementation, including:
  • a pin or needle-shaped susceptor 30b, the holding cavity 310b in the susceptor 30b is used to accommodate and package the induction coil 40a;
  • the magnetic core 33b includes a magnetic core body 331b in the shape of a slender rod, and a magnetic core limiting end 332b; a step 333b is formed at the joint between the magnetic core limiting end 332b and the magnetic core body 331b;
  • the magnetic core body 331b of the magnetic core 33b penetrates from the upper end of the induction coil 40a to the lower end of the induction coil 40a; the magnetic core 33b abuts against the upper end of the induction coil 40a through the step 333b to form a stop.
  • the first conductive pin 41 a and the second conductive pin 42 a of the induction coil 40 a pass through the center hole 341 b of the base or the flange 34 b to the outside of the susceptor 30 b, and then are connected to the circuit 20 .
  • the magnetic core limiting end 332b is generally tapered, and the tapered magnetic core limiting end 332b and the tapered top of the holding cavity 310b of the susceptor 30b are fitted and fixed or contacted to form mutual heat conduction.
  • the extension length of the magnetic core body 331b of the magnetic core 33b along the axial direction of the induction coil 40a is greater than or equal to the axial extension length of the induction coil 40a.
  • the susceptor 30/30b, the induction coil 40/40a and the magnetic core 33/33b are insulated from each other.
  • they are insulated by filled high-temperature insulating glue such as epoxy resin glue; specifically, during the assembly process, the surfaces of the induction coil 40/40a and the magnetic core 33/33b are dipped/brushed After the high temperature resistant insulating glue is applied, they are assembled into the susceptor 30/30b, and then the high temperature resistant insulating glue is cured by heating.
  • a hot air gun is directed at the holding cavity 310/310b of the susceptor 30/30b to blow hot air to heat and cure the high temperature resistant insulating glue.
  • the induction coil 40/40a is powered to generate heat to cure the high temperature resistant insulating glue, for example, heating at a low power for a period of time at the beginning, and then gradually increasing to about 4W until the susceptor 30/30b until the high temperature resistant insulating glue inside is completely cured.
  • the induction coil 40/40a and the magnetic core 33/33b is insulated by filled glaze powder;
  • the surface of 33b is formed with a glaze coating for insulation.
  • the induction coil 40 / 40a with the magnetic core 33 / 33b inside is equivalent to an inductor with an iron core inside, which is beneficial to increase the inductance of the induction coil 40 / 40a coupled to the circuit 20 .
  • An embodiment of the present application proposes an aerosol generating device, the structure of which can be seen from Figure 13 to Figure 15, including:
  • a receiving chamber having an opening 50 through which an aerosol-generating article A, such as a cigarette, is removably received;
  • the heater 30, at least a part of which extends in the receiving cavity, generates heat when penetrated by the changing magnetic field, and then heats the aerosol generating product A such as a cigarette, so as to volatilize at least one component of the aerosol generating product A to form a inhaled aerosols;
  • a magnetic field generator such as an induction coil 40, for generating a changing magnetic field under an alternating current
  • the cell 10 is a rechargeable DC cell that can output DC current
  • the circuit 20 is connected to the rechargeable battery core 10 through a suitable electrical connection, and is used to convert the DC current output by the battery core 10 into an alternating current with a suitable frequency and then supply it to the induction coil 40, so that the induction coil 40 generates changing magnetic field.
  • the frequency of the alternating current supplied by the circuit 20 to the induction coil is between 80 KHz and 400 KHz; more specifically, the frequency may be in the range of about 200 KHz to 300 KHz.
  • the DC power supply voltage provided by the battery cell 10 is in the range of about 2.5V to about 9.0V, and the amperage of the DC current provided by the battery cell 10 is in the range of about 2.5A to about 20A.
  • the heater 30 is generally in the shape of a pin or needle, which in turn is advantageous for insertion into the aerosol-generating article A.
  • the heater 30 can have a length of about 12-19 millimeters and a diameter of 2.0-4.0 mm; these heaters 30 can include stainless steel (SS430) of grade 430, and can also include stainless steel (SS420) of grade 420, And materials including alloy materials containing iron and nickel, such as permalloy.
  • the aerosol-generating product A preferably uses a tobacco-containing material that releases volatile compounds from the matrix when heated; or it can also be a non-tobacco material that is suitable for electric heating and smoking after heating.
  • the aerosol-generating product A preferably adopts a solid substrate, which may include one or more of powder, granules, shredded strips, strips or flakes of one or more of vanilla leaves, tobacco leaves, homogenized tobacco, and expanded tobacco; Alternatively, the solid matrix may contain additional tobacco or non-tobacco volatile flavor compounds to be released when the matrix is heated.
  • the heater 30 is configured as a pin or needle; in this implementation, the heater 30 includes:
  • the shell 31 defines the outer shape of the heater 30; in practice, the shell 31 is configured as a pin or needle shape with a holding cavity 310 inside; and the front end 311 of the shell 31 near the opening 50 is a free end and is usually
  • the configuration is in the shape of a tapered tip for easy insertion into the aerosol generating product A, and the end 312 includes an open structure formed by the holding cavity 310 for easy assembly of the induction coil 40 inside.
  • the wall thickness of the housing 31 with the holding cavity 310 is about 0.15-0.3 mm.
  • the housing 31 heats the aerosol-generating article A by receiving and transferring heat from the susceptor 33 inside.
  • the housing 31 is made of ceramic materials (such as alumina, zirconia), quartz, aluminum, copper and other materials with excellent thermal conductivity and/or radiation characteristics.
  • the shell 31 is made of non-metallic inorganic materials, such as metal oxides (such as MgO, Al 2 O 3 , B 2 O 3 , etc.), metal nitrides (Si 3 N 4 , B 3 N 4 , Al 3 N 4 , etc.) and other insulating materials, or other high thermal conductivity composite ceramic materials.
  • the heater 30 also includes:
  • the induction coil 40 is used to generate a magnetic field under alternating current. Specifically, in terms of configuration, the induction coil 40 is in a spiral shape extending in the axial direction of the heater 30 . In the implementation shown in FIG. 3 , the induction coil 40 is fully assembled and held in the holding cavity 310 of the housing 31 , and the induction coil 40 and the housing 31 are thermally conductive to each other after assembly.
  • the induction coil 40 and the shell 31 are insulated from each other; when the shell 31 is made of metal material, in an optional implementation, the induction coil 40 is insulated by means of an insulating layer sprayed on the surface, or coated with varnish; or induction Between the coil 40 and the metal casing 31 , insulation is formed between the contacting surfaces by means of gluing, surface oxidation, spraying an insulating layer, and the like.
  • the induction coil 40 has 6-20 windings or turns. And, the induction coil 40 has an extended length of about 8-12 mm.
  • the induction coil 40 is configured as a helical tube with an outer diameter of about 2mm and an inner diameter of about 1.4mm.
  • the inner diameter of the holding cavity 310 is substantially equivalent to the outer diameter of the induction coil 40, so that the induction coil 40 and the inner surface of the holding cavity 310 are in contact or abut after assembly, and there is no or a very small gap.
  • the outer diameter of the induction coil 40 may be slightly smaller than the inner diameter of the holding cavity 310 within 0.5 mm, which is convenient for assembly and control to maintain the above clearance.
  • the housing 31 is made of metal, so that the susceptor 30 can basically confine the magnetic field generated by the induction coil 40 within the heater 30 after assembly.
  • the cross-sectional shape of the wire material of the induction coil 40 packaged in the holding cavity 310 of the housing 31 is different from the conventional circular shape, but the cross-sectional shape is wide or flat.
  • the cross-section of the wire material of the induction coil 40 has a dimension extending in the axial direction larger than a dimension extending in the radial direction, so that the induction coil 40 has a flat rectangular shape.
  • the induction coil 40 constructed above is completely or at least flattened in form of the wire material compared to conventional helical heating coils formed from circular cross-section wire. Consequently, the wire material extends to a lesser extent in the radial direction. By this measure, it is advantageous that the current can be increased to increase the magnetic field strength.
  • the extension length of the cross section of the wire material of the induction coil 40 along the axial direction of the helical coil is approximately between 1 to 4 mm; the length of the wire material of the induction coil 40 along the radial direction of the helical coil The extension length is about 0.1-1mm.
  • the cross-section of the wire material of the induction coil 40 is circular.
  • the induction coil 40 also includes:
  • the first conductive pin 41 and the second conductive pin 42 are connected to the circuit 20 through the first conductive pin 41 and the second conductive pin 42 in use, so as to provide an alternating current to the induction coil 40 .
  • the first conductive pin 41 is welded to the upper end of the induction coil 40 and then passes through the inner hollow 43 of the induction coil 40 to the lower end, thereby facilitating connection and assembly with the circuit 20 .
  • the second conductive pin 42 is directly connected to the lower end of the induction coil 40 .
  • the first conductive pin 41 may also be located outside the induction coil 40 and extend from the upper end to the lower end along the axial direction of the induction coil 40 ; thereby facilitating connection with the circuit 20 .
  • the heater 30 also includes:
  • the susceptor 33 is mainly used as the heating part of the heater 30; the susceptor 33 is roughly elongated rod-shaped or column-shaped, located inside the induction coil 40, and can be penetrated by a changing magnetic field to generate heat.
  • the material of the susceptor 33 is a susceptibility metal or alloy containing at least one of iron, cobalt, and nickel; for example, a good soft magnetic material or semi-hard magnetic material, such as Permalloy, stainless steel, FeAl alloy wait.
  • the outer diameter of the susceptor 33 is basically the same as or close to the inner diameter of the induction coil 40, and then basically fills the inner space of the induction coil 40; Magnetic is beneficial.
  • the susceptor 33 needs to fill the inside of the coil as much as possible.
  • the susceptor 33 penetrates from the lower end of the induction coil 40 to the upper end of the induction coil 40;
  • the extension length of the sensing body 33 along the axial direction of the induction coil 40 is greater than or equal to the axial extension length of the induction coil 40 .
  • at least part of the susceptor 33 protrudes relative to the induction coil 40 after passing through the induction coil 40 .
  • the structure of the receptor 33 includes:
  • the elongated rod-shaped susceptor matrix 331 is penetrated from the lower end of the induction coil 40 to the upper end by the susceptor matrix 331 during assembly;
  • the receptor base 332, the receptor base 332 has an outer diameter or cross-sectional area greater than the hollow 43 of the receptor matrix 331 and/or the induction coil 40, and then forms a step 333 at a position combined with the receptor matrix 331; At this time, the lower end of the induction coil 40 abuts against the step 333 , and the stop is provided by the susceptor base 332 .
  • the elongated susceptor base 331 has an extended length of approximately 10-15 mm; the elongated susceptor base 331 has an outer diameter of approximately less than 1.5 mm.
  • the susceptor base 332 is in contact with the inner wall of the holding cavity 310 of the housing 31 , thereby conducting heat with each other. Furthermore, the heat of the susceptor 33 can be directly transferred to the shell 31 by contacting the shell 31 when it is heating.
  • the susceptor 33 may conduct heat transfer indirectly with the casing 31 through the induction coil 40 . That is, the induction coil 40 conducts heat with the casing 31 and the susceptor 33 at the same time.
  • the induction coil 40 is made of a material with high thermal conductivity and low resistivity, such as gold, silver, copper, etc.; while having relatively low resistance, it can also have more thermal conductivity.
  • the material of the induction coil 40 is preferably made of a material with an appropriate positive or negative temperature coefficient of resistance, such as nickel-aluminum alloy, nickel-silicon alloy, palladium-containing alloy, platinum-containing alloy, and the like.
  • the temperature of the heater 30 can be determined by detecting the resistance of the induction coil 40 .
  • the first conductive pin 41 and the second conductive pin 42 are respectively made of different galvanic wire materials, and then a sensor for detecting the temperature of the induction coil 40/heater 30 can be formed between them. thermocouple.
  • the first conductive pin 41 and the second conductive pin 42 are made of two different materials of galvanic couple materials such as nickel, nickel-chromium alloy, nickel-silicon alloy, nickel-chromium-cold copper, constant bronze, and iron-chromium alloy. of.
  • a sensor for sensing the temperature of the heater 30 can also be filled inside the holding cavity 310 of the shell 31, such as a commonly used PTC temperature sensor, or for example, in the holding cavity 310 of the shell 31 At least two galvanic wires of different materials are welded on the inner wall of the heater 30 to form a thermocouple between them, which can be used to detect the temperature of the heater 30. It can be understood that the above-mentioned sensor is not limited to the thermocouple.
  • the gap interface between the induction coil 40 and the receptor 33 in the holding cavity 310 of the housing 31 is preferably bonded or encapsulated with a material with high thermal conductivity, and the interface material can be a metal with high thermal conductivity or an insulating material. , such as aluminum, carbon-based (graphite, diamond), boron nitride, etc., are beneficial for increasing the heat capacity of the heater 30 .
  • the device also includes:
  • Base or flange 34 in the figure the base or flange 34 is a heat resistant material such as PEEK, ceramics such as ZrO2 and Al2O3 ceramics.
  • the base or flange 34 is fixed on the lower end of the shell 31 by high-temperature adhesive bonding, molding such as in-mold injection molding, or welding, and is kept fixedly connected; then the aerosol generating device can be supported,
  • the base or the flange 34 is used to stably install and maintain the heater 30 by means of clamping or holding.
  • the base or flange 34 is in the shape of a ring and has a central hole 341; when the base or flange 34 is assembled with the lower end of the heater 30, the first conductive pin 41 and the second conductive pin 42 penetrate through the center hole 341 of the base or the flange 34 , thereby facilitating connection with the circuit 20 .
  • the inner diameter of the middle hole 341 of the base or the flange 34 is smaller than the outer diameter of the susceptor base 332 of the susceptor 33, so that the susceptor 33 is fixed and kept in the shell by supporting the susceptor 33.
  • the inner diameter of the middle hole 341 of the base or the flange 34 is smaller than the outer diameter of the susceptor base 332 of the susceptor 33, so that the susceptor 33 is fixed and kept in the shell by supporting the susceptor 33.
  • Within 31 is favorable.
  • FIG. 17 shows another preferred implementation, including:
  • a pin or needle-shaped shell 31b, the holding cavity 310b in the shell 31b is used to accommodate and package the induction coil 40a;
  • the receptor 33b includes a slender rod-shaped receptor base 331b and a receptor base 332b; a step 333b is formed at the junction of the receptor base 332b and the receptor base 331b.
  • the induction coil 40a is used to generate a changing magnetic field
  • the receptor 33b is penetrated by the changing magnetic field and generates heat
  • the shell 31b in turn heats the aerosol-generating article A by receiving the heat from the susceptor 33b.
  • the susceptor base 331b of the susceptor 33b penetrates from the upper end of the induction coil 40a to the lower end of the induction coil 40a; the susceptor 33b abuts against the upper end of the induction coil 40a through the step 333b to form a stop.
  • the first conductive pin 41a and the second conductive pin 42a of the induction coil 40a pass through the center hole 341b of the base or the flange 34b to the outside of the casing 31b, and then are connected to the circuit 20 .
  • the susceptor base 332b of the susceptor 33b is generally conical, and the conical susceptor base 332b and the tapered top of the holding cavity 310b of the housing 31b are assembled and fixed, or contacted to form a mutual conduct heat.
  • the extension length of the susceptor base 331b of the susceptor 33b along the axial direction of the induction coil 40a is greater than or equal to the axial extension length of the induction coil 40a.
  • the casing 31/31b, the induction coil 40/40a and the receptor 33/33b are insulated from each other.
  • they are insulated by filled high-temperature insulating glue such as epoxy resin glue; specifically, during the assembly process, the surface of the induction coil 40/40a and the susceptor 33/33b is dipped/brushed After being coated with high-temperature-resistant insulating glue, assemble them into the housing 31/31b, and then heat the high-temperature-resistant insulating glue to cure.
  • a hot air gun is directed at the holding cavity 310/310b of the housing 31/31b to blow hot air to heat and cure the high temperature resistant insulating glue.
  • the induction coil 40/40a is powered to generate heat to cure the high-temperature insulating glue, for example, heating at a low power for a period of time at the beginning, and then gradually increasing to about 4W until the shell 31/31b until the high temperature resistant insulating glue inside is completely cured.
  • the induction coil 40/40a and the susceptor 33/33b is insulated by filled glaze powder;
  • the surface of 33b is formed with a glaze coating for insulation.
  • the induction coil 40/40a with the susceptor 33/33b inside is equivalent to an inductor with an iron core inside, which is beneficial to increase the inductance of the induction coil 40/40a coupled to the circuit 20.
  • An embodiment of the present application proposes an aerosol generating device, the structure of which can be seen from Figure 13 to Figure 15, including:
  • a receiving chamber having an opening 50 through which an aerosol-generating article A, such as a cigarette, is removably received;
  • the heater 30, at least a part of which extends in the receiving cavity, generates heat when penetrated by the changing magnetic field, and then heats the aerosol generating product A such as a cigarette, so as to volatilize at least one component of the aerosol generating product A to form a inhaled aerosols;
  • a magnetic field generator such as an induction coil 40, for generating a changing magnetic field under an alternating current
  • the cell 10 is a rechargeable DC cell that can output DC current
  • the circuit 20 is connected to the rechargeable battery core 10 through a suitable electrical connection, and is used to convert the DC current output by the battery core 10 into an alternating current with a suitable frequency and then supply it to the induction coil 40, so that the induction coil 40 generates changing magnetic field.
  • the frequency of the alternating current supplied by the circuit 20 to the induction coil is between 80 KHz and 400 KHz; more specifically, the frequency may be in the range of about 200 KHz to 300 KHz.
  • the DC power supply voltage provided by the battery cell 10 is in the range of about 2.5V to about 9.0V, and the amperage of the DC current provided by the battery cell 10 is in the range of about 2.5A to about 20A.
  • the heater 30 is generally in the shape of a pin or needle, which in turn is advantageous for insertion into the aerosol-generating article A.
  • the heater 30 can have a length of about 12-19 millimeters and a diameter of 2.0-4.0 mm; these heaters 30 can include stainless steel (SS430) of grade 430, and can also include stainless steel (SS420) of grade 420, And materials including alloy materials containing iron and nickel, such as permalloy.
  • the aerosol-generating product A preferably uses a tobacco-containing material that releases volatile compounds from the matrix when heated; or it can also be a non-tobacco material that is suitable for electric heating and smoking after heating.
  • the aerosol-generating product A preferably adopts a solid substrate, which may include one or more of powder, granules, shredded strips, strips or flakes of one or more of vanilla leaves, tobacco leaves, homogenized tobacco, and expanded tobacco; Alternatively, the solid matrix may contain additional tobacco or non-tobacco volatile flavor compounds to be released when the matrix is heated.
  • the heater 30 is configured as a pin or needle; in this implementation, the heater 30 includes:
  • the first susceptor 31 defines the shape and structure of the heater 30, and can be penetrated by a changing magnetic field to generate heat; in practice, the first susceptor 31 is configured as a pin or needle-like shape with a holding cavity 310 inside; And the front end 311 of the first receptor 31 close to the opening 50 is a free end, and is generally configured in the shape of a tapered tip to facilitate insertion into the aerosol generating product A.
  • the end 312 includes an open structure formed by the holding cavity 310, which is convenient Inside it is assembled an induction coil 40 .
  • the wall thickness of the housing 31 with the holding cavity 310 is about 0.15-0.3 mm.
  • the heater 30 also includes:
  • the induction coil 40 is used to generate a magnetic field under alternating current. Specifically, in terms of configuration, the induction coil 40 is in a spiral shape extending in the axial direction of the heater 30 . In the implementation shown in FIG. 14 , the induction coil 40 is fully assembled and held in the holding cavity 310 of the first susceptor 31 , and the induction coil 40 and the first susceptor 31 conduct heat to each other after assembly.
  • the induction coil 40 and the first susceptor 31 are insulated from each other; when the first susceptor 31 is made of metal material, then in an optional implementation, the induction coil 40 is insulated from the surface by means of an insulating layer sprayed on the surface, or coated with varnish, etc. Insulated; or between the induction coil 40 and the first susceptor 31 made of metal, the surfaces in contact with them are insulated by means of gluing, surface oxidation, spraying an insulating layer, and the like.
  • the heater 30 also includes:
  • the second susceptor 33 is roughly elongated rod-shaped or column-shaped, positioned inside the induction coil 40, and can be penetrated by a changing magnetic field to generate heat.
  • the first susceptor 31 and the second susceptor 33 can generate heat inside and outside the induction coil 40;
  • the susceptor 33 retains heat; thereby helping to maintain the heat capacity of the heater 30, it is beneficial to prevent the temperature jump of the heater 30 when the airflow passes over the surface of the heater 30 during suction.
  • both the first susceptor 31 and the second susceptor 33 are made of susceptibility materials; for example, good soft magnetic materials or semi-hard magnetic materials, such as permalloy, stainless steel, FeAl alloy and the like.
  • the first susceptor 31 directly heats the aerosol-generating product A through its own induction heating; heating.
  • the outer diameter of the second susceptor 33 is basically the same as or close to the inner diameter of the induction coil 40, thereby basically filling the inner space of the induction coil 40; It is advantageous to generate magnetic flux leakage externally.
  • the second susceptor 33 needs to fill up the interior of the coil as much as possible.
  • the second susceptor 33 penetrates from the lower end of the induction coil 40 to the upper end of the induction coil 40;
  • the extension length of the second susceptor 33 along the axial direction of the induction coil 40 is greater than or equal to the axial extension length of the induction coil 40 .
  • at least part of the second susceptor 33 protrudes relative to the induction coil 40 after passing through the induction coil 40 .
  • the structure of the second receptor 33 includes:
  • the elongated rod-shaped second susceptor matrix 331 is penetrated from the lower end of the induction coil 40 to the upper end by the second susceptor matrix 331 during assembly;
  • the second susceptor base 332, the second susceptor base 332 has an outer diameter or cross-sectional area greater than the second susceptor matrix 331 and/or the hollow 323 of the induction coil 40, and then combined with the second susceptor matrix 331
  • a step 333 is formed at the position; during assembly, the lower end of the induction coil 40 abuts against the step 333 , and the second susceptor base 332 provides a stop.
  • the elongated second susceptor base 331 has an extended length of approximately 10-15 mm; the elongated second susceptor base 331 has an outer diameter of approximately less than 1.5 mm.
  • the second susceptor base 332 is in contact with the inner wall of the holding cavity 310 of the first susceptor 31 , thereby conducting heat with each other. Furthermore, the heat of the second receptor 33 can be directly transferred to the first receptor 31 by contacting with the first receptor 31 when it generates heat.
  • the second susceptor 33 may indirectly conduct heat transfer with the first susceptor 31 through the induction coil 40 . That is, the induction coil 40 conducts heat with the first susceptor 31 and the second susceptor 33 at the same time.
  • the material of the induction coil 40 is preferably made of a material with an appropriate positive or negative temperature coefficient of resistance, such as nickel-aluminum alloy, nickel-silicon alloy, palladium-containing alloy, platinum-containing alloy, and the like.
  • the temperature of the heater 30 can be determined by detecting the resistance of the induction coil 40 .
  • the first conductive pin 41 and the second conductive pin 42 are respectively made of different galvanic wire materials, and then a sensor for detecting the temperature of the induction coil 40/heater 30 can be formed between them. thermocouple.
  • the first conductive pin 41 and the second conductive pin 42 are made of two different materials of galvanic couple materials such as nickel, nickel-chromium alloy, nickel-silicon alloy, nickel-chromium-cold copper, constant bronze, and iron-chromium alloy. of.
  • a sensor for sensing the temperature of the heater 30 can also be filled in the holding cavity 310 of the first susceptor 31, such as a commonly used PTC temperature sensor, etc., or for example, in the first susceptor 31 At least two galvanic wires of different materials are welded on the inner wall of the holding cavity 310 of the body 31 to form a thermocouple between them that can be used to detect the temperature of the heater 30 . It can be understood that the above sensors are not limited to thermocouples.
  • the device also includes:
  • Base or flange 34 in the figure the base or flange 34 is a heat resistant material such as PEEK, ceramics such as ZrO2 and Al2O3 ceramics.
  • the base or the flange 34 is fixed on the lower end of the first receptor 31 by means of high-temperature adhesive bonding, molding such as in-mold injection molding, or welding, and remains fixedly connected; then the aerosol generating device can be
  • the heater 30 is stably installed and held by the base or the flange 34 by means of supporting, clamping or holding.
  • the base or flange 34 is in the shape of a ring and has a central hole 341; when the base or flange 34 is assembled with the lower end of the heater 30, the first conductive pin 41 and the second conductive pin 42 penetrate through the center hole 341 of the base or the flange 34 , thereby facilitating connection with the circuit 20 .
  • the inner diameter of the middle hole 341 of the base or the flange 34 is smaller than the outer diameter of the second susceptor base 332 of the second susceptor 33. It is advantageous for it to be fixed and held within the first susceptor 31 .
  • FIG. 17 shows another preferred implementation, including:
  • a pin or needle-shaped first susceptor 31b, the holding cavity 310b in the first susceptor 31b is used to accommodate and package the induction coil 40a;
  • the second receptor 33b includes a second receptor base 331b in the shape of a slender rod, and a second receptor base 332b; the part where the second receptor base 332b is combined with the second receptor base 331b forms a step 333b .
  • the induction coil 40a is used to generate a changing magnetic field; the first susceptor 31b and the second susceptor 33b are penetrated by the changing magnetic field to generate heat; part of the first susceptor 31b can directly induce heat to heat the aerosol generating product A and the other part The aerosol-generating product A can also be heated by receiving the heat of the second receptor 33b.
  • the second susceptor base 331b of the second susceptor 33b penetrates from the upper end of the induction coil 40a to the lower end of the induction coil 40a; the second susceptor 33b abuts against the upper end of the induction coil 40a through the step 333b to form a stop.
  • the first conductive pin 41a and the second conductive pin 42a of the induction coil 40a pass through the center hole 341b of the base or the flange 34b to the outside of the first receptor 31b, and then are connected to the circuit 20 .
  • the second susceptor base 332b of the second susceptor 33b is generally tapered, and through the tapered second susceptor base 332b and the conical shape of the holding cavity 310b of the first susceptor 31b The top ends are fitted together and fixed, or contacted to form mutual heat conduction.
  • the extension length of the second susceptor matrix 331b of the second susceptor 33b along the axial direction of the induction coil 40a is greater than or equal to the axial extension length of the induction coil 40a.
  • the first susceptor 31/31b, the induction coil 40/40a and the second susceptor 33/33b are insulated from each other.
  • they are insulated by filling high temperature resistant insulating glue such as epoxy resin glue; specifically, during the assembly process, the surface of the induction coil 40/40a and the second susceptor 33/33b are dip-coated /After brushing the high-temperature-resistant insulating glue, assemble them into the first receptor 31/31b, and then heat the high-temperature-resistant insulating glue to cure.
  • a hot air gun is directed at the holding cavity 310/310b of the first susceptor 31/31b to blow hot air to heat and cure the high temperature resistant insulating glue.
  • the high-temperature-resistant insulating glue is cured by supplying power to the induction coil 40/40a to generate heat, for example, heating at a low power for a period of time at the beginning, and then gradually increasing to about 4W until the second until the high temperature resistant insulating glue inside the receptor 31/31b is completely cured.
  • the above first susceptor 31/31b can be made of a single susceptibility material.
  • the above first susceptor 31/31b is composed of an elongated substrate with a holding cavity 310 and a coating of a susceptibility material bonded to the substrate, for example, the substrate includes ceramic materials, quartz lamps, susceptibility The material coating is prepared by combining a sensitive metal or alloy material layer (eg coating) on the outer surface or inner wall surface of the ceramic base or quartz base.
  • a ceramic substrate may provide insulation between the first susceptor 31/31b and the induction coil 40/40a.

Landscapes

  • General Induction Heating (AREA)

Abstract

本申请提出一种气雾生成装置及用于气雾生成装置的感受器;其中,气雾生成装置包括:腔室,用于接收气溶胶生成制品;感受器,至少部分于腔室内延伸,并被配置为被变化的磁场穿透而发热,进而加热气溶胶生成制品;感应线圈,被布置于感受器内并产生变化的磁场。以上气雾生成装置,感应线圈被容纳和封装于感受器内,对于装置的小型化是有利的。

Description

气雾生成装置
相关文件的交叉引用
本申请要求2021年08月03日向中国国家知识产权局递交的申请号为202110886889.8,名称为“气雾生成装置及用于气雾生成装置的加热器”的在先申请的优先权,以及要求2021年08月03日向中国国家知识产权局递交的申请号为202110888333.2,名称为“气雾生成装置及用于气雾生成装置的加热器”的在先申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请实施例涉及气溶胶生成技术领域,尤其涉及一种气雾生成装置及用于气雾生成装置的加热器。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为加热装置,如图1所示,通过感应线圈1产生磁场,并通过一布置于线圈内的感受器2感应发热,进而加热烟草的制品。此类加热装置中感应线圈占据较大的空间,对于加热装置的小型化是不利的。
发明内容
本申请的一个实施例提供一种气雾生成装置,用于加热气溶胶生成制品生成气溶胶;包括:腔室,用于接收气溶胶生成制品;感受器,至少部分于所述腔室内延伸,并被配置为被变化的磁场穿透而发热,进而加热接收于所述腔室内的气溶胶生成制品;感应线圈,被布置于所述感受器内,并被配置为产生变化的磁场。
在优选的实施中,所述感应线圈与所述感受器是彼此导热的;所述感应线圈的材料具有正向或负向的电阻温度系数,以在使用中可通过检测所述感应线圈的电阻确定所述感受器的温度。
在优选的实施中,所述感受器被构造成销钉或针状,并具有沿轴向延伸的中空;所述感应线圈位于所述中空内。
在优选的实施中,所述感应线圈的导线材料的截面被构造成沿轴向方向延伸的尺寸大于沿径向方向延伸的尺寸。
在优选的实施中,所述感应线圈包括沿轴向方向布置的第一部分和第二部分;其中,沿所述感应线圈的轴向方向,所述第一部分中每单位长度的绕组或匝数小于所述第二部分中每单位长度的绕组或匝数。
在优选的实施中,所述感受器被构造成片状,并包括沿厚度方向相背的第一表面和第二表面;所述感应线圈构造成位于所述第一表面和第二表面之间的平面螺旋线圈。
在优选的实施中,所述感受器包括沿厚度方向相对的第一片状部分和第二片状部分;所述感应线圈位于所述第一片状部分和第二片状部之间。
在优选的实施中,所述第一片状部分和第二片状部分是通过一片状前体绕一轴线对折形成的。
在优选的实施中,还包括:磁芯,至少部分位于所述感应线圈内。
在优选的实施中,所述磁芯包括铁、钴或镍中的至少任一种。
在优选的实施中,所述磁芯至少部分与所述感受器接触。
在优选的实施中,所述感受器包括:至少部分于所述接收腔内延伸的基体,以及形成于所述基体上的感受性涂层。
在优选的实施中,所述感应线圈包括沿轴向相对的第一端和第二端;所述磁芯由所述感应线圈的第一端贯穿至所述第二端。
本申请的另一个实施例提供一种气雾生成装置,用于加热气溶胶生成制品生成气溶胶;包括:接收腔,用于接收气溶胶生成制品;加热器,至少部分于所述接收腔内延伸,以用于加热气溶胶生成制品;所述加热器包括:外壳,被构造成至少部分沿所述接收腔的轴向延伸,并具有沿轴向延伸的保持腔;感应线圈,位于所述外壳的保持腔内,并被配置为产生变化的磁场;受体,至少部分位于所述感应线圈内,并被配置为被变化的磁场穿透而发热;所述外壳被配置为通过接收所述感受体的热量,转而加热气溶胶生成制品。
本申请的又一个实施例用于气雾生成装置的加热器,所述加热器包括:外壳,具有沿轴向延伸的保持腔;感应线圈,位于所述外壳的保持腔内,并被配置为产生变化的磁场;感受体,至少部分位于所述感应线圈内,并被配置为被变化的磁场穿透而发热;所述外壳被配置为通过接收所述感受体的热量,转而加热气溶胶生成制品。
以上气雾生成装置,感应线圈被容纳和封装于感受器内,对于装置的小型化是有利的。
附图说明
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是现有加热装置的结构示意图;
图2是本申请一实施例提供的气雾生成装置的结构示意图;
图3是图2中感受器的结构示意图;
图4是图3中感应线圈的结构示意图;
图5是又一个实施例的感受器的结构示意图;
图6是图5中感应线圈一视角下的剖面示意图;
图7是又一个实施例的感应线圈的结构示意图;
图8是又一个实施例的感受器的结构示意图;
图9是一个实施例的感受器制备过程中在片状基材上通过蚀刻形成感受器前体的示意图;
图10是在图9的感受器前体上形成感应线圈的结构示意图;
图11是图10的感受器前体对折形成感受器的示意图;
图12是又一个实施例提供的气雾生成装置的结构示意图。
图13是本申请一实施例提供的气雾生成装置的结构示意图;
图14是图13中加热器各部分未装配前的分解示意图;
图15是图14中加热器一个视角的剖面示意图;
图16是又一个实施例提出的加热器的结构示意图;
图17是图16中加热器各部分未装配前的分解示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
实施方式一
本申请的一实施例提出一种气雾生成装置,其构造可以参见图2和图3所示,包括:
腔室,具有开口50,气溶胶生成制品A通过开口50可移除地接收在腔室内;
感受器30,至少一部分在腔室内延伸,在被变化磁场穿透下发热,进而对气溶胶生成制品A例如烟支进行加热,使气溶胶生成制品A的至少一种成分挥发,形成供抽吸的气溶胶;
磁场发生器,例如感应线圈40,用于在交变电流下产生变化磁场;
电芯10,为可充电的直流电芯,可以输出直流电流;
电路20,通过适当的电连接到可充电的电芯10,用于从将电芯10输出的直流电流,转变成具有适合频率的交变电流再供应到感应线圈40。
在更加优选的实施中,电路20供应到感应线圈40的交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在一个优选的实施例中,电芯10提供的直流供电电压在约2.5V至约9.0V的范围内,电芯10可提供的直流电流的安培数在约2.5A至约20A的范围内。
在一个优选的实施例中,感受器30大体呈销钉或者针状的形状,进而对于插入至气溶胶生成制品A内是有利的。同时,感受器30可以具有大约12~19毫米的长度,2.0~2.6mm的直径;这些感受器30可以由等级430的不锈钢(SS430)制成,还可以由等级420的不锈钢(SS420)、以及含有铁镍的合金材料(比如坡莫合金)制成。
进一步在可选的实施中,气溶胶生成制品A优选采用加热时从基质中释放的挥发化合物的含烟草的材料;或者也可以是能够加热之后适合于电加热发烟的非烟草材料。气溶胶生成制品A优选采用固体基质,可以包括香草叶、烟叶、均质烟草、膨胀烟草中的一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,固体基质可以包含附加的烟草或非烟草的挥发性香味化合物,以在基质受热时被释放。
进一步参见图2和图3所示,感受器30是内部具有保持腔310的销钉或针状的形状;并且感受器30靠近开口50的前端为自由端、并通常被构造呈锥形尖端的形状便于插入至气溶胶生成制品A内,末端由保持腔310形成的敞口构造,便于在其内部装配感应线圈40;
感应线圈40,用于在交变电流下产生磁场;具体在结构上是沿感受器30的轴向延伸的螺旋形状。
在图3所示的实施中,感应线圈40是被完全装配和保持在感受器30的保持腔310内的,并且在装配后感应线圈40与感受器30彼此导热的。当然,感应线圈40与感受器30之间是彼此绝缘的;在可选实施中感应线圈40通过表面喷涂的绝缘层、或者包漆等方式形成绝缘的;或者感应线圈40与感受器30之间通过打胶、表面氧化、喷绝缘层等方式使它们接触的表面之间形成绝缘。
在实施中,采用感受性的金属或合金材质制备的感受器30,形成了对感应线圈40的磁场屏蔽器;感受器30基本能完全将感应线圈40产生的磁场吸收和屏蔽在内部,对于阻止气雾生成装置向外产生漏磁是有利的。作为另一实施,感受器30包括具有中空的细长状的基体和结合于基体上的感受发热部分,例如基体包括陶瓷材料,感受发热部分是结合在陶瓷基体的外表面或者内壁表面上的金属或合金材料层,或者是嵌入到陶瓷基体内的金属或合金材料,感应线圈收容在陶瓷基体的中空内部。作为可选实施,陶瓷基体可提供感应线圈与感受发热部分之间的绝缘。
进一步感受器30在靠近末端敞口位置还可以设置一些陶瓷、PEEK材质的法兰或基座(图中未示出),进而气雾生成装置可以通过支撑、夹持或保持等方式对法兰或基座进行固定,进而对感受器30实现稳定安装和保持。
进一步参见图4所示,感应线圈40的导线材料的横截面为圆形。感应线圈40的具有6~20个绕组或匝数。以及,感应线圈40具有大约8~12mm的延伸长度。感应线圈40构造成的螺旋线管具有大约2mm左右的外径。
进一步参见图4所示,感应线圈40两端分别连接有第一导电引脚41和第二导电引脚42,在使用中通过第一导电引脚41和第二导电引脚42连接至电路20,进而使电路20对感应线圈40提供交变电流。其中,第一导电引脚41与感应线圈40上端焊接之后再贯穿感应线圈40的内部中空至下方,进而便于与电路20连接装配等。第二导电引脚42直接连接在感应线圈40的下端。
在其他的变化实施中,第一导电引脚41还可以是位于感应线圈40外部,并沿感应线圈40的轴向从上端延伸至下端;进而便于与电路20连接。
作为一种可选择的实施,感应线圈40与感受器30可以是彼此导热的,并且感应线圈40的材质优选采用具有适当正向或负向电阻温度系数的材料制备,例如镍铝合金、镍硅合金、含钯合金、含铂合金等。在使用中,可以通过检测感应线圈40的电阻进而确定感受器30的温度。
或者在其他的可选实施中,还可以通过在感受器30的中空腔体内部填装用于感测感受器30温度的传感器,例如在在感受器30的保持腔310的内壁上焊接至少两个不同材质的电偶丝,进而在它们之间形成可用于检测感受器30温度的热电偶,可以理解上述传感器不限于热电偶。
进一步参见图5和图6所示,封装于感受器30a的保持腔310a内的感应线圈40a的导线材料的截面形状是不同于常规圆形的宽或者扁的形状。在图6所示的截面形状中,感应线圈40a的导线材料的截面具有沿轴向延伸的尺寸大于沿径向延伸的尺寸,从而使感应线圈40a呈扁的矩形形状。简单地说,以上构造的感应线圈40a与由圆形截面导线形成的常规螺旋状加热线圈相比,导线材料的形式完全地或至少是展平的。因此,导线材料沿着径向方向延伸呈较小的程度。通过这种措施,可以提升电流增强磁场强度是有利的。
在图6所示的实施中,感应线圈40a的导线材料的截面沿螺旋线管的轴向方向的延伸长度大约介于1~4mm之间;感应线圈40a的导线材料沿螺旋线管的径向方向的延伸长度大约介于0.1~1mm。
进一步参见图7所示的又一个实施例的感应线圈40b的示意图;感应线圈40b包括最靠近第一端的第一部分410b、最靠近第二端设置的第二部分420b、以及设置在第一部分410b、与第二部分420b之间的第三部分430b;并且其中在线圈的第三部分430b中每单位长度的绕组或匝数小于在第一部分410b和第二部分420b中的一者或两者中每单位长度的绕组或匝数。
在实施中,相比匝数或绕组密度相同的线圈,图7的感应线圈40b能将磁场在轴向方向上各个部分基本是均匀或接近的。
或者在其他的可选实施中,感应线圈40b可以是其他的具有至少两个不同匝数密度的区段组成的,或者匝数疏密度逐渐变化的形态,从而可以进一步调整或改变感应线圈40b工作中磁场的分布。
图8示出了又一个实施例的内部具有感应线圈40c的感受器30c未装配前的分解示意图;具体:
感受器30c制备后呈片状的形状,大约具有12~19mm的长度、4.9mm的宽度、以及0.5mm的厚度;
感受器30c在装配前包括通过蚀刻或切割等制备的第一片状部分310c和第二片状部分320c,它们的形状基本是相同的;则它们通过层叠之后将边缘部分通过激光焊接等连接成一体后即可形成感受器30c;
平面的感应线圈40c,通过印刷、沉积、贴装等方式形成于第一片状部分310c或第二片状部分320c的一个上。同时,还可以焊接第一导电引脚41c和第 二导电引脚42c于平面的感应线圈40c的两端,进而便于向感应线圈40c提供交变电流。
同时根据图8所示,感受器30c的第一片状部分310c的末端具有沿宽度方向延伸出的第一基座部分311c;和/或,第二片状部分320c的末端具有沿宽度方向延伸出的第二基座部分321c。则气雾生成装置可以通过支撑、夹持或保持第一基座部分311c和/或第二基座部分321c等方式对感受器30c实现稳定安装和保持。
或者在其他的变化实施中,平面的感应线圈40c是由一薄片状的片状基材,通过蚀刻、切削等方式制备具有较薄厚度的平面的感应线圈40c;而后由第一片状部分310c或第二片状部分320c分别从两侧夹持或包裹后形成感受器30c。
图8所示的平面的感应线圈40c基本是矩形或方形的螺旋;而在其他的变化实施中,平面的感应线圈40c的形状可以常规的圆形的螺旋。或者在其他的更多变化实施中,平面的感应线圈40c的数量可以有多个,可以是彼此重叠的,也可以是彼此错开,也可以是分别独立地分布于第一片状部分310c的表面上的不同区域内。或者多个平面的感应线圈40c可以是串联的,或者均是独立地连接至电路20。或者多个平面的感应线圈40c至少一个产生的磁场强度或频率或电感是大于另一个的。
本申请实施例还提出一种内部具有平面感应线圈40d的感受器30d及其大量制备的方法,参见图9至图11所示,包括:
S10,获取用于制备感受器30d的片状感受基材100d,并将片状感受基材100d加工形成若干具有两个相连的第一片状部分310d和第二片状部分320d的感受器前体300d,如图9所示;
在实施中,片状感受基材100d材质即以上所描述的具有感受性的金属材料,例如0.5mm厚的NiFe合金软磁片材。加工形成感受器前体300d的方式可以包括化学蚀刻、或激光切削的方式将多余的部分去除,即形成感受器前体300d。当然在图9所示的优选实施中,基于批量制备的便利性,加工获得的若干感受器前体300d是矩阵布置的。
进一步根据图9所示,感受器前体300d包括在同一平面内的第一片状部分310d和第二片状部分320d。同时,第一片状部分310d和第二片状部分320d是相连的而非分离的。并且,第一片状部分310d和第二片状部分320d优选是具有对称性的,具体在图9中是沿中心轴线L左右对称。
S20,参见图10所示,于感受器前体300d的第一片状部分310d上印刷、沉积、贴装等方式形成平面的感应线圈40d;进一步还可以在感应线圈40d两端焊接导电引脚;
S30,第一片状部分310d和第二片状部分320d沿中心轴线L对折,而后对它们的边缘部分进行焊接等使它们连接成一体,即获得内部具有感应线圈40d的感受器30d。
根据图10所示,为了便于对折操作,感受器前体300d上还具有沿中心轴线L设置的若干沿绕中心轴线L布置的凹痕或者凹槽35;对第一片状部分310d和第二片状部分320d的翻折或者对折的操作是有利的。
图12示出了又一个实施例的气雾生成装置的结构示意图;包括:
感受器30e,被构造成围绕并界定形成用于接收气溶胶生成制品A的管状或筒状的形状;
磁场发生器例如感应线圈40e,是位于沿腔室的轴向延伸的销钉或针状的外 壳43e的中空内的;感应线圈40e用于产生变化的磁场,进而使管状或筒状的感受器30e发热,以从外周加热气溶胶生成制品A。
感受器30e,包围感应线圈40e,并基本是将感应线圈40e产生的磁场屏蔽或限制在感受器30e内部的。在以上实施中,销钉或针状的外壳43e采用玻璃、陶瓷等不导磁的材质制备。
实施方式二
本申请另一实施例提出了一种气雾生成装置,其构造可以参见图13至图15所示,包括:
接收腔,具有开口50,气溶胶生成制品A例如烟支通过开口50可移除地接收在接收腔内;
感受器30,至少一部分在接收腔内延伸,在被变化磁场穿透下发热,进而对气溶胶生成制品A例如烟支进行加热,使气溶胶生成制品A的至少一种成分挥发,形成供抽吸的气溶胶;
磁场发生器,例如感应线圈40,用于在交变电流下产生变化磁场;
电芯10,为可充电的直流电芯,可以输出直流电流;
电路20,通过适当的电连接到可充电的电芯10,用于从将电芯10输出的直流电流,转变成具有适合频率的交变电流再供应到感应线圈40,以使感应线圈40产生变化的磁场。
在更加优选的实施中,电路20供应到感应线圈的交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在一个优选的实施例中,电芯10提供的直流供电电压在约2.5V至约9.0V的范围内,电芯10可提供的直流电流的安培数在约2.5A至约20A的范围内。
在一个优选的实施例中,感受器30大体呈销钉或者针状的形状,进而对于插入至气溶胶生成制品A内是有利的。同时,感受器30可以具有大约12~19毫米的长度,2.0~2.6mm的直径;这些感受器30可以由等级430的不锈钢(SS430)制成,还可以由等级420的不锈钢(SS420)、以及含有铁镍的合金材料(比如坡莫合金)制成。
进一步在可选的实施中,气溶胶生成制品A优选采用加热时从基质中释放的挥发化合物的含烟草的材料;或者也可以是能够加热之后适合于电加热发烟的非烟草材料。气溶胶生成制品A优选采用固体基质,可以包括香草叶、烟叶、均质烟草、膨胀烟草中的一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,固体基质可以包含附加的烟草或非烟草的挥发性香味化合物,以在基质受热时被释放。
进一步参见图13至图15所示,感受器30是内部具有保持腔310的销钉或针状的形状;并且感受器30靠近开口50的前端311为自由端、并通常被构造呈锥形尖端的形状便于插入至气溶胶生成制品A内,末端312包括有保持腔310形成的敞口构造,便于在其内部装配感应线圈40。在一个优选的实施中,具有保持腔310的感受器30的壁厚大约在0.15~0.3mm,能远大于感受器30在磁场中形成涡流的趋肤深度,对于减少漏磁将磁场限制在感受器30内是有利的。
作为另一实施,感受器30包括具有保持腔310的细长状的基体和结合于基体上的感受性材料的涂层,例如基体包括陶瓷材料、石英灯,感受性材料的涂层是结合在陶瓷基体或石英基体的外表面或者内壁表面上的感受性的金属或合金材料层(例如涂层),感应线圈40收容在基体界定的保持腔310内。作为可 选实施,陶瓷基体可提供感应线圈40与感受性涂层之间的绝缘。
进一步参见图13至图15所示,感应线圈40,用于在交变电流下产生磁场;具体在结构上是沿感受器30的轴向延伸的螺旋形状。在图14所示的实施中,感应线圈40是被完全装配和保持在感受器30的保持腔310内的,并且在装配后感应线圈40与感受器30彼此导热的。当然,感应线圈40与感受器30之间是彼此绝缘的;在可选实施中感应线圈40通过表面喷涂的绝缘层、或者包漆等方式形成绝缘的;或者感应线圈40与感受器30之间通过打胶、表面氧化、喷绝缘层等方式使它们接触的表面之间形成绝缘。
进一步参见图14所示,感应线圈40的具有6~20个绕组或匝数。以及,感应线圈40具有大约8~12mm的延伸长度。感应线圈40构造成的螺旋线管具有大约2mm左右的外径,以及大约1.4mm的内径。
在实施中,保持腔310的内径基本是与感应线圈40的外径相当的,则使感应线圈40与保持腔310的内表面在装配后是接触或抵靠,进而不存在或具有极小的间隙。在实施中,感应线圈40的外径可以稍微小于保持腔310的内径0.5mm以内,则便于装配和控制保持以上间隙。进而在装配后,使感受器30能将感应线圈40产生的磁场基本是被感受器30吸收的。感应线圈40产生的磁场基本也是被限制在感受器30内的。
进一步参见图15和图6所示,封装于感受器30的保持腔310内的感应线圈40的导线材料的截面形状是不同于常规圆形,而是截面形状呈宽或者扁的形状。在图6所示的截面形状中,感应线圈40的导线材料的截面具有沿轴向延伸的尺寸大于沿径向延伸的尺寸,从而使感应线圈40呈扁的矩形形状。简单地说,以上构造的感应线圈40与由圆形截面导线形成的常规螺旋状加热线圈相比,导线材料的形式完全地或至少是展平的。因此,导线材料沿着径向方向延伸呈较小的程度。通过这种措施,可以提升电流增强磁场强度是有利的。
在图6所示的实施中,感应线圈40的导线材料的截面沿螺旋线圈的轴向方向的延伸长度大约介于1~4mm之间;感应线圈40的导线材料沿螺旋线圈的径向方向的延伸长度大约介于0.1~1mm。
或者在图4所示的又一个变化实施中,感应线圈40的导线材料的横截面为圆形。
进一步参见图14所示,感应线圈40还包括有:
第一导电引脚41和第二导电引脚42,在使用中通过第一导电引脚41和第二导电引脚42连接至电路20,进而对感应线圈40提供交变电流。其中,第一导电引脚41与感应线圈40上端焊接之后再贯穿感应线圈40的内部中空43至下端,进而便于与电路20连接装配等。第二导电引脚42直接连接在感应线圈40的下端。
在其他的变化实施中,第一导电引脚41还可以是位于感应线圈40外部,并沿感应线圈40的轴向从上端延伸至下端;进而便于与电路20连接。
作为一种可选择的实施,感应线圈40与感受器30可以是彼此导热的,并且感应线圈40的材质优选采用具有适当正向或负向电阻温度系数的材料制备,例如镍铝合金、镍硅合金、含钯合金、含铂合金等。在使用中,可以通过检测感应线圈40的电阻进而确定感受器30的温度。
或者在又一个变化的实施中,第一导电引脚41和第二导电引脚42分别采用不同的电偶丝材质,进而在它们之间可以形成用于检测感应线圈40/感受器30温度的热电偶。例如,第一导电引脚41和第二导电引脚42分别采用镍、镍铬 合金、镍硅合金、镍铬-考铜、康青铜、铁铬合金等电偶材料中的两种不同材质制备的。
或者在其他的可选实施中,还可以通过在感受器30的保持腔310体内部填装用于感测感受器30温度的传感器,例如常用的PTC温度传感器等,或者又例如在感受器30的保持腔310的内壁上焊接至少两个不同材质的电偶丝,进而在它们之间形成可用于检测感受器30温度的热电偶,可以理解上述传感器不限于热电偶。
进一步参见图14和图15所示的优选实施例,感受器30内还设置有:
磁芯33,大致是呈细长的杆状或柱状;定位于感应线圈40内部,用于阻止在感应线圈40内部的磁场在感受器30外产生漏磁。
磁芯33的材质采用含有铁、钴、镍中至少一种的金属或合金;例如良好的软磁材料或半硬磁材料,例如坡莫合金、不锈钢、FeAl合金等。在优选的实施中,磁芯33优选热容及热导率高的材料;例如在相同尺寸、体积等外形相同情况下,磁芯33优选比如FeAl合金,还可以进一步将FeAl合金中Al的含量(质量百分数)由常规的6%增加至8~20%,优选10~12%;因Al的导热系数及比热容均高于Fe,可提供更高的热转化效率。
此外在更加优选的实施中,磁芯33需要将线圈内部尽可能的填满,根据图15所示,磁芯33是由感应线圈40下端贯穿至感应线圈40的上端的;在实施中,磁芯33沿感应线圈40的轴向的延伸长度大于或等于感应线圈40的轴向延伸长度。进一步在图15所示的优选实施中,磁芯33贯穿感应线圈40后至少部分是相对感应线圈40是凸出的。
进一步参见图14和图15所示的优选实施,磁芯33的构造包括:
细长的杆状的磁芯体331,在装配中由该磁芯体331从感应线圈40的下端贯穿至上端;
磁芯座332,该磁芯座332具有大于磁芯体331和/或感应线圈40的中空43的外径或横截面积,进而与磁芯体331结合的部位形成台阶333;在装配时,感应线圈40的下端抵靠在台阶333上,进而由磁芯座332提供止动。
在一个优选的实施中,细长的磁芯体331具有大约具有10~15mm的延伸长度;细长的磁芯体331大约具有低于1.5mm的外径。
根据图中所示,磁芯座332是与感受器30的保持腔310的内壁接触,进而彼此导热的。进而在使用磁芯33至少部分提供感受器30温度变化的缓冲,对于阻止在抽吸过程中气流流经感受器30表面使感受器30温度骤降是有利的,将感受器30的温度保持在适当的范围内,最终使抽吸过程中气溶胶的生成量或口感均匀。
进一步在图14或图15所示优选的实施中,装置还包括:
基座或法兰34;在图中该基座或法兰34是PEEK、陶瓷例如ZrO 2和Al 2O 3陶瓷等耐热材料。在制备上,将基座或法兰34通过高温粘胶粘接、模制例如模内注塑、或者是焊接等方式固定在感受器30的下端并保持固定连接;进而气雾生成装置可以通过支撑、夹持或保持等方式对基座或法兰34对感受器30进行稳定安装和保持。
进一步根据图14和图15所示的优选实施,基座或法兰34呈环形的形状,并具有中孔341;当基座或法兰34与感受器30下端装配后,第一导电引脚41和第二导电引脚42由基座或法兰34的中孔341贯穿出来,进而便于与电路20连接。
同时根据图15所示的优选实施,基座或法兰34的中孔341的内径小于磁芯33的磁芯座332的外径,对于通过支撑磁芯33进而使其固定和保持在感受器30内是有利的。
进一步图17示出了又一个优选实施,包括有:
销钉或针状的感受器30b,感受器30b内的保持腔310b用于容纳和封装感应线圈40a;
磁芯33b,包括呈细长杆状的磁芯体331b、以及磁芯限位端332b;磁芯限位端332b与磁芯体331b结合的部位形成有台阶333b;
在装配中磁芯33b的磁芯体331b由感应线圈40a的上端贯穿至感应线圈40a的下端;磁芯33b通过台阶333b抵靠在感应线圈40a的上端形成止动。同时,感应线圈40a的第一导电引脚41a和第二导电引脚42a由基座或法兰34b的中孔341b贯穿至感受器30b外,进而与便于电路20连接。
在该实施中,磁芯限位端332b大体是呈锥形,并通过该锥形的磁芯限位端332b与感受器30b的保持腔310b的锥形顶端配合装配固定、或接触形成相互导热。
当然在该实施中,磁芯33b的磁芯体331b沿感应线圈40a的轴向的延伸长度大于或等于感应线圈40a的轴向延伸长度。
本申请的又一个实施例中,以上感受器30/30b、感应线圈40/40a与磁芯33/33b之间是彼此绝缘的。在一个优选的实施中,它们之间是通过填充的耐高温绝缘胶例如环氧树脂胶进行绝缘;具体在装配的过程中,将感应线圈40/40a和磁芯33/33b表面浸涂/刷涂耐高温绝缘胶后,将它们装配至感受器30/30b内,而后通过加热使耐高温绝缘胶固化即可。在一个可选的实施中,通过热风枪对准感受器30/30b的保持腔310/310b吹热风,使耐高温绝缘胶加热固化。或者在又一个可选的实施中,通过对感应线圈40/40a供电使其发热进而使耐高温绝缘胶固化,例如刚开始以较小功率加热一段时间,然后逐渐增大到4W左右,直到感受器30/30b内部的耐高温绝缘胶完全固化为止。
或者在又一个可选的实施中,感受器30/30b、感应线圈40/40a与磁芯33/33b之间是通过填充的釉粉进行绝缘;或者通过在感应线圈40/40a与磁芯33/33b的表面形成釉涂层进行绝缘。
以上通过感受器30/30b和磁芯33/33b分别在感应线圈40/40a的内部和外部吸收感应线圈40/40a产生的磁场或磁力线,对于阻止或减少漏磁是有利的。
同时,内部具有以上磁芯33/33b的感应线圈40/40a,相当于内部具有铁芯的电感,有利于增加感应线圈40/40a耦合至电路20后的电感值。
实施方式三
本申请的一实施例提出一种气雾生成装置,其构造可以参见图13至图15所示,包括:
接收腔,具有开口50,气溶胶生成制品A例如烟支通过开口50可移除地接收在接收腔内;
加热器30,至少一部分在接收腔内延伸,在被变化磁场穿透下发热,进而对气溶胶生成制品A例如烟支进行加热,使气溶胶生成制品A的至少一种成分挥发,形成供抽吸的气溶胶;
磁场发生器,例如感应线圈40,用于在交变电流下产生变化磁场;
电芯10,为可充电的直流电芯,可以输出直流电流;
电路20,通过适当的电连接到可充电的电芯10,用于从将电芯10输出的直流电流,转变成具有适合频率的交变电流再供应到感应线圈40,以使感应线圈40产生变化的磁场。
在更加优选的实施中,电路20供应到感应线圈的交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在一个优选的实施例中,电芯10提供的直流供电电压在约2.5V至约9.0V的范围内,电芯10可提供的直流电流的安培数在约2.5A至约20A的范围内。
在一个优选的实施例中,加热器30大体呈销钉或者针状的形状,进而对于插入至气溶胶生成制品A内是有利的。同时,加热器30可以具有大约12~19毫米的长度,2.0~4.0mm的直径;这些加热器30可以包括由等级430的不锈钢(SS430),还可以包括等级420的不锈钢(SS420)的材质、以及包括含有铁镍的合金材料(比如坡莫合金)的材质。
进一步在可选的实施中,气溶胶生成制品A优选采用加热时从基质中释放的挥发化合物的含烟草的材料;或者也可以是能够加热之后适合于电加热发烟的非烟草材料。气溶胶生成制品A优选采用固体基质,可以包括香草叶、烟叶、均质烟草、膨胀烟草中的一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,固体基质可以包含附加的烟草或非烟草的挥发性香味化合物,以在基质受热时被释放。
进一步参见图13至图15所示,加热器30是被构造成是销钉、针状的形状;在该实施中,加热器30包括:
外壳31,界定加热器30的外形构造;在实施中,外壳31被构造成是内部具有保持腔310的销钉或针状的形状;并且外壳31靠近开口50的前端311为自由端、并通常被构造呈锥形尖端的形状便于插入至气溶胶生成制品A内,末端312包括有保持腔310形成的敞口构造,便于在其内部装配感应线圈40。在一个优选的实施中,具有保持腔310的外壳31的壁厚大约在0.15~0.3mm。在该实施中,外壳31通过接收和传递内部的感受体33的热量进而加热气溶胶生成制品A。
在一些实施中,外壳31是由优异高导热特性或/及辐射特性的陶瓷材料(如氧化铝、氧化锆)、石英、铝、铜等材质制备。例如在一些优选的实施中,外壳31是由非金属无机材料,例如金属氧化物(如MgO、Al 2O 3、B 2O 3等)、金属氮化物(Si 3N 4、B 3N 4、Al 3N 4等)等绝缘材料,或其他高导热的复合陶瓷材料。
进一步根据图14和图15所示,加热器30还包括:
感应线圈40,用于在交变电流下产生磁场。具体在构造上,感应线圈40是沿加热器30的轴向延伸的螺旋形状。在图3所示的实施中,感应线圈40是被完全装配和保持在外壳31的保持腔310内的,并且在装配后感应线圈40与外壳31彼此导热的。当然,感应线圈40与外壳31之间是彼此绝缘的;当外壳31包括金属材质时,则在可选实施中感应线圈40通过表面喷涂的绝缘层、或者包漆等方式形成绝缘的;或者感应线圈40与金属材质的外壳31之间通过打胶、表面氧化、喷绝缘层等方式使它们接触的表面之间形成绝缘。
进一步参见图14所示,感应线圈40的具有6~20个绕组或匝数。以及,感应线圈40具有大约8~12mm的延伸长度。感应线圈40构造成的螺旋线管具有大约2mm左右的外径,以及大约1.4mm的内径。
在实施中,保持腔310的内径基本是与感应线圈40的外径相当的,则使感应线圈40与保持腔310的内表面在装配后是接触或抵靠,进而不存在或具有极 小的间隙。在实施中,感应线圈40的外径可以稍微小于保持腔310的内径0.5mm以内,则便于装配和控制保持以上间隙。在又一些优选的实施中,外壳31包括金属材质,进而在装配后,使感受器30能将感应线圈40产生的磁场基本是被限制在加热器30内的。
进一步参见图15和图6所示,封装于外壳31的保持腔310内的感应线圈40的导线材料的截面形状是不同于常规圆形,而是截面形状呈宽或者扁的形状。在图6所示的截面形状中,感应线圈40的导线材料的截面具有沿轴向延伸的尺寸大于沿径向延伸的尺寸,从而使感应线圈40呈扁的矩形形状。简单地说,以上构造的感应线圈40与由圆形截面导线形成的常规螺旋状加热线圈相比,导线材料的形式完全地或至少是展平的。因此,导线材料沿着径向方向延伸呈较小的程度。通过这种措施,可以提升电流增强磁场强度是有利的。
在图6所示的实施中,感应线圈40的导线材料的截面沿螺旋线圈的轴向方向的延伸长度大约介于1~4mm之间;感应线圈40的导线材料沿螺旋线圈的径向方向的延伸长度大约介于0.1~1mm。
或者在图4所示的又一个变化实施中,感应线圈40的导线材料的横截面为圆形。
进一步参见图14所示,感应线圈40还包括有:
第一导电引脚41和第二导电引脚42,在使用中通过第一导电引脚41和第二导电引脚42连接至电路20,进而对感应线圈40提供交变电流。其中,第一导电引脚41与感应线圈40上端焊接之后再贯穿感应线圈40的内部中空43至下端,进而便于与电路20连接装配等。第二导电引脚42直接连接在感应线圈40的下端。
在其他的变化实施中,第一导电引脚41还可以是位于感应线圈40外部,并沿感应线圈40的轴向从上端延伸至下端;进而便于与电路20连接。
进一步参见图14和图15所示的优选实施例,加热器30内还包括有:
感受体33,主要作为加热器30发热的部分;感受体33,大致是呈细长的杆状或柱状,定位于感应线圈40内部,能被变化的磁场穿透而发热。
在一些优选的实施中,感受体33的材质采用含有铁、钴、镍中至少一种的感受性金属或合金;例如良好的软磁材料或半硬磁材料,例如坡莫合金、不锈钢、FeAl合金等。
在优选的实施中,感受体33的外径基本是与感应线圈40的内径相同或接近的,进而基本是填满感应线圈40的内部空间;对于阻止在感应线圈40内部的磁场向外产生漏磁是有利的。
此外在更加优选的实施中,感受体33需要将线圈内部尽可能的填满,根据图15所示,感受体33是由感应线圈40的下端贯穿至感应线圈40的上端的;在实施中,感受体33沿感应线圈40的轴向的延伸长度大于或等于感应线圈40的轴向延伸长度。进一步在图15所示的优选实施中,感受体33贯穿感应线圈40后至少部分是相对感应线圈40是凸出的。
进一步参见图14和图15所示的优选实施,感受体33的构造包括:
细长的杆状的感受体基体331,在装配中由该感受体基体331从感应线圈40的下端贯穿至上端;
感受体基座332,该感受体基座332具有大于感受体基体331和/或感应线圈40的中空43的外径或横截面积,进而与感受体基体331结合的部位形成台阶333;在装配时,感应线圈40的下端抵靠在台阶333上,进而由感受体基座 332提供止动。
在一个优选的实施中,细长的感受体基体331具有大约具有10~15mm的延伸长度;细长的感受体基体331大约具有低于1.5mm的外径。
根据图中所示,感受体基座332是与外壳31的保持腔310的内壁接触,进而彼此导热的。进而使感受体33在发热时的热量能直接通过与外壳31接触的方式传递至外壳31。
在一些其他的变化实施中,感受体33可以是通过感应线圈40进而与外壳31间接进行热量传递的。即,感应线圈40是同时与外壳31和感受体33导热的。
在一些优选的实施中,感应线圈40采用高导热、低电阻率的材质制备,例如金、银、铜等;则在具有相对较低的电阻的同时,还能具有更多的导热效率。
在又一些变化的实施中,感应线圈40的材质优选采用具有适当正向或负向电阻温度系数的材料制备,例如镍铝合金、镍硅合金、含钯合金、含铂合金等。在使用中,可以通过检测感应线圈40的电阻进而确定加热器30的温度。
或者在又一个变化的实施中,第一导电引脚41和第二导电引脚42分别采用不同的电偶丝材质,进而在它们之间可以形成用于检测感应线圈40/加热器30温度的热电偶。例如,第一导电引脚41和第二导电引脚42分别采用镍、镍铬合金、镍硅合金、镍铬-考铜、康青铜、铁铬合金等电偶材料中的两种不同材质制备的。
或者在其他的可选实施中,还可以通过在外壳31的保持腔310内部填装用于感测加热器30温度的传感器,例如常用的PTC温度传感器等,或者又例如在外壳31的保持腔310的内壁上焊接至少两个不同材质的电偶丝,进而在它们之间形成可用于检测加热器30温度的热电偶,可以理解上述传感器不限于热电偶。
进一步在又一些优选的实施中,外壳31的保持腔310内感应线圈40与感受体33之间的缝隙界面优选采用高导热的材料进行粘接或封装,界面材料可选择高导热金属或绝缘材料,如铝、碳系类(石墨、金刚石)、氮化硼等,对于提升加热器30的热容是有利的。
进一步在图14或图15所示优选的实施中,装置还包括:
基座或法兰34;在图中该基座或法兰34是PEEK、陶瓷例如ZrO 2和Al 2O 3陶瓷等耐热材料。在制备上,将基座或法兰34通过高温粘胶粘接、模制例如模内注塑、或者是焊接等方式固定在外壳31的下端并保持固定连接;进而气雾生成装置可以通过支撑、夹持或保持等方式对基座或法兰34对加热器30进行稳定安装和保持。
进一步根据图14和图15所示的优选实施,基座或法兰34呈环形的形状,并具有中孔341;当基座或法兰34与加热器30下端装配后,第一导电引脚41和第二导电引脚42由基座或法兰34的中孔341贯穿出来,进而便于与电路20连接。
同时根据图15所示的优选实施,基座或法兰34的中孔341的内径小于感受体33的感受体基座332的外径,对于通过支撑感受体33进而使其固定和保持在外壳31内是有利的。
进一步图17示出了又一个优选实施,包括有:
销钉或针状的外壳31b,外壳31b内的保持腔310b用于容纳和封装感应线圈40a;
感受体33b,包括呈细长杆状的感受体基体331b、以及感受体基座332b;感受体基座332b与感受体基体331b结合的部位形成有台阶333b。
感应线圈40a用于产生变化的磁场;
感受体33b被变化的磁场穿透而发热;
外壳31b通过接收感受体33b的热量转而加热气溶胶生成制品A。
在装配中感受体33b的感受体基体331b由感应线圈40a的上端贯穿至感应线圈40a的下端;感受体33b通过台阶333b抵靠在感应线圈40a的上端形成止动。同时,感应线圈40a的第一导电引脚41a和第二导电引脚42a由基座或法兰34b的中孔341b贯穿至外壳31b外,进而与便于电路20连接。
在该实施中,感受体33b的感受体基座332b大体是呈锥形,并通过该锥形的感受体基座332b与外壳31b的保持腔310b的锥形顶端配合装配固定、或接触形成相互导热。
当然在该实施中,感受体33b的感受体基体331b沿感应线圈40a的轴向的延伸长度大于或等于感应线圈40a的轴向延伸长度。
本申请的又一个实施例中,以上外壳31/31b、感应线圈40/40a与感受体33/33b之间是彼此绝缘的。在一个优选的实施中,它们之间是通过填充的耐高温绝缘胶例如环氧树脂胶进行绝缘;具体在装配的过程中,将感应线圈40/40a和感受体33/33b表面浸涂/刷涂耐高温绝缘胶后,将它们装配至外壳31/31b内,而后通过加热使耐高温绝缘胶固化即可。在一个可选的实施中,通过热风枪对准外壳31/31b的保持腔310/310b吹热风,使耐高温绝缘胶加热固化。或者在又一个可选的实施中,通过对感应线圈40/40a供电使其发热进而使耐高温绝缘胶固化,例如刚开始以较小功率加热一段时间,然后逐渐增大到4W左右,直到外壳31/31b内部的耐高温绝缘胶完全固化为止。
或者在又一个可选的实施中,外壳31/31b、感应线圈40/40a与感受体33/33b之间是通过填充的釉粉进行绝缘;或者通过在感应线圈40/40b与感受体33/33b的表面形成釉涂层进行绝缘。
以上通过外壳31/31b和感受体33/33b分别在感应线圈40/40a的内部和外部吸收感应线圈40/40a产生的磁场或磁力线,对于阻止或减少漏磁是有利的。
同时,内部具有以上感受体33/33b的感应线圈40/40a,相当于内部具有铁芯的电感,有利于增加感应线圈40/40a耦合至电路20后的电感值。
实施方式四
本申请的一实施例提出一种气雾生成装置,其构造可以参见图13至图15所示,包括:
接收腔,具有开口50,气溶胶生成制品A例如烟支通过开口50可移除地接收在接收腔内;
加热器30,至少一部分在接收腔内延伸,在被变化磁场穿透下发热,进而对气溶胶生成制品A例如烟支进行加热,使气溶胶生成制品A的至少一种成分挥发,形成供抽吸的气溶胶;
磁场发生器,例如感应线圈40,用于在交变电流下产生变化磁场;
电芯10,为可充电的直流电芯,可以输出直流电流;
电路20,通过适当的电连接到可充电的电芯10,用于从将电芯10输出的直流电流,转变成具有适合频率的交变电流再供应到感应线圈40,以使感应线圈40产生变化的磁场。
在更加优选的实施中,电路20供应到感应线圈的交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在一个优选的实施例中,电芯10提供的直流供电电压在约2.5V至约9.0V的范围内,电芯10可提供的直流电流的安培数在约2.5A至约20A的范围内。
在一个优选的实施例中,加热器30大体呈销钉或者针状的形状,进而对于插入至气溶胶生成制品A内是有利的。同时,加热器30可以具有大约12~19毫米的长度,2.0~4.0mm的直径;这些加热器30可以包括由等级430的不锈钢(SS430),还可以包括等级420的不锈钢(SS420)的材质、以及包括含有铁镍的合金材料(比如坡莫合金)的材质。
进一步在可选的实施中,气溶胶生成制品A优选采用加热时从基质中释放的挥发化合物的含烟草的材料;或者也可以是能够加热之后适合于电加热发烟的非烟草材料。气溶胶生成制品A优选采用固体基质,可以包括香草叶、烟叶、均质烟草、膨胀烟草中的一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,固体基质可以包含附加的烟草或非烟草的挥发性香味化合物,以在基质受热时被释放。
进一步参见图13至图15所示,加热器30是被构造成是销钉、针状的形状;在该实施中,加热器30包括:
第一感受体31,界定加热器30的外形构造,能被变化的磁场穿透而发热;在实施中,第一感受体31被构造成是内部具有保持腔310的销钉或针状的形状;并且第一感受体31靠近开口50的前端311为自由端、并通常被构造呈锥形尖端的形状便于插入至气溶胶生成制品A内,末端312包括有保持腔310形成的敞口构造,便于在其内部装配感应线圈40。在一个优选的实施中,具有保持腔310的外壳31的壁厚大约在0.15~0.3mm。
进一步根据图14和图15所示,加热器30还包括:
感应线圈40,用于在交变电流下产生磁场。具体在构造上,感应线圈40是沿加热器30的轴向延伸的螺旋形状。在图14所示的实施中,感应线圈40是被完全装配和保持在第一感受体31的保持腔310内的,并且在装配后感应线圈40与第一感受体31彼此导热的。当然,感应线圈40与第一感受体31之间是彼此绝缘的;当第一感受体31包括金属材质时,则在可选实施中感应线圈40通过表面喷涂的绝缘层、或者包漆等方式形成绝缘的;或者感应线圈40与金属材质的第一感受体31之间通过打胶、表面氧化、喷绝缘层等方式使它们接触的表面之间形成绝缘。
进一步参见图14和图15所示的优选实施例,加热器30内还包括有:
第二感受体33,大致是呈细长的杆状或柱状,定位于感应线圈40内部,能被变化的磁场穿透而发热。
在该实施例中,第一感受体31和第二感受体33能通过在感应线圈40的内部和外部发热;进而在使用中,能使加热器30在感应线圈40内部的中空内由第二感受体33保持热量;进而有助于保持加热器30的热容,对于阻止在抽吸中气流流过加热器30表面时使加热器30温度跳跃变化是有利的。
在该实施中,第一感受体31和第二感受体33均是由感受性的材质制备;例如良好的软磁材料或半硬磁材料,例如坡莫合金、不锈钢、FeAl合金等。
在该实施中,第一感受体31一方面通过自身的感应发热直接对气溶胶生成制品A进行加热,另一方面还能接收第二感受体33传递的热量转而对气溶胶生成制品A进行加热。
同样地,在一些实施中第二感受体33的外径基本是与感应线圈40的内径相同或接近的,进而基本是填满感应线圈40的内部空间;对于阻止在感应线圈 40内部的磁场向外产生漏磁是有利的。
此外在更加优选的实施中,第二感受体33需要将线圈内部尽可能的填满,根据图15所示,第二感受体33是由感应线圈40的下端贯穿至感应线圈40的上端的;在实施中,第二感受体33沿感应线圈40的轴向的延伸长度大于或等于感应线圈40的轴向延伸长度。进一步在图15所示的优选实施中,第二感受体33贯穿感应线圈40后至少部分是相对感应线圈40是凸出的。
进一步参见图14和图15所示的优选实施,第二感受体33的构造包括:
细长的杆状的第二感受体基体331,在装配中由该第二感受体基体331从感应线圈40的下端贯穿至上端;
第二感受体基座332,该第二感受体基座332具有大于第二感受体基体331和/或感应线圈40的中空323的外径或横截面积,进而与第二感受体基体331结合的部位形成台阶333;在装配时,感应线圈40的下端抵靠在台阶333上,进而由第二感受体基座332提供止动。
在一个优选的实施中,细长的第二感受体基体331具有大约具有10~15mm的延伸长度;细长的第二感受体基体331大约具有低于1.5mm的外径。
根据图中所示,第二感受体基座332是与第一感受体31的保持腔310的内壁接触,进而彼此导热的。进而使第二感受体33在发热时的热量能直接通过与第一感受体31接触的方式传递至第一感受体31。
在一些其他的变化实施中,第二感受体33可以是通过感应线圈40进而与第一感受体31间接进行热量传递的。即,感应线圈40是同时与第一感受体31和第二感受体33导热的。
在又一些变化的实施中,感应线圈40的材质优选采用具有适当正向或负向电阻温度系数的材料制备,例如镍铝合金、镍硅合金、含钯合金、含铂合金等。在使用中,可以通过检测感应线圈40的电阻进而确定加热器30的温度。
或者在又一个变化的实施中,第一导电引脚41和第二导电引脚42分别采用不同的电偶丝材质,进而在它们之间可以形成用于检测感应线圈40/加热器30温度的热电偶。例如,第一导电引脚41和第二导电引脚42分别采用镍、镍铬合金、镍硅合金、镍铬-考铜、康青铜、铁铬合金等电偶材料中的两种不同材质制备的。
或者在其他的可选实施中,还可以通过在第一感受体31的保持腔310内部填装用于感测加热器30温度的传感器,例如常用的PTC温度传感器等,或者又例如在第一感受体31的保持腔310的内壁上焊接至少两个不同材质的电偶丝,进而在它们之间形成可用于检测加热器30温度的热电偶,可以理解上述传感器不限于热电偶。
进一步在图14或图15所示优选的实施中,装置还包括:
基座或法兰34;在图中该基座或法兰34是PEEK、陶瓷例如ZrO 2和Al 2O 3陶瓷等耐热材料。在制备上,将基座或法兰34通过高温粘胶粘接、模制例如模内注塑、或者是焊接等方式固定在第一感受体31的下端并保持固定连接;进而气雾生成装置可以通过支撑、夹持或保持等方式对基座或法兰34对加热器30进行稳定安装和保持。
进一步根据图14和图15所示的优选实施,基座或法兰34呈环形的形状,并具有中孔341;当基座或法兰34与加热器30下端装配后,第一导电引脚41和第二导电引脚42由基座或法兰34的中孔341贯穿出来,进而便于与电路20连接。
同时根据图15所示的优选实施,基座或法兰34的中孔341的内径小于第二感受体33的第二感受体基座332的外径,对于通过支撑第二感受体33进而使其固定和保持在第一感受体31内是有利的。
进一步图17示出了又一个优选实施,包括有:
销钉或针状的第一感受体31b,第一感受体31b内的保持腔310b用于容纳和封装感应线圈40a;
第二感受体33b,包括呈细长杆状的第二感受体基体331b、以及第二感受体基座332b;第二感受体基座332b与第二感受体基体331b结合的部位形成有台阶333b。
感应线圈40a用于产生变化的磁场;第一感受体31b和第二感受体33b被变化的磁场穿透而发热;第一感受体31b部分可以直接感应发热以加热气溶胶生成制品A、另一部分还能通过接收第二感受体33b的热量转而加热气溶胶生成制品A。
在装配中第二感受体33b的第二感受体基体331b由感应线圈40a的上端贯穿至感应线圈40a的下端;第二感受体33b通过台阶333b抵靠在感应线圈40a的上端形成止动。同时,感应线圈40a的第一导电引脚41a和第二导电引脚42a由基座或法兰34b的中孔341b贯穿至第一感受体31b外,进而与便于电路20连接。
在该实施中,第二感受体33b的第二感受体基座332b大体是呈锥形,并通过该锥形的第二感受体基座332b与第一感受体31b的保持腔310b的锥形顶端配合装配固定、或接触形成相互导热。
当然在该实施中,第二感受体33b的第二感受体基体331b沿感应线圈40a的轴向的延伸长度大于或等于感应线圈40a的轴向延伸长度。
本申请的又一个实施例中,以上第一感受体31/31b、感应线圈40/40a与第二感受体33/33b之间是彼此绝缘的。在一个优选的实施中,它们之间是通过填充的耐高温绝缘胶例如环氧树脂胶进行绝缘;具体在装配的过程中,将感应线圈40/40a和第二感受体33/33b表面浸涂/刷涂耐高温绝缘胶后,将它们装配至第一感受体31/31b内,而后通过加热使耐高温绝缘胶固化即可。在一个可选的实施中,通过热风枪对准第一感受体31/31b的保持腔310/310b吹热风,使耐高温绝缘胶加热固化。或者在又一个可选的实施中,通过对感应线圈40/40a供电使其发热进而使耐高温绝缘胶固化,例如刚开始以较小功率加热一段时间,然后逐渐增大到4W左右,直到第一感受体31/31b内部的耐高温绝缘胶完全固化为止。
通常在实施中,以上第一感受体31/31b可以是由单一的感受性材质制备。作为又一个变化的实施例,以上第一感受体31/31b是由具有保持腔310的细长状的基体和结合于基体上的感受性材料的涂层,例如基体包括陶瓷材料、石英灯,感受性材料的涂层是结合在陶瓷基体或石英基体的外表面或者内壁表面上的感受性的金属或合金材料层(例如涂层)制备获得。在该可选实施,陶瓷基体可提供第一感受体31/31b与感应线圈40/40a之间的绝缘。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种气雾生成装置,用于加热气溶胶生成制品生成气溶胶;其特征在于,包括:
    腔室,用于接收气溶胶生成制品;
    感受器,至少部分于所述腔室内延伸,并被配置为被变化的磁场穿透而发热,进而加热接收于所述腔室内的气溶胶生成制品;
    感应线圈,被布置于所述感受器内,并被配置为产生变化的磁场。
  2. 如权利要求1所述的气雾生成装置,其特征在于,所述感应线圈与所述感受器是彼此导热的;所述感应线圈的材料具有正向或负向的电阻温度系数,以在使用中可通过检测所述感应线圈的电阻确定所述感受器的温度。
  3. 如权利要求1或2所述的气雾生成装置,其特征在于,所述感受器被构造成销钉或针状,并具有沿轴向延伸的中空;
    所述感应线圈位于所述中空内。
  4. 如权利要求1或2所述的气雾生成装置,其特征在于,所述感应线圈的导线材料的截面被构造成沿轴向方向延伸的尺寸大于沿径向方向延伸的尺寸。
  5. 如权利要求1或2所述的气雾生成装置,其特征在于,所述感应线圈包括沿轴向方向布置的第一部分和第二部分;其中,
    沿所述感应线圈的轴向方向,所述第一部分中每单位长度的绕组或匝数小于所述第二部分中每单位长度的绕组或匝数。
  6. 如权利要求1或2所述的气雾生成装置,其特征在于,所述感受器被构造成片状,并包括沿厚度方向相背的第一表面和第二表面;
    所述感应线圈构造成位于所述第一表面和第二表面之间的平面螺旋线圈。
  7. 如权利要求6所述的气雾生成装置,其特征在于,所述感受器包括沿厚度方向相对的第一片状部分和第二片状部分;
    所述感应线圈位于所述第一片状部分和第二片状部之间。
  8. 如权利要求6所述的气雾生成装置,其特征在于,所述第一片状部分和第二片状部分是通过一片状前体绕一轴线对折形成的。
  9. 如权利要求1或2所述的气雾生成装置,其特征在于,其特征在于,还包括:
    磁芯,至少部分位于所述感应线圈内。
  10. 如权利要求9所述的气雾生成装置,其特征在于,所述磁芯包括铁、钴或镍中的至少任一种。
  11. 如权利要求9所述的气雾生成装置,其特征在于,所述磁芯至少部分与所述感受器接触。
  12. 如权利要求9所述的气雾生成装置,其特征在于,所述感受器包括:
    至少部分于所述接收腔内延伸的基体,以及形成于所述基体上的感受性涂层。
  13. 如权利要求9所述的气雾生成装置,其特征在于,所述感应线圈包括沿轴向相对的第一端和第二端;所述磁芯由所述感应线圈的第一端贯穿至所述第二端。
  14. 一种气雾生成装置,用于加热气溶胶生成制品生成气溶胶;其特征在于,包括:
    接收腔,用于接收气溶胶生成制品;
    加热器,至少部分于所述接收腔内延伸,以用于加热气溶胶生成制品;所述加热器包括:
    外壳,被构造成至少部分沿所述接收腔的轴向延伸,并具有沿轴向延伸的保持腔;
    感应线圈,位于所述外壳的保持腔内,并被配置为产生变化的磁场;
    感受体,至少部分位于所述感应线圈内,并被配置为被变化的磁场穿透而发热;
    所述外壳被配置为通过接收所述感受体的热量,转而加热气溶胶生成制品。
  15. 一种用于气雾生成装置的加热器,其特征在于,所述加热器包括:
    外壳,具有沿轴向延伸的保持腔;
    感应线圈,位于所述外壳的保持腔内,并被配置为产生变化的磁场;
    感受体,至少部分位于所述感应线圈内,并被配置为被变化的磁场穿透而发热;
    所述外壳被配置为通过接收所述感受体的热量,转而加热气溶胶生成制品。
PCT/CN2022/110083 2021-08-03 2022-08-03 气雾生成装置 WO2023011552A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22852264.5A EP4381974A1 (en) 2021-08-03 2022-08-03 Aerosol generation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110886889.8 2021-08-03
CN202110886889.8A CN115886338A (zh) 2021-08-03 2021-08-03 气雾生成装置及用于气雾生成装置的加热器
CN202110888333.2A CN115918971A (zh) 2021-08-03 2021-08-03 气雾生成装置及用于气雾生成装置的加热器
CN202110888333.2 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023011552A1 true WO2023011552A1 (zh) 2023-02-09

Family

ID=85155257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110083 WO2023011552A1 (zh) 2021-08-03 2022-08-03 气雾生成装置

Country Status (2)

Country Link
EP (1) EP4381974A1 (zh)
WO (1) WO2023011552A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455715A (zh) * 2014-05-21 2017-02-22 菲利普莫里斯生产公司 包括具有内部空气流动通道的筒的成烟系统
CN111642816A (zh) * 2020-06-17 2020-09-11 云南中烟工业有限责任公司 一种电磁加热烟具及配套烟支
WO2020182752A1 (en) * 2019-03-11 2020-09-17 Nicoventures Trading Limited Aerosol provision device
CN112074200A (zh) * 2018-05-25 2020-12-11 菲利普莫里斯生产公司 模制筒组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455715A (zh) * 2014-05-21 2017-02-22 菲利普莫里斯生产公司 包括具有内部空气流动通道的筒的成烟系统
CN112074200A (zh) * 2018-05-25 2020-12-11 菲利普莫里斯生产公司 模制筒组件
WO2020182752A1 (en) * 2019-03-11 2020-09-17 Nicoventures Trading Limited Aerosol provision device
CN111642816A (zh) * 2020-06-17 2020-09-11 云南中烟工业有限责任公司 一种电磁加热烟具及配套烟支

Also Published As

Publication number Publication date
EP4381974A1 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
CN212464914U (zh) 用于气雾生成装置的感受器、气雾生成装置及测温装置
CN214127022U (zh) 一种电磁感应雾化组件及电磁感应雾化装置
CN215347073U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN214386095U (zh) 用于气雾生成装置的加热器及气雾生成装置
WO2021115339A1 (zh) 用于气雾生成装置的感受器及气雾生成装置
WO2023011552A1 (zh) 气雾生成装置
WO2023131005A1 (zh) 一种加热器及其制作方法和气溶胶生成装置
WO2023116451A1 (zh) 气雾生成装置及用于气雾生成装置的加热器
WO2023011554A1 (zh) 气雾生成装置、用于气雾生成装置的加热器及制备方法
CN217609592U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN215347064U (zh) 气雾生成装置及用于气雾生成装置的感受器
JP2023542102A (ja) エアロゾル供給デバイス
JP2023551209A (ja) 複数のサセプタセットを備えたエアロゾル発生装置用ヒーター
WO2023284802A1 (zh) 用于气雾生成装置的加热器及气雾生成装置
WO2023131185A1 (zh) 气雾生成装置及用于气雾生成装置的电阻加热器
WO2022068890A1 (zh) 用于气雾生成装置的感受器、气雾生成装置及测温装置
CN216961533U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN218073523U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN219613083U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN218999547U (zh) 气雾生成装置
CN221204157U (zh) 气雾生成装置以及用于气雾生成装置的加热器
CN218474106U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN216983594U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN218831963U (zh) 气雾生成装置、用于气雾生成装置的加热器及感应线圈
CN115670020A (zh) 加热器以及气溶胶生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022852264

Country of ref document: EP

Effective date: 20240304