WO2023008097A1 - Structure protection sheet, and method for manufacturing reinforced structure - Google Patents

Structure protection sheet, and method for manufacturing reinforced structure Download PDF

Info

Publication number
WO2023008097A1
WO2023008097A1 PCT/JP2022/026445 JP2022026445W WO2023008097A1 WO 2023008097 A1 WO2023008097 A1 WO 2023008097A1 JP 2022026445 W JP2022026445 W JP 2022026445W WO 2023008097 A1 WO2023008097 A1 WO 2023008097A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protection sheet
polymer cement
resin
structure protection
Prior art date
Application number
PCT/JP2022/026445
Other languages
French (fr)
Japanese (ja)
Inventor
有希 松野
Original Assignee
恵和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恵和株式会社 filed Critical 恵和株式会社
Publication of WO2023008097A1 publication Critical patent/WO2023008097A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/70Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/71Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being an organic material
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating

Definitions

  • the present invention relates to a structure protection sheet and a method for manufacturing a reinforced structure. More specifically, a structure protection sheet that can greatly reduce the construction period for providing a protective layer on the surface of a structure such as concrete and protect the structure for a long period of time, and reinforcement using the structure protection sheet
  • the present invention relates to a method for manufacturing a constructed structure.
  • repair and reinforcement work will be carried out.
  • Repair work is carried out by recoating the coating material several times after repairing the defective or weak parts.
  • the reinforcement work is carried out by coating the entire portion to be reinforced with a reinforcing coating material multiple times.
  • Overcoating in such repair work and reinforcement work is performed on concrete in the order of undercoating, intermediate coating, and topcoating.
  • undercoating For example, when applying a total of 5 layers of undercoat, 1st intermediate coat, 2nd intermediate coat, 1st topcoat, and 2nd topcoat, it takes at least 5 days.
  • the painting since the painting is done outdoors, it is affected by the weather. Therefore, it is difficult to shorten the construction period, labor costs are high, and the quality of the construction and coating film (film thickness, surface roughness, moisture content, etc.) depends on the external environment (humidity, temperature, etc.) during the coating process. As a result of being affected, it is difficult to become stable.
  • Patent Document 1 proposes a sheet and method that is simple, inexpensive, shortens the construction period, and reliably prevents deterioration of concrete.
  • a concrete repair sheet comprising an intermediate layer having a resin film and surface layers made of a fabric material laminated on both sides with an adhesive resin is attached to the concrete surface to be repaired with a construction adhesive. and then coating the surface layer of the pasted sheet for repairing concrete on the side opposite to the concrete surface with a coating material.
  • Patent Document 2 it prevents alkali-aggregate reaction, has excellent conformability to cracks in concrete structures, does not cause blistering of the coating film even when the temperature rises after the coating film is formed.
  • a method for protecting a concrete structure using a coating material capable of preventing concrete from spalling has been proposed.
  • This technique is a method of forming a substrate conditioning material coating film on the surface of a concrete structure and then forming a coating film on the coating film surface.
  • the base conditioning material coating film is formed from a composition containing a cationic (meth)acrylic polymer emulsion and an inorganic hydraulic substance.
  • the coating film formed on the surface of the base conditioning material coating film is a coating film formed from a composition containing an alkyl (meth)acrylate emulsion and an inorganic hydraulic substance, and has an elongation rate of 50 to 2000% at 20°C. , the salt barrier property is 10 ⁇ 2 to 10 ⁇ 4 mg/cm 2 ⁇ day, the water vapor permeability is 5 g/m ⁇ day or more, and the film thickness is 100 to 5000 ⁇ m.
  • the adhesive layer provided on the concrete repair sheet is softened by heating or the like and is bonded to the concrete. It may not work.
  • the concrete repair sheet after the concrete repair sheet was applied, the concrete sometimes swelled over time. This phenomenon was caused by the presence of the repair sheet, which has low water vapor permeability, and prevented the water vapor inside the concrete from escaping. It is considered to be
  • the method of forming a coating film by coating on site takes one day for each coating layer, and from the undercoat to the topcoat layer, for example, a six-layer coating film. It takes as long as 6 days to form , and there are problems that the film thickness varies and the quality and characteristics such as surface roughness and water content are difficult to stabilize.
  • the repair target of the concrete repair sheet is usually large concrete members such as road bridges, tunnels, river management facilities such as water gates, sewage pipes, and civil engineering structures such as quay walls
  • the concrete repair sheet itself is sufficient.
  • strength tensile strength, bending strength, hardness, surface strength, punching strength, toughness, etc.; the same applies hereinafter
  • conventional concrete repair sheets are considered to have sufficient strength. is difficult to say.
  • the present invention has been made to solve the above problems, and its object is to significantly reduce the construction period when providing a protective layer on the surface of a structure such as concrete, and to protect the structure over a long period of time. It is an object of the present invention to provide a structure protection sheet capable of restructuring and a method for manufacturing a reinforced structure using the structure protection sheet.
  • the present inventors have researched a concrete protective sheet that can stably protect concrete for a long period of time without depending on the construction method of forming a layer on the surface of concrete by coating means. As a result, it was found that the concrete protection sheet should be given performance according to the characteristics of the concrete.
  • a structure protection sheet having a polymer cement hardened layer and a resin layer, further equipped with waterproof, salt-blocking, neutralization prevention, and water vapor permeability that allows the water in concrete to be discharged as water vapor. was completed first. However, in the structure protection sheet that the present inventors completed earlier, the polymer cement hardened layer deteriorates due to exposure to sunlight, and there is a possibility that the performance imparted according to the characteristics of concrete will decrease. was there.
  • the inventors realized that the rate of change in moisture permeability of the structure protection sheet before and after exposure to sunlight was within a specific range, and completed the present invention.
  • This technical idea can also be applied as a structure protection sheet to structures other than those for concrete.
  • a structure protection sheet according to the present invention is a structure protection sheet comprising a polymer cement hardened layer provided on the structure side and a resin layer provided on the polymer cement hardened layer.
  • the change rate of moisture permeability before and after irradiation with light from a xenon lamp of 180 W/m 2 for 72 hours is 35% or less.
  • the polymer cement-hardened layer can suitably prevent the performance imparted from deteriorating even when exposed to sunlight.
  • the structure protection sheet can be mass-produced by coating and drying processes on the factory production line, it is possible to reduce costs, significantly reduce the work period on site, and achieve long-term protection of structures.
  • the polymer cement hardening layer is subjected to water absorption treatment.
  • the water absorption treatment includes a method of adding a water absorbing polymer to the polymer cement hardening layer, a method of adding an inorganic water absorbing substance to the polymer cement hardening layer, and a method of adding an inorganic water absorbing substance to the polymer cement hardening layer.
  • a method of performing aging treatment in a high humidity environment when producing, a method of performing heat treatment in a high humidity environment when forming the resin layer, and providing a water-containing sheet in which water is absorbed in the polymer cement hardened layer It is preferably any method selected from the group consisting of a method and a method of performing wet curing after applying the structure protection sheet.
  • the water absorption treatment of the hardened layer of polymer cement can be suitably realized.
  • the polymer cement-hardening layer is a layer containing a cement component and a resin, and may contain 10% by weight or more and 40% by weight or less of the resin. More preferably, the resin content is 20% by weight or more and 30% by weight or less.
  • the polymer cement hardened layer tends to be a layer with excellent conformability and good compatibility. It tends to improve the adhesiveness of itself. Furthermore, the cement component contained in the polymer-cement-hardened layer on the structure side acts to enhance adhesion to structures such as concrete.
  • the present invention is a method for manufacturing a structure using the structure protection sheet according to the present invention, characterized in that the structure protection sheet is laminated after applying an adhesive onto the structure.
  • a structure protection sheet that is composed only of layers that do not contain a base material or a reinforcing member is used, so that it can be easily attached to the surface of the structure.
  • a structure protection sheet that is composed only of layers that do not contain a base material or a reinforcing member is used, so that it can be easily attached to the surface of the structure.
  • an undercoat layer may be provided between the structure and the adhesive.
  • the undercoat layer provided between the structure and the adhesive acts to enhance mutual adhesion, so that the structure protection sheet can stably protect the structure for a long period of time.
  • the rate of change in moisture permeability is within a predetermined range, so that the performance imparted is not degraded. It is possible to provide a structure protection sheet capable of suitably preventing damage and protecting the surface of a structure over a long period of time, and a method for manufacturing a reinforced structure using the structure protection sheet.
  • the structure protection sheet is given performance according to the characteristics of the structure, so that it can follow the cracks and expansion that occur in the structure, and it prevents deterioration factors such as water and chloride ions from penetrating into the structure.
  • the structure protection sheet 1 As shown in FIG. 1 or FIG. 2C, the structure protection sheet 1 according to the present invention comprises a hardened polymer cement layer 3 provided on the side of a structure 21, and a hardened polymer cement layer 3 provided on the hardened polymer cement layer 3. layer 2; Both the polymer cement hardened layer 3 and the resin layer 2 may be formed as a single layer or as a laminate. Another layer may be provided between the hardened polymer cement layer 3 and the resin layer 2 depending on the required performance.
  • the structural protection sheet 1 according to the present invention has a rate of change in moisture permeability of 35% or less before and after being irradiated with light from a xenon lamp with a radiation intensity of 180 W/m 2 for 72 hours.
  • the rate of change in moisture permeability is calculated by ⁇ (N2 ⁇ N1)/N2 ⁇ 100 where N1: moisture permeability before xenon lamp irradiation and N2: moisture permeability after xenon lamp irradiation. If the rate of change in moisture permeability exceeds 35%, when the structure protection sheet 1 according to the present invention is attached to the surface of a structure, the resulting performance is degraded due to exposure to sunlight. There is A preferred lower limit of the rate of change in moisture permeability is 0%, and a preferred upper limit is 20%.
  • the moisture permeability is a value measured according to JIS Z0208:1976.
  • the reason why deterioration of the imparting performance of the structure protection sheet 1 according to the present invention can be prevented by specifying such a rate of change in moisture permeability is as follows.
  • the hardened polymer cement layer 3 is a layer containing a cement component and a resin component as will be described later. Continue to change to a stronger layer.
  • the moisture content in the polymer cement hardened layer 3 changes due to sunlight irradiation (
  • the hardening reaction of the hardened polymer cement layer 3 changes with the passage of time, resulting in insufficient hardening. Therefore, in the structure protection sheet 1 according to the present invention, irradiation with a xenon lamp that simulates sunlight irradiation is performed under predetermined conditions to limit the upper limit of the rate of change in moisture permeability.
  • the polymer cement hardened layer 3 is preferably subjected to water absorption treatment.
  • the water absorption treatment is a treatment that allows the hardened polymer cement layer 3 to retain moisture. It becomes possible to satisfy the rate of change.
  • Examples of the water absorption treatment include a method of adding a water absorbing polymer to the polymer cement hardened layer 3, a method of adding an inorganic water absorbing substance to the polymer cement hardened layer 3, and an aging treatment when producing the polymer cement hardened layer 3. in a high-humidity environment, a method in which the heat treatment for forming the resin layer 2 is performed in a high-humidity environment, a method in which a water-containing sheet is provided in which the hardened polymer cement layer 3 absorbs water, and the structure protection sheet 1 is Any method selected from the group consisting of wet curing after construction is preferably used.
  • examples of the water-absorbing polymer include Aqualic CA (manufactured by Nippon Shokubai Co., Ltd.).
  • the content of the water-absorbent polymer is preferably 0.15 to 0.30 parts by mass with respect to 100 parts by mass of the resin component in the hardened polymer cement layer 3, for example. If it is less than 0.15 parts by mass, the rate of change in moisture permeability of the structure protection sheet 1 according to the present invention may increase, and if it exceeds 0.30% by mass, the viscosity increases and coating becomes impossible. Sometimes.
  • the high-humidity environment is preferably an environment with a humidity of 50% RH or less. Further, as the aging treatment, specifically, there is a treatment of leaving the hardened polymer cement layer 3 in the high humidity environment for 24 to 72 hours.
  • the high-humidity environment includes the environment described above, and the temperature of the heat treatment constitutes the resin layer 2 used. Although it is appropriately determined according to the resin material to be used, etc., it is preferably 60 to 80° C., for example.
  • examples of the water-containing sheet include a non-woven fabric and the like which has been impregnated with water.
  • the water-containing sheet may be in a state of being embedded inside the polymer cement hardened layer 3, and may be on the surface of the polymer cement hardened layer 3 on the resin layer 2 side or on the resin layer 2 of the polymer cement hardened layer 3. may be provided on the opposite side of the side.
  • the structure protection sheet 1 according to the present invention preferably has a thickness distribution within ⁇ 100 ⁇ m. Since the structure protection sheet 1 has a thickness distribution within the above range, even an unskilled worker can stably form a layer with small thickness variations on the surface of the structure 21 . Further, by controlling the thickness distribution within the above range, it becomes easier to uniformly reinforce the structure.
  • the hardened polymer cement layer 3 provided on the side of the structure 21 has excellent adhesion to the structure 21, and since it has a known primer layer 5, the step of applying and drying an adhesive is unnecessary. becomes. Moreover, the resin layer 2 provided on the polymer cement hardened layer 3 can impart properties such as waterproofness, salt barrier properties, and neutralization prevention properties.
  • the structure protection sheet 1 can be mass-produced by the coating process and the drying process on the production line of the factory, it is possible to reduce the cost, significantly reduce the work period at the site, and achieve long-term protection of the structure. As a result, it is possible to greatly reduce the time required for attaching the film to the surface of the structure 21 and to protect the structure 21 for a long period of time.
  • the structure 21 is a mating member to which the structure protection sheet 1 according to the present invention is applied.
  • a structure made of concrete can be mentioned.
  • the concrete is generally obtained by placing and curing a cement composition containing at least a cementitious inorganic substance, an aggregate, an admixture and water.
  • Such concrete is widely used as civil engineering structures such as road bridges, tunnels, water gates and other river management facilities, sewer pipes, harbor quays and the like.
  • by applying the structure protection sheet 1 to the structure 21 made of concrete it is possible to follow the cracks and expansion that occur in the concrete, and prevent deterioration factors such as water and chloride ions from penetrating into the concrete.
  • water in concrete can be discharged as steam.
  • the polymer cement hardening layer 3 is a layer arranged on the structure side, as shown in FIG. 2(C).
  • This polymer cement hardening layer 3 may be a single layer or a laminate. ), can be arbitrarily set in consideration of the production line of the factory, production cost, etc. For example, if the production line is short and a single layer does not have a predetermined thickness, two or more layers can be overcoated. For example, when two layers are overcoated, the second layer is formed after drying the first layer.
  • the hardened polymer cement layer 3 may also have a structure in which layers having different properties are laminated.
  • the layer with a higher resin component will adhere to the resin layer 2, and the layer with a higher cement component will adhere to the concrete structure 21. Adhesiveness to is extremely excellent.
  • the hardened polymer cement layer 3 is obtained by applying a coating made of resin containing a cement component (resin component).
  • a method of adding a water-absorbing polymer or an inorganic water-absorbing substance to the hardened polymer cement layer 3 is employed as the water-absorbing treatment, the water-absorbing polymer or inorganic water-absorbing substance is added to the paint.
  • the cement component include various cements, limestones containing calcium oxide components, and clays containing silicon dioxide. Among them, cement is preferable, and examples thereof include portland cement, alumina cement, high-early strength cement, fly ash cement, and the like. Which cement is selected is selected according to the properties that the hardened polymer cement layer 3 should have, for example, the degree of conformability to the concrete structure 21 is considered. Portland cement defined in JIS R5210 is particularly preferred.
  • the resin component examples include acrylic resin, acrylic urethane resin, acrylic silicone resin, fluororesin, flexible epoxy resin, polybutadiene rubber, acrylic resin exhibiting rubber properties (e.g., synthetic rubber containing acrylic acid ester as a main component), etc. can be mentioned.
  • a resin component is preferably the same as the resin component constituting the resin layer 2 described later, from the viewpoint of enhancing the adhesion between the polymer cement hardened layer 3 and the resin layer 2 .
  • any of a thermoplastic resin, a thermosetting resin, and a photocurable resin may be used as the resin component.
  • cured in the polymer cement cured layer 3 does not mean that the resin component is limited to a resin that cures and polymerizes, such as a thermosetting resin or a photocurable resin. It is used in the sense that it is sufficient to use a material that hardens to a certain degree.
  • the content of the resin component is adjusted appropriately according to the material used, etc., but is preferably 10% by weight or more and 40% by weight or less with respect to the total amount of the cement component and the resin component. If it is less than 10% by weight, the adhesion to the resin layer 2 tends to decrease and it becomes difficult to maintain the polymer cement hardening layer 3 as a layer. Adhesion may be insufficient. From the above viewpoint, the content of the resin component is more preferably 15% by weight or more and 35% by weight or less, and more preferably 20% by weight or more and 30% by weight or less.
  • the paint for forming the hardened polymer cement layer 3 is a coating liquid obtained by mixing a cement component and a resin component with a solvent.
  • the resin component is preferably an emulsion.
  • an acrylic emulsion is polymer fine particles obtained by emulsion polymerization of a monomer such as an acrylic ester using an emulsifier.
  • An acrylic polymer emulsion obtained by polymerizing a mixture in water containing a surfactant is preferably used.
  • the content of the acrylic acid ester and the like constituting the acrylic emulsion is not particularly limited, but is selected within the range of 20 to 100% by weight.
  • the amount of the surfactant is also blended according to need, and the amount is not particularly limited, but the surfactant is blended to the extent that it forms an emulsion.
  • the hardened polymer cement layer 3 is formed by applying the coating solution onto a release sheet and then removing the solvent (preferably water) by drying.
  • a mixed composition of a cement component and an acrylic emulsion is used as a coating liquid to form the hardened polymer cement layer 3 .
  • the resin layer 2 may be formed on the release sheet after forming the polymer cement hardened layer 3
  • the polymer cement hardened layer 3 is formed after the resin layer 2 is formed on the release sheet.
  • a process paper as a release sheet is coated with a resin layer, and after drying, a coating liquid for polymer cement is applied, and a Young's modulus adjusting layer is attached in a wet state before drying. dry.
  • a coating liquid for polymer cement is further applied to the surface to which the Young's modulus adjusting layer is attached, and dried to obtain a structure protection sheet in which the Young's modulus adjusting layer is present in the polymer cement hardened layer according to the present invention.
  • a step of coating a resin layer on a process paper as a release sheet applying a coating liquid for polymer cement after drying, laminating a Young's modulus adjusting layer in a wet state before drying, and then drying.
  • the Young's modulus adjusting layer is present in the hardened layer of the polymer cement according to the present invention by further coating the surface to which the Young's modulus adjusting layer is attached without drying, and then drying the entire surface. It is also possible to obtain a structure protection sheet.
  • the thickness of the hardened polymer cement layer 3 is not particularly limited, and the type of use of the structure 21 (road bridges, tunnels, river facilities such as water gates, civil engineering structures such as sewer pipes, harbor quays, etc.), age, and shape. etc. is arbitrarily set.
  • the thickness of the hardened polymer cement layer 3 can be, for example, in the range of 0.5 mm to 1.5 mm.
  • the thickness variation is preferably within ⁇ 100 ⁇ m.
  • Such a precise thickness cannot be achieved by on-site coating, but can be achieved by stably coating on a factory production line. Even if the thickness is greater than 1 mm, the thickness variation can be kept within ⁇ 100 ⁇ m.
  • the thickness variation can be further reduced.
  • this hardened polymer cement layer 3 is more easily permeable to water vapor than the resin layer 2 which will be described later.
  • the water vapor transmission rate at this time is, for example, about 20 to 60 g/m 2 ⁇ day.
  • the cement component has good compatibility with, for example, the cement component that constitutes concrete, and can be made to have excellent adhesion to the concrete surface.
  • the polymer cement hardened layer 3 containing the cement component adheres well to the adhesive 23. Glue.
  • the hardened polymer cement layer 3 since the hardened polymer cement layer 3 has extensibility, it can follow changes in the concrete even if the structure 21 cracks or expands.
  • the resin layer 2 is a layer arranged on the side opposite to the structure 21 and appearing on the surface, as shown in FIG. 2(C).
  • the resin layer 2 may be, for example, a single layer as shown in FIG. 1(A), or may be a laminate consisting of at least two layers as shown in FIG. 1(B).
  • Whether to use a single layer or multiple layers takes into account the overall thickness, the functions to be imparted (waterproofness, salt barrier, neutralization prevention, water vapor permeability, etc.), the length of the factory production line, the production cost, etc. For example, if the production line is short and a single layer does not have a predetermined thickness, two or more layers can be overcoated. In the case of overcoating, the second layer is applied after drying the first layer. The second layer is then dried.
  • the resin layer 2 is coated with a paint that has flexibility, can follow cracks and cracks that occur in concrete, and can form a resin layer that is excellent in waterproofness, salt shielding, neutralization prevention, and water vapor permeability.
  • the resin constituting the resin layer 2 include acrylic resins exhibiting rubber characteristics (for example, synthetic rubber containing acrylic acid ester as a main component), acrylic urethane resins, acrylic silicone resins, fluorine resins, flexible epoxy resins, polybutadiene rubbers, and the like. can be mentioned.
  • This resin material is preferably the same as the resin component constituting the polymer cement layer 2 described above. In particular, it is preferably a resin containing an elastic film-forming component such as rubber.
  • acrylic resins exhibiting rubber properties are preferably composed of aqueous emulsions of acrylic rubber copolymers in terms of excellent safety and coatability.
  • the proportion of the acrylic rubber copolymer in the emulsion is, for example, 30 to 70% by weight.
  • An acrylic rubber copolymer emulsion is obtained, for example, by emulsion polymerization of monomers in the presence of a surfactant. Any of anionic, nonionic and cationic surfactants can be used.
  • the paint for forming the resin layer 2 is prepared by preparing a mixed coating liquid of a resin composition and a solvent, applying the coating liquid on a release sheet, and then removing the solvent by drying.
  • the solvent may be water, an aqueous solvent, or an organic solvent such as xylene/mineral spirit. In Examples described later, a water-based solvent is used, and the resin layer 2 is made of an acrylic rubber composition.
  • the order of the layers formed on the release sheet is not limited. may be in that order. However, it is preferable to form the resin layer 2 on the release sheet and then form the hardened polymer cement layer 3, as shown in Examples described later.
  • the thickness of the resin layer 2 is arbitrarily set according to the type of use of the structure 21 (road bridge, tunnel, river management facility such as a water gate, civil engineering structure such as a sewage pipe, port quay, etc.), degree of aging, shape, and the like. be. As an example, it is preferable that the thickness be within the range of 50 to 150 ⁇ m, and that the thickness variation be within ⁇ 50 ⁇ m. Thickness with such precision cannot be achieved by coating on site, and can be stably achieved on the production line of the factory.
  • This resin layer 2 has high waterproof properties, salt-shielding properties, and neutralization-preventing properties, but is preferably permeable to water vapor.
  • the water vapor transmission rate is preferably about 10 to 50 g/m 2 ⁇ day, for example.
  • the structure protection sheet 1 can be endowed with high waterproof properties, salt barrier properties, neutralization prevention properties, and predetermined water vapor permeability.
  • the compatibility with the polymer cement hardening layer 3 is good and the adhesion can be excellent.
  • the water vapor permeability was measured according to JIS Z0208 "Test method for moisture permeability of moisture-proof packaging materials".
  • the resin layer 2 may contain a pigment from the viewpoint of increasing the color variations of the structure protection sheet 1 according to the present invention.
  • the resin layer 2 may contain an inorganic substance. By containing an inorganic substance, the resin layer 2 can be imparted with scratch resistance.
  • the inorganic material is not particularly limited, and examples thereof include conventionally known materials such as metal oxide particles such as silica, alumina, and titania.
  • the resin layer 2 may contain a known antifouling agent. Since the structure protection sheet according to the present invention is usually used for repairing concrete structures installed outdoors, the resin layer 2 is often contaminated. It is possible to suitably prevent the structure protection sheet from being contaminated.
  • the antifouling agent is not particularly limited and includes conventionally known materials.
  • the resin layer 2 may contain additives capable of imparting various functions. Examples of such additives include cellulose nanofibers and the like.
  • the manufactured structure protection sheet 1 may have a release sheet on one side of the polymer cement hardening layer 3 and the resin layer 2 .
  • the release sheet can protect the surface of the structure protection sheet 1 when it is sent to the construction site, and at the construction site, it is applied on the target structure 21 (or via the undercoat layer 22 or the adhesive 23). 3) Adhering the structure protection sheet 1 to which the release sheet is attached and then easily peeling off the release sheet greatly improves workability at the construction site.
  • the release sheet is preferably process paper used in the production process of the structure protection sheet 1 .
  • the material of the process paper used as the release sheet is not particularly limited as long as it is conventionally known and used in the manufacturing process.
  • laminated paper having an olefin resin layer such as polypropylene or polyethylene or a silicon-containing layer, like known process paper, can be preferably used.
  • the thickness is not particularly limited, but it can be any thickness, for example, about 50 to 500 ⁇ m, as long as the thickness does not impede handling in terms of manufacturing and construction.
  • the structure protection sheet 1 since the rate of change in moisture permeability is controlled to a predetermined value or less, it is preferable that the given performance is degraded even when exposed to sunlight. can be prevented, and the structure 21 such as concrete can be protected over a long period of time.
  • the structure protection sheet 1 is given performance according to the characteristics of the structure 21 to follow cracks and expansions that occur in the structure 21, and permeation of deterioration factors such as water and chloride ions into the structure 21.
  • the structure can be made permeable so that moisture and deterioration factors in the structure can be discharged. Since such a structure protection sheet 1 can be manufactured in a factory, it is possible to mass-produce high-quality sheets with stable characteristics. As a result, it can be constructed without relying on the skills of craftsmen, shortening the construction period and reducing labor costs.
  • the method for manufacturing a reinforced structure using the structure protection sheet according to the present invention is a construction method using the structure protection sheet 1 according to the present invention, as shown in FIG. It is characterized in that the structure protection sheet 1 is pasted after the adhesive 23 is applied thereon.
  • This construction method can easily bond the structure protection sheet 1 to the surface of the structure 21 .
  • an unskilled worker can provide the structure protection sheet 1 composed of a layer with a small thickness variation on the structure 21, thereby significantly reducing the construction period and extending the structure 21. can be protected over
  • FIG. 2 is an explanatory diagram of the construction method of the structure protection sheet 1 (manufacturing method of a reinforced structure).
  • Construction forms the undercoat layer 22 on the surface of the structure 21, as shown in FIG. 2(A).
  • the undercoat layer 22 can be formed by coating the structure 21 with a coating liquid obtained by mixing a resin such as an epoxy resin and a solvent, and then volatilizing and drying the solvent in the coating liquid. Examples of the solvent at this time include water and the like similar to those described above.
  • the thickness of the undercoat layer 22 is not particularly limited, it can be in the range of 100 to 150 ⁇ m, for example.
  • the structure protection sheet 1 can stably protect the structure 21 for a long period of time. If the structure 21 is cracked or damaged, it is preferable to provide the undercoat layer 22 after repairing it. Also, the repair is not particularly limited, but usually cement mortar, epoxy resin, or the like is used.
  • an adhesive 23 is applied as shown in FIG. 2(B). Without drying the applied adhesive 23, the structure protection sheet 1 is adhered thereon as shown in FIG. 2(C).
  • the adhesive 23 include urethane-based adhesives, epoxy-based adhesives, and adhesives using acrylic resins exhibiting rubber characteristics (for example, synthetic rubber containing acrylic acid ester as a main component).
  • the adhesive 23 composed of the same resin component as the resin component constituting the polymer cement hardened layer 3 of the structure protection sheet 1 is more preferable because the adhesive strength with the polymer cement hardened layer 3 is increased.
  • the thickness of the adhesive 23 is not particularly limited.
  • the adhesive 23 is usually applied to concrete by means of brushing or spraying, and then naturally dried and hardened over time.
  • FIG. 3 is an explanatory diagram showing an example of applying the structure protection sheet 1 to the cast-in-place construction method.
  • the cast-in-place method is a construction method in which a formwork 24 is formed at a work site, a concrete composition 21' is poured into the formwork 24, and left to harden to obtain a concrete structure 21.
  • the structure protection sheet 1 is attached to the surface of the hardened concrete structure 21, so that the structure 21 that is less likely to deteriorate can be obtained.
  • the undercoat layer 22 is applied to the surface of the concrete structure 21 and dried, and the adhesive 23 is applied thereon, after which the structure protection sheet 1 is bonded. After that, the structure protection sheet 1 is adhered by drying and curing the adhesive 23 by letting it stand naturally.
  • the structure protection sheet 1 is attached by the same construction method as above after repairing the damaged portion.
  • the life of the concrete structure 21 can be extended.
  • Example 1 A release sheet made of PP-laminated paper and having a thickness of 130 ⁇ m was used. A resin layer was formed on this release sheet by the following method. First, an emulsion composition containing 60 parts by mass of acrylic silicone resin, 25 parts by mass of titanium dioxide, 10 parts by mass of ferric oxide, and 5 parts by mass of carbon black was prepared. After the emulsion composition was applied onto the release sheet, it was cured by heat treatment to form a resin layer. The thickness of the resin layer was set to 0.1 mm. Next, a polymer cement hardening layer was formed on the resin layer.
  • the hardened polymer cement layer obtained by coating and drying the composition for forming a polymer cement layer in which these are mixed contains 0.08 parts by mass of the water-absorbing polymer per 100 parts by mass of the resin component, and the cement species is resin. It is a composite layer containing 50% by weight of the component. After applying the composition for forming a polymer cement hardened layer onto the resin layer so that the thickness before drying is 1.0 mm on the resin layer.
  • a structure protection sheet having a total thickness of 1.39 mm was produced.
  • this structure protection sheet was continuously produced in a factory controlled at about 25° C., and was wound into a roll while including a release sheet.
  • Example 2 to 12 The structure was the same as in Example 1, except that the cement type and resin component were changed to the types shown in Table 1, and the blending amount of the water-absorbing polymer, the drying time, and the humidity during aging were changed as shown in Table 1. A protective sheet was prepared.
  • Comparative Examples 1 to 6 Structure protective sheets according to Comparative Examples 1 to 6 were produced in the same manner as in Examples 1 to 6, respectively, except that no water-absorbing polymer was added.
  • the cement type "Aronble” represents “Aronble Coat A-450X Setter” (manufactured by Toagosei Co., Ltd.), “Nippon Stucco” represents “Spring Coat Iron” (manufactured by Nippon Stucco Co., Ltd.), and the resin component " EMN” is “Acryset EMN-325E” (manufactured by Nippon Shokubai Co., Ltd.), “Aronble” is “Aronble Coat A-450 Base” (manufactured by Toagosei Co., Ltd.), “trowel” is “Spring Coat Iron” (Nippon Stucco Co., Ltd.) made).
  • Examples 1 to 6 (group 1) with the addition of 0.08 parts by mass of the water-absorbent polymer, Examples 7 to 12 (group 2) with the addition of 0.13 parts by mass, and Comparative Examples 1 to 6 (group 3 ), and the average value of the moisture permeability before and after light irradiation by the xenon lamp in each group was obtained.
  • the results are shown in FIG.
  • the average values of the rate of change in moisture permeability of Group 1 and Group 2 according to the example to which the water-absorbing polymer was added were 32.1% and 15.0%, and the water-absorbing polymer was added.

Abstract

Provided is a structure protection sheet that has exceptional strength and that makes it possible to greatly reduce the construction time when a protective layer is provided to the surface of a structure made of concrete, etc., and to protect the structure over an extended period of time. This structure protection sheet comprises a polymer cement hardened layer, which is provided on the structure side, and a resin layer, which is provided on the polymer cement hardened layer. The structure protection is characterized in that when the sheet is irradiated with light emitted by a xenon lamp for 72 hours, the light having a radiation intensity of 180 W/m 2, the rate of change in the moisture permeability between before and after the irradiation is not more than 35%.

Description

構造物保護シート及び補強された構造物の製造方法Structural protection sheet and method for manufacturing reinforced structure
 本発明は、構造物保護シート及び補強された構造物の製造方法に関する。さらに詳しくは、コンクリート等の構造物の表面に保護層を設ける際の工期を大幅に削減できるとともに、造物を長期にわたって保護することができる構造物保護シート、及びその構造物保護シートを用いた補強された構造物の製造方法に関する。 The present invention relates to a structure protection sheet and a method for manufacturing a reinforced structure. More specifically, a structure protection sheet that can greatly reduce the construction period for providing a protective layer on the surface of a structure such as concrete and protect the structure for a long period of time, and reinforcement using the structure protection sheet The present invention relates to a method for manufacturing a constructed structure.
 道路橋、トンネル、水門等河川管理施設、下水道管渠、湾岸壁等の土木構造物は、その老朽化に伴い、補修工事や補強工事が行われる。補修工事は、欠損部分や脆弱部分を補修した後に塗装材を複数回重ね塗りして行われる。一方、補強工事は、補強すべき部分は全体に補強用塗装材を複数回重ね塗りして行われる。 As road bridges, tunnels, water gates and other river management facilities, sewer pipes, and bay quay walls deteriorate, repair and reinforcement work will be carried out. Repair work is carried out by recoating the coating material several times after repairing the defective or weak parts. On the other hand, the reinforcement work is carried out by coating the entire portion to be reinforced with a reinforcing coating material multiple times.
 こうした補修工事や補強工事で施工する重ね塗りは、例えば、コンクリート上に、下塗り、中塗り、上塗りを順に行うが、通常は、中塗りやそれぞれの塗り工程は、塗装を乾燥させるために連続して行うことができず、例えば下塗り、中塗り1回目、中塗り2回目、上塗り1回目、上塗り2回目の計5層の塗装を行う場合は、少なくとも5日間の工期がかかる。しかも、屋外での塗装なので、天候に左右され、雨天では十分な乾燥ができなかったり、塗装工事自体ができないこともある。そのため、工期の短縮が難しく、その分の労務費がかかり、工事、塗工膜の品質(膜厚、表面粗さ、含水量等)が、塗り工程時の外部環境(湿度、温度等)によって影響を受ける結果安定したものとなりにくい。 Overcoating in such repair work and reinforcement work, for example, is performed on concrete in the order of undercoating, intermediate coating, and topcoating. For example, when applying a total of 5 layers of undercoat, 1st intermediate coat, 2nd intermediate coat, 1st topcoat, and 2nd topcoat, it takes at least 5 days. Moreover, since the painting is done outdoors, it is affected by the weather. Therefore, it is difficult to shorten the construction period, labor costs are high, and the quality of the construction and coating film (film thickness, surface roughness, moisture content, etc.) depends on the external environment (humidity, temperature, etc.) during the coating process. As a result of being affected, it is difficult to become stable.
 また、塗装はこて塗りやスプレー塗り等で行われるが、均一な塗工による安定した補修や補強は、職人の技量に寄るところが大きい。したがって、職人の技量によっても塗工膜の品質はばらつくことになる。さらに、建設従事者の高齢化及び人口の減少に伴い、コンクリートの補修作業や補強作業の従事者が減少している昨今、熟練した職人でなくとも行うことができるより簡易な補修工法が求められている。 In addition, painting is done by troweling or spraying, but stable repairs and reinforcements with uniform coating largely depend on the skill of the craftsman. Therefore, the quality of the coating film varies depending on the skill of the craftsmen. Furthermore, with the aging of construction workers and the declining population, the number of workers engaged in concrete repair and reinforcement work is decreasing. ing.
 こうした課題を解決する技術として、例えば特許文献1では、簡便で、低費用で、工期が短くなり、確実にコンクリートの劣化を防ぐシート及び方法が提案されている。この技術は、樹脂フィルムを有する中間層とその両面に接着樹脂を介して積層された布帛材料からなる表面層とを備えたコンクリート補修用シートを、補修すべきコンクリート面に施工用接着剤で貼付し、その後、貼付したコンクリート補修用シートのコンクリート面とは反対側の表面層に塗料を塗布する、コンクリートの補修方法である。 As a technique for solving these problems, Patent Document 1, for example, proposes a sheet and method that is simple, inexpensive, shortens the construction period, and reliably prevents deterioration of concrete. In this technique, a concrete repair sheet comprising an intermediate layer having a resin film and surface layers made of a fabric material laminated on both sides with an adhesive resin is attached to the concrete surface to be repaired with a construction adhesive. and then coating the surface layer of the pasted sheet for repairing concrete on the side opposite to the concrete surface with a coating material.
 なお、塗装材についての改良も行われている。例えば特許文献2には、アルカリ骨材反応を防止し、コンクリート構造物のひび割れに対しても優れた追従性を有し、塗膜形成後の温度上昇によっても塗膜のふくれを発生させず、コンクリートの剥落を防止することを可能にする塗工材料を用いたコンクリート構造物の保護方法が提案されている。この技術は、コンクリート構造物の表面に、下地調整材塗膜を形成させ、その塗膜表面に塗膜を形成させる方法である。下地調整材塗膜は、カチオン系(メタ)アクリル重合体エマルション及び無機質水硬性物質を含有する組成物から形成される。下地調整材塗膜表面に形成される塗膜は、アルキル(メタ)アクリレート系エマルション及び無機質水硬性物質を含有する組成物から形成された塗膜であり、20℃における伸び率が50~2000%であり、遮塩性が10-2~10-4mg/cm・dayであり、水蒸気透過性が5g/m・day以上であり、膜厚が100~5000μmである。 Improvements have also been made to coating materials. For example, in Patent Document 2, it prevents alkali-aggregate reaction, has excellent conformability to cracks in concrete structures, does not cause blistering of the coating film even when the temperature rises after the coating film is formed, A method for protecting a concrete structure using a coating material capable of preventing concrete from spalling has been proposed. This technique is a method of forming a substrate conditioning material coating film on the surface of a concrete structure and then forming a coating film on the coating film surface. The base conditioning material coating film is formed from a composition containing a cationic (meth)acrylic polymer emulsion and an inorganic hydraulic substance. The coating film formed on the surface of the base conditioning material coating film is a coating film formed from a composition containing an alkyl (meth)acrylate emulsion and an inorganic hydraulic substance, and has an elongation rate of 50 to 2000% at 20°C. , the salt barrier property is 10 −2 to 10 −4 mg/cm 2 ·day, the water vapor permeability is 5 g/m·day or more, and the film thickness is 100 to 5000 μm.
特開2010-144360号公報JP 2010-144360 A 特開2000-16886号公報JP-A-2000-16886
 特許文献1等の従来のコンクリート補修シートは、基材と他の層(例えば接着剤層や補強部材)との接着力の違い、基材、接着剤層及び補強部材等の伸びの違い、接着剤層とコンクリートとの接着強度の問題等、解決すべき課題がある。具体的には、基材と補強部材とは接着剤層で貼り合わされているが、コンクリート補修シートの施工時や施工後のコンクリート補修シートに応力が加わった場合、基材、接着剤層及び補強部材等の伸びの違いは、基材と接着剤層との接着力と接着剤層と補強部材との接着力との相違に基づいた層界面の剥離の原因になり得る。 Conventional concrete repair sheets such as those disclosed in Patent Document 1 have differences in adhesive strength between the substrate and other layers (e.g., adhesive layer and reinforcing member), differences in elongation of the substrate, adhesive layer, reinforcing member, etc., and adhesion There are problems to be solved, such as the problem of adhesive strength between the agent layer and concrete. Specifically, the base material and the reinforcing member are bonded together with an adhesive layer. Differences in the elongation of members and the like can cause peeling at the layer interface based on the difference in the adhesive strength between the substrate and the adhesive layer and the adhesive strength between the adhesive layer and the reinforcing member.
 また、コンクリート補修シートに設けられた接着剤層は加熱等で軟化されてコンクリートに貼り合わされるが、十分な接着強度が得られない場合は、コンクリートの表面からコンクリート補修シートが剥がれて補修シートとして機能しないおそれがある。また、コンクリート補修シートを施工した後のコンクリートは、時が経つと膨れる現象が生じることがあったが、この現象は、コンクリート内部の水蒸気が水蒸気透過性の低い補修シートの存在によって逃げ場を失ったためであると考えられる。 In addition, the adhesive layer provided on the concrete repair sheet is softened by heating or the like and is bonded to the concrete. It may not work. In addition, after the concrete repair sheet was applied, the concrete sometimes swelled over time. This phenomenon was caused by the presence of the repair sheet, which has low water vapor permeability, and prevented the water vapor inside the concrete from escaping. It is considered to be
 また、現場で塗工によって塗膜を形成する方法は、上記背景技術の欄で説明したように、1層塗工する毎に1日かかり、下塗りから上塗り層まで例えば、6層の塗工膜を形成する場合には6日もかかり、しかも膜厚がばらつき、表面粗さや含水量等の品質や特性も安定しにくいという課題がある。 In addition, the method of forming a coating film by coating on site, as described in the background art section above, takes one day for each coating layer, and from the undercoat to the topcoat layer, for example, a six-layer coating film. It takes as long as 6 days to form , and there are problems that the film thickness varies and the quality and characteristics such as surface roughness and water content are difficult to stabilize.
 更に、コンクリート補修シートの補修対象は、通常、道路橋、トンネル、水門等河川管理施設、下水道管渠、湾岸壁等の土木構造物等の大型コンクリート部材であるため、コンクリート補修シート自体にも十分な強度(引張強度、曲げ強度、硬度、表面強度、打ち抜き強度靱性等をいい、本明細書において以下同様とする。)が求められるが、従来のコンクリート補修シートでは十分な強度を備えているとは言い難いという課題がある。 Furthermore, since the repair target of the concrete repair sheet is usually large concrete members such as road bridges, tunnels, river management facilities such as water gates, sewage pipes, and civil engineering structures such as quay walls, the concrete repair sheet itself is sufficient. strength (tensile strength, bending strength, hardness, surface strength, punching strength, toughness, etc.; the same applies hereinafter) is required, but conventional concrete repair sheets are considered to have sufficient strength. is difficult to say.
 本発明は、上記課題を解決するためになされたものであり、その目的は、コンクリート等の構造物の表面に保護層を設ける際の工期を大幅に削減できるとともに、構造物を長期にわたって保護することができる構造物保護シート、及びその構造物保護シートを用いた補強された構造物の製造方法を提供することにある。 The present invention has been made to solve the above problems, and its object is to significantly reduce the construction period when providing a protective layer on the surface of a structure such as concrete, and to protect the structure over a long period of time. It is an object of the present invention to provide a structure protection sheet capable of restructuring and a method for manufacturing a reinforced structure using the structure protection sheet.
 本発明者等は、コンクリートの表面に塗工手段で層を形成する施工方法によらないで、コンクリートを長期間安定して保護できるコンクリート保護シートを研究した。その結果、コンクリート保護シートに、コンクリートの特性に応じた性能を付与すること、具体的には、コンクリートに生じたひび割れや膨張に追従できる追従性、コンクリート内に水や塩化物イオン等の劣化因子を浸透させない防水性、遮塩性、中性化阻止性、及び、コンクリート中の水分を水蒸気として排出できる水蒸気透過性、等をさらに備えたポリマーセメント硬化層と樹脂層とを有する構造物保護シートを先に完成させた。
 しかしながら、本発明者らが先に完成させた構造物保護シートは、太陽光に曝されることでポリマーセメント硬化層が変質して劣化し、コンクリートの特性に応じて付与した性能が落ちる可能性があった。
 そこで、本発明者らは更に鋭意検討した結果、太陽光に曝される前後の構造物保護シートの透湿度の変化率が特定の範囲内にあることを実現し、本発明を完成させた。そして、この技術思想は、コンクリート用でない他の構造物に対しても構造物保護シートとして応用可能である。
The present inventors have researched a concrete protective sheet that can stably protect concrete for a long period of time without depending on the construction method of forming a layer on the surface of concrete by coating means. As a result, it was found that the concrete protection sheet should be given performance according to the characteristics of the concrete. A structure protection sheet having a polymer cement hardened layer and a resin layer, further equipped with waterproof, salt-blocking, neutralization prevention, and water vapor permeability that allows the water in concrete to be discharged as water vapor. was completed first.
However, in the structure protection sheet that the present inventors completed earlier, the polymer cement hardened layer deteriorates due to exposure to sunlight, and there is a possibility that the performance imparted according to the characteristics of concrete will decrease. was there.
As a result of further intensive studies, the inventors realized that the rate of change in moisture permeability of the structure protection sheet before and after exposure to sunlight was within a specific range, and completed the present invention. This technical idea can also be applied as a structure protection sheet to structures other than those for concrete.
(1)本発明に係る構造物保護シートは、構造物側に設けられるポリマーセメント硬化層と、該ポリマーセメント硬化層上に設けられた樹脂層とを備える構造物保護シートであって、放射強度180W/mのキセノンランプから光を72時間照射させた前後の透湿度の変化率が35%以下であることを特徴とする。 (1) A structure protection sheet according to the present invention is a structure protection sheet comprising a polymer cement hardened layer provided on the structure side and a resin layer provided on the polymer cement hardened layer. The change rate of moisture permeability before and after irradiation with light from a xenon lamp of 180 W/m 2 for 72 hours is 35% or less.
 この発明によれば、ポリマーセメント硬化層は、太陽光に曝されたとしても付与された性能が劣化することを好適に防止できる。
 また、構造物保護シートは工場の生産ラインでの塗工工程と乾燥工程により量産できるので、低コスト化、現場での作業工期の大幅削減、構造物の長期保護を実現することができる。
According to the present invention, the polymer cement-hardened layer can suitably prevent the performance imparted from deteriorating even when exposed to sunlight.
In addition, since the structure protection sheet can be mass-produced by coating and drying processes on the factory production line, it is possible to reduce costs, significantly reduce the work period on site, and achieve long-term protection of structures.
 本発明に係る構造物保護シートにおいて、前記ポリマーセメント硬化層に対して吸水処理が施されていることが好ましい。 In the structure protection sheet according to the present invention, it is preferable that the polymer cement hardening layer is subjected to water absorption treatment.
 この発明によれば、太陽光に曝された際のポリマーセメント硬化層へ付与した性能の劣化を好適に防止できる。 According to this invention, it is possible to suitably prevent deterioration of the performance imparted to the polymer cement hardened layer when exposed to sunlight.
 本発明に係る構造物保護シートにおいて、前記吸水処理は、前記ポリマーセメント硬化層に吸水性ポリマーを添加する方法、前記ポリマーセメント硬化層に無機の吸水性物質を添加する方法、前記ポリマーセメント硬化層を作製する際のエージング処理を高湿度環境下で行う方法、前記樹脂層を形成する際の加熱処理を高湿度環境下で行う方法、前記ポリマーセメント硬化層に水分を吸収させた含水シートを設ける方法、前記構造物保護シートを施工した後に湿潤養生を行う方法からなる群より選択されるいずれかの方法であることが好ましい。 In the structure protection sheet according to the present invention, the water absorption treatment includes a method of adding a water absorbing polymer to the polymer cement hardening layer, a method of adding an inorganic water absorbing substance to the polymer cement hardening layer, and a method of adding an inorganic water absorbing substance to the polymer cement hardening layer. A method of performing aging treatment in a high humidity environment when producing, a method of performing heat treatment in a high humidity environment when forming the resin layer, and providing a water-containing sheet in which water is absorbed in the polymer cement hardened layer It is preferably any method selected from the group consisting of a method and a method of performing wet curing after applying the structure protection sheet.
 この発明によれば、ポリマーセメント硬化層への吸水処理を好適に実現することができる。 According to this invention, the water absorption treatment of the hardened layer of polymer cement can be suitably realized.
 本発明に係る構造物保護シートにおいて、前記ポリマーセメント硬化層は、セメント成分及び樹脂を含有する層であって、樹脂が10重量%以上、40重量%以下含有されていてもよい。さらに好ましくは樹脂が20重量%以上、30重量%以下である。 In the structure protection sheet according to the present invention, the polymer cement-hardening layer is a layer containing a cement component and a resin, and may contain 10% by weight or more and 40% by weight or less of the resin. More preferably, the resin content is 20% by weight or more and 30% by weight or less.
 この発明によれば、セメント成分と樹脂成分との比率を制御することでポリマーセメント硬化層を形成しやすくなると共に、ポリマーセメント硬化層は追従性に優れた相溶性のよい層となりやすいので、層自体の密着性が改善される傾向となる。さらに、構造物側のポリマーセメント硬化層が含有するセメント成分はコンクリート等の構造物との密着性を高めるように作用する。 According to the present invention, by controlling the ratio of the cement component and the resin component, it becomes easier to form the polymer cement hardened layer, and the polymer cement hardened layer tends to be a layer with excellent conformability and good compatibility. It tends to improve the adhesiveness of itself. Furthermore, the cement component contained in the polymer-cement-hardened layer on the structure side acts to enhance adhesion to structures such as concrete.
(2)本発明は、上記本発明に係る構造物保護シートを使用した構造物の製造方法であって、構造物上に接着剤を塗布した後に前記構造物保護シートを貼り合わせる、ことを特徴とする。 (2) The present invention is a method for manufacturing a structure using the structure protection sheet according to the present invention, characterized in that the structure protection sheet is laminated after applying an adhesive onto the structure. and
 この発明によれば、基材や補強部材を含まない層だけで構成された構造物保護シートを使用するので、構造物の表面に容易に貼り合わせることができる。その結果、熟練した作業者でなくても構造物の表面に強度に優れた構造物保護シートを安定して設けることができ、工期を大幅に削減できるとともに、構造物を長期にわたって保護することができる。 According to the present invention, a structure protection sheet that is composed only of layers that do not contain a base material or a reinforcing member is used, so that it can be easily attached to the surface of the structure. As a result, even an unskilled worker can stably apply a structure protection sheet with excellent strength to the surface of a structure, significantly reducing the construction period and protecting the structure over a long period of time. can.
 本発明に係る補強された構造物の製造方法において、前記構造物と前記接着剤との間に下塗り層を設けてもよい。 In the method for manufacturing a reinforced structure according to the present invention, an undercoat layer may be provided between the structure and the adhesive.
 この発明によれば、構造物と接着剤との間に設ける下塗り層は、相互の密着を高めるように作用するので、構造物保護シートは、長期間安定して構造物を保護することができる。 According to this invention, the undercoat layer provided between the structure and the adhesive acts to enhance mutual adhesion, so that the structure protection sheet can stably protect the structure for a long period of time. .
 本発明によれば、コンクリート等の構造物の表面に貼り付けて太陽光に曝された場合であっても、透湿度の変化率が所定の範囲内にあるので付与した性能が劣化することを好適に防止でき、構造物の表面を長期にわたって保護することができる構造物保護シート、及びその構造物保護シートを用いた補強された構造物の製造方法を提供することができる。特に、構造物保護シートに構造物の特性に応じた性能を付与し、構造物に生じたひび割れや膨張に追従させること、構造物に水や塩化物イオン等の劣化因子を浸透させないようにすること、構造物中の水分や劣化因子を排出できる透過性を持たせること、強度を向上させること等を実現した構造物保護シートを提供することができる。さらに、これまで手塗りで形成されてきた層と比較して品質の安定性、均一性を改善できる利点を有する。 According to the present invention, even when it is attached to the surface of a structure such as concrete and exposed to sunlight, the rate of change in moisture permeability is within a predetermined range, so that the performance imparted is not degraded. It is possible to provide a structure protection sheet capable of suitably preventing damage and protecting the surface of a structure over a long period of time, and a method for manufacturing a reinforced structure using the structure protection sheet. In particular, the structure protection sheet is given performance according to the characteristics of the structure, so that it can follow the cracks and expansion that occur in the structure, and it prevents deterioration factors such as water and chloride ions from penetrating into the structure. In addition, it is possible to provide a structure protection sheet that realizes permeability that enables the discharge of water and deterioration factors in the structure, and that the strength is improved. Furthermore, it has the advantage of being able to improve the stability and uniformity of quality compared to layers that have been formed by hand coating.
本発明に係る構造物保護シートの一例を示す断面構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional block diagram which shows an example of the structure protection sheet which concerns on this invention. 構造物保護シートの施工方法の説明図である。It is explanatory drawing of the construction method of a structure protection sheet. 現場打ち工法に構造物保護シートを適用した例を示す説明図である。It is explanatory drawing which shows the example which applied the structure protection sheet to the cast-in-place construction method. 実施例及び比較例に係る透湿度の変化率の結果を示すグラフである。4 is a graph showing the results of the rate of change in water vapor permeability according to Examples and Comparative Examples.
 以下、本発明に係る構造物保護シート及びそれを用いた補強されたコンクリート構造物について図面を参照しつつ説明する。なお、本発明は、その技術的特徴を有する限り各種の変形が可能であり、以下の説明及び図面の形態に限定されない。 Hereinafter, a structure protection sheet according to the present invention and a reinforced concrete structure using the same will be described with reference to the drawings. The present invention can be modified in various ways as long as it has the technical features, and is not limited to the following description and drawings.
 [構造物保護シート]
 本発明に係る構造物保護シート1は、図1又は図2(C)に示すように、構造物21側に設けられたポリマーセメント硬化層3と、ポリマーセメント硬化層3上に設けられた樹脂層2とを備えている。このポリマーセメント硬化層3と樹脂層2の両層は、それぞれ、単層で形成されてもよいし積層として形成されてもよい。また、求められる性能によっては、ポリマーセメント硬化層3と樹脂層2との間に別の層を設けてもよい。
[Structure protection sheet]
As shown in FIG. 1 or FIG. 2C, the structure protection sheet 1 according to the present invention comprises a hardened polymer cement layer 3 provided on the side of a structure 21, and a hardened polymer cement layer 3 provided on the hardened polymer cement layer 3. layer 2; Both the polymer cement hardened layer 3 and the resin layer 2 may be formed as a single layer or as a laminate. Another layer may be provided between the hardened polymer cement layer 3 and the resin layer 2 depending on the required performance.
 本発明に係る構造物保護シート1は、放射強度180W/mのキセノンランプから光を72時間照射させた前後の透湿度の変化率が35%以下である。上記透湿の変化率は、N1:キセノンランプ照射前の透湿度、N2:キセノンランプ照射後の透湿度として、{(N2-N1)/N2}×100により算出される。
 上記透湿度の変化率が35%を超えると、本発明に係る構造物保護シート1を構造物の表面の貼り付けた場合に太陽光に曝されることで付与した性能が劣化してしまう問題がある。上記透湿度の変化率の好ましい下限は0%、好ましい上限は20%である。
 なお、上記透湿度は、JIS Z0208:1976より測定された値である。
The structural protection sheet 1 according to the present invention has a rate of change in moisture permeability of 35% or less before and after being irradiated with light from a xenon lamp with a radiation intensity of 180 W/m 2 for 72 hours. The rate of change in moisture permeability is calculated by {(N2−N1)/N2}×100 where N1: moisture permeability before xenon lamp irradiation and N2: moisture permeability after xenon lamp irradiation.
If the rate of change in moisture permeability exceeds 35%, when the structure protection sheet 1 according to the present invention is attached to the surface of a structure, the resulting performance is degraded due to exposure to sunlight. There is A preferred lower limit of the rate of change in moisture permeability is 0%, and a preferred upper limit is 20%.
The moisture permeability is a value measured according to JIS Z0208:1976.
 このような透湿度の変化率を規定することで、本発明に係る構造物保護シート1の付与性能の劣化を防止できる理由は以下の通りである。
 ポリマーセメント硬化層3は、後述するようにセメント成分と樹脂成分とを含有する層であり、製造した本発明に係る構造物保護シート1において、ポリマーセメント硬化層3は、含まれる水分により硬化反応を継続してより強固な層へと変化する。
 このような本発明に係る構造物保護シート1を構造物21の表面に貼り付けた際に、従来の構造物保護シートでは、ポリマーセメント硬化層3中の水分含有量が太陽光の照射により(また、高温環境下に置かれることによっても)減少し、経時的にポリマーセメント硬化層3の硬化反応が変化したら十分に硬化しないという問題があった。
 そこで、本願発明に係る構造物保護シート1は、太陽光の照射に見立てたキセノンランプの照射を所定の条件で行い、透湿度の変化率の上限を限定することしたものである。
The reason why deterioration of the imparting performance of the structure protection sheet 1 according to the present invention can be prevented by specifying such a rate of change in moisture permeability is as follows.
The hardened polymer cement layer 3 is a layer containing a cement component and a resin component as will be described later. Continue to change to a stronger layer.
When such a structure protection sheet 1 according to the present invention is attached to the surface of a structure 21, in the conventional structure protection sheet, the moisture content in the polymer cement hardened layer 3 changes due to sunlight irradiation ( In addition, there is a problem that the hardening reaction of the hardened polymer cement layer 3 changes with the passage of time, resulting in insufficient hardening.
Therefore, in the structure protection sheet 1 according to the present invention, irradiation with a xenon lamp that simulates sunlight irradiation is performed under predetermined conditions to limit the upper limit of the rate of change in moisture permeability.
 このような透湿度の変化率を満たすために、例えば、本発明に係る構造物保護シート1は、ポリマーセメント硬化層3に対して吸水処理が施されていることが好ましい。
 上記吸水処理は、ポリマーセメント硬化層3中に水分を担持させることができる処理であり、吸水処理が施されることでポリマーセメント硬化層3中の水分保持率を維持でき、上述した透湿度の変化率を満たすことが可能となる。
In order to satisfy such a rate of change in moisture permeability, for example, in the structure protection sheet 1 according to the present invention, the polymer cement hardened layer 3 is preferably subjected to water absorption treatment.
The water absorption treatment is a treatment that allows the hardened polymer cement layer 3 to retain moisture. It becomes possible to satisfy the rate of change.
 上記吸水処理としては、例えば、ポリマーセメント硬化層3に吸水性ポリマーを添加する方法、ポリマーセメント硬化層3に無機の吸水性物質を添加する方法、ポリマーセメント硬化層3を作製する際のエージング処理を高湿度環境下行う方法、樹脂層2を形成する際の加熱処理を高湿度環境下で行う方法、ポリマーセメント硬化層3に水分を吸収させた含水シートを設ける方法、構造物保護シート1を施工した後に湿潤養生を行う方法からなる群より選択されるいずれかの方法が好適に挙げられる。 Examples of the water absorption treatment include a method of adding a water absorbing polymer to the polymer cement hardened layer 3, a method of adding an inorganic water absorbing substance to the polymer cement hardened layer 3, and an aging treatment when producing the polymer cement hardened layer 3. in a high-humidity environment, a method in which the heat treatment for forming the resin layer 2 is performed in a high-humidity environment, a method in which a water-containing sheet is provided in which the hardened polymer cement layer 3 absorbs water, and the structure protection sheet 1 is Any method selected from the group consisting of wet curing after construction is preferably used.
 上記ポリマーセメント硬化層3に吸水性ポリマーを添加する方法において、上記吸水性ポリマーとしては、例えば、アクアリックCA(日本触媒社製)等が挙げられる。
 上記吸水性ポリマーの含有量としては、例えば、ポリマーセメント硬化層3中の樹脂成分100質量部に対して0.15~0.30質量部であることが好ましい。0.15質量部未満であると、本発明に係る構造物保護シート1の透湿度の変化率が高くなる恐れがあり、0.30%質量部を超えると、増粘して塗工できなくなることがある。
In the method of adding a water-absorbing polymer to the polymer cement hardened layer 3, examples of the water-absorbing polymer include Aqualic CA (manufactured by Nippon Shokubai Co., Ltd.).
The content of the water-absorbent polymer is preferably 0.15 to 0.30 parts by mass with respect to 100 parts by mass of the resin component in the hardened polymer cement layer 3, for example. If it is less than 0.15 parts by mass, the rate of change in moisture permeability of the structure protection sheet 1 according to the present invention may increase, and if it exceeds 0.30% by mass, the viscosity increases and coating becomes impossible. Sometimes.
 上記ポリマーセメント硬化層3を作製する際のエージング処理を高湿度環境下行う方法において、上記高湿度環境下とは、湿度50%RH以下の環境下であることが好ましい。
 また、上記エージング処理としては、具体的にはポリマーセメント硬化層3を形成した際に上記高湿度環境下で24~72時間放置する処理が挙げられる。
In the method of performing the aging treatment in a high-humidity environment when producing the polymer cement hardened layer 3, the high-humidity environment is preferably an environment with a humidity of 50% RH or less.
Further, as the aging treatment, specifically, there is a treatment of leaving the hardened polymer cement layer 3 in the high humidity environment for 24 to 72 hours.
 上記樹脂層2を形成する際の加熱処理を高湿度環境下で行う方法において、上記高湿度環境下とは、上述した環境が挙げられ、上記加熱処理の温度としては用いられる樹脂層2を構成する樹脂材料等に応じて適宜決定されるが、例えば、60~80℃であることが好ましい。 In the method of performing the heat treatment for forming the resin layer 2 in a high-humidity environment, the high-humidity environment includes the environment described above, and the temperature of the heat treatment constitutes the resin layer 2 used. Although it is appropriately determined according to the resin material to be used, etc., it is preferably 60 to 80° C., for example.
 上記ポリマーセメント硬化層3に水分を吸収させた含水シートを設ける方法において、上記含水シートとしては、例えば、不織布等に水を含ませたもの等が挙げられる。
 また、上記含水シートは、ポリマーセメント硬化層3の内部に埋設された状態であってもよく、ポリマーセメント硬化層3の樹脂層2側の表面上、又は、ポリマーセメント硬化層3の樹脂層2側の反対側面上に設けられてもよい。
In the method of providing a water-containing sheet in which water is absorbed in the hardened layer 3 of polymer cement, examples of the water-containing sheet include a non-woven fabric and the like which has been impregnated with water.
Further, the water-containing sheet may be in a state of being embedded inside the polymer cement hardened layer 3, and may be on the surface of the polymer cement hardened layer 3 on the resin layer 2 side or on the resin layer 2 of the polymer cement hardened layer 3. may be provided on the opposite side of the side.
 上記構造物保護シート1を施工した後に湿潤養生を行う方法としては、セメントの硬化促進のため従来から行われる方法と同様の方法が挙げられ、具体的には硬化させたセメントを保水したシートで包むことが好ましい。 As a method for performing wet curing after applying the structure protection sheet 1, the same methods as those conventionally performed for accelerating the hardening of cement can be mentioned. Wrapping is preferred.
 本発明に係る構造物保護シート1は、厚さ分布が±100μm以内であることが好ましい。この構造物保護シート1は、厚さ分布が上記範囲内であることで、熟練した作業者でなくても厚さバラツキの小さい層を構造物21の表面に安定して設けることができる。また、厚さ分布を上記範囲内に制御することによって、構造物の補強を均一に行いやすくなる。
 構造物21側に設けられたポリマーセメント硬化層3は、構造物21との密着性等に優れると共に、公知のプライマー層5を有していることで、接着剤を塗布、乾燥させる工程が不要となる。また、ポリマーセメント硬化層3上に設けられた樹脂層2は、防水性、遮塩性、中性化阻止性等の性質を付与できる。
 また、構造物保護シート1は工場の生産ラインでの塗工工程と乾燥工程により量産できるので低コスト化、現場での作業工期の大幅削減、構造物の長期保護を実現することができる。その結果、構造物21の表面に貼り合わせる際の工期を大幅に削減できるとともに構造物21を長期にわたって保護することができる。
The structure protection sheet 1 according to the present invention preferably has a thickness distribution within ±100 μm. Since the structure protection sheet 1 has a thickness distribution within the above range, even an unskilled worker can stably form a layer with small thickness variations on the surface of the structure 21 . Further, by controlling the thickness distribution within the above range, it becomes easier to uniformly reinforce the structure.
The hardened polymer cement layer 3 provided on the side of the structure 21 has excellent adhesion to the structure 21, and since it has a known primer layer 5, the step of applying and drying an adhesive is unnecessary. becomes. Moreover, the resin layer 2 provided on the polymer cement hardened layer 3 can impart properties such as waterproofness, salt barrier properties, and neutralization prevention properties.
In addition, since the structure protection sheet 1 can be mass-produced by the coating process and the drying process on the production line of the factory, it is possible to reduce the cost, significantly reduce the work period at the site, and achieve long-term protection of the structure. As a result, it is possible to greatly reduce the time required for attaching the film to the surface of the structure 21 and to protect the structure 21 for a long period of time.
 以下、各構成要素の具体例について詳しく説明する。  Specific examples of each component are described in detail below. 
 (構造物)
 構造物21は、本発明に係る構造物保護シート1が適用される相手部材である。
 構造物21としては、コンクリートからなる構造物を挙げることができる。
 上記コンクリートは、一般的には、セメント系無機物質と骨材と混和剤と水とを少なくとも含有するセメント組成物を打設し、養生して得られる。こうしたコンクリートは、道路橋、トンネル、水門等河川管理施設、下水道管渠、港湾岸壁等の土木構造物として広く使用される。本発明では、コンクリートからなる構造物21に構造物保護シート1を適用することで、コンクリートに生じたひび割れや膨張に追従でき、コンクリート内に水や塩化物イオン等の劣化因子を浸透させず、コンクリート中の水分を水蒸気として排出できる、という格別の利点がある。
(Structure)
The structure 21 is a mating member to which the structure protection sheet 1 according to the present invention is applied.
As the structure 21, a structure made of concrete can be mentioned.
The concrete is generally obtained by placing and curing a cement composition containing at least a cementitious inorganic substance, an aggregate, an admixture and water. Such concrete is widely used as civil engineering structures such as road bridges, tunnels, water gates and other river management facilities, sewer pipes, harbor quays and the like. In the present invention, by applying the structure protection sheet 1 to the structure 21 made of concrete, it is possible to follow the cracks and expansion that occur in the concrete, and prevent deterioration factors such as water and chloride ions from penetrating into the concrete. There is a particular advantage that water in concrete can be discharged as steam.
 (ポリマーセメント硬化層)
 ポリマーセメント硬化層3は、図2(C)に示すように、構造物側に配置される層である。このポリマーセメント硬化層3は、単層であっても積層であってもよいが、単層とするか積層とするかは、全体厚さ、付与機能(追従性、構造物への接着性等)、工場の製造ライン、生産コスト等を考慮して任意に設定され、例えば製造ラインが短くて単層では所定の厚さにならない場合は、2層以上重ね塗りして形成することができる。なお、例えば2層の重ね塗りは、1層目の層を乾燥した後に2層目の層を形成する。
 また、ポリマーセメント硬化層3は、性質の異なるもの同士が積層された構成であってもよい。例えば、樹脂層2側に樹脂成分の割合をより高めた層とすることで、樹脂成分の高い層が樹脂層2と接着し、セメント成分の高い層がコンクリート構造物21と接着することとなり両者に対する接着性が極めて優れたものとなる。
(polymer cement hardening layer)
The polymer cement hardening layer 3 is a layer arranged on the structure side, as shown in FIG. 2(C). This polymer cement hardening layer 3 may be a single layer or a laminate. ), can be arbitrarily set in consideration of the production line of the factory, production cost, etc. For example, if the production line is short and a single layer does not have a predetermined thickness, two or more layers can be overcoated. For example, when two layers are overcoated, the second layer is formed after drying the first layer.
The hardened polymer cement layer 3 may also have a structure in which layers having different properties are laminated. For example, by forming a layer with a higher resin component ratio on the resin layer 2 side, the layer with a higher resin component will adhere to the resin layer 2, and the layer with a higher cement component will adhere to the concrete structure 21. Adhesiveness to is extremely excellent.
 ポリマーセメント硬化層3は、セメント成分を含有する樹脂(樹脂成分)を塗料状にした塗料を塗工して得られる。なお、上記吸水処理として吸水性ポリマーや無機の吸水性物質をポリマーセメント硬化層3に添加する方法を採用する場合、上記塗料に吸水性ポリマーや無機の吸水性物質が添加される。
 上記セメント成分としては、各種のセメント、酸化カルシウムからなる成分を含む石灰石類、二酸化ケイ素を含む粘度類等を挙げることができる。なかでもセメントが好ましく、例えば、ポルトランドセメント、アルミナセメント、早強セメント、フライアッシュセメント等を挙げることができる。いずれのセメントを選択するかは、ポリマーセメント硬化層3が備えるべき特性に応じて選択され、例えば、コンクリート構造物21への追従性の程度を考慮して選択される。特に、JIS R5210に規定されるポルトランドセメントを好ましく挙げることができる。
The hardened polymer cement layer 3 is obtained by applying a coating made of resin containing a cement component (resin component). When a method of adding a water-absorbing polymer or an inorganic water-absorbing substance to the hardened polymer cement layer 3 is employed as the water-absorbing treatment, the water-absorbing polymer or inorganic water-absorbing substance is added to the paint.
Examples of the cement component include various cements, limestones containing calcium oxide components, and clays containing silicon dioxide. Among them, cement is preferable, and examples thereof include portland cement, alumina cement, high-early strength cement, fly ash cement, and the like. Which cement is selected is selected according to the properties that the hardened polymer cement layer 3 should have, for example, the degree of conformability to the concrete structure 21 is considered. Portland cement defined in JIS R5210 is particularly preferred.
 上記樹脂成分としては、アクリル樹脂、アクリルウレタン樹脂、アクリルシリコーン樹脂、フッ素樹脂、柔軟エポキシ樹脂系、ポリブタジエンゴム系、ゴム特性を示すアクリル系樹脂(例えばアクリル酸エステルを主成分に持つ合成ゴム)等を挙げることができる。こうした樹脂成分は、後述の樹脂層2を構成する樹脂の成分と同じものであることが、ポリマーセメント硬化層3と樹脂層2との密着性を高める観点から好ましい。
 また、上記樹脂成分は熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂のいずれを使用してもよい。ポリマーセメント硬化層3の「硬化」の文言は、樹脂成分を熱硬化性樹脂又は光硬化性樹脂等、硬化して重合する樹脂に限定されるという意味ではなく、最終的な層となった場合に硬化するような材料を用いればよいという意味で用いている。
Examples of the resin component include acrylic resin, acrylic urethane resin, acrylic silicone resin, fluororesin, flexible epoxy resin, polybutadiene rubber, acrylic resin exhibiting rubber properties (e.g., synthetic rubber containing acrylic acid ester as a main component), etc. can be mentioned. Such a resin component is preferably the same as the resin component constituting the resin layer 2 described later, from the viewpoint of enhancing the adhesion between the polymer cement hardened layer 3 and the resin layer 2 .
Moreover, any of a thermoplastic resin, a thermosetting resin, and a photocurable resin may be used as the resin component. The term "cured" in the polymer cement cured layer 3 does not mean that the resin component is limited to a resin that cures and polymerizes, such as a thermosetting resin or a photocurable resin. It is used in the sense that it is sufficient to use a material that hardens to a certain degree.
 上記樹脂成分の含有量としては、使用する材料等に応じて適宜調整されるが、好ましくはセメント成分と樹脂成分との合計量に対して10重量%以上、40重量%以下とする。10重量%未満であると、樹脂層2に対する接着性の低下やポリマーセメント硬化層3を層として維持することが難しくなる傾向となることがあり、40重量%を超えると、コンクリート構造物21に対する接着性が不十分となることがある。上記観点から上記樹脂成分の含有量のより好ましい範囲は15重量%以上、35重量%以下であるが、さらに好ましくは20重量%以上、30重量%以下である。 The content of the resin component is adjusted appropriately according to the material used, etc., but is preferably 10% by weight or more and 40% by weight or less with respect to the total amount of the cement component and the resin component. If it is less than 10% by weight, the adhesion to the resin layer 2 tends to decrease and it becomes difficult to maintain the polymer cement hardening layer 3 as a layer. Adhesion may be insufficient. From the above viewpoint, the content of the resin component is more preferably 15% by weight or more and 35% by weight or less, and more preferably 20% by weight or more and 30% by weight or less.
 ポリマーセメント硬化層3を形成するための塗料は、セメント成分と樹脂成分とを溶媒で混合した塗工液である。樹脂成分については、エマルジョンであることが好ましい。例えば、アクリル系エマルションは、アクリル酸エステル等のモノマーを乳化剤を使用して乳化重合したポリマー微粒子であり、一例としては、アクリル酸エステル及びメタクリル酸エステルの一種以上を含有する単量体又は単量体混合物を、界面活性剤を配合した水中で重合してなるアクリル酸系重合物エマルジョンを好ましく挙げることができる。
 上記アクリル系エマルションを構成するアクリル酸エステル等の含有量は特に限定されないが、20~100重量%の範囲内から選択される。また、界面活性剤も必要に応じた量が配合され量も特に限定されないが、エマルジョンとなる程度の界面活性剤が配合される。
The paint for forming the hardened polymer cement layer 3 is a coating liquid obtained by mixing a cement component and a resin component with a solvent. The resin component is preferably an emulsion. For example, an acrylic emulsion is polymer fine particles obtained by emulsion polymerization of a monomer such as an acrylic ester using an emulsifier. An acrylic polymer emulsion obtained by polymerizing a mixture in water containing a surfactant is preferably used.
The content of the acrylic acid ester and the like constituting the acrylic emulsion is not particularly limited, but is selected within the range of 20 to 100% by weight. Further, the amount of the surfactant is also blended according to need, and the amount is not particularly limited, but the surfactant is blended to the extent that it forms an emulsion.
 ポリマーセメント硬化層3は、その塗工液を離型シート上に塗布し、その後に溶媒(好ましくは水)を乾燥除去することで形成される。例えば、セメント成分とアクリル系エマルジョンとの混合組成物を塗工液として使用し、ポリマーセメント硬化層3を形成する。なお、上記離型シート上には、ポリマーセメント硬化層3を形成した後に樹脂層2を形成してもよいが、離型シート上に樹脂層2を形成した後にポリマーセメント硬化層3を形成してもよい。
 具体的には、例えば、離型シートとしての工程紙上に樹脂層をコーティングし、乾燥後ポリマーセメント用の塗工液を塗工、乾燥前のウエットの状態でヤング率調整層を貼り合わせた後乾燥させる。
 しかる後ヤング率調整層を貼り合わせた面に更にポリマーセメント用の塗工液を塗工し、乾燥させることで本発明に係るポリマーセメント硬化層にヤング率調整層が存在する構造物保護シートを得ることができる。
 また、離型シーとしての工程紙上に樹脂層をコーティングし、乾燥後ポリマーセメント用の塗工液を塗工、乾燥前のウエットの状態でヤング率調整層を貼り合わせた後、乾燥させるステップを経ずにヤング率調整層を貼り合わせた面に更にポリマーセメント用の塗工液を塗工し、しかる後全体を乾燥させることで本発明に係るポリマーセメント硬化層にヤング率調整層が存在する構造物保護シートを得ることも可能である。
The hardened polymer cement layer 3 is formed by applying the coating solution onto a release sheet and then removing the solvent (preferably water) by drying. For example, a mixed composition of a cement component and an acrylic emulsion is used as a coating liquid to form the hardened polymer cement layer 3 . Although the resin layer 2 may be formed on the release sheet after forming the polymer cement hardened layer 3, the polymer cement hardened layer 3 is formed after the resin layer 2 is formed on the release sheet. may
Specifically, for example, a process paper as a release sheet is coated with a resin layer, and after drying, a coating liquid for polymer cement is applied, and a Young's modulus adjusting layer is attached in a wet state before drying. dry.
After that, a coating liquid for polymer cement is further applied to the surface to which the Young's modulus adjusting layer is attached, and dried to obtain a structure protection sheet in which the Young's modulus adjusting layer is present in the polymer cement hardened layer according to the present invention. Obtainable.
In addition, a step of coating a resin layer on a process paper as a release sheet, applying a coating liquid for polymer cement after drying, laminating a Young's modulus adjusting layer in a wet state before drying, and then drying. The Young's modulus adjusting layer is present in the hardened layer of the polymer cement according to the present invention by further coating the surface to which the Young's modulus adjusting layer is attached without drying, and then drying the entire surface. It is also possible to obtain a structure protection sheet.
 ポリマーセメント硬化層3の厚さは、特に限定されず、構造物21の使用形態(道路橋、トンネル、水門等河川施設、下水道管渠、港湾岸壁等の土木構造物等)、経年度合い、形状等によって任意に設定される。具体的なポリマーセメント硬化層3の厚さとしては、例えば、0.5mm~1.5mmの範囲とすることができる。一例として1mmの厚さとした場合は、その厚さバラツキは、±100μm以内となることが好ましい。こうした精度の厚さは、現場での塗工では到底実現できないものであり、工場の製造ラインで安定して塗工されることにより実現することができる。なお、1mmより厚い場合でも、厚さバラツキを±100μm以内とすることができる。また、1mmよりも薄い場合は、厚さバラツキをさらに小さくすることができる。 The thickness of the hardened polymer cement layer 3 is not particularly limited, and the type of use of the structure 21 (road bridges, tunnels, river facilities such as water gates, civil engineering structures such as sewer pipes, harbor quays, etc.), age, and shape. etc. is arbitrarily set. Specifically, the thickness of the hardened polymer cement layer 3 can be, for example, in the range of 0.5 mm to 1.5 mm. As an example, when the thickness is 1 mm, the thickness variation is preferably within ±100 μm. Such a precise thickness cannot be achieved by on-site coating, but can be achieved by stably coating on a factory production line. Even if the thickness is greater than 1 mm, the thickness variation can be kept within ±100 μm. Moreover, when the thickness is less than 1 mm, the thickness variation can be further reduced.
 このポリマーセメント硬化層3は、セメント成分の存在により、後述の樹脂層2に比べて水蒸気が容易に透過する。このときの水蒸気透過率は、例えば20~60g/m・day程度である。さらに、セメント成分は、例えばコンクリートを構成するセメント成分との相溶性がよく、コンクリート表面との密着性に優れたものとすることができる。また、図2に示すように、構造物21の表面に下塗り層22と接着剤23が順に設けられている場合にも、セメント成分を含有するポリマーセメント硬化層3が接着剤23に密着性よく接着する。また、このポリマーセメント硬化層3は、延伸性があるので、構造物21にひび割れや膨張が生じた場合であっても、コンクリートの変化に追従することができる。 Due to the presence of the cement component, this hardened polymer cement layer 3 is more easily permeable to water vapor than the resin layer 2 which will be described later. The water vapor transmission rate at this time is, for example, about 20 to 60 g/m 2 ·day. Furthermore, the cement component has good compatibility with, for example, the cement component that constitutes concrete, and can be made to have excellent adhesion to the concrete surface. Also, as shown in FIG. 2, when the undercoat layer 22 and the adhesive 23 are provided in order on the surface of the structure 21, the polymer cement hardened layer 3 containing the cement component adheres well to the adhesive 23. Glue. In addition, since the hardened polymer cement layer 3 has extensibility, it can follow changes in the concrete even if the structure 21 cracks or expands.
 (樹脂層)
 樹脂層2は、図2(C)に示すように、構造物21とは反対側に配置されて、表面に現れる層である。この樹脂層2は、例えば、図1(A)に示すように単層であってもよいし、図1(B)に示すように少なくとも2層からなる積層であってもよい。単層とするか多層とするかは、全体厚さ、付与機能(防水性、遮塩性、中性化阻止性、水蒸気透過性等)、工場の製造ラインの長さ、生産コスト等を考慮に設定され、例えば製造ラインが短くて単層では所定の厚さにならない場合は、2層以上重ね塗りして形成することができる。なお、重ね塗りは、1層目の層を乾燥した後に2層目の層を塗工する。2層目の層は、その後乾燥される。
(resin layer)
The resin layer 2 is a layer arranged on the side opposite to the structure 21 and appearing on the surface, as shown in FIG. 2(C). The resin layer 2 may be, for example, a single layer as shown in FIG. 1(A), or may be a laminate consisting of at least two layers as shown in FIG. 1(B). Whether to use a single layer or multiple layers takes into account the overall thickness, the functions to be imparted (waterproofness, salt barrier, neutralization prevention, water vapor permeability, etc.), the length of the factory production line, the production cost, etc. For example, if the production line is short and a single layer does not have a predetermined thickness, two or more layers can be overcoated. In the case of overcoating, the second layer is applied after drying the first layer. The second layer is then dried.
 樹脂層2は、柔軟性を有し、コンクリートに発生したひび割れや亀裂に追従できるとともに防水性、遮塩性、中性化阻止性及び水蒸気透過性に優れた樹脂層を形成できる塗料を塗工して得られる。樹脂層2を構成する樹脂としては、ゴム特性を示すアクリル系樹脂(例えばアクリル酸エステルを主成分に持つ合成ゴム)、アクリルウレタン樹脂、アクリルシリコーン樹脂、フッ素樹脂、柔軟エポキシ樹脂、ポリブタジエンゴム等を挙げることができる。この樹脂材料は、前記したポリマーセメント層2を構成する樹脂成分と同じものであること好ましい。特にゴム等の弾性膜形成成分を含有する樹脂であることが好ましい。 The resin layer 2 is coated with a paint that has flexibility, can follow cracks and cracks that occur in concrete, and can form a resin layer that is excellent in waterproofness, salt shielding, neutralization prevention, and water vapor permeability. obtained by Examples of the resin constituting the resin layer 2 include acrylic resins exhibiting rubber characteristics (for example, synthetic rubber containing acrylic acid ester as a main component), acrylic urethane resins, acrylic silicone resins, fluorine resins, flexible epoxy resins, polybutadiene rubbers, and the like. can be mentioned. This resin material is preferably the same as the resin component constituting the polymer cement layer 2 described above. In particular, it is preferably a resin containing an elastic film-forming component such as rubber.
 これらのうち、ゴム特性を示すアクリル系樹脂は、安全性と塗工性に優れている点で、アクリルゴム系共重合体の水性エマルションからなることが好ましい。なお、エマルション中のアクリルゴム系共重合体の割合は例えば30~70重量%である。アクリルゴム系共重合体エマルションは、例えば界面活性剤の存在下で単量体を乳化重合することにより得られる。界面活性剤は、アニオン系、ノニオン系、カチオン系のいずれもが使用できる。  Among these, acrylic resins exhibiting rubber properties are preferably composed of aqueous emulsions of acrylic rubber copolymers in terms of excellent safety and coatability. Incidentally, the proportion of the acrylic rubber copolymer in the emulsion is, for example, 30 to 70% by weight. An acrylic rubber copolymer emulsion is obtained, for example, by emulsion polymerization of monomers in the presence of a surfactant. Any of anionic, nonionic and cationic surfactants can be used.
 樹脂層2を形成するための塗料は、樹脂組成物と溶媒との混合塗工液を作製し、その塗工液を離型シート上に塗布し、その後に溶媒を乾燥除去することで、樹脂層2を形成する。溶媒は、水又は水系溶媒であってもよいし、キシレン・ミネラルスピリット等の有機系溶媒であってもよい。後述の実施例では、水系溶媒を用いており、アクリル系ゴム組成物で樹脂層2を作製している。なお、離型シート上に形成される層の順番は制限されず、例えば、上記のとおり樹脂層2、ポリマーセメント硬化層3の順番であってもよいし、ポリマーセメント硬化層3、樹脂層2の順番であってもよい。もっとも、後述の実施例に示すように、離型シート上に樹脂層2を形成し、その後にポリマーセメント硬化層3を形成することが好ましい。 The paint for forming the resin layer 2 is prepared by preparing a mixed coating liquid of a resin composition and a solvent, applying the coating liquid on a release sheet, and then removing the solvent by drying. Form layer 2; The solvent may be water, an aqueous solvent, or an organic solvent such as xylene/mineral spirit. In Examples described later, a water-based solvent is used, and the resin layer 2 is made of an acrylic rubber composition. The order of the layers formed on the release sheet is not limited. may be in that order. However, it is preferable to form the resin layer 2 on the release sheet and then form the hardened polymer cement layer 3, as shown in Examples described later.
 樹脂層2の厚さは、構造物21の使用形態(道路橋、トンネル、水門等河川管理施設、下水道管渠、港湾岸壁等の土木構造物等)、経年度合い、形状等によって任意に設定される。一例としては、50~150μmの範囲内のいずれかの厚さとし、その厚さバラツキは、±50μm以内とすることが好ましい。こうした精度の厚さは、現場での塗工ではとうてい実現できないものであり、工場の製造ラインで安定して実現することができる。 The thickness of the resin layer 2 is arbitrarily set according to the type of use of the structure 21 (road bridge, tunnel, river management facility such as a water gate, civil engineering structure such as a sewage pipe, port quay, etc.), degree of aging, shape, and the like. be. As an example, it is preferable that the thickness be within the range of 50 to 150 μm, and that the thickness variation be within ±50 μm. Thickness with such precision cannot be achieved by coating on site, and can be stably achieved on the production line of the factory.
 この樹脂層2は、高い防水性、遮塩性、中性化阻止性を有するが、水蒸気は透過することが好ましい。このときの水蒸気透過率としては、例えば、10~50g/m・day程度とすることが望ましい。こうすることにより、構造物保護シート1に高い防水性、遮塩性、中性化阻止性と所定の水蒸気透過性を持たせることができる。さらに、ポリマーセメント硬化層3と同種の樹脂成分で構成されることにより、ポリマーセメント硬化層3との相溶性がよく、密着性に優れたものとすることができる。水蒸気透過性は、JIS Z0208「防湿包装材料の透湿度試験方法」に準拠して測定した。  This resin layer 2 has high waterproof properties, salt-shielding properties, and neutralization-preventing properties, but is preferably permeable to water vapor. At this time, the water vapor transmission rate is preferably about 10 to 50 g/m 2 ·day, for example. By doing so, the structure protection sheet 1 can be endowed with high waterproof properties, salt barrier properties, neutralization prevention properties, and predetermined water vapor permeability. Further, by being composed of the same kind of resin component as the polymer cement hardening layer 3, the compatibility with the polymer cement hardening layer 3 is good and the adhesion can be excellent. The water vapor permeability was measured according to JIS Z0208 "Test method for moisture permeability of moisture-proof packaging materials".
 また、樹脂層2は、本発明に係る構造物保護シート1のカラーバリエーションを豊富にできる観点から顔料を含有していてもよい。
 また、樹脂層2は、無機物を含有していてもよい。無機物を含有することで樹脂層2に耐擦傷性を付与することができる。上記無機物としては特に限定されず、例えば、シリカ、アルミナ、チタニア等の金属酸化物粒子等従来公知の材料が挙げられる。
 更に、樹脂層2は、公知の防汚剤を含有していてもよい。本発明に係る構造物保護シートは、通常屋外に設置されるコンクリート構造物の補修に用いられるため、樹脂層2は汚染されることが多いが、防汚剤を含有することで本発明に係る構造物保護シートが汚染されることを好適に防止できる。上記防汚剤としては特に限定されず従来公知の材料が挙げられる。
 また、樹脂層2は様々な機能を付与できる添加剤を含有していてもよい。このような添加剤としては、例えば、セルロールナノファイバー等が挙げられる。
Moreover, the resin layer 2 may contain a pigment from the viewpoint of increasing the color variations of the structure protection sheet 1 according to the present invention.
Moreover, the resin layer 2 may contain an inorganic substance. By containing an inorganic substance, the resin layer 2 can be imparted with scratch resistance. The inorganic material is not particularly limited, and examples thereof include conventionally known materials such as metal oxide particles such as silica, alumina, and titania.
Furthermore, the resin layer 2 may contain a known antifouling agent. Since the structure protection sheet according to the present invention is usually used for repairing concrete structures installed outdoors, the resin layer 2 is often contaminated. It is possible to suitably prevent the structure protection sheet from being contaminated. The antifouling agent is not particularly limited and includes conventionally known materials.
Moreover, the resin layer 2 may contain additives capable of imparting various functions. Examples of such additives include cellulose nanofibers and the like.
 (その他の構成)
 作製された構造物保護シート1は、ポリマーセメント硬化層3と樹脂層2との一方の面に離型シートを備えてもよい。離型シートは、例えば、施工現場への際に構造物保護シート1の表面を保護することができ、施工現場では、対象となる構造物21の上(又は下塗り層22又は接着剤23を介して)離型シートを貼り付けたままの構造物保護シート1を接着し、その後離型シートを容易に剥がすことで、施工現場での作業性が大きく改善される。なお、離型シートは、構造物保護シート1の生産工程で利用する工程紙であることが好ましい。
(Other configurations)
The manufactured structure protection sheet 1 may have a release sheet on one side of the polymer cement hardening layer 3 and the resin layer 2 . For example, the release sheet can protect the surface of the structure protection sheet 1 when it is sent to the construction site, and at the construction site, it is applied on the target structure 21 (or via the undercoat layer 22 or the adhesive 23). 3) Adhering the structure protection sheet 1 to which the release sheet is attached and then easily peeling off the release sheet greatly improves workability at the construction site. The release sheet is preferably process paper used in the production process of the structure protection sheet 1 .
 離型シートとして使用される工程紙は、製造工程で使用される従来公知のものであれば、その材質等は特に限定されない。例えば、公知の工程紙と同様、ポリロピレンやポリエチレン等のオレフィン樹脂層やシリコンを含有する層を有するラミネート紙等を好ましく挙げることができる。その厚さも特に限定されないが、製造上及び施工上、取り扱いを阻害する厚さでなければ例えば50~500μm程度の任意の厚さとすることができる。 The material of the process paper used as the release sheet is not particularly limited as long as it is conventionally known and used in the manufacturing process. For example, laminated paper having an olefin resin layer such as polypropylene or polyethylene or a silicon-containing layer, like known process paper, can be preferably used. The thickness is not particularly limited, but it can be any thickness, for example, about 50 to 500 μm, as long as the thickness does not impede handling in terms of manufacturing and construction.
 以上説明した構造物保護シート1は、上述した透湿度の変化率が所定の値以下に制御されているから、太陽光に曝された場合であっても付与された性能が劣化することを好適に防止でき、コンクリート等の構造物21を長期にわたって保護することができる。特に、構造物保護シート1に構造物21の特性に応じた性能を付与し、構造物21に生じたひび割れや膨張に追従させること、構造物21に水や塩化物イオン等の劣化因子を浸透させないようにすること、構造物中の水分や劣化因子を排出できる透過性を持たせることができる。そして、こうした構造物保護シート1は、工場で製造できるので、特性の安定した高品質のものを量産することができる。その結果、職人の技術に寄らずに施工でき、工期の短縮と労務費の削減を実現できる。 In the structure protection sheet 1 described above, since the rate of change in moisture permeability is controlled to a predetermined value or less, it is preferable that the given performance is degraded even when exposed to sunlight. can be prevented, and the structure 21 such as concrete can be protected over a long period of time. In particular, the structure protection sheet 1 is given performance according to the characteristics of the structure 21 to follow cracks and expansions that occur in the structure 21, and permeation of deterioration factors such as water and chloride ions into the structure 21. In addition, the structure can be made permeable so that moisture and deterioration factors in the structure can be discharged. Since such a structure protection sheet 1 can be manufactured in a factory, it is possible to mass-produce high-quality sheets with stable characteristics. As a result, it can be constructed without relying on the skills of craftsmen, shortening the construction period and reducing labor costs.
 [構造物保護シートを用いた補強された構造物の製造方法]
 本発明に係る構造物保護シートを用いた補強された構造物の製造方法は、図2に示すように、上記本発明に係る構造物保護シート1を使用した施工方法であって、構造物21上に接着剤23を塗布した後に構造物保護シート1を貼り合わせる、ことを特徴とする。この施工方法は、構造物21の表面に構造物保護シート1を容易に貼り合わせることができる。その結果、熟練した作業者でなくとも厚さのバラツキの小さい層で構成された構造物保護シート1を、構造物21に設けることができ、工期を大幅に削減できるとともに、構造物21を長期にわたって保護することができる。
[Method for manufacturing reinforced structure using structure protection sheet]
The method for manufacturing a reinforced structure using the structure protection sheet according to the present invention is a construction method using the structure protection sheet 1 according to the present invention, as shown in FIG. It is characterized in that the structure protection sheet 1 is pasted after the adhesive 23 is applied thereon. This construction method can easily bond the structure protection sheet 1 to the surface of the structure 21 . As a result, even an unskilled worker can provide the structure protection sheet 1 composed of a layer with a small thickness variation on the structure 21, thereby significantly reducing the construction period and extending the structure 21. can be protected over
 図2は、構造物保護シート1の施工方法(補強された構造物の製造方法)の説明図である。施工は、図2(A)に示すように、構造物21の表面に下塗り層22を形成する。下塗り層22は、エポキシ樹脂等の樹脂と溶媒とを混合した塗工液を、構造物21に塗工し、その後、塗工液中の溶媒を揮発乾燥させて形成することができる。このときの溶媒も上記同様の水等を挙げることができる。下塗り層22の厚さは特に限定されないが、例えば100~150μmの範囲内とすることができる。構造物21と接着剤23との間に設ける下塗り層22は、相互の密着を高めるように作用するので、構造物保護シート1は、長期間安定して構造物21を保護することができる。なお、構造物21にひび割れや欠損が生じている場合には、それを補修した後に下塗り層22を設けることが好ましい。また、補修は特に限定されないが、通常セメントモルタルやエポキシ樹脂等が使われる。 FIG. 2 is an explanatory diagram of the construction method of the structure protection sheet 1 (manufacturing method of a reinforced structure). Construction forms the undercoat layer 22 on the surface of the structure 21, as shown in FIG. 2(A). The undercoat layer 22 can be formed by coating the structure 21 with a coating liquid obtained by mixing a resin such as an epoxy resin and a solvent, and then volatilizing and drying the solvent in the coating liquid. Examples of the solvent at this time include water and the like similar to those described above. Although the thickness of the undercoat layer 22 is not particularly limited, it can be in the range of 100 to 150 μm, for example. Since the undercoat layer 22 provided between the structure 21 and the adhesive 23 acts to enhance mutual adhesion, the structure protection sheet 1 can stably protect the structure 21 for a long period of time. If the structure 21 is cracked or damaged, it is preferable to provide the undercoat layer 22 after repairing it. Also, the repair is not particularly limited, but usually cement mortar, epoxy resin, or the like is used.
 下塗り層22を形成した後、図2(B)に示すように、接着剤23が塗布される。塗布された接着剤23は、乾燥させることなく、図2(C)に示すように、その上に構造物保護シート1を貼り合わせる。接着剤23としては、ウレタン系接着剤、エポキシ系接着剤、ゴム特性を示すアクリル系樹脂(例えばアクリル酸エステルを主成分に持つ合成ゴム)を用いた接着剤等を挙げることができる。なかでも、構造物保護シート1のポリマーセメント硬化層3を構成する樹脂成分と同種の樹脂成分からなる接着剤23は、ポリマーセメント硬化層3との接着強度が高くなるのでより好ましい。接着剤23の厚さは特に限定されない。接着剤23は、通常、コンクリートに刷毛塗り又はスプレー塗り等の手段で塗布した後に時間経過によって自然乾燥させて硬化する。  After forming the undercoat layer 22, an adhesive 23 is applied as shown in FIG. 2(B). Without drying the applied adhesive 23, the structure protection sheet 1 is adhered thereon as shown in FIG. 2(C). Examples of the adhesive 23 include urethane-based adhesives, epoxy-based adhesives, and adhesives using acrylic resins exhibiting rubber characteristics (for example, synthetic rubber containing acrylic acid ester as a main component). Among them, the adhesive 23 composed of the same resin component as the resin component constituting the polymer cement hardened layer 3 of the structure protection sheet 1 is more preferable because the adhesive strength with the polymer cement hardened layer 3 is increased. The thickness of the adhesive 23 is not particularly limited. The adhesive 23 is usually applied to concrete by means of brushing or spraying, and then naturally dried and hardened over time. 
 図3は、現場打ち工法に構造物保護シート1を適用した例を示す説明図である。現場打ち工法とは、作業現場で型枠24を形成し、その型枠24内にコンクリート組成物21’を流し込み、放置して硬化させてコンクリート構造物21を得る工法である。この現場打ち工法において、硬化したコンクリート構造物21を形成した後、その表面に構造物保護シート1を貼り合わせることで、劣化が生じにくい構造物21とすることができる。貼り合せに当たっては、コンクリート構造物21の表面に下塗り層22を塗工・乾燥し、その上に接着剤23を塗工した後、構造物保護シート1を貼り合せる。その後、通常、自然放置して接着剤23を乾燥硬化して、構造物保護シート1を接着する。 FIG. 3 is an explanatory diagram showing an example of applying the structure protection sheet 1 to the cast-in-place construction method. The cast-in-place method is a construction method in which a formwork 24 is formed at a work site, a concrete composition 21' is poured into the formwork 24, and left to harden to obtain a concrete structure 21. In this cast-in-place construction method, after forming the hardened concrete structure 21, the structure protection sheet 1 is attached to the surface of the hardened concrete structure 21, so that the structure 21 that is less likely to deteriorate can be obtained. In bonding, the undercoat layer 22 is applied to the surface of the concrete structure 21 and dried, and the adhesive 23 is applied thereon, after which the structure protection sheet 1 is bonded. After that, the structure protection sheet 1 is adhered by drying and curing the adhesive 23 by letting it stand naturally.
 一方、既にひび割れ等が生じた構造物21に対しては、欠損部分を補修した後に、上記同様の施工方法により構造物保護シート1を貼り合わせる。こうしてコンクリート構造物21の寿命を延ばすことができる。 On the other hand, for the structure 21 that already has cracks, etc., the structure protection sheet 1 is attached by the same construction method as above after repairing the damaged portion. Thus, the life of the concrete structure 21 can be extended.
 実施例と比較例により本発明をさらに具体的に説明する。 The present invention will be explained more specifically with examples and comparative examples.
(実施例1)
 PPラミネート紙からなる厚さ130μmの離型シートを用いた。この離型シート上に樹脂層を以下の方法で形成した。
 まず、アクリルシリコーン樹脂60質量部と、二酸化チタン25質量部と、酸化第二鉄10質量部と、カーボンブラック5質量部とを含有するエマルジョン組成物を準備した。このエマルジョン組成物を上記離型シート上に塗布した後、加熱処理をしてこれを硬化させて、樹脂層を形成した。樹脂層の厚さは0.1mmとなるようにした。
 次に、樹脂層の上にポリマーセメント硬化層を形成した。
 具体的には、セメント種として「アロンブルコートA450Xセッター」(東亞合成社製)、樹脂成分として「アクリセットEMN-325E」(日本触媒社製)を用いた。なお、これらを混合したポリマーセメント層形成用組成物を塗布乾燥して得られたポリマーセメント硬化層は、吸水性ポリマーを樹脂成分100質量部に対して0.08質量部含み、セメント種を樹脂成分中に50重量%含有する複合層である。
 上記ポリマーセメント硬化層形成用組成物を、樹脂層の上に、上記ポリマーセメント硬化層形成用組成物を、樹脂層の上に乾燥前の厚さが1.0mmとなるように塗工した後、これを80℃、50分間の条件で乾燥させた後、湿度50%RH、80℃、3日間エージングさせて厚さ1.29mmのポリマーセメント硬化層3を形成した。
 こうして合計厚さ1.39mmの構造物保護シートを作製した。なお、この構造物保護シートは、約25℃に管理された工場内で連続生産され、離型シートを含んだ態様でロール状に巻き取った。 
(Example 1)
A release sheet made of PP-laminated paper and having a thickness of 130 μm was used. A resin layer was formed on this release sheet by the following method.
First, an emulsion composition containing 60 parts by mass of acrylic silicone resin, 25 parts by mass of titanium dioxide, 10 parts by mass of ferric oxide, and 5 parts by mass of carbon black was prepared. After the emulsion composition was applied onto the release sheet, it was cured by heat treatment to form a resin layer. The thickness of the resin layer was set to 0.1 mm.
Next, a polymer cement hardening layer was formed on the resin layer.
Specifically, "Aron Bull Coat A450X Setter" (manufactured by Toagosei Co., Ltd.) was used as the cement species, and "Acryset EMN-325E" (manufactured by Nippon Shokubai Co., Ltd.) was used as the resin component. The hardened polymer cement layer obtained by coating and drying the composition for forming a polymer cement layer in which these are mixed contains 0.08 parts by mass of the water-absorbing polymer per 100 parts by mass of the resin component, and the cement species is resin. It is a composite layer containing 50% by weight of the component.
After applying the composition for forming a polymer cement hardened layer onto the resin layer so that the thickness before drying is 1.0 mm on the resin layer. , dried at 80° C. for 50 minutes, and then aged at 80° C. and humidity of 50% RH for 3 days to form a hardened polymer cement layer 3 having a thickness of 1.29 mm.
Thus, a structure protection sheet having a total thickness of 1.39 mm was produced. In addition, this structure protection sheet was continuously produced in a factory controlled at about 25° C., and was wound into a roll while including a release sheet.
(実施例2~12)
 セメント種及び樹脂成分を表1に記載の種類に変更し、吸水性ポリマーの配合量、乾燥時間及びエージング時の湿度を表1に記載した通りに変更した以外は実施例1と同様にして構造物保護シートを作製した。
(Examples 2 to 12)
The structure was the same as in Example 1, except that the cement type and resin component were changed to the types shown in Table 1, and the blending amount of the water-absorbing polymer, the drying time, and the humidity during aging were changed as shown in Table 1. A protective sheet was prepared.
(比較例1~6)
 吸水性ポリマーを添加しなかった以外はそれぞれ実施例1~6と同様にして、比較例1~6に係る構造物保護シートを作製した。
(Comparative Examples 1 to 6)
Structure protective sheets according to Comparative Examples 1 to 6 were produced in the same manner as in Examples 1 to 6, respectively, except that no water-absorbing polymer was added.
Figure JPOXMLDOC01-appb-T000001
 表1中、セメント種の「アロンブル」は「アロンブルコートA-450Xセッター」(東亞合成社製)、「日本スタッコ」は「スプリングコートコテ」(日本スタッコ社製)を表し、樹脂成分の「EMN」は「アクリセットEMN-325E」(日本触媒社製)、「アロンブル」は「アロンブルコートA-450ベース」(東亞合成社製)、「コテ」は「スプリングコートコテ」(日本スタッコ社製)を表す。
Figure JPOXMLDOC01-appb-T000001
In Table 1, the cement type "Aronble" represents "Aronble Coat A-450X Setter" (manufactured by Toagosei Co., Ltd.), "Nippon Stucco" represents "Spring Coat Iron" (manufactured by Nippon Stucco Co., Ltd.), and the resin component " EMN” is “Acryset EMN-325E” (manufactured by Nippon Shokubai Co., Ltd.), “Aronble” is “Aronble Coat A-450 Base” (manufactured by Toagosei Co., Ltd.), “trowel” is “Spring Coat Iron” (Nippon Stucco Co., Ltd.) made).
 [透湿度の測定]
 得られた実施例及び比較例に係る構造物保護シートの透湿度をカップ法(JIS Z0208:1976準拠)を用いて測定した。
 次いで、得られた実施例及び比較例に係る構造物保護シートにキセノンランプを用いて放射強度180W/mで光を72時間照射し、JIS Z0208:1976に準拠したカップ法により光照射前後の透湿度を測定し、透湿度の変化率を算出した。
 吸水性ポリマーを0.08質量部添加した実施例1~6(グループ1)、0.13質量部添加した実施例7~12(グループ2)及び添加しなかった比較例1~6(グループ3)でグループ分けし、各グループにおけるキセノンランプによる光照射の前後の透湿度の平均値を求めた。結果を図4に示した。
 図4に示したように、吸水性ポリマーを添加した実施例に係るグループ1及びグループ2の透湿度の変化率の平均値は32.1%、15.0%であり、吸水性ポリマー添加しなかった比較例に係るグループ3の透湿度の変化率の平均値は59.1%であった。なお、実施例に係る構造物保護シートの透湿度の変化率はいずれも35%以下であった。
[Measurement of moisture permeability]
The moisture permeability of the obtained structure protection sheets according to Examples and Comparative Examples was measured using the cup method (JIS Z0208:1976).
Next, the obtained structure protection sheets according to Examples and Comparative Examples were irradiated with light at a radiation intensity of 180 W/m 2 using a xenon lamp for 72 hours, and then measured before and after light irradiation by the cup method in accordance with JIS Z0208:1976. The moisture permeability was measured, and the rate of change in moisture permeability was calculated.
Examples 1 to 6 (group 1) with the addition of 0.08 parts by mass of the water-absorbent polymer, Examples 7 to 12 (group 2) with the addition of 0.13 parts by mass, and Comparative Examples 1 to 6 (group 3 ), and the average value of the moisture permeability before and after light irradiation by the xenon lamp in each group was obtained. The results are shown in FIG.
As shown in FIG. 4, the average values of the rate of change in moisture permeability of Group 1 and Group 2 according to the example to which the water-absorbing polymer was added were 32.1% and 15.0%, and the water-absorbing polymer was added. The average value of the rate of change in moisture permeability of Group 3 according to the comparative example, which did not have a water vapor transmission rate, was 59.1%. In addition, the rate of change in moisture permeability of the structure protection sheets according to the examples was all 35% or less.
1 構造物保護シート
2 樹脂層
3 ポリマーセメント硬化層
5 プライマー層
21 構造物(コンクリート) 
21’ コンクリート組成物(構造物形成組成物)
22 下塗り層 
23 接着剤 
24 型枠
1 structure protection sheet 2 resin layer 3 polymer cement hardening layer 5 primer layer 21 structure (concrete)
21' concrete composition (structure-forming composition)
22 Undercoat layer
23 Adhesive
24 Formwork

Claims (6)

  1.  構造物側に設けられるポリマーセメント硬化層と、該ポリマーセメント硬化層上に設けられた樹脂層とを備える構造物保護シートであって、
     放射強度180W/mのキセノンランプから光を72時間照射させた前後の透湿度の変化率が35%以下である
     ことを特徴とする構造物保護シート。
    A structure protection sheet comprising a polymer cement hardened layer provided on the structure side and a resin layer provided on the polymer cement hardened layer,
    A structure protection sheet having a rate of change in moisture permeability of 35% or less before and after being irradiated with light from a xenon lamp having a radiation intensity of 180 W/m 2 for 72 hours.
  2.  前記ポリマーセメント硬化層に対して吸水処理が施されている請求項1記載の構造物保護シート。 The structure protection sheet according to claim 1, wherein the polymer cement hardened layer is subjected to water absorption treatment.
  3.  前記吸水処理は、前記ポリマーセメント硬化層に吸水性ポリマーを添加する方法、前記ポリマーセメント硬化層に無機の吸水性物質を添加する方法、前記ポリマーセメント硬化層を作製する際のエージング処理を高湿度環境下で行う方法、前記樹脂層を形成する際の加熱処理を高湿度環境下で行う方法、前記ポリマーセメント硬化層に水分を吸収させた含水シートを設ける方法、前記構造物保護シートを施工した後に湿潤養生を行う方法からなる群より選択されるいずれかの方法である請求項2記載の構造物保護シート。 The water absorption treatment includes a method of adding a water absorbing polymer to the polymer cement hardened layer, a method of adding an inorganic water absorbing substance to the polymer cement hardened layer, and an aging treatment in producing the polymer cement hardened layer. A method in which the heat treatment for forming the resin layer is performed in a high-humidity environment, a method in which the polymer cement hardened layer is provided with a water-containing sheet that absorbs water, and a structure protection sheet is applied. 3. The structure protection sheet according to claim 2, wherein the method is any one selected from the group consisting of wet curing afterward.
  4.  前記ポリマーセメント硬化層は、セメント成分及び樹脂を含有する層であって、前記樹脂が10重量%以上、40重量%以下含有されている請求項1、2又は3記載の構造物保護シート。 The structure protection sheet according to claim 1, 2 or 3, wherein the polymer cement hardening layer is a layer containing a cement component and a resin, and the resin is contained in an amount of 10% by weight or more and 40% by weight or less.
  5.  請求項1、2、3又は4に記載の構造物保護シートを使用した補強された構造物の製造方法であって、構造物上に接着剤を塗布した後に前記構造物保護シートを貼り合わせることを特徴とする補強された構造物の製造方法。 A method for manufacturing a reinforced structure using the structure protection sheet according to claim 1, 2, 3 or 4, comprising applying an adhesive onto the structure and then laminating the structure protection sheet together. A method of manufacturing a reinforced structure, characterized by:
  6.  前記構造物と前記接着剤との間に下塗り層を設ける、請求項5に記載の補強された構造物の製造方法。 The method for manufacturing a reinforced structure according to claim 5, wherein an undercoat layer is provided between the structure and the adhesive.
PCT/JP2022/026445 2021-07-28 2022-07-01 Structure protection sheet, and method for manufacturing reinforced structure WO2023008097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-123258 2021-07-28
JP2021123258A JP2023018895A (en) 2021-07-28 2021-07-28 Structure protective sheet and manufacturing method of reinforced structure

Publications (1)

Publication Number Publication Date
WO2023008097A1 true WO2023008097A1 (en) 2023-02-02

Family

ID=85086781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026445 WO2023008097A1 (en) 2021-07-28 2022-07-01 Structure protection sheet, and method for manufacturing reinforced structure

Country Status (3)

Country Link
JP (1) JP2023018895A (en)
TW (1) TW202309384A (en)
WO (1) WO2023008097A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089193A (en) * 2015-11-09 2017-05-25 日東電工株式会社 Concrete exfoliation prevention sheet and concrete structure using the same
JP2018079697A (en) * 2011-11-01 2018-05-24 コルテックス コンポジッツ,エルエルシー Nonwoven cementitious composite for in-situ hydration
WO2021010456A1 (en) * 2019-07-17 2021-01-21 恵和株式会社 Structure protection sheet, execution method and precast member using structure protection sheet, and method for manufacturing precast member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079697A (en) * 2011-11-01 2018-05-24 コルテックス コンポジッツ,エルエルシー Nonwoven cementitious composite for in-situ hydration
JP2017089193A (en) * 2015-11-09 2017-05-25 日東電工株式会社 Concrete exfoliation prevention sheet and concrete structure using the same
WO2021010456A1 (en) * 2019-07-17 2021-01-21 恵和株式会社 Structure protection sheet, execution method and precast member using structure protection sheet, and method for manufacturing precast member

Also Published As

Publication number Publication date
JP2023018895A (en) 2023-02-09
TW202309384A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
WO2021010456A1 (en) Structure protection sheet, execution method and precast member using structure protection sheet, and method for manufacturing precast member
JP7323699B2 (en) Structural protection sheet, concrete block and method for manufacturing reinforced structure
KR101931321B1 (en) High early strength repair materials compositions for concrete bridge deck and repairing method for concrete bridge deck using that
JP7379320B2 (en) Roof repair method
JP7419619B2 (en) Waterproofing material composition, waterproofing method and waterproofing film
WO2023008097A1 (en) Structure protection sheet, and method for manufacturing reinforced structure
WO2023286561A1 (en) Structure protection sheet, and production method for reinforced structure
WO2022255145A1 (en) Structure protection sheet, and method for manufacturing reinforced structure
WO2023074610A1 (en) Structure protection sheet and method for manufacturing reinforced structure
JP2022184760A (en) Structure protection sheet and method for manufacturing reinforced structure
JP2023066394A (en) Structure protection sheet and method for manufacturing reinforced structure
WO2023058726A1 (en) Structure protection sheet and method for installing structure protection sheet
WO2023080133A1 (en) Structure protection sheet and method for protecting surface of structure
JP2022175085A (en) Construction method of smoother and protective sheet
WO2023181384A1 (en) Method for protecting concrete column
JP2023056514A (en) Structure protection sheet and construction method of structure protection sheet
TW202340591A (en) Method for protecting concrete column capable of greatly reducing the construction time when a protective layer is provided to the surface of an existing concrete column and protecting the existing concrete column over an extended period of time
JP2022085739A (en) Draining member, method for attaching draining member, and installation method of protection sheet for structure
JP2022117750A (en) Hand roller and protective sheet construction method
JP2022080242A (en) Hand roller, protective sheet construction method and coating liquid application method
TW202340578A (en) Drainage component, applying method of the same and construction method of structure protection sheet wherein the structure protection sheet includes a polymeric adhesive curing layer and a resin layer
JPS61286280A (en) Method of mending or protecting concrete surface
CN117425760A (en) Structure protection sheet and method for manufacturing reinforced structure
JP2022184805A (en) Structure protection sheet and construction method of structure protection sheet
JP2023149462A (en) Cross section repairing structure of reinforced concrete structure and cross section repairing method of reinforced concrete structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE