WO2023010883A1 - 催化裂化再生装置排放二氧化碳全回收工艺 - Google Patents

催化裂化再生装置排放二氧化碳全回收工艺 Download PDF

Info

Publication number
WO2023010883A1
WO2023010883A1 PCT/CN2022/086411 CN2022086411W WO2023010883A1 WO 2023010883 A1 WO2023010883 A1 WO 2023010883A1 CN 2022086411 W CN2022086411 W CN 2022086411W WO 2023010883 A1 WO2023010883 A1 WO 2023010883A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
catalytic cracking
oxygen
flue gas
regeneration unit
Prior art date
Application number
PCT/CN2022/086411
Other languages
English (en)
French (fr)
Inventor
张云峰
刘庆
张香全
吴文军
Original Assignee
上海源晗能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海源晗能源技术有限公司 filed Critical 上海源晗能源技术有限公司
Priority to EP22851011.1A priority Critical patent/EP4365135A1/en
Publication of WO2023010883A1 publication Critical patent/WO2023010883A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/18Treating with free oxygen-containing gas with subsequent reactive gas treating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/20Plural distinct oxidation stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/182Regeneration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4043Limiting CO2 emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the technical field of catalytic cracking regeneration, in particular to a process for fully recovering carbon dioxide discharged from a catalytic cracking regeneration unit.
  • the emission of greenhouse gases is the most important factor causing global warming, and the greenhouse effect produced by carbon dioxide accounts for more than 70% of all greenhouse gases. Therefore, the reduction of carbon dioxide emissions is an urgent problem to be solved. Warmth is crucial.
  • the invention can realize the capture of carbon dioxide and create favorable conditions for low-cost CCUS (carbon capture, carbon storage, carbon utilization).
  • the purpose of the present invention is to provide a process for fully recovering carbon dioxide emitted from a catalytic cracking regeneration unit, so as to solve the deficiencies in the prior art.
  • the present invention adopts following technical scheme:
  • a process for fully recovering carbon dioxide emitted from a catalytic cracking regeneration unit includes a catalytic cracking regeneration unit, a flue gas recovery unit, a high-temperature flue gas fan, an oxygen production unit, and a carbon-based gas mixer;
  • the carbon-based gas mixer includes an oxygen channel, an oxygen channel regulating valve, a circulating flue gas channel, an oxygen distributor, a mixer, a carbon-based gas channel, and an oxygen concentration analyzer;
  • the oxygen distributor is a hollow cylinder, and the surrounding wall of the hollow cylinder A number of small holes are evenly arranged, and the mixer is a hollow cylinder;
  • the oxygen channel regulating valve is set on the oxygen channel, and the outlet of the oxygen channel communicates with the end of the oxygen distributor, and the oxygen distributor and part of the oxygen channel are inserted through the side wall of the mixer Inside the mixer;
  • the outlet of the circulating flue gas channel is connected to one end of the mixer, the inlet of the carbon-based gas channel is connected to the other end of the mixer, and the oxygen concentration analyzer is set on the carbon-based gas channel;
  • the flue gas outlet of the catalytic cracking regeneration unit is connected to the flue gas recovery device, the flue gas recovery device is connected to the high-temperature flue gas fan, and a venting pipeline is installed on the connecting pipeline between the flue gas recovery device and the high-temperature flue gas fan; the high-temperature flue gas fan is respectively connected to the carbon-based
  • the gas mixer is connected to the downstream enriched carbon dioxide utilization device, and a flow regulating valve is installed on the connecting pipeline between the high-temperature flue gas fan and the carbon-based gas mixer;
  • the oxygen outlet of the oxygen production device is connected to the carbon-based gas mixer, and a flow regulating valve is installed on the connecting pipeline;
  • the carbon-based gas mixer is respectively connected to the bottom and upper part of the catalytic cracking regeneration unit.
  • the main pipeline connecting the carbon-based gas mixer and the bottom and upper part of the catalytic cracking regeneration unit is equipped with a flow meter, a temperature sensor, and a pressure sensor. With flow regulating valve;
  • the nitrogen outlet of the oxygen production unit is connected to the main pipeline connected to the bottom and upper part of the carbon-based gas mixer and the catalytic cracking regeneration unit.
  • main pipeline connected to the bottom and upper part of the carbon-based gas mixer and the catalytic cracking regeneration unit.
  • Described technique comprises the steps:
  • the circulating flue gas comes out of the catalytic cracking regeneration unit, enters the flue gas recovery unit to recover heat, remove dust, and desulfurize, and then part of it is introduced into the carbon-based gas mixer after being pressurized by the high-temperature flue gas fan, and the rest enters the downstream enrichment of carbon dioxide for utilization device, the oxygen produced by the oxygen production device is introduced into the carbon-based gas mixer, and the oxygen and circulating flue gas are mixed in the carbon-based gas mixer to produce carbon-based gas;
  • the circulating flue gas produced by the catalytic cracking regeneration unit is the same as step 2) and step 3), and so circulated.
  • the three adjacent small holes on the oxygen distributor in the carbon-based gas mixer are all arranged in the same equilateral triangle; the oxygen distributor is located on the side of the mixer close to the circulating flue gas channel.
  • the carbon-based gas mixer is connected to the upper part of the catalytic cracking regeneration device, and the upper part of the catalytic cracking regeneration device is at the position of 1/5 to 2/5 from the top of the catalytic cracking regeneration device.
  • the concentration of carbon dioxide in the circulating flue gas from the catalytic cracking regeneration unit in step 2) can reach more than 95%.
  • step 2) the circulating flue gas is pressurized to 0.05-0.2 MPa by a high-temperature flue gas fan and then partly introduced into the carbon-based gas mixer.
  • the oxygen produced by the oxygen production device in step 2) has a purity of more than 90% and a pressure of 0.05-0.2 MPa.
  • step 2) the oxygen content in the carbon-based gas is 15-30%.
  • step 2) 98-99% of the carbon-based gas enters the bottom of the catalytic cracking regeneration unit, and 1-2% of the carbon-based gas enters the upper part of the catalytic cracking regeneration unit.
  • step 2) the regeneration temperature in the catalytic cracking regeneration unit is controlled at 650-700°C.
  • the present invention circulates the flue gas of the catalytic cracking regeneration unit, and the carbon dioxide is enriched, and the concentration reaches more than 95%.
  • the increase in carbon dioxide concentration makes it easier to capture carbon dioxide, creating favorable conditions for low-cost CCUS (carbon capture, carbon storage, carbon utilization), reducing carbon dioxide emissions and reducing the greenhouse effect.
  • the present invention mixes circulating flue gas and oxygen to prepare carbon-based gas suitable for the concentration required by the catalytic cracking regeneration unit, uses carbon-based gas as the combustion-supporting gas of the catalytic cracking regeneration unit, replaces nitrogen with carbon dioxide, and eliminates nitrogen oxides. Formation condition factors avoid the formation of nitrogen oxides in the combustion process, reduce environmental pollution, and greatly reduce denitrification costs.
  • Combustion mechanism of conventional air-supported combustion C m H n +O 2 +N 2 ⁇ CO 2 +H 2 O+NO x
  • combustion mechanism of carbon-based gas (CO 2 +O 2 ) combustion supported by the present invention C m H n + O 2 +CO 2 ⁇ CO 2 +H 2 O.
  • the present invention uses carbon-based gas as a combustion aid, which is used for the carbon deposit combustion of the catalyst in the catalytic cracking regeneration unit.
  • a combustion aid which is used for the carbon deposit combustion of the catalyst in the catalytic cracking regeneration unit.
  • the base gas enters the bottom of the catalytic cracking regeneration unit as the main combustion-supporting agent, and provides most of the combustion-supporting gas for the carbon deposit combustion of the catalyst in the catalytic cracking regeneration unit.
  • 1-2% carbon-based gas enters the upper part of the catalytic cracking regeneration unit as an auxiliary combustion agent.
  • the optimization of the combustion environment makes the temperature distribution in the catalytic cracking regeneration unit more reasonable, effectively prolonging the service life of the catalytic cracking regeneration unit.
  • the improvement of combustion conditions can make catalyst regeneration more thorough, prolong catalyst service life, reduce catalyst consumption and improve product quality.
  • the present invention adopts flue gas circulation, which increases the water vapor content of the flue gas, and can recover more heat and power generation.
  • the present invention uses the by-product nitrogen produced by the oxygen production device as the protective gas, which is used for the shutdown replacement, purging, cooling and catalyst protection of the catalytic cracking regeneration device, making the device safer and more reliable.
  • the implementation of the present invention does not need to modify the main body structure of the catalytic cracking regeneration unit, and only partially optimizes and transforms the combustion-supporting system and the circulating flue gas system.
  • the original air combustion fan is retained to supplement the gas volume when the flue gas volume is insufficient, or in the case of abnormal carbon-based gas combustion, it can be switched to air combustion without disturbance to ensure the normal oxygen supply and combustion of the catalytic cracking regeneration unit.
  • Fig. 1 is a schematic diagram of the system structure required by the process of the present invention.
  • Fig. 2 is a schematic structural diagram of a carbon-based gas mixer.
  • Fig. 3 is a schematic diagram of the arrangement of small holes on the oxygen distributor in the carbon-based gas mixer.
  • Fig. 4 is a schematic diagram of the working process of the carbon-based gas mixer.
  • a process for fully recovering carbon dioxide emitted from a catalytic cracking regeneration unit includes a catalytic cracking regeneration unit, a flue gas recovery unit, a high-temperature flue gas fan, an oxygen production unit, and a carbon-based gas mixer .
  • Oxygen production equipment selects oxygen production methods according to different scales of catalytic cracking regeneration units, such as cryogenic method, pressure swing adsorption method, etc., the oxygen purity is above 90%, and the pressure is 0.05-0.2MPa; for large-scale catalytic cracking regeneration units
  • cryogenic method to produce oxygen
  • the air is first compressed, cooled, and liquefied.
  • the gas and liquid are contacted on the rectification tray for mass and heat exchange.
  • the high boiling point oxygen The components are continuously condensed from the steam to liquid, and the nitrogen components with low boiling point are continuously transferred into the steam, so that the nitrogen content in the rising steam is continuously increased, and the oxygen content in the downstream liquid is getting higher and higher, so that the oxygen , Nitrogen separation to obtain oxygen with a purity of more than 99.6%, and at the same time obtain high-purity nitrogen as a by-product; for small and medium-sized catalytic cracking regeneration units, the pressure swing adsorption method is used to produce oxygen.
  • Nitrogen molecules are preferentially adsorbed, and oxygen molecules remain in the gas phase to become finished oxygen; when the adsorption of nitrogen components in the adsorbent reaches saturation, the nitrogen molecules adsorbed on the surface of the adsorbent are desorbed by decompression or vacuuming and sent out of the boundary. zone, to restore the adsorption capacity of the adsorbent; thereby separating oxygen and nitrogen to obtain oxygen with a purity of 90-95% and high-purity nitrogen as a by-product.
  • the outlet of the high-temperature flue gas fan is equipped with a safety valve and a back pressure valve.
  • the outlet pressure is too high, the circulating flue gas can return to the inlet of the high-temperature flue gas fan in time to prevent the high-temperature flue gas fan from causing damage to the high-temperature flue gas fan. Influence.
  • Carbon-based gas mixer as shown in Figure 2 to Figure 4, includes oxygen channel 01, oxygen channel regulating valve 02, circulating flue gas channel 03, oxygen distributor 04, mixer 05, carbon-based gas channel 06, oxygen concentration analysis
  • the instrument 07; the oxygen distributor 04 is a hollow cylinder, and a number of small holes 041 are evenly arranged on the peripheral wall of the hollow cylinder.
  • the three adjacent small holes 041 on the oxygen distributor 04 are all arranged in the same equilateral triangle, It is more conducive to the rapid and uniform mixing of oxygen and circulating flue gas after passing through the small hole 041; the diameter of the small hole 041 can be 5-10mm, and the distance between adjacent small holes 041 can be 5-10mm, but not limited to this size; the mixer 05 is Hollow cylinder; the oxygen channel regulating valve 02 is set on the oxygen channel 01, the outlet of the oxygen channel 01 communicates with the end of the oxygen distributor 04, and the oxygen distributor 04 and part of the oxygen channel 01 are inserted into the mixer 05 through the side wall of the mixer 05 Inside, preferably, the oxygen distributor 04 is in the mixer 05 close to the side connected to the circulating flue gas channel 03, which is more conducive to the rapid and uniform mixing of oxygen and circulating flue gas; the outlet of the circulating flue gas channel 03 and one end of the mixer 05 Communication, the inlet of the carbon-based gas channel 06 communicates with the other end of the mixer
  • the oxygen concentration analyzer 07 is connected with the oxygen channel regulating valve 02 by the control system, so that the valve opening of the oxygen channel regulating valve 02 can be adjusted according to the data of the oxygen concentration analyzer 07 .
  • the material of the oxygen channel 01 and the oxygen distributor 04 is stainless steel, and the material of the circulating flue gas channel 03 , the mixer 05 and the carbon-based gas channel 06 can be stainless steel or carbon steel.
  • the carbon-based gas mixing and conveying process is as follows: the circulating flue gas enters the mixer 05 from the circulating flue gas channel 03, and the oxygen enters the oxygen distributor 04 from the oxygen channel 01, and is evenly distributed in the mixer 05 through the oxygen distributor 04 to be mixed with the circulating flue gas. After rapid and uniform mixing, it is sent from the carbon-based gas channel 06 to the catalytic cracking regeneration device; the carbon-based gas channel 06 is equipped with an oxygen concentration analyzer 07, and the valve opening of the oxygen channel regulating valve 02 is controlled according to the data of the oxygen concentration analyzer 07 , so as to further adjust the oxygen content entering the mixer 05, when the oxygen content meets the requirements, the mixing reaches equilibrium. When oxygen is adjusted, the valve opening of the oxygen channel regulating valve 02 is adjusted from small to large, and when the oxygen concentration meets the requirements, the valve opening of the oxygen channel regulating valve 02 is fixed.
  • the flue gas outlet of the catalytic cracking regeneration unit is connected to the flue gas recovery unit, and the flue gas recovery unit is connected to the high-temperature flue gas fan.
  • the high-temperature flue gas fan is connected to the carbon-based gas mixer and the downstream enrichment carbon dioxide utilization device respectively, and a flow regulating valve is installed on the connecting pipeline between the high-temperature flue gas fan and the carbon-based gas mixer, and the downstream enrichment carbon dioxide is utilized
  • Fields include oil and gas exploration, chemical applications, food storage and preservation, etc.
  • the oxygen outlet of the oxygen production device is connected to the carbon-based gas mixer, and a flow regulating valve is arranged on the connecting pipeline.
  • the carbon-based gas mixer is respectively connected to the bottom and upper part of the catalytic cracking regeneration unit.
  • the main pipeline connecting the carbon-based gas mixer and the bottom and upper part of the catalytic cracking regeneration unit is equipped with a flow meter, a temperature sensor, and a pressure sensor.
  • the nitrogen outlet of the oxygen production unit is connected to the main pipeline connected to the bottom and upper part of the carbon-based gas mixer and the catalytic cracking regeneration unit, and the by-product nitrogen is used as a protective gas for plant shutdown replacement, purging, cooling and catalyst protection. Make the device more secure and reliable.
  • the original air combustion-supporting fan is connected to the main pipeline connected to the bottom and upper part of the carbon-based gas mixer and the catalytic cracking regeneration unit. When the flue gas volume is insufficient, the gas volume can be supplemented, or when the carbon-based gas combustion is abnormal, it can be switched without disturbance. To air combustion, to ensure the normal oxygen supply and combustion of catalytic cracking regeneration unit.
  • Described technique comprises the steps:
  • the circulating flue gas comes out of the catalytic cracking regeneration unit, enters the flue gas recovery unit to recover heat, remove dust, and desulfurize, and then is pressurized by a high-temperature flue gas fan to 0.05-0.2MPa, and then part of it is introduced into the carbon-based gas mixer, and the rest enters the
  • the oxygen produced by the downstream enrichment carbon dioxide utilization device and the oxygen production device is introduced into the carbon-based gas mixer; oxygen and circulating flue gas are mixed in the carbon-based gas mixer to produce carbon-based gas, and the oxygen content in the carbon-based gas is between 15 30%;
  • the main combustion aid is to provide most of the combustion-supporting gas for the carbon deposit combustion of the catalyst in the catalytic cracking regeneration unit.
  • 1 ⁇ 2% carbon-based gas enters the upper part of the catalytic cracking regeneration unit as the auxiliary combustion agent, which is the unburned gas in the catalytic cracking regeneration unit.
  • a small amount of carbon monoxide provides combustion-supporting gas; the regeneration temperature in the catalytic cracking regeneration unit is controlled at 650-700°C;
  • the circulating flue gas produced by the catalytic cracking regeneration unit is the same as step 2) and step 3), and so circulated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种催化裂化再生装置排放二氧化碳全回收工艺,工艺所需系统包括催化裂化再生装置、烟气回收装置、高温烟气风机、氧气制取装置、碳基气体混合器。将催化裂化再生装置烟气循环,二氧化碳浓度提高,使二氧化碳捕集更加容易,为低成本CCUS创造有利条件,减少二氧化碳的排放,降低温室效应,同时将循环烟气和氧气混配制取碳基气体,以碳基气体作为催化裂化再生装置的助燃气体,由二氧化碳替代氮气,规避燃烧过程中氮氧化物生成,减少环境污染,且降低脱硝费用。二氧化碳替代氮气后,大幅提升催化裂化再生装置内辐射力度,促进C+CO2→CO的反应发生,增强燃烧效果,反应更加完全,达到节能降耗的效果。

Description

催化裂化再生装置排放二氧化碳全回收工艺 技术领域
本发明涉及催化裂化再生技术领域,具体涉及催化裂化再生装置排放二氧化碳全回收工艺。
背景技术
随着全球气候变暖触及生态安全、水资源安全和粮食安全等各个方面,加剧了极端气候灾害发生的风险,严重威胁人类的生存环境。而温室气体排放是引起全球气候变暖的最主要因素,其中二氧化碳产生的温室效应占所有温室气体的70%以上,因此二氧化碳的减排是一个亟待解决的问题,对于控制温室效应、减缓全球变暖至关重要。采用本发明可实现对二氧化碳的捕集,为低成本CCUS(碳捕捉、碳储存、碳利用)创造有利条件。
目前催化裂化再生装置多是采用空气助燃,空气中只有21%的氧气参与燃烧,78%的氮气不仅不参与燃烧,大量氮气被无谓地加热,在高温下排入大气,造成大量的热量损失,造成燃料消耗高;同时氮气在高温下还与氧气反应生成NO x,NO x气体排入大气层极易形成酸雨造成环境污染。采用本发明可提高燃烧效率、减少NO x排放,达到催化裂化再生装置节能减排效果。
发明内容
本发明的目的是提供一种催化裂化再生装置排放二氧化碳全回收工艺,以解决现有技术的不足。
本发明采用以下技术方案:
一种催化裂化再生装置排放二氧化碳全回收工艺,所述工艺所需系统包括催化裂化再生装置、烟气回收装置、高温烟气风机、氧气制取装置、碳基气体混合器;
碳基气体混合器包括氧气通道、氧气通道调节阀、循环烟气通道、氧气分布器、混配器、碳基气体通道、氧气浓度分析仪;氧气分布器为中空圆筒,中空圆筒的周壁上均匀设有若干小孔,混配器为中空圆筒;氧气通道调节阀设于氧气通道上,氧气通道出口和氧气分布器的端部连通,氧气分布器和部分氧气通道由混配器的侧壁插入混配器内;循环烟气通道出口和混配器的一端连通,碳基气体通 道进口和混配器的另一端连通,氧气浓度分析仪设于碳基气体通道上;
催化裂化再生装置烟气出口和烟气回收装置连接,烟气回收装置和高温烟气风机连接,烟气回收装置和高温烟气风机连接管路上设有放空管线;高温烟气风机分别和碳基气体混合器、下游富集二氧化碳利用装置连接,高温烟气风机和碳基气体混合器连接管路上设有流量调节阀;
氧气制取装置氧气出口和碳基气体混合器连接,连接管路上设有流量调节阀;
碳基气体混合器分别和催化裂化再生装置的底部、上部连接,碳基气体混合器和催化裂化再生装置的底部、上部连接的总管路上设有流量计、温度传感器、压力传感器,分管路上分别设有流量调节阀;
氧气制取装置氮气出口连至碳基气体混合器和催化裂化再生装置的底部、上部连接的总管路上,原有空气助燃风机连至碳基气体混合器和催化裂化再生装置的底部、上部连接的总管路上;
所述工艺包括如下步骤:
1)、在初始阶段利用空气助燃,待烟气产生后,利用循环烟气和氧气混合制取的碳基气体作为助燃剂,逐步替代空气助燃,经过一段时间的循环,碳基气体完全替代空气助燃,碳基气体助燃进入正常运行状态;
2)、循环烟气从催化裂化再生装置出来,进入烟气回收装置回收热量、除尘、脱硫,再由高温烟气风机加压后部分引入碳基气体混合器,其余部分进入下游富集二氧化碳利用装置,氧气制取装置制取的氧气引入碳基气体混合器,氧气和循环烟气于碳基气体混合器中混合制取碳基气体;
3)、以制取的碳基气体为助燃剂,分两路送入催化裂化再生装置的底部和上部,进入催化裂化再生装置的底部为主助燃剂,为催化裂化再生装置中催化剂积碳燃烧提供绝大部分助燃气体,进入催化裂化再生装置的上部为辅助燃剂,为催化裂化再生装置中没有燃尽的少量一氧化碳提供助燃气体;
4)、催化裂化再生装置产生的循环烟气同步骤2)和步骤3),如此循环。
进一步地,碳基气体混合器中氧气分布器上相邻的三小孔均按相同的等边三角形布置;氧气分布器在混配器内靠近连通循环烟气通道的一侧。
进一步地,碳基气体混合器和催化裂化再生装置的上部连接,所述催化裂化 再生装置的上部即距离催化裂化再生装置顶部1/5~2/5位置处。
进一步地,步骤2)中从催化裂化再生装置出来的循环烟气二氧化碳浓度可达95%以上。
进一步地,步骤2)循环烟气由高温烟气风机加压至0.05~0.2MPa后部分引入碳基气体混合器。
进一步地,步骤2)中氧气制取装置制取的氧气纯度90%以上,压力为0.05~0.2MPa。
进一步地,步骤2)碳基气体中氧气含量在15~30%。
进一步地,步骤2)98~99%碳基气体进入催化裂化再生装置的底部,1~2%碳基气体进入催化裂化再生装置的上部。
进一步地,步骤2)催化裂化再生装置中再生温度控制在650~700℃。
本发明的有益效果:
1、本发明将催化裂化再生装置烟气进行循环,二氧化碳得到富集,浓度达95%以上。二氧化碳浓度提高,使二氧化碳捕集更加容易,为低成本CCUS(碳捕捉、碳储存、碳利用)创造有利条件,减少二氧化碳的排放,降低温室效应。
2、本发明将循环烟气和氧气混配制取适合催化裂化再生装置所需浓度的碳基气体,以碳基气体作为催化裂化再生装置的助燃气体,由二氧化碳替代氮气,消除了氮氧化物的生成条件因素,规避了燃烧过程中氮氧化物的生成,减少了环境污染,且大大降低脱硝费用。
常规空气助燃的燃烧机理:C mH n+O 2+N 2→CO 2+H 2O+NO x,本发明碳基气体(CO 2+O 2)助燃的燃烧机理:C mH n+O 2+CO 2→CO 2+H 2O。
3、按气体对流与辐射特点,只有三原子和多原子气体具有辐射能力,双原子几乎无辐射能力,采用循环烟气中二氧化碳替代助燃空气中的氮气后,大幅提升了催化裂化再生装置内辐射力度;且在二氧化碳氛围下,可促进C+CO 2→CO的反应发生,而CO比吸附在催化剂中的残碳更容易燃烧完全;从而大大增强燃烧效果,反应更加完全,达到节能降耗的显著效果。
4、本发明以碳基气体为助燃剂,用于催化裂化再生装置中催化剂积炭燃烧,利用分级给氧燃烧技术,分两路送入催化裂化再生装置的底部和上部,98~99%碳基气体进入催化裂化再生装置的底部为主助燃剂,为催化裂化再生装置中催化 剂积碳燃烧提供绝大部分助燃气体,1~2%碳基气体进入催化裂化再生装置的上部为辅助燃剂,为催化裂化再生装置中没有燃尽的少量一氧化碳提供助燃气体,通过此方式可使催化裂化再生装置中燃烧更加彻底,有效解决尾燃问题,保证了设备的安全,大大降低安全风险。
5、燃烧环境的优化使得催化裂化再生装置内温度分布更合理,有效延长催化裂化再生装置的使用寿命。燃烧状况的改善可以使催化剂再生更彻底,延长催化剂使用寿命,降低催化剂消耗,提高产品质量。
6、本发明采用烟气循环,增加了烟气水蒸气含量,可回收更多的热量和发电量。
7、本发明以氧气制取装置制取的副产氮气为保护气,用于催化裂化再生装置停车置换、吹扫、降温及催化剂的保护,使装置更加安全可靠。
8、本发明实施无需改动催化裂化再生装置本体结构,只对助燃系统、循环烟气系统做部分优化、改造。同时保留了原有空气助燃风机在烟气量不足时补充气量,或者在碳基气体助燃出现异常情况下,可无扰动切换至空气助燃,保证催化裂化再生装置的正常给氧及燃烧。
附图说明
图1为本发明工艺所需系统结构示意图。
图2为碳基气体混合器结构示意图。
图3为碳基气体混合器中氧气分布器上的小孔布置示意图。
图4为碳基气体混合器的工作流程示意图。
具体实施方式
下面结合实施例和附图对本发明做更进一步地解释。下列实施例仅用于说明本发明,但并不用来限定本发明的实施范围。
一种催化裂化再生装置排放二氧化碳全回收工艺,如图1所示,所述工艺所需系统包括催化裂化再生装置、烟气回收装置、高温烟气风机、氧气制取装置、碳基气体混合器。
氧气制取装置根据不同规模的催化裂化再生装置选取制取氧气的方法,比如采用深冷法、变压吸附法等,氧气纯度90%以上,压力为0.05~0.2MPa;对于大型催化裂化再生装置采用深冷法制氧,先将空气压缩、冷却,并使空气液化, 利用氧、氮组分的沸点的不同在精馏塔板上使气、液接触,进行质、热交换,高沸点的氧组分不断从蒸汽中冷凝成液体,低沸点的氮组分不断地转入蒸汽之中,使上升的蒸汽中含氮量不断的提高,而下流液体中氧含量越来越高,从而使氧、氮分离获得纯度为99.6%以上的氧气,同时获得副产物高纯度氮气;对于中小型催化裂化再生装置采用变压吸附法制氧,当空气经过升压后,通过分子筛吸附塔的吸附层时,氮分子优先被吸附,氧分子留在气相中而成为成品氧气;吸附剂中的氮组分吸附达到饱和时,利用减压或抽真空的方法将吸附剂表面吸附的氮分子解吸出来并送出界区,达到恢复吸附剂的吸附能力;从而使氧、氮分离获得纯度为90~95%的氧气及副产物高纯度氮气。
高温烟气风机出口设有安全阀及背压阀,当出口压力过高时,循环烟气能及时返回高温烟气风机入口处,防止高温烟气风机出口压力过高对高温烟气风机造成不良影响。
碳基气体混合器,如图2至图4所示,包括氧气通道01、氧气通道调节阀02、循环烟气通道03、氧气分布器04、混配器05、碳基气体通道06、氧气浓度分析仪07;氧气分布器04为中空圆筒,中空圆筒的周壁上均匀设有若干小孔041,优选地,氧气分布器04上相邻的三小孔041均按相同的等边三角形布置,更利于氧气通过小孔041后和循环烟气快速均匀混配;小孔041孔径可在5-10mm,相邻小孔041间距可在5-10mm,但不限于此尺寸;混配器05,为中空圆筒;氧气通道调节阀02设于氧气通道01上,氧气通道01出口和氧气分布器04的端部连通,氧气分布器04和部分氧气通道01由混配器05的侧壁插入混配器05内,优选地,氧气分布器04在混配器05内靠近连通循环烟气通道03的一侧,更有利于氧气和循环烟气快速均匀混配;循环烟气通道03出口和混配器05的一端连通,碳基气体通道06进口和混配器05的另一端连通,碳基气体通道06出口可通过设置法兰061用于固定连接,氧气浓度分析仪设于碳基气体通道上。氧气浓度分析仪07由控制系统和氧气通道调节阀02连接,从而实现根据氧气浓度分析仪07的数据调节氧气通道调节阀02的阀门开度。氧气通道01、氧气分布器04的材质为不锈钢材质,循环烟气通道03、混配器05、碳基气体通道06的材质可为不锈钢或碳钢材质。
碳基气体混配输送过程如下:循环烟气由循环烟气通道03进入混配器05, 氧气由氧气通道01进入氧气分布器04,经过氧气分布器04均匀分布于混配器05内与循环烟气快速均匀混配后从碳基气体通道06送入催化裂化再生装置;碳基气体通道06上设有氧气浓度分析仪07,根据氧气浓度分析仪07的数据控制氧气通道调节阀02的阀门开度,从而进一步调节进入混配器05的氧气含量,当氧气含量符合要求时,混配达到平衡。氧气调节时,氧气通道调节阀02的阀门开度从小到大开始调节,氧气浓度符合要求时,固定氧气通道调节阀02的阀门开度。
催化裂化再生装置烟气出口和烟气回收装置连接,烟气回收装置和高温烟气风机连接,烟气回收装置和高温烟气风机连接管路上设有放空管线,当烟气量过大时,排放多余的烟气;高温烟气风机分别和碳基气体混合器、下游富集二氧化碳利用装置连接,高温烟气风机和碳基气体混合器连接管路上设有流量调节阀,下游富集二氧化碳利用领域包括油气开采、化工应用、食品储存保鲜等。
氧气制取装置氧气出口和碳基气体混合器连接,连接管路上设有流量调节阀。
碳基气体混合器分别和催化裂化再生装置的底部、上部连接,碳基气体混合器和催化裂化再生装置的底部、上部连接的总管路上设有流量计、温度传感器、压力传感器,分管路上分别设有流量调节阀;其中,所述催化裂化再生装置的上部即距离催化裂化再生装置顶部1/5~2/5位置处。
氧气制取装置氮气出口连至碳基气体混合器和催化裂化再生装置的底部、上部连接的总管路上,以副产氮气作为保护气,用于装置停车置换、吹扫、降温及催化剂的保护,使装置更加安全可靠。原有空气助燃风机连至碳基气体混合器和催化裂化再生装置的底部、上部连接的总管路上,在烟气量不足时补充气量,或者在碳基气体助燃出现异常情况下,可无扰动切换至空气助燃,保证催化裂化再生装置的正常给氧及燃烧。
所述工艺包括如下步骤:
1)、在初始阶段利用空气助燃,待烟气产生后,利用循环烟气和氧气混合制取的碳基气体作为助燃剂,逐步替代空气助燃,经过5~10个小时的循环,碳基气体完全替代空气助燃,碳基气体助燃进入正常运行状态;逐步替代的过程中,二氧化碳浓度越来越高,可达95%以上(除去水蒸气);
2)、循环烟气从催化裂化再生装置出来,进入烟气回收装置回收热量、除尘、脱硫,再由高温烟气风机加压至0.05~0.2MPa后部分引入碳基气体混合器,其余部分进入下游富集二氧化碳利用装置,氧气制取装置制取的氧气引入碳基气体混合器;氧气和循环烟气于碳基气体混合器中混合制取碳基气体,碳基气体中氧气含量在15~30%;
3)、以制取的碳基气体为助燃剂,利用分级给氧燃烧技术,分两路送入催化裂化再生装置的底部和上部,98~99%碳基气体进入催化裂化再生装置的底部为主助燃剂,为催化裂化再生装置中催化剂积碳燃烧提供绝大部分助燃气体,1~2%碳基气体进入催化裂化再生装置的上部为辅助燃剂,为催化裂化再生装置中没有燃尽的少量一氧化碳提供助燃气体;催化裂化再生装置中再生温度控制在650~700℃;
4)、催化裂化再生装置产生的循环烟气同步骤2)和步骤3),如此循环。

Claims (9)

  1. 一种催化裂化再生装置排放二氧化碳全回收工艺,其特征在于,所述工艺所需系统包括催化裂化再生装置、烟气回收装置、高温烟气风机、氧气制取装置、碳基气体混合器;
    碳基气体混合器包括氧气通道、氧气通道调节阀、循环烟气通道、氧气分布器、混配器、碳基气体通道、氧气浓度分析仪;氧气分布器为中空圆筒,中空圆筒的周壁上均匀设有若干小孔,混配器为中空圆筒;氧气通道调节阀设于氧气通道上,氧气通道出口和氧气分布器的端部连通,氧气分布器和部分氧气通道由混配器的侧壁插入混配器内;循环烟气通道出口和混配器的一端连通,碳基气体通道进口和混配器的另一端连通,氧气浓度分析仪设于碳基气体通道上;
    催化裂化再生装置烟气出口和烟气回收装置连接,烟气回收装置和高温烟气风机连接,烟气回收装置和高温烟气风机连接管路上设有放空管线;高温烟气风机分别和碳基气体混合器、下游富集二氧化碳利用装置连接,高温烟气风机和碳基气体混合器连接管路上设有流量调节阀;
    氧气制取装置氧气出口和碳基气体混合器连接,连接管路上设有流量调节阀;
    碳基气体混合器分别和催化裂化再生装置的底部、上部连接,碳基气体混合器和催化裂化再生装置的底部、上部连接的总管路上设有流量计、温度传感器、压力传感器,分管路上分别设有流量调节阀;
    氧气制取装置氮气出口连至碳基气体混合器和催化裂化再生装置的底部、上部连接的总管路上,原有空气助燃风机连至碳基气体混合器和催化裂化再生装置的底部、上部连接的总管路上;
    所述工艺包括如下步骤:
    1)、在初始阶段利用空气助燃,待烟气产生后,利用循环烟气和氧气混合制取的碳基气体作为助燃剂,逐步替代空气助燃,经过一段时间的循环,碳基气体完全替代空气助燃,碳基气体助燃进入正常运行状态;
    2)、循环烟气从催化裂化再生装置出来,进入烟气回收装置回收热量、除尘、脱硫,再由高温烟气风机加压后部分引入碳基气体混合器,其余部分进入下游富集二氧化碳利用装置,氧气制取装置制取的氧气引入碳基气体混合器,氧气和循环烟气于碳基气体混合器中混合制取碳基气体;
    3)、以制取的碳基气体为助燃剂,分两路送入催化裂化再生装置的底部和上部,进入催化裂化再生装置的底部为主助燃剂,为催化裂化再生装置中催化剂积碳燃烧提供绝大部分助燃气体,进入催化裂化再生装置的上部为辅助燃剂,为催化裂化再生装置中没有燃尽的少量一氧化碳提供助燃气体;
    4)、催化裂化再生装置产生的循环烟气同步骤2)和步骤3),如此循环。
  2. 根据权利要求1所述的催化裂化再生装置排放二氧化碳全回收工艺,其特征在于,碳基气体混合器中氧气分布器上相邻的三小孔均按相同的等边三角形布置;氧气分布器在混配器内靠近连通循环烟气通道的一侧。
  3. 根据权利要求1所述的催化裂化再生装置排放二氧化碳全回收工艺,其特征在于,碳基气体混合器和催化裂化再生装置的上部连接,所述催化裂化再生装置的上部即距离催化裂化再生装置顶部1/5~2/5位置处。
  4. 根据权利要求1所述的催化裂化再生装置排放二氧化碳全回收工艺,其特征在于,步骤2)中从催化裂化再生装置出来的循环烟气二氧化碳浓度可达95%以上。
  5. 根据权利要求1所述的催化裂化再生装置排放二氧化碳全回收工艺,其特征在于,步骤2)循环烟气由高温烟气风机加压至0.05~0.2MPa后部分引入碳基气体混合器。
  6. 根据权利要求1所述的催化裂化再生装置排放二氧化碳全回收工艺,其特征在于,步骤2)中氧气制取装置制取的氧气纯度90%以上,压力为0.05~0.2MPa。
  7. 根据权利要求1所述的催化裂化再生装置排放二氧化碳全回收工艺,其特征在于,步骤2)碳基气体中氧气含量在15~30%。
  8. 根据权利要求1所述的催化裂化再生装置排放二氧化碳全回收工艺,其特征在于,步骤2)98~99%碳基气体进入催化裂化再生装置的底部,1~2%碳基气体进入催化裂化再生装置的上部。
  9. 根据权利要求1所述的催化裂化再生装置排放二氧化碳全回收工艺,其特征在于,步骤2)催化裂化再生装置中再生温度控制在650~700℃。
PCT/CN2022/086411 2021-08-03 2022-04-12 催化裂化再生装置排放二氧化碳全回收工艺 WO2023010883A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22851011.1A EP4365135A1 (en) 2021-08-03 2022-04-12 Total recovery process for carbon dioxide discharged by catalytic cracking regeneration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110884249.3 2021-08-03
CN202110884249.3A CN113582179B (zh) 2021-08-03 2021-08-03 催化裂化再生装置排放二氧化碳全回收工艺

Publications (1)

Publication Number Publication Date
WO2023010883A1 true WO2023010883A1 (zh) 2023-02-09

Family

ID=78254106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086411 WO2023010883A1 (zh) 2021-08-03 2022-04-12 催化裂化再生装置排放二氧化碳全回收工艺

Country Status (3)

Country Link
EP (1) EP4365135A1 (zh)
CN (1) CN113582179B (zh)
WO (1) WO2023010883A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582179B (zh) * 2021-08-03 2022-03-04 上海源晗能源技术有限公司 催化裂化再生装置排放二氧化碳全回收工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131584A (zh) * 1994-09-30 1996-09-25 波克股份有限公司 催化剂的除焦方法
US20040121898A1 (en) * 2000-11-01 2004-06-24 Mayes Warden W. Catalytic cracking of a residuum feedstock to produce lower molecular weight gaseous products
CN102642832A (zh) * 2012-05-08 2012-08-22 中国石油化工股份有限公司 中变气脱碳-洗涤-变压吸附联合提取二氧化碳和氢气工艺
CN113582179A (zh) * 2021-08-03 2021-11-02 上海源晗能源技术有限公司 催化裂化再生装置排放二氧化碳全回收工艺
CN113663741A (zh) * 2021-08-13 2021-11-19 中国石油化工股份有限公司 一种结焦催化剂的再生方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1242985A (en) * 1984-02-08 1988-10-11 William P. Hegarty Method for controlling fluidized catalytic cracker regenerator temperature and velocity with carbon dioxide
US4843051A (en) * 1987-07-09 1989-06-27 Mobil Oil Corporation Fluid catalytic cracking regeneration with reduction of nitrogen emissions
US5830346A (en) * 1995-08-30 1998-11-03 Mobil Oil Corporation FCC regenerator in partial CO burn with downstream air addition
CN103102937B (zh) * 2011-11-10 2015-09-23 中国石油化工股份有限公司 一种减少二氧化碳排放的催化裂化方法
CN109939540B (zh) * 2017-12-21 2021-08-06 中国石油化工股份有限公司 一种烟气处理方法及处理装置
CN110898606B (zh) * 2018-09-18 2023-07-14 中国石化工程建设有限公司 一种处理催化裂化再生烟气的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131584A (zh) * 1994-09-30 1996-09-25 波克股份有限公司 催化剂的除焦方法
US20040121898A1 (en) * 2000-11-01 2004-06-24 Mayes Warden W. Catalytic cracking of a residuum feedstock to produce lower molecular weight gaseous products
CN102642832A (zh) * 2012-05-08 2012-08-22 中国石油化工股份有限公司 中变气脱碳-洗涤-变压吸附联合提取二氧化碳和氢气工艺
CN113582179A (zh) * 2021-08-03 2021-11-02 上海源晗能源技术有限公司 催化裂化再生装置排放二氧化碳全回收工艺
CN113663741A (zh) * 2021-08-13 2021-11-19 中国石油化工股份有限公司 一种结焦催化剂的再生方法

Also Published As

Publication number Publication date
CN113582179B (zh) 2022-03-04
EP4365135A1 (en) 2024-05-08
CN113582179A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2023010885A1 (zh) 一种带非催化转化炉的玻璃窑炉燃烧工艺
CN102425789A (zh) 一种燃煤流化床微富氧燃烧co2减排方法及系统
CN106823754B (zh) 一种水合物法连续捕集水泥窑烟气中co2的装备系统
WO2023097943A1 (zh) 燃气锅炉绝氮燃烧及二氧化碳捕集与利用工艺
WO2023010883A1 (zh) 催化裂化再生装置排放二氧化碳全回收工艺
CN215403786U (zh) 一种带非催化转化炉的玻璃窑炉燃烧系统
US10988378B2 (en) Pilot plant for chemical looping hydrogen generation using single-column packed bed and hydrogen generation method
CN114151785A (zh) 燃煤锅炉碳基富氧燃烧及co2捕集与利用工艺
CN216303280U (zh) 燃气锅炉绝氮燃烧及co2捕集与利用系统
CN107138024B (zh) 用于电厂的一体式颗粒流化二氧化碳捕集方法和装置
TW201511816A (zh) 一種低耗能之二氧化碳吸附濃縮與轉化能源系統
CN215855132U (zh) 催化裂化再生装置排放二氧化碳全回收系统
CN114522518A (zh) 一种含碳循环利用的燃气电厂低成本减碳排放系统及方法
CN112403181B (zh) 一种烟气脱硫脱硝处理系统及方法
CN112403182B (zh) 一种解析塔及烟气加热系统
KR100534543B1 (ko) 소각 폐열 재생 산소부화 시스템
US11680706B2 (en) Combustion process of glass kiln with non-catalytic reformers
CN207849405U (zh) 用于净化石油化工工业有机废气的装置
CN114538751B (zh) 无氮燃气玻璃窑炉氧气+co2循环燃烧方法、系统与装置
KR101695497B1 (ko) 순산소연소 발전시스템의 효율 향상 방법
CN215102818U (zh) 无氮燃气玻璃窑炉氧气+co2循环燃烧系统与装置
CN220061734U (zh) 一种纯氧燃烧下的二氧化碳捕集装置
CN116003004B (zh) 一种耦合二氧化碳捕集、电催化和富氧燃烧的水泥生产工艺
CN212383709U (zh) 一种活性炭脱附再生设备
CN113877553B (zh) 一种高炉煤气脱硫活性炭再生工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022851011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022851011

Country of ref document: EP

Effective date: 20240129

NENP Non-entry into the national phase

Ref country code: DE