WO2023008954A1 - 센서 구동 액추에이터 - Google Patents

센서 구동 액추에이터 Download PDF

Info

Publication number
WO2023008954A1
WO2023008954A1 PCT/KR2022/011206 KR2022011206W WO2023008954A1 WO 2023008954 A1 WO2023008954 A1 WO 2023008954A1 KR 2022011206 W KR2022011206 W KR 2022011206W WO 2023008954 A1 WO2023008954 A1 WO 2023008954A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
image sensor
ois
sensor
driven actuator
Prior art date
Application number
PCT/KR2022/011206
Other languages
English (en)
French (fr)
Inventor
김희승
Original Assignee
자화전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자화전자(주) filed Critical 자화전자(주)
Publication of WO2023008954A1 publication Critical patent/WO2023008954A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0038Movement of one or more optical elements for control of motion blur by displacing the image plane with respect to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0084Driving means for the movement of one or more optical element using other types of actuators

Definitions

  • the present invention relates to an actuator for a camera, and more particularly, to an actuator capable of implementing autofocus and hand shake compensation functions through sensor driving.
  • the auto focus (auto focus control) function linearly moves the carrier on which the lens is mounted in the direction of the optical axis to adjust the focal distance to the subject so that a clear image is created on the image sensor (CMOS, CCD, etc.) provided at the rear of the lens. means function.
  • the handshake correction function refers to a function of improving the sharpness of an image by adaptively moving a carrier on which a lens is mounted in a direction to compensate for the shake when a lens shake occurs due to hand shake.
  • One of the representative methods of implementing the AF or OIS function is to install a magnet (coil) on a moving body (carrier), install a coil (magnet) on a fixed body (housing, or other type of carrier, etc.), and then It is a method of moving a movable body in the direction of an optical axis or in a direction perpendicular to an optical axis by generating an electromagnetic force between the optical axis and the optical axis.
  • a ball is interposed between the moving body and the fixed body so that an appropriate separation distance between the moving body and the fixed body is continuously maintained, and the rotational movement of the ball and the ball A form in which the carrier moves more flexibly and precisely with minimized frictional force through point contact is applied.
  • the present invention has been devised to solve the above-mentioned problems in the background as described above, and can relatively easily implement OIS and AF through sensor driving instead of lens module driving, and a sensor driving actuator that can improve the reliability of the camera module. intended to provide
  • an object of the present invention is to provide a sensor driving actuator capable of facilitating movement of an image sensor through a flexible member when implementing OIS and AF.
  • the present invention provides an image sensor, a base on which the image sensor is disposed, a base connected to the base and the image sensor, and an optical axis direction based on the base according to the movement of the image sensor, and an optical axis direction perpendicular to the optical axis direction.
  • a flexible member moving in at least one direction of a first direction and a second direction perpendicular to the first direction, an OIS carrier moving the image sensor in at least one direction of the first direction and the second direction, and an optical axis of the image sensor
  • a sensor-driven actuator including an AF carrier that moves in a direction and a housing in which the AF carrier is accommodated is provided.
  • the OIS carrier is equipped with an image sensor and may be accommodated in the AF carrier.
  • the AF carrier may be equipped with an image sensor and accommodated in the OIS carrier.
  • the flexible member includes first and second flexible members, and according to the movement of the image sensor, any one of the first and second flexible members is moved in at least one direction of the first direction and the second direction, The other one may be moved in the direction of the optical axis.
  • the flexible member includes a first flexible member composed of a first fixing part fixed to the AF carrier and a first flexible part connected between the first fixing part and the image sensor, a second fixing part fixed to the base, and a second flexible member.
  • a second flexible member including a second flexible member connected between the fixing unit and the AF carrier may be included.
  • the first flexible member may move in at least one of the first direction and the second direction according to the movement of the image sensor.
  • the second flexible member may move in the optical axis direction according to the movement of the image sensor.
  • first and second flexible parts may be formed of a plurality of bridges and slits between the plurality of bridges, and may be disposed surrounding the image sensor.
  • the first flexible member may be disposed inside the second flexible member.
  • the sensor-driven actuator of the present invention may further include a middle guide provided between the OIS carrier and the AF carrier.
  • the OIS carrier includes first and second magnets, and the housing generates electromagnetic force in the first driving coil and the second magnet that generate electromagnetic force in the first magnet to move the OIS carrier in a first direction to move the OIS carrier.
  • a second driving coil for moving in a second direction may be provided.
  • the sensor drive actuator of the present invention the first guide rail formed in the first direction on the OIS carrier, the second guide rail formed facing the first guide rail under the middle guide, the first and second A first OIS ball provided between the guide rails may be further included.
  • the sensor drive actuator of the present invention the third guide rail formed in the second direction above the middle guide, the fourth guide rail formed facing the third guide rail below the AF carrier, and the third and fourth A second OIS ball provided between the guide rails may be further included.
  • the AF carrier may include a third magnet
  • the housing may include a third driving coil that generates electromagnetic force in the third magnet to move the AF carrier in an optical axis direction.
  • the sensor drive actuator of the present invention includes a fifth guide rail formed outside the AF carrier in the optical axis direction, a sixth guide rail formed facing the fifth guide rail inside the housing, and the fifth and sixth guide rails An AF ball provided between them may be further included.
  • the sensor driving actuator of the present invention may further include a lens module mounted on the housing and a case configured to cover the housing.
  • the lens module may be fixed to the housing or case.
  • the lens module that accounts for most of the weight of the camera module
  • FIG. 1 is a perspective view of a sensor driven actuator according to an embodiment of the present invention.
  • FIGS. 2 and 3 are exploded and coupled views showing the configuration of an actuator according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 1 .
  • FIG. 5 is a view showing a state in which an image sensor according to an embodiment of the present invention is mounted on an OIS carrier.
  • FIG. 6 is a diagram illustrating a state in which an image sensor according to an embodiment of the present invention is connected to a base by a flexible member.
  • FIG. 7 is a diagram for explaining the function of the X-axis direction OIS of the actuator according to an embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the function of the Y-axis direction OIS of the actuator according to an embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a function of an optical axis direction AF of an actuator according to an embodiment of the present invention.
  • FIG. 10 is a view for explaining the role of a flexible member according to an embodiment of the present invention.
  • FIG. 1 is a perspective view of a sensor-driven actuator (hereinafter referred to as 'actuator') according to an embodiment of the present invention
  • FIGS. 2 and 3 are exploded views showing the configuration of the actuator according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view taken along the cut line IV-IV of Figure 1
  • Figure 5 is a view showing a state in which the image sensor according to an embodiment of the present invention is mounted on the OIS carrier.
  • FIG. 6 is a view showing a state in which the image sensor according to an embodiment of the present invention is connected to the base by a flexible member.
  • the actuator 100 is an embodiment in which auto focus (AF) and optical image stabilization (OIS) are implemented together by driving the image sensor 120, but the actuator of the present invention Of course, 100 may be implemented as an actuator only for OIS according to embodiments.
  • AF auto focus
  • OIS optical image stabilization
  • the Z-axis direction shown in the drawing is an optical axis direction, which is a direction in which light is introduced into the lens module 190, and corresponds to a direction in which the AF carrier 160 to be described later moves forward and backward.
  • the optical axis means the central axis of the image sensor 120 .
  • the X-axis direction and the Y-axis direction which are two directions perpendicular to the optical axis direction (Z-axis direction), mean directions in which the image sensor 120 moves by OIS driving to compensate for shaking caused by hand shaking.
  • the X-axis direction is referred to as the first direction and the Y-axis direction as the second direction, but this is only an example according to a relative point of view, and any one of the X-axis direction and the Y-axis direction is the first direction, , the other direction may be the second direction.
  • the actuator 100 includes a base 110, an image sensor 120, a stopper 125, an OIS carrier 130, a middle guide 140, a housing 150, an AF carrier 160 ), the case 170, the flexible member 180 and the lens module 190 may be configured to include.
  • the OIS carrier 130, the middle guide 140, the AF carrier 160, the housing 150, and the case 170 are sequentially combined based on the base 110.
  • the image sensor 120 is disposed above the base 110 .
  • the base 110 may be a printed circuit board configured to transmit and receive electrical signals to and from the image sensor 120 .
  • the flexible member 180 connects the base 110 and the image sensor 120 so that the image sensor 120 can move relative to the base 110 .
  • the flexible member 180 is connected to the base 110 and the image sensor 120, and the image sensor 120 moves in the optical axis direction and the optical axis direction with respect to the base 110. It moves in at least one direction of a first direction perpendicular to and a second direction perpendicular to the first direction.
  • the flexible member 180 may include a first flexible member 181 and a second flexible member 182, but is not limited thereto and may include one flexible member.
  • the flexible member 180 may be a metal material or a flexible substrate, but is not limited thereto, and a flexible material capable of moving together when the image sensor 120 moves is sufficient.
  • the flexible member 180 includes the first flexible member 181 and the second flexible member 182
  • one of the first and second flexible members 181 and 182 is directed in the first and second directions. It may be moved in at least one of the directions, and the other may be moved in an optical axis direction.
  • the first flexible member 181 includes a first fixing part 181a fixed to the AF carrier 160 and a first flexible part 181b connected between the first fixing part 181a and the image sensor 120. It consists of
  • the second flexible member 182 includes a second fixing part 182a fixed to the base 110 and a second flexible part 182b connected between the second fixing part 182a and the AF carrier 160. .
  • first flexible member 181 may be disposed inside the second flexible member 182 .
  • the first flexible part 181a and the second flexible part 182a may be composed of a plurality of bridges and slits between the plurality of bridges, and may be disposed surrounding the image sensor 120. It is not limited, and it suffices if it is disposed in a form that can be moved according to the movement of the image sensor 120 .
  • the second flexible part 182a may be located outside the first flexible part 181a.
  • the plurality of bridges formed by the first flexible part 181a and the second flexible part 182a may form a signal line, and through this, a signal transmission role between the base 110 and the image sensor 120 may be performed. .
  • the image sensor 120 is mounted on the OIS carrier 130 and the middle guide 140 is disposed above the OIS carrier 130 .
  • the OIS carrier 130 and the middle guide 140 are accommodated in the AF carrier 160 .
  • the AF carrier 160 is accommodated in the housing 150 .
  • the OIS carrier 130 may move in at least one of the first direction and the second direction inside the AF carrier 160, and the AF carrier 160 may move in the optical axis direction inside the housing 150. .
  • the OIS carrier 130 since the OIS carrier 130 is accommodated in the AF carrier 160, it can be moved together when the AF carrier 160 moves.
  • the image sensor 120 may be mounted on the AF carrier 160, and the AF carrier 160 may be accommodated in the OIS carrier 130.
  • the middle guide 140 is disposed above the OIS carrier 130, and the OIS carrier 130 is accommodated in the housing 150.
  • the AF carrier 160 may move in the optical axis direction inside the OIS carrier 130, and the OIS carrier 130 may move in at least one of the first direction and the second direction inside the housing 150. .
  • the AF carrier 160 since the AF carrier 160 is accommodated in the OIS carrier 130, it can be moved together when the OIS carrier 130 moves.
  • the OIS carrier 130 includes first and second magnets M1 and M2, and the AF carrier 160 includes a third magnet M3. Also, the housing 150 faces the first to third magnets M1 , M2 , and M3 , and includes first to third driving coils C1 , C2 , and C3 .
  • the first to third driving coils C1 , C2 , and C3 may be provided on an inner circumferential surface of the housing 150 while being mounted on the substrate 155 .
  • An opening for exposing the image sensor 120 in the optical axis direction is formed at the center of the OIS carrier 130 . Accordingly, the image sensor 120 can detect light coming from the lens module 190 .
  • the image sensor 120 may be formed of an imaging device such as a charged-coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS).
  • CCD charged-coupled device
  • CMOS complementary metal-oxide semiconductor
  • the image sensor 120 provided at the rear end of the actuator 100 also moves forward and backward in the optical axis direction, thereby adjusting the focal distance between the image sensor 120 and the lens module 190.
  • AF function is implemented. A detailed explanation of this will be given later.
  • the middle guide 140 is provided between the OIS carrier 130 and the AF carrier 160 .
  • a first guide rail 131 is formed in the first direction on the upper part of the OIS carrier 130, and a second guide rail 141 is formed facing the first guide rail 131 on the lower part of the middle guide 140. And, the first OIS ball (B1) is provided between the first and second guide rails (131, 141).
  • a third guide rail 142 is formed in the second direction on the upper part of the middle guide 140, and a fourth guide rail 162 is formed on the lower part of the AF carrier 160 facing the third guide rail 142. And, the second OIS ball (B2) is provided between the third and fourth guide rails (142, 162).
  • a fifth guide rail 161 is formed outside the AF carrier 160 in the optical axis direction, and a sixth guide rail (not shown) is formed inside the housing 150 facing the fifth guide rail 161 . Also, an AF ball B3 is provided between the fifth and sixth guide rails 161 (not shown).
  • the stopper 125 serves to limit the downward movement of the AF carrier 160 in the optical axis direction.
  • Case 170 may be configured to cover housing 150 .
  • the lens module 190 may be fixed to the housing 150 or the case 170 .
  • the actuator 100 according to the embodiment of the present invention can implement both OIS and AF by moving the image sensor 120 in three axes while the lens module 190 is fixed.
  • FIG. 7 is a view for explaining the function of the X-axis direction OIS of the actuator according to an embodiment of the present invention
  • FIG. 8 is a view for explaining the function of the Y-axis direction OIS of the actuator according to the embodiment of the present invention.
  • the actuator 100 includes a first guide rail 131 formed on an OIS carrier 130 in a first direction (X-axis direction), and a middle guide 140 ) includes a second guide rail 141 formed facing the first guide rail 131 at the bottom and a first OIS ball B1 provided between the first and second guide rails 131 and 141 .
  • the first OIS ball B1 may move the OIS carrier 130 in the first direction by rolling between the first and second guide rails 131 and 141 .
  • the first guide rail 131 may be formed at each corner of the OIS carrier 130, and the second guide rail 141 may also be formed at each corner of the middle guide 140, but is not limited thereto.
  • the first magnet (M1) is provided in the form of standing on top of the OIS carrier 130, and is disposed between the two first OIS balls (B1) in a first direction.
  • the first drive coil C1 is disposed on the inner surface of the housing 150 to face the first magnet M1.
  • a Hall sensor may be disposed inside the first driving coil C1.
  • the OIS carrier 130 moves in the first direction with respect to the base 110 in the inner space of the AF carrier 160 when the OIS function in the first direction (X-axis direction) is implemented.
  • the Hall sensor transmits an electrical signal corresponding to the movement direction and magnitude caused by the hand shake to a driving driver (not shown), and the driving driver controls power having a corresponding magnitude and direction to be applied to the first driving coil C1. can do. That is, the OIS carrier 130 may be moved through feedback control between the hall sensor and the driving driver.
  • the first driving coil C1 When power is applied to the first driving coil C1, the first driving coil C1 generates electromagnetic force in the first magnet M1 installed on the OIS carrier 130, and the first OIS ball B1 is formed by the electromagnetic force. Rolling moves between the first and second guide rails 131 and 141, and accordingly, the OIS carrier 130 moves in the first direction.
  • the image sensor 120 is coupled to the OIS carrier 130, when the OIS carrier 130 moves in the first direction, the image sensor 120 also moves in the first direction. Accordingly, the hand shake caused by the first direction component is corrected.
  • the actuator 100 includes a third guide rail 142 formed on a middle guide 140 in a second direction (Y-axis direction), and an AF carrier 160 ) A fourth guide rail 162 formed facing the third guide rail 142 at the bottom and a second OIS ball B2 provided between the third and fourth guide rails 142 and 162 .
  • the second OIS ball B2 may move the middle guide 140 in the second direction by rolling between the third and fourth guide rails 142 and 162 .
  • the third guide rail 142 may be formed at each corner of the middle guide 140, and the fourth guide rail 162 may also be formed at each corner of the AF carrier 160, but is not limited thereto.
  • the second magnet (M2) is provided in the form of standing on top of the OIS carrier 130, and is disposed in the second direction between the two second OIS balls (B2).
  • the second driving coil C2 may be disposed on an inner surface of the housing 150 to face the second magnet M2, and a hall sensor may be disposed inside the second driving coil C2.
  • the middle guide 140 moves in the second direction with respect to the base 110 in the inner space of the AF carrier 160 when the OIS function in the second direction (Y-axis direction) is implemented.
  • the Hall sensor transmits an electrical signal corresponding to the movement direction and magnitude caused by the hand shake to a driving driver (not shown), and the driving driver controls power having a corresponding magnitude and direction to be applied to the second driving coil C2. do. That is, the middle guide 140 can be moved through feedback control between the hall sensor and the driving driver.
  • the second driving coil (C2) When power is applied to the second driving coil (C2), the second driving coil (C2) generates an electromagnetic force in the second magnet (M2) installed in the OIS carrier 130, and by this electromagnetic force, the second OIS ball (B2) It rolls between the third and fourth guide rails 142 and 162, and accordingly, the middle guide 140 moves in the second direction.
  • the image sensor 120 is coupled to the OIS carrier 130, and since the OIS carrier 130 is coupled to the middle guide 140, when the middle guide 140 moves in the second direction, the OIS carrier 130 ) and the image sensor 120 also moves in the second direction. Accordingly, hand shake caused by the component in the second direction is corrected.
  • the actuator 100 instead of moving the lens module 190, which accounts for most of the weight of the camera module, moves the image sensor 120, which is relatively light in weight, to compensate for hand shake. By doing so, it is possible to implement OIS relatively easily and improve the reliability of the camera module.
  • FIG. 9 is a diagram for explaining a function of an optical axis direction AF of an actuator according to an embodiment of the present invention.
  • the actuator 100 includes a fifth guide rail 161 formed in the optical axis direction (Z-axis direction) outside the AF carrier 160 and the inside of the housing 150 It includes a sixth guide rail (not shown) formed facing the fifth guide rail 161 and an AF ball B3 provided between the fifth and sixth guide rails 161 (not shown).
  • the AF ball B3 may move the AF carrier 160 in the optical axis direction by rolling between the fifth and sixth guide rails 161 (not shown).
  • the fifth guide rail 161 may be formed on both sides of the outer surface of the AF carrier 160 equipped with the third magnet M3.
  • the third magnet M3 is provided between the fifth guide rails 161, the third drive coil C3 is disposed on the inner surface of the housing 150 to face the third magnet M3, and the third drive coil C3 faces the third magnet M3.
  • a hall sensor may be disposed inside the coil C3.
  • the AF carrier 160 may be moved through feedback control between the Hall sensor and the driving driver.
  • the housing 150 provides a moving space for the AF carrier 160 .
  • the AF carrier 160 is provided inside the housing 150 and moves in the optical axis direction (Z-axis direction) with respect to the base 110 .
  • the third coil (C3) When power of an appropriate size and direction is applied to the third drive coil (C3), the third coil (C3) generates electromagnetic force in the third magnet (M3) installed in the AF carrier 160, and by this electromagnetic force, the AF ball (B3) ) moves between the fifth and sixth guide rails 161 (not shown), and accordingly, the AF carrier 160 moves in the optical axis direction.
  • the OIS carrier 130 is accommodated in the AF carrier 160 and the OIS carrier 130 is coupled to the image sensor 120, when the AF carrier 130 moves in the optical axis direction, the OIS carrier 130 and the image sensor ( 120) is also moved in the optical axis direction, so that the focal distance between the lens module 190 and the image sensor 120 is adjusted.
  • the movement in each direction may be individually performed.
  • movement in a plurality of mutually combined directions (XY, XZ, YZ, XYZ, etc.) may be performed simultaneously.
  • the first to third magnets M1, M2, and M3 and the first to third driving coils C1, C2, and C3 are placed in the optical axis direction, By arranging it, the thickness of the actuator 100 (based on the optical axis direction) can be drastically reduced.
  • the width of the main substrate is also sufficiently increased as the screen display means is widened.
  • a structure that more closely matches the tendency of can be implemented.
  • FIG. 10 is a view for explaining the role of a flexible member according to an embodiment of the present invention.
  • the first fixing part 181a is fixed to the AF carrier 160 and the first flexible part 181b connects the first fixing part 181a and the image sensor 120. .
  • the second fixing part 182a is fixed to the base 110, and the second flexible part 182b connects the second fixing part 182a and the AF carrier 160.
  • the first flexible member 181 serves to facilitate movement of the image sensor 120 in the first and second directions
  • the second flexible member 182 controls movement of the image sensor 120 in the optical axis direction. play a role in facilitating
  • the first flexible member 181 also moves along the image sensor 120. It moves in at least one direction of the first direction and the second direction according to the movement of.
  • the first fixing part 181a of the first flexible member 181 is fixed to the AF carrier 160 and the first flexible part 181b is connected to the image sensor 120, the image sensor 120 ), the first flexible part 181b may also be moved.
  • the second flexible member 182 also moves in the optical axis direction as the image sensor 120 moves.
  • the image sensor 120 According to the movement of the second flexible part (182b) can also be moved.
  • the actuator 100 is configured to separate the flexible member 180 into the first and second flexible members 181 and 182 to separate OIS and AF driving loads, thereby improving reliability.
  • first and second are only terms of instrumental concepts used to relatively distinguish components from each other, so they are used to indicate a specific order, priority, etc. It should be interpreted that it is not a term that
  • the sensor-driven actuator according to the present invention may be applied to a camera module mounted on a mobile terminal such as a mobile phone or smart phone as well as an independent camera device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

본 발명은, 이미지 센서와, 이미지 센서가 배치되는 베이스와, 베이스 및 이미지 센서에 연결되며, 이미지 센서의 이동에 따라 베이스를 기준으로 광축 방향, 광축 방향과 수직인 제1 방향 및 제1 방향과 수직인 제2 방향 중 적어도 하나의 방향으로 이동되는 유연 부재와, 이미지 센서를 제1 방향 및 제2 방향 중 적어도 하나의 방향으로 이동시키는 OIS 캐리어와, 이미지 센서를 광축 방향으로 이동시키는 AF 캐리어와, AF 캐리어가 수용되는 하우징을 포함하는 센서 구동 액추에이터를 제공한다.

Description

센서 구동 액추에이터
본 발명은 카메라용 액추에이터에 관한 것으로서, 더욱 구체적으로는 센서 구동을 통해 오토 포커스 및 손떨림 보정 기능을 구현할 수 있는 액추에이터에 관한 것이다.
영상 처리에 대한 하드웨어 기술이 발전하고 영상 촬영 등에 대한 사용자 니즈가 높아짐에 따라, 독립된 카메라 장치는 물론, 휴대폰, 스마트폰, 등과 같은 모바일 단말에 장착된 카메라 모듈 등에 오토 포커스(AF, Auto Focus), 손 떨림 보정(OIS, Optical Image Stabilization) 등의 기능이 구현되고 있다.
오토 포커스(자동 초점 조절) 기능은 렌즈 등이 탑재된 캐리어를 광축 방향으로 선형 이동하여 피사체와의 초점 거리를 조정함으로써 렌즈 후단에 구비된 이미지 센서(CMOS, CCD 등)에 선명한 이미지가 생성되도록 하는 기능을 의미한다.
또한, 손떨림 보정 기능은 손떨림에 의하여 렌즈의 흔들림이 발생하는 경우 그 흔들림을 보상하는 방향으로 렌즈가 탑재된 캐리어를 적응적으로 이동시킴으로써 영상의 선명도를 개선하는 기능을 의미한다.
AF 또는 OIS 기능을 구현하는 대표적인 방법 중 하나는 이동체(캐리어)에 마그네트(코일)을 설치하고, 고정체(하우징, 또는 다른 형태의 캐리어 등)에 코일(마그네트)을 설치한 후, 코일과 마그네트 사이에 전자기력을 발생시킴으로써 이동체를 광축 방향 또는 광축과 수직한 방향으로 이동시키는 방법이다.
한편, 캐리어의 물리적 지지 및 캐리어의 위치 복원 등을 구현하기 위하여 캐리어를 와이어에 연결하는 장치도 있으나, 이러한 장치의 경우 내외적 환경에 의하여 와이어의 물성 변형이 쉽게 일어나므로 구동 정밀성이 저하되기 쉽고 특히, 렌즈의 고사양화에 따라 렌즈의 무게와 크기가 커지는 경우 구동 성능이 더욱 저하될 수 있다.
이러한 와이어(wire) 타입의 문제점을 해소하기 위하여 최근에는 이동체와 고정체 사이에 볼(ball)을 개재시켜 이동체와 고정체 사이의 적절한 이격 거리가 지속적으로 유지되도록 하고 볼의 회전 운동 및 볼과의 점접촉(point contact)을 통한 최소화된 마찰력으로 캐리어가 더욱 유연하고 정확하게 이동하는 형태가 적용되고 있다.
AF와 OIS 기능이 통합된 장치 내지 액추에이터의 경우, AF는 광축 방향으로 이동하여야 하며 OIS는 광축과 수직한 방향으로 이동하여야 하므로 AF 및 OIS 캐리어들이 상호 적층되는 복합한 물리적 구조로 구현된다.
이러한 종래의 액추에이터는 렌즈 모듈을 광축 방향과 수직한 방향으로 이동시켜 손 떨림을 보정을 수행하였다. 그러나, 렌즈 모듈이 카메라 모듈의 무게 대부분을 차지하기 때문에, 렌즈 모듈 이동 정확도 및 카메라 모듈의 성능 신뢰성이 떨어지는 문제점이 있다.
본 발명은 상기와 같은 배경에서 상술된 문제점을 해결하기 위하여 창안된 것으로서, 렌즈 모듈 구동 대신 센서 구동을 통해 비교적 쉽게 OIS 및 AF를 구현할 수 있고, 카메라 모듈의 신뢰성을 향상시킬 수 있는 센서 구동 액추에이터를 제공하는 것을 목적으로 한다.
또한, 본 발명은, OIS 및 AF 구현 시 유연 부재를 통해 이미지 센서의 이동을 용이하게 할 수 있는 센서 구동 액추에이터를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 아래의 설명에 의하여 이해될 수 있으며, 본 발명의 실시예에 의하여 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 구성과 그 구성의 조합에 의하여 실현될 수 있다.
상기 목적을 달성하기 위해, 본 발명은, 이미지 센서와, 이미지 센서가 배치되는 베이스와, 베이스 및 이미지 센서에 연결되며, 이미지 센서의 이동에 따라 베이스를 기준으로 광축 방향, 광축 방향과 수직인 제1 방향 및 제1 방향과 수직인 제2 방향 중 적어도 하나의 방향으로 이동되는 유연 부재와, 이미지 센서를 제1 방향 및 제2 방향 중 적어도 하나의 방향으로 이동시키는 OIS 캐리어와, 이미지 센서를 광축 방향으로 이동시키는 AF 캐리어와, AF 캐리어가 수용되는 하우징을 포함하는 센서 구동 액추에이터를 제공한다.
여기서, OIS 캐리어는, 이미지 센서가 장착되며, AF 캐리어에 수용될 수 있다. 이와 달리, AF 캐리어는, 이미지 센서가 장착되며, OIS 캐리어에 수용될 수 있다.
또한, 유연 부재는 제1 및 제2 유연 부재를 포함하며, 이미지 센서의 이동에 따라, 제1 및 제2 유연 부재 중 어느 하나는 제1 방향 및 제2 방향 중 적어도 하나의 방향으로 이동되고, 나머지 다른 하나는 광축 방향으로 이동될 수 있다.
또한, 유연 부재는, AF 캐리어에 고정되는 제1 고정부와 제1 고정부 및 이미지 센서 사이에 연결되는 제1 유연부로 구성되는 제1 유연 부재와, 베이스에 고정되는 제2 고정부와 제2 고정부 및 AF 캐리어 사이에 연결되는 제2 유연부로 구성되는 제2 유연 부재를 포함할 수 있다.
또한, 제1 유연 부재는 이미지 센서의 이동에 따라 제1 방향 및 제2 방향 중 적어도 하나의 방향으로 이동될 수 있다.
또한, 제2 유연 부재는 이미지 센서의 이동에 따라 광축 방향으로 이동될 수 있다.
또한, 제1 및 제2 유연부는, 복수의 브릿지와 복수의 브릿지 사이의 슬릿으로 구성되며, 이미지 센서를 둘러싸며 배치될 수 있다.
여기서, 제1 유연 부재는 제2 유연 부재 내측에 배치될 수 있다.
또한, 본 발명의 센서 구동 액추에이터는, OIS 캐리어 및 AF 캐리어 사이에 구비되는 미들 가이드를 더 포함할 수 있다.
또한, OIS 캐리어는 제1 및 제2 마그네트를 구비하고, 하우징은 제1 마그네트에 전자기력을 발생시켜 OIS 캐리어를 제1 방향으로 이동시키는 제1 구동 코일과 제2 마그네트에 전자기력을 발생시켜 OIS 캐리어를 제2 방향으로 이동시키는 제2 구동 코일을 구비할 수 있다.
또한, 본 발명의 센서 구동 액추에이터는, OIS 캐리어 상부에 제1 방향으로 형성되는 제1 가이드 레일과, 미들 가이드 하부에 제1 가이드 레일과 대면하여 형성되는 제2 가이드 레일과, 제1 및 제2 가이드 레일 사이에 구비되는 제1 OIS 볼을 더 포함할 수 있다.
또한, 본 발명의 센서 구동 액추에이터는, 미들 가이드 상부에 제2 방향으로 형성되는 제3 가이드 레일과, AF 캐리어 하부에 제3 가이드 레일과 대면하여 형성되는 제4 가이드 레일과, 제3 및 제4 가이드 레일 사이에 구비되는 제2 OIS 볼을 더 포함할 수 있다.
또한, AF 캐리어는 제3 마그네트를 구비하고, 하우징은 제3 마그네트에 전자기력을 발생시켜 AF 캐리어를 광축 방향으로 이동시키는 제3 구동 코일을 구비할 수 있다.
또한, 본 발명의 센서 구동 액추에이터는, AF 캐리어 외측에 광축 방향으로 형성되는 제5 가이드 레일과, 하우징 내측에 제5 가이드 레일과 대면하여 형성되는 제6 가이드 레일과, 제5 및 제6 가이드 레일 사이에 구비되는 AF 볼을 더 포함할 수 있다.
또한, 본 발명의 센서 구동 액추에이터는, 하우징에 장착되는 렌즈 모듈과, 하우징을 덮도록 구성되는 케이스를 더 포함할 수 있다.
여기서, 렌즈 모듈은 하우징 또는 케이스에 고정될 수 있다.
본 발명에 따르면, 카메라 모듈의 무게 대부분을 차지하는 렌즈 모듈을 이동시키는 것 대신 상대적으로 무게가 가벼운 이미지 센서를 이동시켜 손 떨림을 보정 및 오토 포커싱을 수행함으로써, 비교적 쉽게 OIS 및 AF를 구현할 수 있고, 카메라 모듈의 신뢰성을 향상시킬 수 있다.
또한, 본 발명에 따르면, OIS 및 AF 구현 시 유연 부재를 통해 이미지 센서의 이동을 용이하게 할 수 있고, 특히, 유연 부재를 두 개로 분리 구성하여, OIS 및 AF 구동 부하를 분리함으로써 신뢰성을 향상시킬 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 센서 구동 액추에이터의 사시도이다.
도 2 및 도 3은 본 발명의 실시예에 따른 액추에이터의 구성을 도시한 분해 결합도이다.
도 4는 도 1의 절단선 Ⅳ-Ⅳ를 따라 절단한 단면도이다.
도 5는 본 발명의 실시예에 따른 이미지 센서가 OIS 캐리어에 장착된 모습을 도시한 도면이다.
도 6은 본 발명의 실시예에 따른 이미지 센서가 유연 부재에 의해 베이스에 연결된 모습을 도시한 도면이다.
도 7은 본 발명의 실시예에 따른 액추에이터의 X축 방향 OIS의 기능을 설명하기 위한 도면이다.
도 8은 본 발명의 실시예에 따른 액추에이터의 Y축 방향 OIS의 기능을 설명하기 위한 도면이다.
도 9는 본 발명의 실시예에 따른 액추에이터의 광축 방향 AF의 기능을 설명하기 위한 도면이다.
도 10은 본 발명의 실시예에 따른 유연 부재의 역할을 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 실시예에 따른 센서 구동 액추에이터(이하 '액추에이터'로 지칭한다)의 사시도이고, 도 2 및 도 3은 본 발명의 실시예에 따른 액추에이터의 구성을 도시한 분해 결합도이다. 그리고, 도 4는 도 1의 절단선 Ⅳ-Ⅳ를 따라 절단한 단면도이고, 도 5는 본 발명의 실시예에 따른 이미지 센서가 OIS 캐리어에 장착된 모습을 도시한 도면이다. 그리고, 도 6은 본 발명의 실시예에 따른 이미지 센서가 유연 부재에 의해 베이스에 연결된 모습을 도시한 도면이다.
이하 도 1 내지 도 6을 참조하여 본 발명의 실시예에 따른 액추에이터의 전체적인 구성을 먼저 설명하고, AF와 OIS 각각의 기능을 구현하는 본 발명의 실시예에 대한 상세한 설명은 후술하도록 한다.
본 발명의 실시예에 따른 액추에이터(100)는 이미지 센서(120) 구동을 통해 오토 포커스(AF, Auto Focus) 및 손떨림 보정(OIS, Optical Image Stabilization)이 함께 구현된 실시예이나, 본 발명의 액추에이터(100)는 실시 형태에 따라서 OIS만을 위한 액추에이터로 구현될 수도 있음은 물론이다.
도면에 도시된 Z축 방향은 렌즈 모듈(190)로 빛이 유입되는 방향인 광축 방향으로서 후술되는 AF 캐리어(160)가 진퇴 이동하는 방향에 해당한다. 그리고, 광축은 이미지 센서(120)의 중심축을 의미한다.
그리고, 광축 방향(Z축 방향)과 수직을 이루는 두 방향인 X축 방향 및 Y축 방향은 손떨림에 의한 흔들림이 보상되도록 OIS 구동에 의하여 이미지 센서(120)가 이동하는 방향을 의미한다. 이하 설명에서 X축 방향을 제1 방향으로, Y축 방향을 제2 방향으로 지칭하나 이는 상대적 관점에 따른 하나의 예시일 뿐, X축 방향과 Y축 방향 중 어느 하나의 방향이 제1 방향이며, 나머지 하나의 방향이 제2 방향이 될 수 있음은 물론이다.
본 발명의 실시예에 따른 액추에이터(100)는, 베이스(110), 이미지 센서(120), 스토퍼(125), OIS 캐리어(130), 미들 가이드(140), 하우징(150), AF 캐리어(160), 케이스(170), 유연 부재(180) 및 렌즈 모듈(190)을 포함하여 구성될 수 있다.
본 발명의 실시예에 따른 액추에이터(100)는 베이스(110)를 기준으로 OIS 캐리어(130), 미들 가이드(140), AF 캐리어(160), 하우징(150) 및 케이스(170)가 순차적으로 결합되는 구조를 가질 수 있다.
이미지 센서(120)는 베이스(110) 상부에 배치된다. 여기서, 베이스(110)는 이미지 센서(120)와 전기적 신호를 주고 받을 수 있도록 구성된 인쇄 회로 기판일 수 있다.
유연 부재(180)는 베이스(110) 및 이미지 센서(120)를 연결하여 이미지 센서(120)가 베이스(110)를 기준으로 이동할 수 있도록 한다.
구체적으로, 도 6을 참조하면, 유연 부재(180)는 베이스(110) 및 이미지 센서(120)와 연결되어, 이미지 센서(120)의 이동에 따라 베이스(110)를 기준으로 광축 방향, 광축 방향과 수직인 제1 방향 및 제1 방향과 수직인 제2 방향 중 적어도 하나의 방향으로 이동된다.
유연 부재(180)는, 제1 유연 부재(181) 및 제2 유연 부재(182)를 포함하여 구성될 수 있으나, 이에 한정되는 것은 아니며 하나의 유연 부재로 구성될 수도 있다.
여기서, 유연 부재(180)는 금속 재질이거나 플렉시블(flexible) 기판일 수 있으나 이에 한정되는 것은 아니며, 이미지 센서(120) 이동 시 함께 이동될 수 있는 유연한 재질이면 족하다.
유연 부재(180)가 제1 유연 부재(181) 및 제2 유연 부재(182)를 포함하여 구성되는 경우, 제1 및 제2 유연 부재(181, 182) 중 어느 하나는 제1 방향 및 제2 방향 중 적어도 하나의 방향으로 이동되고, 나머지 다른 하나는 광축 방향으로 이동될 수 있다.
제1 유연 부재(181)는, AF 캐리어(160)에 고정되는 제1 고정부(181a)와 제1 고정부(181a) 및 이미지 센서(120) 사이에 연결되는 제1 유연부(181b)로 구성된다.
제2 유연 부재(182)는 베이스(110)에 고정되는 제2 고정부(182a)와 제2 고정부(182a) 및 AF 캐리어(160) 사이에 연결되는 제2 유연부(182b)로 구성된다.
여기서, 제1 유연 부재(181)는 제2 유연 부재(182) 내측에 배치될 수 있다.
구체적으로, 제1 유연부(181a) 및 제2 유연부(182a)는, 복수의 브릿지와 복수의 브릿지 사이의 슬릿으로 구성될 수 있으며, 이미지 센서(120)를 둘러싸며 배치될 수 있으나, 이에 한정되는 것은 아니며, 이미지 센서(120)의 이동에 따라 이동될 수 있는 형태로 배치되면 족하다. 여기서, 제2 유연부(182a)는 제1 유연부(181a) 외측에 위치할 수 있다.
제1 유연부(181a) 및 제2 유연부(182a)에 구성된 복수의 브릿지는 신호 라인이 형성될 수 있으며, 이를 통해 베이스(110) 및 이미지 센서(120) 간 신호 전달 역할을 수행할 수 있다.
도 4 및 도 5를 참조하면, 이미지 센서(120)는 OIS 캐리어(130)에 장착되고, 미들 가이드(140)는 OIS 캐리어(130) 상부에 배치된다. 여기서, OIS 캐리어(130) 및 미들 가이드(140)는 AF 캐리어(160)에 수용된다. 그리고, AF 캐리어(160)는 하우징(150)에 수용된다.
이에 따라, OIS 캐리어(130)는 AF 캐리어(160) 내부에서 제1 방향 및 제2 방향 중 적어도 한 방향으로 이동할 수 있고, AF 캐리어(160)는 하우징(150) 내부에서 광축 방향으로 이동할 수 있다.
이 때, OIS 캐리어(130)는 AF 캐리어(160)에 수용된 상태이기 때문에, AF 캐리어(160) 이동 시 함께 이동될 수 있다.
도면과 달리, 이미지 센서(120)는 AF 캐리어(160)에 장착되고, AF 캐리어(160)는 OIS 캐리어(130)에 수용될 수도 있다. 여기서, 미들 가이드(140)는 OIS 캐리어(130) 상부에 배치되고, OIS 캐리어(130)는 하우징(150)에 수용된다.
이에 따라, AF 캐리어(160)는 OIS 캐리어(130) 내부에서 광축 방향으로 이동할 수 있고, OIS 캐리어(130)는 하우징(150) 내부에서 제1 방향 및 제2 방향 중 적어도 한 방향으로 이동할 수 있다.
이 때, AF 캐리어(160)는 OIS 캐리어(130)에 수용된 상태이기 때문에, OIS 캐리어(130) 이동 시 함께 이동될 수 있다.
OIS 캐리어(130)는 제1 및 제2 마그네트(M1, M2)를 구비하며, AF 캐리어(160)는 제3 마그네트(M3)를 구비한다. 그리고, 하우징(150)은 제1 내지 제3 마그네트(M1, M2, M3)에 각각 대면하여 제1 내지 제3 구동 코일(C1, C2, C3)을 구비한다.
여기서, 제1 내지 제3 구동 코일(C1, C2, C3)은 기판(155)에 실장된 상태에서 하우징(150) 내주면에 구비될 수 있다.
OIS 캐리어(130)는 이미지 센서(120)를 광축 방향으로 노출시키기 위한 개방부가 중앙에 형성된다. 이에 따라, 이미지 센서(120)는 렌즈 모듈(190)로부터 들어오는 광을 감지할 수 있게 된다.
여기서, 이미지 센서(120)는 CCD(Charged-coupled Device), CMOS(Complementary Metal-oxide Semiconductor)와 같은 촬상 소자로 이루어질 수 있다.
AF 캐리어(160)가 광축 방향으로 진퇴 이동하면 액추에이터(100) 후단에 구비된 이미지 센서(120)도 광축 방향으로 진퇴 이동되어 이미지 센서(120)와 렌즈 모듈(190) 사이의 초점 거리가 조정됨으로써 AF 기능이 구현된다. 이에 대한 자세한 설명은 후술 하겠다.
미들 가이드(140)는 OIS 캐리어(130) 및 AF 캐리어(160) 사이에 구비된다.
OIS 캐리어(130) 상부에는 제1 방향으로 제1 가이드 레일(131)이 형성되고, 미들 가이드(140) 하부에는 제1 가이드 레일(131)과 대면하여 제2 가이드 레일(141)이 형성된다. 그리고, 제1 및 제2 가이드 레일(131, 141) 사이에는 제1 OIS 볼(B1)이 구비된다.
미들 가이드(140) 상부에는 제2 방향으로 제3 가이드 레일(142)이 형성되고, AF 캐리어(160) 하부에는 제3 가이드 레일(142)과 대면하여 제4 가이드 레일(162)이 형성된다. 그리고, 제3 및 제4 가이드 레일(142, 162) 사이에는 제2 OIS 볼(B2)이 구비된다.
AF 캐리어(160) 외측에는 광축 방향으로 제5 가이드 레일(161)이 형성되고, 하우징(150) 내측에는 제5 가이드 레일(161)과 대면하여 제6 가이드 레일(미도시)이 형성된다. 그리고, 제5 및 제6 가이드 레일(161, 미도시) 사이에는 AF 볼(B3)이 구비된다.
스토퍼(125)는 AF 캐리어(160)의 광축 방향으로의 하부 이동을 제한하는 역할을 수행한다.
케이스(170)는 하우징(150)을 덮도록 구성될 수 있다. 여기서, 렌즈 모듈(190)은 하우징(150) 또는 케이스(170)에 고정될 수 있다. 이와 같이 본 발명의 실시예에 따른 액추에이터(100)는 렌즈 모듈(190)이 고정된 상태에서 이미지 센서(120)를 3축으로 이동함으로써, OIS 및 AF를 모두 구현할 수 있다.
도 7은 본 발명의 실시예에 따른 액추에이터의 X축 방향 OIS의 기능을 설명하기 위한 도면이고, 도 8은 본 발명의 실시예에 따른 액추에이터의 Y축 방향 OIS의 기능을 설명하기 위한 도면이다.
도 7을 참조하면, 본 발명의 실시예에 따른 액추에이터(100)는, OIS 캐리어(130) 상부에 제1 방향(X축 방향)으로 형성되는 제1 가이드 레일(131)과, 미들 가이드(140) 하부에 제1 가이드 레일(131)과 대면하여 형성되는 제2 가이드 레일(141)과, 제1 및 제2 가이드 레일(131, 141) 사이에 구비되는 제1 OIS 볼(B1)을 포함한다.
제1 OIS 볼(B1)은 제1 및 제2 가이드 레일(131, 141) 사이에서 구름 이동함으로써 OIS 캐리어(130)를 제1 방향으로 이동시킬 수 있다.
제1 가이드 레일(131)은 OIS 캐리어(130)의 각 모서리에 형성될 수 있고, 제2 가이드 레일(141)도 미들 가이드(140)의 각 모서리에 형성될 수 있으나 이에 한정되는 것은 아니다.
제1 마그네트(M1)는 OIS 캐리어(130) 상부에 입설되는 형태로 구비되며, 두 개의 제1 OIS 볼(B1) 사이에 제1 방향으로 배치된다.
제1 구동 코일(C1)은, 하우징(150)의 내측면에 제1 마그네트(M1)와 대면하여 배치된다. 여기서, 제 제1 구동 코일(C1) 내측에 홀 센서가 배치될 수 있다.
OIS 캐리어(130)는 제1 방향(X축 방향)의 OIS 기능이 구현되는 경우 AF 캐리어(160)의 내부 공간에서 베이스(110)를 기준으로 제1 방향으로 이동한다.
홀 센서는 손떨림에 의한 움직임 방향과 그 크기에 대응되는 전기적 신호를 구동 드라이버(미도시)로 전송하며, 구동 드라이버는 이에 대응하는 크기와 방향의 전원이 제1 구동 코일(C1)에 인가되도록 제어할 수 있다. 즉, OIS 캐리어(130)는 홀 센서 및 구동 드라이버 간 피드백 제어를 통해 이동될 수 있다.
제1 구동 코일(C1)에 전원이 인가되면 제1 구동 코일(C1)은 OIS 캐리어(130)에 설치된 제1 마그네트(M1)에 전자기력을 발생시키고 이 전자기력에 의하여 제1 OIS 볼(B1)은 제1 및 제2 가이드 레일(131, 141) 사이에서 구름 이동하고, 이에 따라 OIS캐리어(130)가 제1 방향으로 이동한다.
여기서, 이미지 센서(120)는 OIS 캐리어(130)에 결합되는 형태이므로 OIS 캐리어(130)가 제1 방향으로 이동하는 경우 이미지 센서(120)도 제1 방향으로 이동한다. 이에 따라, 제1 방향 성분에 의한 손떨림이 보정된다.
도 8을 참조하면, 본 발명의 실시예에 따른 액추에이터(100)는, 미들 가이드(140) 상부에 제2 방향(Y축 방향)으로 형성되는 제3 가이드 레일(142)과, AF 캐리어(160) 하부에 제3 가이드 레일(142)과 대면하여 형성되는 제4 가이드 레일(162)과, 제3 및 제4 가이드 레일(142, 162) 사이에 구비되는 제2 OIS 볼(B2)을 포함한다.
제2 OIS 볼(B2)은 제3 및 제4 가이드 레일(142, 162) 사이에서 구름 이동함으로써 미들 가이드(140)를 제2 방향으로 이동시킬 수 있다.
제3 가이드 레일(142)은 미들 가이드(140)의 각 모서리에 형성될 수 있고, 제4 가이드 레일(162)도 AF 캐리어(160)의 각 모서리에 형성될 수 있으나 이에 한정되는 것은 아니다.
제2 마그네트(M2)는 OIS 캐리어(130) 상부에 입설되는 형태로 구비되며, 두 개의 제2 OIS 볼(B2) 사이에 제2 방향으로 배치된다.
제2 구동 코일(C2)은, 하우징(150)의 내측면에 제2 마그네트(M2)와 대면하여 배치되고, 제2 구동 코일(C2) 내측에 홀 센서가 배치될 수 있다.
미들 가이드(140)는 제2 방향(Y축 방향)의 OIS 기능이 구현되는 경우 AF 캐리어(160)의 내부 공간에서 베이스(110)를 기준으로 제2 방향으로 이동한다.
홀 센서는 손떨림에 의한 움직임 방향과 그 크기에 대응되는 전기적 신호를 구동 드라이버(미도시)로 전송하며, 구동 드라이버는 이에 대응하는 크기와 방향의 전원이 제2 구동 코일(C2)에 인가되도록 제어한다. 즉, 미들 가이드(140)는 홀 센서 및 구동 드라이버 간 피드백 제어를 통해 이동될 수 있다.
제2 구동 코일(C2)에 전원이 인가되면 제2 구동 코일(C2)은 OIS 캐리어(130)에 설치된 제2 마그네트(M2)에 전자기력을 발생시키고 이 전자기력에 의하여 제2 OIS 볼(B2)은 제3 및 제4 가이드 레일(142, 162) 사이에서 구름 이동하고, 이에 따라, 미들 가이드(140)가 제2 방향으로 이동한다.
여기서, 이미지 센서(120)는 OIS 캐리어(130)에 결합되고, OIS 캐리어(130)는 미들 가이드(140)와 결합되는 형태이므로 미들 가이드(140)가 제2 방향으로 이동하는 경우 OIS 캐리어(130) 및 이미지 센서(120)도 제2 방향으로 이동한다. 이에 따라, 제2 방향 성분에 의한 손떨림이 보정된다.
이와 같이, 본 발명의 실시예에 따른 액추에이터(100)는, 카메라 모듈의 무게 대부분을 차지하는 렌즈 모듈(190)을 이동시키는 것 대신 상대적으로 무게가 가벼운 이미지 센서(120)를 이동시켜 손 떨림을 보정함으로써, 비교적 쉽게 OIS를 구현할 수 있고, 카메라 모듈의 신뢰성을 향상시킬 수 있다.
도 9는 본 발명의 실시예에 따른 액추에이터의 광축 방향 AF의 기능을 설명하기 위한 도면이다.
도 9를 참조하면, 본 발명의 실시예에 따른 액추에이터(100)는, AF 캐리어(160) 외측에 광축 방향(Z축 방향)으로 형성되는 제5 가이드 레일(161)과, 하우징(150) 내측에 제5 가이드 레일(161)과 대면하여 형성되는 제6 가이드 레일(미도시)과, 제5 및 제6 가이드 레일(161, 미도시) 사이에 구비되는 AF 볼(B3)을 포함한다.
AF 볼(B3)은 제5 및 제6 가이드 레일(161, 미도시) 사이에서 구름 이동함으로써 AF 캐리어(160)를 광축 방향으로 이동시킬 수 있다.
제5 가이드 레일(161)은 제3 마그네트(M3)가 구비된 AF 캐리어(160) 외측면 양측에 각각 형성될 수 있다.
제3 마그네트(M3)는 제5 가이드 레일(161) 사이에 구비되고, 제3 구동 코일(C3)은 하우징(150)의 내측면에 제3 마그네트(M3)와 대면하여 배치되고, 제3 구동 코일(C3) 내측에 홀 센서가 배치될 수 있다.
AF 캐리어(160)는 홀 센서 및 구동 드라이버 간 피드백 제어를 통해 이동될 수 있다.
하우징(150)은 AF 캐리어(160)의 이동 공간을 제공한다. 그리고, AF 캐리어(160)는 하우징(150) 내부에 구비되어 베이스(110)를 기준으로 광축 방향(Z축 방향)으로 이동한다.
제3 구동 코일(C3)에 적절한 크기와 방향의 전원이 인가되면 제3 코일(C3)은 AF 캐리어(160)에 설치된 제3 마그네트(M3)에 전자기력을 발생시키고 이 전자기력에 의하여 AF 볼(B3)은 제5 및 제6 가이드 레일(161, 미도시) 사이에서 구름 이동하며, 이에 따라, AF 캐리어(160)가 광축 방향으로 이동한다.
AF 캐리어(160)에는 OIS 캐리어(130)가 수용되고, OIS 캐리어(130)는 이미지 센서(120)가 결합되므로 AF 캐리어(130)가 광축 방향으로 이동하는 경우 OIS 캐리어(130) 및 이미지 센서(120)도 광축 방향으로 이동하게 되어 렌즈 모듈(190)과 이미지 센서(120) 간 초점 거리가 조정된다.
전술한 OIS 캐리어(130)의 제1 및 제2 방향 이동 및 AF 캐리어(160)의 광축 방향 이동은 각각 별개의 프로세싱과 별개의 물리적 구조에 의하여 독립적으로 구동되므로 각 방향 별 이동은 개별적으로 이루어질 수 있음은 물론, 상호 조합된 복수 개 방향(XY, XZ, YZ, XYZ 등)의 이동이 동시적으로 이루어질 수도 있음은 물론이다.
전술한 본 발명의 실시예에 따른 액추에이터(100)에 따르면, 제1 내지 제3 마그네트(M1, M2, M3)와 제1 내지 제3 구동 코일(C1, C2, C3)을 광축 방향으로 입설하여 배치함으로써 액추에이터(100)의 두께(광축 방향 기준)를 비약적으로 줄일 수 있게 된다.
즉, 최근 휴대 단말의 경우 화면 표시 수단이 넓어짐에 따라 메인 기판의 너비 또한, 충분히 커지고 있는데, 본 발명의 액추에이터(100)는 광축을 기준으로 수평 방향인 너비 방향으로만 크기가 증가되므로 이러한 휴대 단말의 경향성에 더욱 부합되는 구조를 구현할 수 있다.
도 10은 본 발명의 실시예에 따른 유연 부재의 역할을 설명하기 위한 도면이다.
제1 유연 부재(181)는 제1 고정부(181a)가 AF 캐리어(160)에 고정되고, 제1 유연부(181b)가 제1 고정부(181a) 및 이미지 센서(120) 사이를 연결한다.
제2 유연 부재(182)는 제2 고정부(182a)가 베이스(110)에 고정되고, 제2 유연부(182b)가 제2 고정부(182a) 및 AF 캐리어(160) 사이를 연결한다.
여기서, 제1 유연 부재(181)는 이미지 센서(120)의 제1 및 제2 방향 이동을 용이하게 하는 역할을 수행하고, 제2 유연 부재(182)는 이미지 센서(120)의 광축 방향 이동을 용이하게 하는 역할을 수행한다.
도 10 (a)와 같이, OIS 기능이 구현되어, 이미지 센서(120)가 제1 방향 및 제2 방향 중 적어도 하나의 방향으로 이동하는 경우, 제1 유연 부재(181)도 이미지 센서(120)의 이동에 따라 제1 방향 및 상기 제2 방향 중 적어도 하나의 방향으로 이동한다.
즉, 제1 유연 부재(181)의 제1 고정부(181a)가 AF 캐리어(160)에 고정되어 있고, 제1 유연부(181b)는 이미지 센서(120)에 연결되어 있기 때문에 이미지 센서(120)의 이동에 따라 제1 유연부(181b)도 이동될 수 있다.
도 10 (b)와 같이, AF 기능이 구현되어, 이미지 센서(120)가 광축 방향으로 이동하는 경우, 제2 유연 부재(182)도 이미지 센서(120)의 이동에 따라 광축 방향으로 이동한다.
즉, 제2 유연 부재(182)의 제2 고정부(182a)가 베이스(110)에 고정되어 있고, 제2 유연부(182b)는 AF 캐리어(160)에 연결되어 있기 때문에 이미지 센서(120)의 이동에 따라 제2 유연부(182b)도 이동될 수 있다.
이와 같이, 본 발명의 실시예에 따른 액추에이터(100)는 유연 부재(180)를 제1 및 제2 유연 부재(181, 182)로 분리 구성하여, OIS 및 AF 구동 부하를 분리함으로써 신뢰성을 향상시킬 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
상술된 본 발명의 설명에 있어 제1 및 제2 등과 같은 수식어는 상호 간의 구성요소를 상대적으로 구분하기 위하여 사용되는 도구적 개념의 용어일 뿐이므로, 특정의 순서, 우선 순위 등을 나타내기 위하여 사용되는 용어가 아니라고 해석되어야 한다.
본 발명의 설명과 그에 대한 실시예의 도시를 위하여 첨부된 도면 등은 본 발명에 의한 기술 내용을 강조 내지 부각하기 위하여 다소 과장된 형태로 도시될 수 있으나, 앞서 기술된 내용과 도면에 도시된 사항 등을 고려하여 본 기술 분야의 통상의 기술자 수준에서 다양한 형태의 변형 적용 예가 가능할 수 있음은 자명하다고 해석되어야 한다.
본 발명에 따른 센서 구동 액추에이터는 독립된 카메라 장치는 물론, 휴대폰, 스마트폰 등과 같은 모바일 단말에 장착된 카메라 모듈 등에 적용될 수 있다.

Claims (17)

  1. 이미지 센서;
    상기 이미지 센서가 배치되는 베이스;
    상기 베이스 및 상기 이미지 센서에 연결되며, 상기 이미지 센서의 이동에 따라 상기 베이스를 기준으로 광축 방향, 상기 광축 방향과 수직인 제1 방향 및 상기 제1 방향과 수직인 제2 방향 중 적어도 하나의 방향으로 이동되는 유연 부재;
    상기 이미지 센서를 상기 제1 방향 및 상기 제2 방향 중 적어도 하나의 방향으로 이동시키는 OIS 캐리어;
    상기 이미지 센서를 상기 광축 방향으로 이동시키는 AF 캐리어; 및
    상기 OIS 캐리어 및 AF 캐리어가 수용되는 하우징을 포함하고,
    상기 유연 부재는
    동일 평면 상에 서로 분리되어 위치하며, 상기 이미지 센서의 이동에 따라 서로 다른 방향으로 이동하는 제1 및 제2 유연 부재를 포함하는
    센서 구동 액추에이터.
  2. 제 1 항에 있어서,
    상기 OIS 캐리어는
    상기 이미지 센서가 장착되며, 상기 AF 캐리어에 수용되는
    센서 구동 액추에이터.
  3. 제 1 항에 있어서,
    상기 AF 캐리어는
    상기 이미지 센서가 장착되며, 상기 OIS 캐리어에 수용되는
    센서 구동 액추에이터.
  4. 제 1 항에 있어서,
    상기 이미지 센서의 이동에 따라, 상기 제1 및 제2 유연 부재 중 어느 하나는 상기 제1 방향 및 상기 제2 방향 중 적어도 하나의 방향으로 이동되고, 나머지 다른 하나는 상기 광축 방향으로 이동되는
    센서 구동 액추에이터.
  5. 제 1 항에 있어서,
    상기 제1 유연 부재는
    상기 AF 캐리어에 고정되는 제1 고정부와 상기 제1 고정부 및 상기 이미지 센서 사이에 연결되는 제1 유연부로 구성되고,
    상기 제2 유연 부재는
    상기 베이스에 고정되는 제2 고정부와 상기 제2 고정부 및 상기 AF 캐리어 사이에 연결되는 제2 유연부로 구성되는
    센서 구동 액추에이터.
  6. 제 5 항에 있어서,
    상기 제1 유연 부재는
    상기 이미지 센서의 이동에 따라 상기 제1 방향 및 상기 제2 방향 중 적어도 하나의 방향으로 이동되는
    센서 구동 액추에이터.
  7. 제 5 항에 있어서,
    상기 제2 유연 부재는
    상기 이미지 센서의 이동에 따라 상기 광축 방향으로 이동되는
    센서 구동 액추에이터.
  8. 제 5 항에 있어서,
    상기 제1 및 제2 유연부는
    복수의 브릿지와 상기 복수의 브릿지 사이의 슬릿으로 구성되며, 상기 이미지 센서를 둘러싸며 배치되는
    센서 구동 액추에이터.
  9. 제 4 항 또는 제 8 항에 있어서,
    상기 제1 유연 부재는
    제2 유연 부재 내측에 배치되는
    센서 구동 액추에이터.
  10. 제 1 항에 있어서,
    상기 OIS 캐리어 및 상기 AF 캐리어 사이에 구비되는 미들 가이드
    를 더 포함하는 센서 구동 액추에이터.
  11. 제 1 항에 있어서,
    상기 OIS 캐리어는
    제1 및 제2 마그네트를 구비하고,
    상기 하우징은
    상기 제1 마그네트에 전자기력을 발생시켜 상기 OIS 캐리어를 상기 제1 방향으로 이동시키는 제1 구동 코일과 상기 제2 마그네트에 전자기력을 발생시켜 상기 OIS 캐리어를 상기 제2 방향으로 이동시키는 제2 구동 코일을 구비하는
    센서 구동 액추에이터.
  12. 제 10 항에 있어서,
    상기 OIS 캐리어 상부에 상기 제1 방향으로 형성되는 제1 가이드 레일;
    상기 미들 가이드 하부에 상기 제1 가이드 레일과 대면하여 형성되는 제2 가이드 레일; 및
    상기 제1 및 제2 가이드 레일 사이에 구비되는 제1 OIS 볼
    을 더 포함하는 센서 구동 액추에이터.
  13. 제 10 항에 있어서,
    상기 미들 가이드 상부에 상기 제2 방향으로 형성되는 제3 가이드 레일;
    상기 AF 캐리어 하부에 상기 제3 가이드 레일과 대면하여 형성되는 제4 가이드 레일; 및
    상기 제3 및 제4 가이드 레일 사이에 구비되는 제2 OIS 볼
    을 더 포함하는 센서 구동 액추에이터.
  14. 제 1 항에 있어서,
    상기 AF 캐리어는
    제3 마그네트를 구비하고,
    상기 하우징은
    상기 제3 마그네트에 전자기력을 발생시켜 상기 AF 캐리어를 상기 광축 방향으로 이동시키는 제3 구동 코일을 구비하는
    센서 구동 액추에이터.
  15. 제 1 항에 있어서,
    상기 AF 캐리어 외측에 상기 광축 방향으로 형성되는 제5 가이드 레일;
    상기 하우징 내측에 상기 제5 가이드 레일과 대면하여 형성되는 제6 가이드 레일; 및
    상기 제5 및 제6 가이드 레일 사이에 구비되는 AF 볼
    을 더 포함하는 센서 구동 액추에이터.
  16. 제 1 항에 있어서,
    상기 하우징에 장착되는 렌즈 모듈; 및
    상기 하우징을 덮도록 구성되는 케이스
    를 더 포함하는 센서 구동 액추에이터.
  17. 제 16 항에 있어서,
    상기 렌즈 모듈은
    상기 하우징 또는 케이스에 고정되는
    센서 구동 액추에이터.
PCT/KR2022/011206 2021-07-30 2022-07-29 센서 구동 액추에이터 WO2023008954A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0100591 2021-07-30
KR1020210100591A KR102663494B1 (ko) 2021-07-30 2021-07-30 센서 구동 액추에이터

Publications (1)

Publication Number Publication Date
WO2023008954A1 true WO2023008954A1 (ko) 2023-02-02

Family

ID=85088031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011206 WO2023008954A1 (ko) 2021-07-30 2022-07-29 센서 구동 액추에이터

Country Status (2)

Country Link
KR (2) KR102663494B1 (ko)
WO (1) WO2023008954A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200005879A (ko) * 2018-07-09 2020-01-17 삼성전기주식회사 카메라 모듈
JP2020170170A (ja) * 2016-03-11 2020-10-15 アップル インコーポレイテッドApple Inc. 画像センサを移動させるボイスコイルモータを有する光学画像安定化
KR20210009495A (ko) * 2019-07-17 2021-01-27 자화전자(주) 댐퍼 및 이를 포함하는 카메라용 액추에이터
KR20210043244A (ko) * 2019-10-11 2021-04-21 엘지이노텍 주식회사 기판, 센서 구동 장치 및 이를 포함하는 카메라 모듈
KR20210083154A (ko) * 2019-12-26 2021-07-06 주식회사 엠씨넥스 자동 초점 조정 기능을 구비한 카메라

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020170170A (ja) * 2016-03-11 2020-10-15 アップル インコーポレイテッドApple Inc. 画像センサを移動させるボイスコイルモータを有する光学画像安定化
KR20200005879A (ko) * 2018-07-09 2020-01-17 삼성전기주식회사 카메라 모듈
KR20210009495A (ko) * 2019-07-17 2021-01-27 자화전자(주) 댐퍼 및 이를 포함하는 카메라용 액추에이터
KR20210043244A (ko) * 2019-10-11 2021-04-21 엘지이노텍 주식회사 기판, 센서 구동 장치 및 이를 포함하는 카메라 모듈
KR20210083154A (ko) * 2019-12-26 2021-07-06 주식회사 엠씨넥스 자동 초점 조정 기능을 구비한 카메라

Also Published As

Publication number Publication date
KR20230018723A (ko) 2023-02-07
KR20230019171A (ko) 2023-02-07
KR102663494B1 (ko) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2020218746A1 (ko) 카메라용 액추에이터 및 이를 포함하는 카메라 모듈
WO2015026078A1 (en) Camera module
WO2014142622A1 (ko) 렌즈 액츄에이터
WO2015046761A1 (ko) 자동 초점 조절 및 손떨림 보정 기능을 갖는 휴대단말기용 카메라 액추에이터
WO2015026064A1 (en) Camera module, and position detector and position detection method used in the camera module
WO2019164296A1 (ko) 카메라 모듈
WO2014092271A1 (en) Optical adjusting apparatus
WO2014003281A1 (en) Camera module
WO2019031817A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학 기기
WO2014003492A1 (en) Camera module
WO2016137081A1 (ko) 손 떨림 보정 장치 및 이를 포함하는 카메라 렌즈 모듈
WO2019151700A1 (ko) 카메라 모듈
WO2022065680A1 (ko) 반사계 액추에이터
WO2019143116A1 (ko) 렌즈 어셈블리 및 그를 포함하는 카메라 모듈
WO2019221447A1 (ko) 카메라 모듈 및 이를 포함하는 카메라
WO2023008822A1 (ko) 카메라용 액추에이터
WO2013065980A1 (en) Camera module
WO2020251203A1 (ko) 렌즈 어셈블리 구동 장치 및 이를 포함하는 카메라 모듈
WO2021225230A1 (ko) 렌즈 조립체
WO2023008954A1 (ko) 센서 구동 액추에이터
WO2023043037A1 (ko) 센서 구동 액추에이터
WO2022154243A1 (ko) 줌 구동 액추에이터
WO2022191521A1 (ko) 센서 구동 액추에이터 및 이를 포함하는 카메라 모듈
WO2022225325A1 (ko) 카메라용 액추에이터
WO2021235835A1 (ko) 카메라 모듈 및 광학기기

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE