WO2023058726A1 - Structure protection sheet and method for installing structure protection sheet - Google Patents

Structure protection sheet and method for installing structure protection sheet Download PDF

Info

Publication number
WO2023058726A1
WO2023058726A1 PCT/JP2022/037484 JP2022037484W WO2023058726A1 WO 2023058726 A1 WO2023058726 A1 WO 2023058726A1 JP 2022037484 W JP2022037484 W JP 2022037484W WO 2023058726 A1 WO2023058726 A1 WO 2023058726A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protection sheet
structure protection
sheet
resin
Prior art date
Application number
PCT/JP2022/037484
Other languages
French (fr)
Japanese (ja)
Inventor
康男 西村
辰範 北里
晃 二宮
Original Assignee
恵和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恵和株式会社 filed Critical 恵和株式会社
Priority claimed from JP2022161767A external-priority patent/JP2023056514A/en
Publication of WO2023058726A1 publication Critical patent/WO2023058726A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D5/00Roof covering by making use of flexible material, e.g. supplied in roll form
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/24Safety or protective measures preventing damage to building parts or finishing work during construction
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/24Safety or protective measures preventing damage to building parts or finishing work during construction
    • E04G21/28Safety or protective measures preventing damage to building parts or finishing work during construction against unfavourable weather influence
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • the present invention relates to a structure protection sheet and a construction method for the structure protection sheet. More specifically, even when a wide structure protection sheet is attached to the surface of a structure, it suppresses the occurrence of wrinkles and air entrapment, and is suitable for providing a protection sheet on the surface of a structure having a plurality of parallel steps.
  • the present invention relates to a structure protection sheet capable of greatly reducing the construction period and protecting a structure for a long period of time without generating wrinkles or forming gaps with the surface of the structure, and a construction method for the structure protection sheet. .
  • a general method is to place a blue sheet 31 on the blue sheet 31 and arrange a plurality of sandbags 32 as weights on the blue sheet 31 .
  • Patent Document 1 and Patent Document 2 propose a method of fixing the blue sheet using a bag filled with water. It is
  • the present invention has been made in view of such a conventional situation, and its object is to suppress the occurrence of wrinkles and air entrainment even when a wide structure protection sheet is attached to the surface of a structure.
  • a protective sheet with a specific configuration having an adhesive layer instead of a blue sheet is pasted along the steps on the surface of the structure. It is possible to eliminate the gap between the surface of the object and to give the protective sheet a performance according to the characteristics of the surface of the structure, specifically, to follow the cracks and expansion that occur in the slate roof etc. It is also equipped with the followability, waterproofness that does not allow permeation of degrading factors such as water and chloride ions, salt shielding, neutralization prevention, and water vapor permeability that allows the moisture in the roof to be discharged as water vapor. We have realized the provision of a layer that secures the strength of the sheet itself.
  • a protective sheet provided with an adhesive layer is stored in a state in which a release sheet is attached to the adhesive layer, and the release sheet is peeled off during construction to expose the adhesive layer before being transferred to the surface of the structure.
  • it is difficult to suppress the occurrence of wrinkles and air entrainment with a wide protective sheet and the surface of the structure has an uneven shape, specifically a shape with parallel steps like a slate roof. In this case, unintentional sticking may occur on the stepped part or other flat part when attaching to the flat part between the steps.
  • slits are provided in the release sheet for each part to be pasted on the surface of the structure, and only the release sheet facing the part to be pasted on the surface of the structure is peeled off.
  • the structure protection sheet according to the present invention is a structure protection sheet provided with a release sheet, an adhesive layer, a polymer cement hardened layer and a resin layer in this order, and is used by bonding to the surface of a structure. 1 or 2 or more slits are formed in the release sheet.
  • the release sheet it is possible to attach the release sheet to the surface of the structure by peeling off only the release sheet corresponding to the portion to be attached, even if the width is wide, so that the occurrence of wrinkles and the occurrence of air entrapment can be suitably prevented. can.
  • even on the surface of a structure with steps it is possible to apply the structure protection sheet efficiently without wrinkles and gaps by peeling off only the release sheet on the part to be pasted and exposing the adhesive layer. becomes.
  • the structure protection sheet can be mass-produced by coating and drying processes on the factory production line, it is possible to reduce costs, significantly reduce the work period on site, and achieve long-term protection of structures.
  • the structure protection sheet can be attached to the surface of the structure through the adhesive layer without forming an adhesive layer by applying an adhesive at the work site. can be pasted, and work efficiency is extremely excellent.
  • the present invention is preferably the structure protection sheet according to (1) above, wherein the release sheet has slits formed in the longitudinal direction.
  • construction can be performed extremely efficiently without wrinkles or gaps on the surface of structures such as slate roofs.
  • a plurality of linear steps are formed parallel to each other on the surface of the structure, and the slits formed in the release sheet are located at the corners formed by the steps. It is preferable that the structure protection sheet according to (1) or (2) above is formed in
  • the release sheet on the part to be pasted is peeled off to expose the adhesive layer, so that the structure protection sheet can be efficiently applied without wrinkles and gaps. Construction becomes possible.
  • the present invention is preferably a structure protection sheet according to (1), (2) or (3) above, further comprising a mesh layer.
  • the adhesive layer is the structure protection sheet described in (1), (2), (3) or (4) above, which contains an acrylic pressure-sensitive adhesive as a main component.
  • Acrylic pressure-sensitive adhesives have a high degree of freedom in material design, and are also excellent in transparency, weather resistance, and heat resistance. can.
  • the present invention provides the above (1), (2), (3), and (4) having an adhesive force of 0.5 N/mm 2 or more when attached to the surface of the structure via an adhesive layer. ) or (5).
  • the surface of a structure can be strongly protected over a long period of time by the structure protection sheet according to the invention.
  • the present invention is the structure protection sheet according to (1), (2), (3), (4), (5) or (6), wherein the adhesive layer has a thickness of 50 to 500 ⁇ m. Preferably.
  • the polymer cement-hardened layer is a layer containing a cement component and a resin and containing 10% by weight or more and 40% by weight or less of the resin.
  • the structure protection sheet described in (2), (3), (4), (5), (6) or (7) is preferred. More preferably, the resin content is 20% by weight or more and 30% by weight or less.
  • the polymer cement hardening layer is a layer with excellent conformability and good compatibility, so the adhesion of the layer itself is excellent. Furthermore, the cement component contained in the polymer-cement-hardened layer on the structure side acts to enhance adhesion to structures such as concrete.
  • the present invention provides a method for applying a structure protection sheet according to (3), (4), (5), (6), (7) or (8) above, wherein disposing the structure protection sheet on the surface of the structure so that the slits of the release sheet face each other;
  • the method is characterized by comprising a step of exposing an adhesive layer by peeling, and a step of attaching the exposed adhesive layer to the surface of the structure.
  • the structure protection sheet when the structure protection sheet is attached to the surface of the structure, only the release sheet of the part to be attached to the surface of the structure is peeled off to expose the adhesive layer, and the part other than the part to be attached is adhered. Since the layer can be covered with the release sheet, the adhesive layer is not unintentionally attached when the structure protection sheet is applied. As a result, even on a flat surface having parallel steps, the structure protection sheet can be adhered extremely efficiently without creases and gaps.
  • the present invention even when a wide structure protection sheet is attached to the surface of a structure, the occurrence of wrinkles and air trapping can be suppressed, and the surface of a structure with steps can be easily repaired without gaps. Moreover, it is possible to provide a construction method for a structure protection sheet that can be used for a long period of time. In particular, the structure protection sheet should be given performance according to the characteristics of the surface of the structure so that it can follow the cracks and expansion that occur on the surface of the structure, and the deterioration factors such as water and chloride ions on the surface of the structure. It is possible to provide a construction method using a structure protection sheet that can prevent the penetration of . Furthermore, at the construction site, it has the advantage of being able to improve the stability and uniformity of quality compared to the method of manually coating multiple layers with a paint for repairing rain leaks.
  • FIG. 1 A) and (B) are sectional block diagrams which show an example of the structure protection sheet based on this invention.
  • FIG. 1 A) and (B) are schematic diagrams showing how the structure protection sheet according to the present invention is attached to a structure.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a top view which shows typically an example of the structure protection sheet of this invention.
  • (a) to (c) are schematic diagrams showing an example of the construction method of the structure protection sheet of the present invention, and (d) is an enlarged sectional view.
  • FIG.) and (B) are cross-sectional configuration diagrams showing another example of the structure protection sheet according to the present invention.
  • FIG. 1 A) and (B) are schematic diagrams showing an example of the mesh layer of the structure protection sheet according to the present invention. It is explanatory drawing of the conventional repair method of a roof.
  • (a) and (b) are schematic diagrams of a structure protection sheet according to an example.
  • the structure protection sheet according to the present invention is used by being attached to the surface of a structure, and has a resin layer on the outermost surface when attached to the structure.
  • the structure protection sheet 10 according to the present invention has an adhesive layer 15, a polymer cement hardening layer 12 and a resin layer 13 provided in this order.
  • Both the polymer cement hardened layer 12 and the resin layer 13 may be formed as single layers as shown in FIG. 1(A), or may be formed as laminated layers as shown in FIG. 1(B). may be Another layer may be provided between the polymer cement hardened layer 12 and the resin layer 13 depending on the required performance.
  • the structure protection sheet 10 preferably has a water vapor transmission rate of 10 to 50 g/m 2 ⁇ day. Since the hardened polymer cement layer 12 contains a cement component, it can be expected to have a certain level of water vapor transmission rate, but the resin layer 13 provided on the hardened polymer cement layer 12 has a poor water vapor transmission rate. Presumably, such a problem does not occur in the present invention, and since the water vapor transmission rate of the entire structure protection sheet 10 is within a predetermined range, water vapor inside the structure protection sheet 10 can be removed after it is attached to a structure such as concrete.
  • the advantage of having a water vapor transmission rate within a predetermined range is that, because of the structure that allows vapor to escape easily, corrosion of metal (for example, reinforcing bars) in the structure tends to be suppressed.
  • the structure protection sheet 10 When the structure protection sheet 10 is applied to a structure on a rainy day, the surface of the structure is wet and the structure itself contains moisture. has the above-mentioned water vapor transmission rate, water permeated into the structure after construction (after manufacture of the reinforced structure) can easily escape to the outside.
  • the structure protection sheet 10 according to the present invention can be suitably used for such concrete as well.
  • Another advantage of the structure protection sheet 10 according to the present invention is that its water vapor transmission rate can be controlled, so that it can be attached to the surface of the structure even when the cement of the structure is not hardened, for example. at the point. That is, when the cement is molded and hardened, if water is rapidly removed, the cement becomes porous and the strength of the structure tends to decrease. By attaching it, it is possible to control the speed of water removal when the cement hardens, and there is also the advantage that it becomes easier to avoid the porous structure described above.
  • the structure protection sheet 10 according to the present invention cannot sufficiently transmit water vapor, preventing swelling after being attached to a structure. Otherwise, the adhesion may become insufficient. If it exceeds 50 g/m 2 ⁇ day, the speed of water removal during hardening of the cement becomes excessively fast, and there is a possibility that the hardened cement will become porous.
  • a preferable range of the water vapor transmission rate is 20 to 50 g/m 2 ⁇ day.
  • the structure protection sheet 10 according to the present invention having such a water vapor transmission rate can be obtained, for example, by using a polymer cement hardening layer 12 described later and a resin having a predetermined water vapor transmission rate for the resin layer 13. .
  • the water vapor transmission rate in the present invention can be measured by the method described below.
  • the structure protection sheet according to the present invention may be used in a state in which two or more layers are stacked. Since the structure protected by the structure protection sheet according to the present invention can be further protected by stacking, for example, when two sheets of the structure protection sheet according to the present invention are attached side by side, these structures can be protected. Another structure protection sheet according to the present invention can be attached so as to cover the boundaries between the object protection sheets.
  • the polymer cement hardened layer 12 contains cement and a resin component. 13 also exhibits suitable adhesion. Therefore, the structure protection sheet 10 according to the present invention can be suitably used in a stacked state.
  • the structure protection sheet 10 according to the present invention preferably has a thickness distribution within ⁇ 100 ⁇ m. Since the structure protection sheet 10 has a thickness distribution within the above range, even an unskilled worker can stably form a layer with small thickness variations on the surface of the structure. Further, by controlling the thickness distribution within the above range, it becomes easier to uniformly reinforce the structure.
  • the polymer cement hardened layer 12 provided on the structure side has excellent adhesion to the structure, etc., and the resin layer 13 provided on the polymer cement hardened layer 12 has waterproof, salt-blocking, and neutralization prevention properties. It is possible to easily impart excellent properties such as toughness.
  • the structure protection sheet 10 according to the present invention can be mass-produced by the coating process and the drying process on the production line of the factory, it realizes cost reduction, a drastic reduction in work period at the site, and long-term protection of the structure. be able to.
  • the structure protection sheet 10 according to the present invention is provided with the adhesive layer 15, it is not necessary to form an adhesive layer by applying an adhesive at the work site. It becomes easy to attach to the surface of the structure via an adhesive layer with an appropriate thickness. As a result, it is possible to greatly reduce the time required for attaching the film to the surface of the structure and to protect the structure for a long period of time.
  • the structure is a mating member to which the structure protection sheet 10 is applied.
  • a structure a structure made of concrete can be mentioned.
  • the concrete is generally obtained by placing and curing a cement composition containing at least a cementitious inorganic substance, an aggregate, an admixture and water.
  • Such concrete is widely used as civil engineering structures such as road bridges, tunnels, water gates and other river management facilities, sewer pipes, harbor quays and the like.
  • by applying the structure protection sheet 10 to a structure made of concrete it is possible to follow the cracks and expansion that occur in the concrete, and prevent deterioration factors such as water and chloride ions from penetrating into the concrete.
  • the moisture inside can be discharged as steam.
  • the structure has a plurality of parallel linear steps formed on its surface.
  • a structure having such a surface for example, as shown in FIG. 2c, which has a surface in which flat portions and steps are repeatedly formed.
  • the structure having such a surface is not particularly limited, but suitable examples thereof include a slate roof, a Galvalume steel plate (registered trademark), a tiled roof (ridge/flat), and the like.
  • the polymer cement hardening layer 12 is a layer arranged on the structure side.
  • the hardened polymer cement layer 12 may be a single layer as shown in FIG. 1(A) or a laminate as shown in FIG. 1(B).
  • the thickness is arbitrarily set in consideration of the overall thickness, imparted functions (followability, adhesion to structures, etc.), factory production line, production cost, etc. For example, if the production line is short and a single layer If it does not become thick, it can be formed by coating two or more layers. For example, when two layers are overcoated, the second layer is formed after drying the first layer.
  • the hardened polymer cement layer 12 may also have a structure in which layers having different properties are layered together. For example, by forming a layer with a higher resin component ratio on the resin layer 13 side, the layer with a high resin component adheres to the resin layer, and the layer with a high cement component adheres to the concrete structure. It has excellent properties.
  • the hardened polymer cement layer 12 is obtained by coating a resin containing a cement component (resin component) in the form of a coating.
  • a cement component include various cements, limestones containing calcium oxide, and clays containing silicon dioxide.
  • cement is preferable, and examples thereof include portland cement, alumina cement, high-early strength cement, fly ash cement, and the like. Which cement is selected is selected according to the properties that the polymer-cement-hardened layer 12 should have, for example, considering the degree of conformability to a concrete structure.
  • Portland cement defined in JIS R5210 is particularly preferred.
  • the resin component examples include acrylic resin, acrylic urethane resin, acrylic silicone resin, fluororesin, flexible epoxy resin, polybutadiene rubber, acrylic resin exhibiting rubber properties (e.g., synthetic rubber containing acrylic acid ester as a main component), etc. can be mentioned.
  • a resin component is preferably the same as the resin component constituting the resin layer 13 described later, from the viewpoint of enhancing the adhesion between the polymer cement hardening layer 12 and the resin layer 13 .
  • any of a thermoplastic resin, a thermosetting resin, and a photocurable resin may be used as the resin component.
  • cured in the polymer cement cured layer 12 does not mean that the resin component is limited to resins that cure and polymerize, such as thermosetting resins or photocurable resins. It is used in the sense that it is sufficient to use a material that hardens to a certain degree.
  • the content of the resin component is adjusted appropriately according to the material used, etc., but is preferably 10% by weight or more and 40% by weight or less with respect to the total amount of the cement component and the resin component. If it is less than 10% by weight, the adhesion to the resin layer 13 tends to decrease and it becomes difficult to maintain the polymer cement hardened layer 12 as a layer. may be insufficient. From the above viewpoint, the content of the resin component is more preferably 15% by weight or more and 35% by weight or less, and more preferably 20% by weight or more and 30% by weight or less.
  • the coating material for forming the polymer cement hardening layer 12 is a coating liquid obtained by mixing a cement component and a resin component with a solvent.
  • the resin component is preferably an emulsion.
  • an acrylic emulsion is polymer fine particles obtained by emulsion polymerization of a monomer such as an acrylic ester using an emulsifier.
  • An acrylic polymer emulsion obtained by polymerizing a mixture in water containing a surfactant is preferably used.
  • the content of the acrylic acid ester and the like constituting the acrylic emulsion is not particularly limited, but is selected within the range of 20 to 100% by mass.
  • the amount of the surfactant is also blended according to need, and the amount is not particularly limited, but the surfactant is blended to the extent that it forms an emulsion.
  • the hardened polymer cement layer 12 is formed by applying the coating solution onto a release sheet and then removing the solvent (preferably water) by drying.
  • a mixed composition of a cement component and an acrylic emulsion is used as a coating liquid to form the polymer cement hardened layer 12 .
  • the resin layer 13 may be formed on the release sheet after forming the polymer cement hardened layer 12
  • the polymer cement hardened layer 12 may be formed after the resin layer 13 is formed on the release sheet.
  • a process paper as a release sheet is coated with a resin layer, and after drying, a coating liquid for polymer cement is applied, and a Young's modulus adjusting layer is attached in a wet state before drying. dry.
  • a coating liquid for polymer cement is further applied to the surface to which the Young's modulus adjusting layer is attached, and dried to obtain a structure protection sheet in which the Young's modulus adjusting layer is present in the polymer cement hardened layer according to the present invention.
  • a step of coating a resin layer on a process paper as a release sheet applying a coating liquid for polymer cement after drying, laminating a Young's modulus adjusting layer in a wet state before drying, and then drying.
  • the thickness of the polymer cement hardened layer 12 is not particularly limited, and is arbitrarily set depending on the usage pattern, aging degree, shape, etc. of the structure.
  • a specific thickness of the hardened polymer cement layer 12 can be, for example, in the range of 0.5 mm to 1.5 mm.
  • the thickness variation is preferably within ⁇ 100 ⁇ m.
  • Such a precise thickness cannot be achieved by on-site coating, but can be achieved by stably coating on a factory production line. Even if the thickness is greater than 1 mm, the thickness variation can be kept within ⁇ 100 ⁇ m. Moreover, when the thickness is less than 1 mm, the thickness variation can be further reduced.
  • the hardened polymer cement layer 12 is more easily permeable to water vapor than the resin layer 13, which will be described later.
  • the water vapor transmission rate at this time is, for example, about 20 to 60 g/m 2 ⁇ day.
  • the cement component has good compatibility with, for example, the cement component that constitutes concrete, and can be made to have excellent adhesion to the concrete surface.
  • the structure protection sheet 10 has an adhesive layer, and the polymer cement hardened layer 12 containing a cement component adheres to the adhesive layer with good adhesion.
  • the polymer cement hardened layer 12 since the polymer cement hardened layer 12 has extensibility, it can follow changes in the concrete even if cracks or expansion occurs in the structure.
  • the present invention further comprises a mesh layer. Since the structure protection sheet according to the present invention further includes a mesh layer, the structure protection sheet according to the present invention can have sufficient strength.
  • the structure protection sheet 10 according to the present invention has excellent adhesion strength, and thus the mesh layer 17 is provided at the interface between the hardened polymer cement layer 12 and the resin layer 13. is preferred.
  • the adhesion strength is determined by attaching the polymer cement hardening layer 12 side surface of the structure protection sheet 10 according to the present invention to the concrete surface via the adhesive layer 15 and fixing a tension jig to the surface of the resin layer 13. It is obtained by measuring the strength at which tensile delamination occurs by pulling the tensile jig to the side opposite to the concrete side at a speed of 1500 n/min.
  • the mesh layer 17 may exist inside the polymer cement hardened layer 12 as shown in FIG. 5(B).
  • the mesh layer 17 may be disposed on the surface of the polymer cement hardened layer 12 opposite to the surface in contact with the resin layer 13 , but the mesh layer 17 may be embedded inside the polymer cement hardened layer 12 . preferable.
  • the contact area between the mesh layer 17 and the polymer cement hardened layer 12 is increased, and the adhesion strength between the two is easily improved, and the polymer cement It becomes easy to ensure the strength of the hardened layer 12 as a whole.
  • the mesh layer 17 is not embedded inside the polymer cement-hardened layer 12, separation is likely to occur at the interface between the mesh layer 17 and the polymer cement-hardened layer 12. Moreover, when the mesh layer 17 exists inside the polymer cement hardened layer 12, the mesh layer 17 may exist at a position half the thickness of the polymer cement hardened layer 12, but the resin layer 13 It is desirable to be on the side. When the mesh layer 17 exists on the resin layer 13 side in the polymer cement hardened layer 12, the adhesive strength is improved by 1.3 times on average.
  • the mesh layer 17 is impregnated with a material (for example, a cement component or a resin component) that constitutes the polymer cement-hardened layer 12 .
  • a material for example, a cement component or a resin component
  • the state in which the mesh layer 17 is impregnated with the material constituting the hardened polymer cement layer 12 means that the material constituting the hardened polymer cement layer 12 is filled between the fibers constituting the mesh layer 17.
  • such an impregnated state makes it easier to make the adhesive strength between the mesh layer 17 and the polymer cement hardened layer 12 extremely excellent. Further, the interaction between the mesh layer 17 and the material of the polymer cement hardening layer 12 tends to become stronger, and the strength of the structure protection sheet 10 tends to be improved.
  • the mesh layer 17 has a structure in which warp and weft fibers are arranged in a grid pattern.
  • the above fibers are composed of, for example, at least one fiber selected from the group consisting of polypropylene fibers, vinylon fibers, carbon fibers, aramid fibers, glass fibers, polyester fibers, polyethylene fibers, nylon fibers and acrylic fibers.
  • polypropylene fibers and vinylon fibers can be preferably used.
  • the shape thereof is not particularly limited, and any mesh layer 17 such as a triaxial fabric can be used in addition to the biaxial fabric as shown in FIG.
  • the mesh layer 17 preferably has a line pitch of 50 mm to 1.2 mm (line density of 0.2 to 8.0 lines/cm). If the pitch is 1.2 mm or less, the bonding between the polymer cement layers above and below the mesh may be insufficient, and the surface strength of the structure protection sheet 10 may be insufficient. Also, if the line pitch exceeds 50 mm, the surface strength of the structure protection sheet 10 is not adversely affected, but the tensile strength may be weakened. In the structure protection sheet 10 according to the present invention, there is a trade-off relationship between tensile strength and surface strength, and the mesh layer 17 suitable for application to the present invention has a line pitch in the range of 50 mm to 1.2 mm. be.
  • the mesh layer 17 may have a size that covers the entire surface of the polymer cement-hardened layer 12 when viewed from the top side of the polymer cement-hardened layer 12 , or may be smaller than the polymer cement-hardened layer 12 . That is, the area of the mesh layer 17 when viewed in plan may be the same as or smaller than the area of the polymer cement hardening layer 12 when viewed in plan. It is preferably 60% or more and 95% or less of the plan view area of the cement-hardened layer 12 . If it is less than 60%, the strength of the structure protection sheet 10 according to the present invention may be insufficient, and the strength may vary.
  • the adhesive strength between the polymer-cement hardened layers 12 may be inferior, and the structure protection sheet 10 according to the present invention may not be structured.
  • the planar view area of the mesh layer 17 and the like can be measured by a known method.
  • the resin layer 13 is a layer arranged on the side opposite to the structure 1 and appearing on the surface.
  • the resin layer 13 may be, for example, a single layer as shown in FIG. 1(A), or may be a laminate of at least two layers as shown in FIG. 1(B).
  • Whether to use a single layer or multiple layers takes into account the overall thickness, the functions to be imparted (waterproofness, salt barrier, neutralization prevention, water vapor permeability, etc.), the length of the factory production line, the production cost, etc. For example, if the production line is short and a single layer does not have a predetermined thickness, two or more layers can be overcoated. In the case of overcoating, the second layer is applied after drying the first layer. The second layer is then dried.
  • the resin layer 13 is coated with a paint that has flexibility, can follow cracks and cracks that occur in concrete, and can form a resin layer that is excellent in waterproofness, salt resistance, neutralization resistance, and water vapor permeability.
  • Resins constituting the resin layer 13 include acrylic resins exhibiting rubber characteristics (for example, synthetic rubber containing acrylic acid ester as a main component), acrylic urethane resins, acrylic silicone resins, fluorine resins, flexible epoxy resins, polybutadiene rubbers, and the like. can be mentioned.
  • This resin material is preferably the same as the resin component constituting the polymer cement hardening layer 12 described above. In particular, it is preferably a resin containing an elastic film-forming component such as rubber.
  • acrylic resins exhibiting rubber properties are preferably composed of aqueous emulsions of acrylic rubber copolymers in terms of excellent safety and coatability.
  • the proportion of the acrylic rubber copolymer in the emulsion is, for example, 30 to 70% by mass.
  • An acrylic rubber copolymer emulsion is obtained, for example, by emulsion polymerization of monomers in the presence of a surfactant. Any of anionic, nonionic and cationic surfactants can be used.
  • the paint for forming the resin layer 13 is prepared by preparing a mixed coating liquid of a resin composition and a solvent, applying the coating liquid on a release sheet, and then removing the solvent by drying. A layer 13 is formed.
  • the solvent may be water, an aqueous solvent, or an organic solvent such as xylene/mineral spirit. In Examples described later, a water-based solvent is used, and the resin layer 13 is made of an acrylic rubber composition.
  • the order of the layers formed on the release sheet is not limited. may be in that order.
  • the thickness of the resin layer 13 is arbitrarily set depending on the type of usage, degree of aging, shape, etc. of the structure 1. As an example, it is preferable that the thickness be within the range of 50 to 150 ⁇ m, and that the thickness variation be within ⁇ 50 ⁇ m. Thickness with such precision cannot be achieved by coating on site, and can be stably achieved on the production line of the factory.
  • This resin layer 13 has high waterproof properties, salt-shielding properties, and neutralization-preventing properties, but is preferably permeable to water vapor.
  • the water vapor transmission rate is preferably about 10 to 50 g/m 2 ⁇ day, for example.
  • the structure protection sheet 10 can have high waterproof properties, salt barrier properties, neutralization prevention properties, and predetermined water vapor permeability.
  • the compatibility with the polymer cement hardening layer 12 is good and the adhesion can be excellent.
  • the water vapor permeability was measured according to JIS Z0208 "Test method for moisture permeability of moisture-proof packaging materials".
  • the resin layer 13 may contain a pigment from the viewpoint of increasing the color variation of the structure protection sheet 10 .
  • the resin layer 13 may contain an inorganic substance. By containing the inorganic substance, the resin layer 13 can be provided with scratch resistance.
  • the inorganic material is not particularly limited, and examples thereof include conventionally known materials such as metal oxide particles such as silica, alumina, and titania.
  • the resin layer 13 may contain a known antifouling agent. Since the structure protection sheet 10 is usually used for repairing concrete structures installed outdoors, the resin layer 13 is often contaminated. can be suitably prevented.
  • the antifouling agent is not particularly limited and includes conventionally known materials.
  • the resin layer 13 may contain an additive capable of imparting various functions. Examples of such additives include cellulose nanofibers and the like.
  • the structure protection sheet 10 is provided with an adhesive layer 15 on the side of the polymer cement hardened layer 12 opposite to the resin layer 13 (the side facing the structure 1). Since the adhesive layer 15 is provided on the surface of the polymer cement hardening layer 12, when the structure protection sheet 10 is attached to the structure, it is not necessary to apply an adhesive to form an adhesive layer at the work site. Since there is no adhesive layer, the work efficiency is extremely high, and the structure protection sheet 10 can be attached to the structure via the adhesive layer 15 having a uniform thickness without relying on a skilled craftsman. In addition, since the adhesive layer 15 is provided, the adhesive layer 15 can be aligned with linear steps formed on the surface of the structure, thereby enhancing the adhesion of the structure protection sheet 10 .
  • the adhesive layer 15 may be an adhesive layer using an adhesive, or may be an adhesive layer using an adhesive. Considering the pot life of the adhesive layer 15, the adhesive layer is preferable.
  • the adhesive is not particularly limited, and examples thereof include known adhesives such as acrylic adhesives, silicone adhesives, urethane adhesives, and rubber adhesives.
  • the adhesive layer 15 is an acrylic adhesive. It is preferable to contain an adhesive as a main component.
  • the acrylic pressure-sensitive adhesive has a high degree of freedom in material design because it is easy to adjust the adhesive force to the structure, and is excellent in transparency, weather resistance, and heat resistance. Protection can be done better.
  • the acrylic pressure-sensitive adhesive is not particularly limited, and a commercial product can be used.
  • the amount of the adhesive layer 15 (hereinafter also referred to as the adhesive layer) containing the acrylic adhesive as a main component is 20 g/m 2 because it can exhibit sufficient adhesion to the surface of a structure such as concrete. More than 250 g/m 2 or less is preferable. Further, it is preferable that the adhesive layer has an adhesive force of 0.5 N/mm 2 or more when attached to the surface of the structure via the adhesive layer. If it is less than 0.5 N/mm 2 , the adhesion of the structure protection sheet 10 to the structure surface may be insufficient.
  • the adhesive layer 15 in the structure protection sheet 10 is an adhesive layer composed of an adhesive
  • the adhesive is not particularly limited, and known adhesives such as ultraviolet curable adhesives and heat curable adhesives can be mentioned. be done.
  • adhesives include, for example, urethane-based adhesives, epoxy-based adhesives, and adhesives using acrylic resins exhibiting rubber characteristics (for example, synthetic rubbers containing acrylic acid ester as a main component).
  • an adhesive composed of the same kind of resin component as that constituting the polymer cement hardened layer 12 of the structure protection sheet 10 is more preferable because the adhesive strength with the polymer cement hardened layer 12 is increased.
  • the adhesive layer 15 preferably contains a curing agent.
  • the structure-protecting sheet 10 has excellent adhesion to structures, and the structure-protecting sheet 10 also has excellent punching strength.
  • the structure protection sheet 10 preferably has a punch strength of 1.5 kN or more in a punch test specified in JSCE-K-533. When the punch strength is 1.5 kN or more, the structure protection sheet 10 can suitably prevent the problem of concrete or the like falling off the surface of the structure.
  • the curing agent is not particularly limited, and known curing agents such as isocyanate curing agents, amine curing agents, epoxy curing agents, and metal chelate curing agents can be used.
  • the adhesive layer 15 preferably has a gel fraction of 30% to 70%, since the adhesion to the structure and the punching strength of the structure protection sheet 10 are excellent, and the lower limit is more preferable. 40%, and a more preferable upper limit is 65%.
  • the adhesive layer 15 preferably has a thickness of 50 to 500 ⁇ m. If the thickness is less than 50 ⁇ m, the adhesion of the structure protection sheet 10 to the structure may be insufficient, and if it exceeds 500 ⁇ m, the thickness tends to vary. Excess adhesive may protrude from the end when it is flattened. A more preferable lower limit of the thickness of the adhesive layer 15 is 90 ⁇ m, and a more preferable upper limit thereof is 200 ⁇ m.
  • the structure protection sheet 10 has a release sheet 16 attached to the side of the adhesive layer 15 opposite to the polymer cement hardened layer 12 .
  • a release sheet 16 is peeled off when it is attached to the surface of the structure 21 as shown in FIG. 2(A).
  • FIG. 2B after exposing the adhesive layer, the structure protection sheet 10 is attached to the surface of the structure 21 from the adhesive layer side.
  • a release sheet 16 is not particularly limited, and examples thereof include a sheet having a base material layer and a release layer.
  • Examples of materials constituting the base material layer include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene and polymethylpentene, polyamides such as nylon 6, vinyl resins such as polyvinyl chloride, polymethyl Examples include acrylic resins such as methacrylate, cellulose resins such as cellulose acetate, and synthetic resins such as polycarbonate.
  • the said base material layer may be formed considering paper as a main component.
  • the base material layer may be a laminate of two or more layers.
  • Examples of materials that constitute the release layer include silicone resins, melamine resins, and fluorinated polymers.
  • the release layer is formed by a known method such as a gravure coating method, a roll coating method, a comma coating method, a lip coating method, or the like, by applying a coating liquid containing a material constituting the release layer and an organic solvent onto the base material layer. It can be formed by a coating method of coating, drying and curing.
  • the lamination surface of the base material layer may be subjected to corona treatment or adhesion facilitating treatment.
  • the release sheet 16 is formed with one or more slits. Even if the structure protection sheet according to the present invention is wide, it can be attached to the surface of the structure by peeling off only the release sheet corresponding to the part to be attached, so that wrinkles and air bubbles are generated. The occurrence of biting can be suitably prevented. In addition, even on the surface of a structure with steps, it is possible to apply the structure protection sheet efficiently without wrinkles and gaps by peeling off only the release sheet on the part to be pasted and exposing the adhesive layer. becomes.
  • a plurality of linear steps are formed in parallel on the surface of the structure, and the slits formed in the release sheet are formed at locations facing the corners formed by the steps.
  • the "corner formed by a step” is a corner formed by a flat portion on the surface of the structure and a step adjacent to the flat portion.
  • the slits are corners formed by steps on the surface of the structure (convex corners and/or It is preferably formed in a portion facing the concave corner).
  • the release sheet 16 formed with the slits is divided into a plurality of regions by the formed slits. Specifically, for example, as shown in FIG. , corners (concave corners) formed with the second flat portion 2b disposed at a low position with respect to the first step 3a, and slits are provided at locations facing all of the convex corners and the concave corners.
  • regions (1) to (4) are divided into slits in order from one long side.
  • the region (1) is, as shown in FIG. By peeling off, the structure protection sheet 10 can be attached only to the first flat portion 2a.
  • region (2) is the release sheet 16 facing the first step 3a
  • region (3) the second flat portion 2b region (4) the second step 3b.
  • Steps and flat portions are further formed on the surface of the structure 1 shown in FIG.
  • the structure protection sheet 10 can be attached efficiently without forming a gap.
  • the structure protection sheet to be pasted later is pasted in a state in which it partially overlaps the previously pasted structure protection sheet. This is because it is possible to prevent a gap from being formed between the structure protection sheets.
  • a slit is provided at a location facing the corner (convex corner) formed by the first flat portion 2a and the first step 3a, and the release sheet 16 in the region (1) is peeled off to form the first flat portion
  • the structure protection sheet 10 can be attached only to the first step 3a by attaching the structure protection sheet 10 only to 2a and then peeling off the release sheet 16 in the area (2). Further, for example, when a slit is formed only at a position facing either the convex corner portion or the concave corner portion, the structure protection sheet may be folded when attached to the structure. It is divided into a plurality of regions by the bent portion and the bent portion.
  • the mold sheet 16 is peeled off, and the structure protection sheet 10 is attached only to the first flat portion 2a.
  • the structure protection sheet 10 can be attached to the second flat end portion 2b by forming a bent portion at the corner formed by the first stepped portion 3a and the second flat portion 2b while attaching the object protection sheet 10 to the second flat portion 2b.
  • area (4) is release sheet 16 facing second step 3b.
  • the solid line indicates the slit at the location facing the convex corner
  • the broken line indicates the bent portion formed at the location facing the concave corner.
  • the structure protection sheet 10 can be attached efficiently without forming a gap.
  • the structure protection sheet to be pasted later is pasted in a state in which it partially overlaps the previously pasted structure protection sheet. This is because it is possible to prevent a gap from being formed between the structure protection sheets.
  • the construction method of the structure protection sheet according to the present invention is also one aspect of the present invention. That is, in the construction method of the structure protection sheet according to the present invention, a plurality of linear steps are formed in parallel on the surface of the structure, and the slits formed in the release sheet are formed by the steps. a step of disposing the structure protection sheet on the surface of the structure so that the corners of the structure and the slits of the release sheet face each other; exposing the adhesive layer by peeling the release sheet from the slit facing the part to one end; and attaching the exposed adhesive layer to the surface of the structure. Characterized by
  • the construction method of the structure protection sheet according to the present invention is such that the structure protection sheet 10 according to the present invention has predetermined slits formed in the release sheet. Therefore, when attaching to the surface of a structure, it is possible to peel off only the necessary part of the release sheet to expose the adhesive layer and attach it to the surface of the structure, forming multiple linear steps in parallel. It can be suitably pasted on the surface of the structure with no gaps or wrinkles. In addition, the moisture in the structure such as concrete can be discharged, and the concrete structure 1 can be protected for a long period of time.
  • the structure protection sheet 10 is given performance according to the characteristics of the structure 1 to follow cracks and expansions that occur in the structure 1, and permeation of deterioration factors such as water and chloride ions into the structure 1.
  • the structure 1 can be made permeable so that deterioration factors in the structure 1 can be discharged. Since such a structure protection sheet 10 can be manufactured in a factory, it is possible to mass-produce high-quality sheets with stable characteristics. As a result, it can be constructed without relying on the skills of craftsmen, shortening the construction period and reducing labor costs.
  • a primer layer containing a curable resin material may be formed on the surface of the structure.
  • the curable resin material is not particularly limited as long as it is a material that can be cured by heat curing, photocuring or other methods to become a resin, but epoxy compounds are preferred.
  • the cured primer layer formed by curing the primer layer is a cured epoxy material.
  • An epoxy cured product is generally obtained by curing an epoxy compound having two or more epoxy groups with a curing agent. An example in which a cured epoxy material is used as a primer layer will be described below.
  • epoxy compounds examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, ortho-cresol novolac type epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, and diglycidyl ethers of phenols. , diglycidyl ethers of alcohols, and the like.
  • Curing agents include polyfunctional phenols, amines, polyamines, mercaptans, imidazoles, acid anhydrides, phosphorus-containing compounds, and the like.
  • polyfunctional phenols include monocyclic and bifunctional phenols such as hydroquinone, resorcinol, and catechol, polycyclic and bifunctional phenols such as bisphenol A, bisphenol F, naphthalene diols, biphenols, and halides thereof. , alkyl group-substituted products, and the like. Furthermore, novolacs and resoles, which are polycondensates of these phenols and aldehydes, can be used.
  • Amines include aliphatic or aromatic primary amines, secondary amines, tertiary amines, quaternary ammonium salts and aliphatic cyclic amines, guanidines, urea derivatives and the like.
  • materials for the primer layer include epoxy resin primers such as bisphenol A type epoxy or bisphenol F type epoxy as a main agent and polyamines or mercaptans as a curing agent. and the like.
  • the epoxy resin-based primer may contain, for example, a coupling agent, a viscosity modifier, a curing accelerator, etc., in addition to the main agent and the curing agent.
  • a primer layer for example, Toagosei Co., Ltd.'s two-liquid reaction-curing water-based epoxy resin emulsion "Aron Bull Coat P-300" (trade name, "Aron Blue Coat” is a registered trademark of Toagosei Co., Ltd.). ) can be used.
  • the primer layer is generally used as a primer for construction.
  • a solvent-type epoxy resin solvent solution, an epoxy resin emulsion and other general emulsions, or a pressure-sensitive adhesive may be applied to the surface of the structure as the undercoat material.
  • the undercoat material can be applied by a normal method, for example, by applying it to the surface of the structure to be prevented from deterioration with a brush or roller, or by spraying with a spray gun or the like. to form a coating film.
  • the thickness of the primer layer is not particularly limited, it is preferably in the range of 50 ⁇ m or more and 300 ⁇ m or less in a wet state.
  • the thickness of the primer layer By setting the thickness to 50 ⁇ m or more, it becomes easier to make the thickness of the primer layer uniform considering the penetration of the material of the primer layer into the structure such as concrete, and the adhesion between the structure and the structure protection sheet is ensured. easier to do.
  • the upper limit of the thickness of the primer layer is not particularly limited, it is preferably 300 ⁇ m or less from the viewpoint of ease of application, minimization of displacement between both layers during adhesion, and optimization of material usage.
  • the primer layer provided as the undercoat layer of the structure acts to enhance the mutual adhesion between the structure and the structure protection sheet, so if the primer layer has the above thickness, the structure protection sheet will be stable for a long period of time. Helps strengthen and protect structures. If the structure has cracks or defects, it is preferable to provide the primer layer after repairing the cracks or defects before applying the primer layer.
  • the repair method is not particularly limited, but cement mortar, epoxy resin, or the like is usually used for repair.
  • Example 1 A resin layer-forming composition containing an acrylic resin was applied onto a 130 ⁇ m thick release sheet 16 made of PP laminated paper and dried to form a 100 ⁇ m thick single layer resin layer 13 . After that, a composition for forming a hardened polymer cement layer was applied on the resin layer 13 and dried to form a hardened polymer cement layer 12 having a thickness of 1.00 mm consisting of a single layer.
  • 100 parts by mass of an acrylic adhesive (Olivine (registered trademark) 6574 (manufactured by Toyochem)
  • 6 parts by mass of an isocyanate hardening agent BHS8515 (manufactured by Toyochem)
  • a pressure-sensitive adhesive mixture having a gel fraction of 57%.
  • This pressure-sensitive adhesive mixture was applied to the surface of the resin layer 13 and dried to form an adhesive layer 15 (adhesive layer) having a thickness of 200 ⁇ m, thereby manufacturing a structure protection sheet 10 having a total thickness of 1300 ⁇ m.
  • This structure protection sheet 10 was continuously produced in a factory controlled at about 25° C., and was wound into a roll including a PP laminated paper release sheet to form the structure shown in FIG. Further, as shown in FIG. 8A, the release sheet 16 is provided with a slit in advance at a position of 185 mm from one long side to form a region (1), and from the slit to the other long side 15 mm was defined as the region (2).
  • the composition for forming a polymer cement hardened layer is a water-based acrylic emulsion containing 45 parts by mass of a cement mixture.
  • the cement mixture contains at least 70 ⁇ 5 parts by mass of Portland cement, 10 ⁇ 5 parts by mass of silicon dioxide, 2 ⁇ 1 parts by mass of aluminum oxide, and 1 to 2 parts by mass of titanium oxide.
  • the acrylic emulsion contains acrylic acid ester monomers. contains at least 53 ⁇ 2 parts by mass of an acrylic polymer obtained by emulsion polymerization using an emulsifier and 43 ⁇ 2 parts by mass of water.
  • the polymer cement hardened layer obtained by coating and drying the composition for forming the polymer cement hardened layer in which these are mixed is a composite layer containing 50% by mass of Portland cement in the acrylic resin.
  • the resin layer-forming composition is an acrylic silicone resin.
  • This acrylic silicone resin is an emulsion composition containing 60 parts by mass of acrylic silicone resin, 25 parts by mass of titanium dioxide, 10 parts by mass of ferric oxide, and 5 parts by mass of carbon black.
  • the structure protection sheet according to Example 1 was adhered to the slate roof in the lateral direction (direction parallel to the step) from the adhesive layer side. Specifically, first, the first flat portion at the top of the slate roof faces the region (1) of the structure protection sheet, and the adhesive layer exposed while peeling the release sheet of the region (1) is applied. Affixed to the first flat portion. Next, the exposed adhesive layer was attached to the first step while peeling off the release sheet in the region (2). As a result, a structure protection sheet having a uniform surface without wrinkles or gaps formed between the flat portion and the steps of the slate roof could be efficiently applied.
  • Example 2 A structure protection sheet 10 having the same layer structure as in Example 1 was produced. This structure protection sheet 10 was continuously produced in a factory controlled at about 25° C., and was wound into a roll including a PP laminated paper release sheet to form the structure shown in FIG. Further, as shown in FIG. 8B, the release sheet 16 is previously provided with a first slit at a position 185 mm from one long side to form a region (1). A bent portion is provided at a position of 15 mm on the other long side to form a region (2), and a second slit is provided at a position of 185 mm from the bent portion on the other long side to form a region (3). A region (4) was defined as 15 mm from the second slit to the other long side.
  • the structure protection sheet according to Example 2 was adhered to the slate roof in the lateral direction (direction parallel to the step) from the adhesive layer side. Specifically, first, the first flat portion at the top of the slate roof faces the region (1) of the structure protection sheet, and the adhesive layer exposed while peeling the release sheet of the region (1) is applied. Affixed to the first flat portion. Next, the adhesive layer exposed while peeling off the release sheet of the region (2) and the region (3) is attached to the first step and the second flat portion, and while peeling the release sheet of the region (4) The exposed adhesive layer was attached to the second step. As a result, a structure protection sheet having a uniform surface without wrinkles or gaps formed between the flat portion and the steps of the slate roof could be efficiently applied.
  • Example 3 A structure protection sheet 10 having the same layer structure as in Example 1 was produced.
  • the release sheet 16 was previously provided with a first slit at a position of 180 mm from one long side to form a region (1), and a second slit was provided at a position of 15 mm from the first slit to form a region (1).
  • (2) is formed, a third slit is provided at a position 180 mm from the second slit to form region (3), and a fourth slit is provided at a position 15 mm from the third slit to form region (4 ) to form regions (1) to (4) divided by slits.
  • the regions (1) to (4) were formed so as to face the flat portions and the steps to be attached to the slate roof structure.
  • the first flat portion of the top of the slate roof is made to face the region (1) of the structure protection sheet, and the adhesive layer exposed while peeling the release sheet of the region (1) is applied to the first flat portion. pasted.
  • the exposed adhesive layer was attached to the first step by peeling off the release sheet in the region (2) facing the first step adjacent to the first flat portion.
  • the exposed adhesive layer was attached to the second flat portion while peeling off the release sheet in the region (3) facing the second flat portion adjacent to the first step.
  • the exposed adhesive layer was attached to the second step while peeling off the release sheet in the region (4) facing the second step adjacent to the second flat portion.
  • Example 4 Mix 3 parts by mass of an isocyanate curing agent (BHS8515 (manufactured by Toyochem Co., Ltd.)) with 100 parts by mass of an acrylic adhesive (Oribain (registered trademark) 6574 (manufactured by Toyochem Co., Ltd.)) to give an adhesive with a gel fraction of 46%.
  • a structure protection sheet was produced in the same manner as in Example 3, except that the mixed solution for agents was used. After that, when the surface of the structure was applied in the same manner as in Example 3, the structure protection sheet was efficiently applied with a uniform surface without wrinkles or gaps between the flat part and the step of the slate roof. did it.
  • Example 1 A structure protection sheet was produced in the same manner as in Example 3, except that no slits were formed in the release sheet. After that, when construction was performed on the same slate roof as in Example 3 while peeling off the release sheet, the flat part and the step could not be attached at the same time, and the construction efficiency was poor.
  • the protective sheet had wrinkles and gaps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a structure protection sheet with which wrinkles and air trapping are minimized even when a wide structure protection sheet is attached to the surface of a structure, and with which there are no wrinkles or gaps even in the surface of a structure provided with a plurality of parallel level differences, the structure protection sheet being installable with exceptional efficiency; and a method for installing the structure protection sheet. This structure protection sheet has a release sheet, an adhesive layer, a polymer cement hardening layer, and a resin layer provided in the stated order and is attached to the surface of a structure, the structure protection sheet being characterized in that one or more slits are formed in the release sheet.

Description

構造物保護シート及び構造物保護シートの施工方法Structure protection sheet and construction method of structure protection sheet
 本発明は、構造物保護シート及び構造物保護シートの施工方法に関する。さらに詳しくは、幅広な構造物保護シートを構造物の表面に貼り付ける場合であってもシワやエアー噛みの発生を抑制し、平行な段差を複数有する構造物の表面に保護シートを設ける際の工期を大幅に削減できるとともに、シワの発生や構造物の表面との隙間を形成することなく構造物を長期にわたって保護することができる構造物保護シート、及び、その構造物保護シートの施工方法に関する。 The present invention relates to a structure protection sheet and a construction method for the structure protection sheet. More specifically, even when a wide structure protection sheet is attached to the surface of a structure, it suppresses the occurrence of wrinkles and air entrapment, and is suitable for providing a protection sheet on the surface of a structure having a plurality of parallel steps. The present invention relates to a structure protection sheet capable of greatly reducing the construction period and protecting a structure for a long period of time without generating wrinkles or forming gaps with the surface of the structure, and a construction method for the structure protection sheet. .
 一般住宅や商業ビルなどの構造物の屋根は、長期間風雨に曝されることによる劣化や台風等の災害による破損が生じると雨漏りの原因となることがあった。
 構造物の屋根の劣化や破損が生じたときには応急処置が必要となるが、現在構造物の屋根の応急処置としては、例えば、図7に示したように、屋根30の破損箇所を被うようにブルーシート31を置き、重りとして複数の土嚢32をブルーシート31の上に配置する方法が一般的である。
 また、土嚢32のような重りを用いてブルーシート31を配置する方法以外に、例えば、特許文献1や特許文献2等には、水を入れた袋を用いてブルーシートを固定する方法が提案されている。
Roofs of structures such as general houses and commercial buildings may cause rain leakage when they are deteriorated by exposure to wind and rain for a long period of time or damaged by disasters such as typhoons.
When the roof of a structure deteriorates or is damaged, emergency measures are required. Currently, as an emergency measure for the roof of a structure, for example, as shown in FIG. A general method is to place a blue sheet 31 on the blue sheet 31 and arrange a plurality of sandbags 32 as weights on the blue sheet 31 .
In addition to the method of placing the blue sheet 31 using a weight such as a sandbag 32, for example, Patent Document 1 and Patent Document 2 propose a method of fixing the blue sheet using a bag filled with water. It is
実用新案登録第3225057号公報Utility Model Registration No. 3225057 実用新案登録第3116572号公報Utility Model Registration No. 3116572
 近年、建物の屋根としてスレート屋根が広く普及しているが、スレート屋根は互いに平行な段差が複数設けられた表面を有する非平坦面であり、このような屋根に対し、従来のブルーシートを用いた屋根の補修では、ブルーシートのシワを防ぐことは難しく、また、ブルーシートと屋根との間に隙間が存在し、この隙間からの水の侵入を防止できないという問題があった。
 また、段差のない建物の屋根であっても、幅広なブルーシートである場合にシワやエアー噛みを生じさせることなく補修することは難しかった。
 また、通常、ブルーシートの耐候性は余り高くないため1年ほどで劣化して張り替えをする必要があった。
In recent years, slate roofs are widely used as building roofs, but slate roofs are non-flat surfaces with multiple parallel steps, and conventional blue sheets are used for such roofs. In repairing the old roof, it is difficult to prevent wrinkles in the blue sheet, and there is a gap between the blue sheet and the roof, and there is a problem that water cannot be prevented from entering through this gap.
Moreover, even if the roof of a building has no steps, it is difficult to repair a wide blue sheet without causing wrinkles or air trapping.
In addition, since the weather resistance of the blue sheet is usually not very high, it deteriorated after about one year and had to be replaced.
 本発明は、このような従来の現状に鑑みてなされたものであり、その目的は、幅広な構造物保護シートを構造物の表面に貼り付ける場合であってもシワやエアー噛みの発生を抑制し、複数の平行な段差を備えた構造物の表面であってもシワ及び隙間なく、かつ、極めて効率的に施工ができる構造物保護シート、及び、構造物保護シートの施工方法を提供することにある。 The present invention has been made in view of such a conventional situation, and its object is to suppress the occurrence of wrinkles and air entrainment even when a wide structure protection sheet is attached to the surface of a structure. To provide a structure protection sheet which can be applied very efficiently without wrinkles and gaps even on the surface of a structure having a plurality of parallel steps, and a method for applying the structure protection sheet. It is in.
 本発明者らは、構造物の表面に対する補修方法について鋭意検討した結果、構造物の表面にブルーシートに代えて接着層を備えた特定の構成の保護シートを段差に沿って貼り付けることで構造物の表面との間の隙間を無くすことができ、更に該保護シートに構造物の表面の特性に応じた性能を付与すること、具体的には、スレート屋根等に生じたひび割れや膨張に追従できる追従性、水や塩化物イオン等の劣化因子を浸透させない防水性、遮塩性、中性化阻止性、及び、屋根中の水分を水蒸気として排出できる水蒸気透過性等をさらに備えるとともに、保護シート自身の強度を担保する層を設けることを実現した。
 しかしながら、接着層を備えた保護シートは、該接着層に離型シートを貼り付けた状態で保存等され、施工時に上記離型シートを剥離して接着層を露出させてから構造物の表面への貼り付けを行うが、幅広の保護シートではシワの発生やエアー噛みの発生を抑制し難く、構造物の表面に凹凸形状、具体的にはスレート屋根のような平行な段差が設けられた形状である場合、段差間の平坦部への貼り付けを行っている際に段差部分や他の平坦部に意図せぬ貼り付きが生じることがあり、保護シートの貼り付けをシワ及び隙間なく効率的に行うことが極めて難しかった。
 そこで、更に本発明者らが鋭意検討した結果、構造物の表面に貼り付ける部分毎に区分けしたスリットを離型シートに設け、構造物の表面の貼り付ける部分に相対する離型シートのみを剥離して接着層を露出させることで、幅広の保護シートであってもシワの発生やエアー噛みの発生を防止し、表面に平行な段差が設けられた構造物であっても、極めて効率よくかつシワ及び隙間を生じさせることなく保護シートの貼り付けが可能となることを見出し、本発明を完成させた。
As a result of intensive studies on repair methods for the surface of a structure, the present inventors found that a protective sheet with a specific configuration having an adhesive layer instead of a blue sheet is pasted along the steps on the surface of the structure. It is possible to eliminate the gap between the surface of the object and to give the protective sheet a performance according to the characteristics of the surface of the structure, specifically, to follow the cracks and expansion that occur in the slate roof etc. It is also equipped with the followability, waterproofness that does not allow permeation of degrading factors such as water and chloride ions, salt shielding, neutralization prevention, and water vapor permeability that allows the moisture in the roof to be discharged as water vapor. We have realized the provision of a layer that secures the strength of the sheet itself.
However, a protective sheet provided with an adhesive layer is stored in a state in which a release sheet is attached to the adhesive layer, and the release sheet is peeled off during construction to expose the adhesive layer before being transferred to the surface of the structure. However, it is difficult to suppress the occurrence of wrinkles and air entrainment with a wide protective sheet, and the surface of the structure has an uneven shape, specifically a shape with parallel steps like a slate roof. In this case, unintentional sticking may occur on the stepped part or other flat part when attaching to the flat part between the steps. It was extremely difficult to go to
Therefore, as a result of further intensive studies by the present inventors, slits are provided in the release sheet for each part to be pasted on the surface of the structure, and only the release sheet facing the part to be pasted on the surface of the structure is peeled off. By exposing the adhesive layer, even with a wide protective sheet, wrinkles and air trapping can be prevented, and even with structures with parallel steps on the surface, it is extremely efficient and The inventors have found that the protective sheet can be attached without wrinkles and gaps, and completed the present invention.
(1)本発明に係る構造物保護シートは、離型シート、接着層、ポリマーセメント硬化層及び樹脂層がこの順に設けられ、構造物の表面に貼り合せて用いられる構造物保護シートであって、前記離型シートには、1又は2以上のスリットが形成されていることを特徴とする。 (1) The structure protection sheet according to the present invention is a structure protection sheet provided with a release sheet, an adhesive layer, a polymer cement hardened layer and a resin layer in this order, and is used by bonding to the surface of a structure. 1 or 2 or more slits are formed in the release sheet.
 この発明によれば、幅広であっても貼り付ける部分に該当する離型シートのみを剥離して構造物の表面への貼り付けが可能となるためシワの発生やエアー噛みの発生を好適に防止できる。また、段差のある構造物の表面であっても貼り付け対象部分の離型シートのみを剥離して接着層を露出させることで、シワ及び隙間なくかつ効率的に構造物保護シートの施工が可能となる。
 また、構造物保護シートは工場の生産ラインでの塗工工程と乾燥工程により量産できるので、低コスト化、現場での作業工期の大幅削減、構造物の長期保護を実現することができる。
 更に、予めポリマーセメント硬化層の表面に接着層が形成されているので、作業現場で接着剤を塗布して接着剤層を形成することなく接着層を介した構造物の表面へ構造物保護シートの貼り付けが可能となり、作業効率が極めて優れたものとなる。
According to this invention, it is possible to attach the release sheet to the surface of the structure by peeling off only the release sheet corresponding to the portion to be attached, even if the width is wide, so that the occurrence of wrinkles and the occurrence of air entrapment can be suitably prevented. can. In addition, even on the surface of a structure with steps, it is possible to apply the structure protection sheet efficiently without wrinkles and gaps by peeling off only the release sheet on the part to be pasted and exposing the adhesive layer. becomes.
In addition, since the structure protection sheet can be mass-produced by coating and drying processes on the factory production line, it is possible to reduce costs, significantly reduce the work period on site, and achieve long-term protection of structures.
Furthermore, since an adhesive layer is formed on the surface of the polymer cement hardening layer in advance, the structure protection sheet can be attached to the surface of the structure through the adhesive layer without forming an adhesive layer by applying an adhesive at the work site. can be pasted, and work efficiency is extremely excellent.
(2)本発明は、上記離型シートのスリットが長手方向に形成されている上記(1)に記載の構造物保護シートであることが好ましい。 (2) The present invention is preferably the structure protection sheet according to (1) above, wherein the release sheet has slits formed in the longitudinal direction.
 この発明によると、スレート屋根等の構造物の表面にシワ及び隙間なく、かつ、極めて効率的に施工ができる。 According to this invention, construction can be performed extremely efficiently without wrinkles or gaps on the surface of structures such as slate roofs.
(3)本発明は、上記構造物の表面には直線状の複数の段差が平行に形成されており、上記離型シートに形成されたスリットは、上記段差が形成する角部に相対する箇所に形成されている上記(1)又は(2)に記載の構造物保護シートであることが好ましい。 (3) In the present invention, a plurality of linear steps are formed parallel to each other on the surface of the structure, and the slits formed in the release sheet are located at the corners formed by the steps. It is preferable that the structure protection sheet according to (1) or (2) above is formed in
 この発明によると、段差のある構造物の表面であっても貼り付け対象部分の離型シートのみを剥離して接着層を露出させることで、シワ及び隙間なくかつ効率的に構造物保護シートの施工が可能となる。 According to the present invention, even on the surface of a structure having steps, only the release sheet on the part to be pasted is peeled off to expose the adhesive layer, so that the structure protection sheet can be efficiently applied without wrinkles and gaps. Construction becomes possible.
(4)本発明は、更にメッシュ層を有する上記(1)、(2)又は(3)記載の構造物保護シートであることが好ましい。 (4) The present invention is preferably a structure protection sheet according to (1), (2) or (3) above, further comprising a mesh layer.
 この発明によれば、メッシュ層を有しているので強度等にも優れる性能を本発明に係る構造物保護シートに付与できる。 According to this invention, since it has a mesh layer, it is possible to impart excellent performance such as strength to the structure protection sheet according to the invention.
(5)本発明は、上記接着層は、アクリル系粘着剤を主成分として含有する上記(1)、(2)、(3)又は(4)記載の構造物保護シートであることが好ましい。 (5) In the present invention, it is preferable that the adhesive layer is the structure protection sheet described in (1), (2), (3) or (4) above, which contains an acrylic pressure-sensitive adhesive as a main component.
 アクリル系粘着剤は、材料設計の自由度が高く、また、透明性、耐候性及び耐熱性にも優れており、本発明に係る構造物保護シートによる構造物の保護をより好適に行うことができる。 Acrylic pressure-sensitive adhesives have a high degree of freedom in material design, and are also excellent in transparency, weather resistance, and heat resistance. can.
(6)本発明は、上記構造物の表面に接着層を介して貼り付けた時の付着力が0.5N/mm以上である上記(1)、(2)、(3)、(4)又は(5)記載の構造物保護シートであることが好ましい。 (6) The present invention provides the above (1), (2), (3), and (4) having an adhesive force of 0.5 N/mm 2 or more when attached to the surface of the structure via an adhesive layer. ) or (5).
 この発明によると、本発明に係る構造物保護シートによる構造物の表面の保護を長期にわたり強力に行うことができる。 According to this invention, the surface of a structure can be strongly protected over a long period of time by the structure protection sheet according to the invention.
(7)本発明は、上記接着層の厚さが50~500μmである上記(1)、(2)、(3)、(4)、(5)又は(6)記載の構造物保護シートであることが好ましい。 (7) The present invention is the structure protection sheet according to (1), (2), (3), (4), (5) or (6), wherein the adhesive layer has a thickness of 50 to 500 μm. Preferably.
 この発明によると、構造物表面へ貼り付けた際の付着力を優れたものにでき、本発明に係る構造物保護シートによる構造物の表面の保護を長期にわたり強力に行うことができる。 According to this invention, it is possible to make the adhesive force excellent when attached to the surface of the structure, and to strongly protect the surface of the structure over a long period of time with the structure protection sheet according to the present invention.
(8)本発明は、上記ポリマーセメント硬化層は、セメント成分及び樹脂を含有する層であって、上記樹脂が10重量%以上、40重量%以下含有されている層である上記(1)、(2)、(3)、(4)、(5)、(6)又は(7)記載の構造物保護シートであることが好ましい。さらに好ましくは樹脂が20重量%以上、30重量%以下である。 (8) In the present invention, the polymer cement-hardened layer is a layer containing a cement component and a resin and containing 10% by weight or more and 40% by weight or less of the resin. The structure protection sheet described in (2), (3), (4), (5), (6) or (7) is preferred. More preferably, the resin content is 20% by weight or more and 30% by weight or less.
 この発明によれば、ポリマーセメント硬化層は追従性に優れた相溶性のよい層であるので、層自体の密着性は優れている。さらに、構造物側のポリマーセメント硬化層が含有するセメント成分はコンクリート等の構造物との密着性を高めるように作用する。 According to this invention, the polymer cement hardening layer is a layer with excellent conformability and good compatibility, so the adhesion of the layer itself is excellent. Furthermore, the cement component contained in the polymer-cement-hardened layer on the structure side acts to enhance adhesion to structures such as concrete.
(9)本発明は、上記(3)、(4)、(5)、(6)、(7)又は(8)記載の構造物保護シートの施工方法であって、構造物の角部と離型シートのスリットとが相対するように前記構造物の表面に前記構造物保護シートを配置する工程、前記構造物の角部と相対させたスリットから一方の端部までの前記離型シートを剥離して接着層を露出させる工程と、露出させた前記接着層を前記構造物の表面に貼り付ける工程とを有することを特徴とする。 (9) The present invention provides a method for applying a structure protection sheet according to (3), (4), (5), (6), (7) or (8) above, wherein disposing the structure protection sheet on the surface of the structure so that the slits of the release sheet face each other; The method is characterized by comprising a step of exposing an adhesive layer by peeling, and a step of attaching the exposed adhesive layer to the surface of the structure.
 この発明によると、構造物の表面に構造物保護シートを貼り付ける際、構造物の表面に貼り付ける部分の離型シートのみを剥離して接着層を露出させ、貼り付け対象以外の部分の接着層は離型シートで覆われた状態にできるため、構造物保護シートの施工に際して意図せぬ接着層の貼り付けが起きることがない。その結果、平行な段差を有する平面であってもシワ及び隙間なく、かつ、極めて効率的に構造物保護シートの貼り付けができる。 According to this invention, when the structure protection sheet is attached to the surface of the structure, only the release sheet of the part to be attached to the surface of the structure is peeled off to expose the adhesive layer, and the part other than the part to be attached is adhered. Since the layer can be covered with the release sheet, the adhesive layer is not unintentionally attached when the structure protection sheet is applied. As a result, even on a flat surface having parallel steps, the structure protection sheet can be adhered extremely efficiently without creases and gaps.
 本発明によれば、幅広な構造物保護シートを構造物の表面に貼り付ける場合であってもシワやエアー噛みの発生を抑制し、段差のある構造物の表面の補修を隙間なく容易に、かつ、長期間可能な構造物保護シートの施工方法を提供することができる。特に、構造物保護シートに構造物の表面の特性に応じた性能を付与し、構造物の表面に生じたひび割れや膨張に追従させること、構造物の表面に水や塩化物イオン等の劣化因子を浸透させないようにすること、構造物中の水分や劣化因子を排出できる透過性を持たせること、強度を向上させること等を実現できる構造物保護シートを用いた施工方法を提供することができる。さらに、施工現場において、雨漏れ修理用の塗料にて、手塗りで層を複数積層する方法と比較して品質の安定性、均一性を改善できる利点を有する。 According to the present invention, even when a wide structure protection sheet is attached to the surface of a structure, the occurrence of wrinkles and air trapping can be suppressed, and the surface of a structure with steps can be easily repaired without gaps. Moreover, it is possible to provide a construction method for a structure protection sheet that can be used for a long period of time. In particular, the structure protection sheet should be given performance according to the characteristics of the surface of the structure so that it can follow the cracks and expansion that occur on the surface of the structure, and the deterioration factors such as water and chloride ions on the surface of the structure. It is possible to provide a construction method using a structure protection sheet that can prevent the penetration of . Furthermore, at the construction site, it has the advantage of being able to improve the stability and uniformity of quality compared to the method of manually coating multiple layers with a paint for repairing rain leaks.
(A)及び(B)は、本発明に係る構造物保護シートの一例を示す断面構成図である。BRIEF DESCRIPTION OF THE DRAWINGS (A) and (B) are sectional block diagrams which show an example of the structure protection sheet based on this invention. (A)及び(B)は、本発明に係る構造物保護シートを構造物に貼り付ける様子を示す模式図である。(A) and (B) are schematic diagrams showing how the structure protection sheet according to the present invention is attached to a structure. 本発明の構造物保護シートの一例を模式的に示す平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a top view which shows typically an example of the structure protection sheet of this invention. (a)~(c)は、本発明の構造物保護シートの施工方法の一例を示す模式図であり、(d)は、断面拡大図である。(a) to (c) are schematic diagrams showing an example of the construction method of the structure protection sheet of the present invention, and (d) is an enlarged sectional view. (A)及び(B)は、本発明に係る構造物保護シートの別の一例を示す断面構成図である。(A) and (B) are cross-sectional configuration diagrams showing another example of the structure protection sheet according to the present invention. (A)及び(B)は、本発明に係る構造物保護シートのメッシュ層の一例を示す模式図である。(A) and (B) are schematic diagrams showing an example of the mesh layer of the structure protection sheet according to the present invention. 従来の屋根の補修方法の説明図である。It is explanatory drawing of the conventional repair method of a roof. (a)、(b)は、実施例に係る構造物保護シートの模式図である。(a) and (b) are schematic diagrams of a structure protection sheet according to an example.
 以下、本発明の構造物保護シート及び該構造物保護シートの施工方法について図面を参照しつつ説明する。なお、本発明は、その技術的特徴を有する限り各種の変形が可能であり、以下の説明及び図面の形態に限定されない。 The structure protection sheet of the present invention and the construction method of the structure protection sheet will be described below with reference to the drawings. The present invention can be modified in various ways as long as it has the technical features, and is not limited to the following description and drawings.
 [構造物保護シート]
 本発明に係る構造物保護シートは、構造物の表面に貼り合せて用いられるものであり、該構造物に貼り合せた状態で最も外側の面に樹脂層が設けられている。
 このような本発明に係る構造物保護シート10は、図1に示すように、接着層15、ポリマーセメント硬化層12及び樹脂層13がこの順に設けられている。このポリマーセメント硬化層12と樹脂層13の両層が、図1(A)に示したように、それぞれ単層で形成されてもよいし、図1(B)に示したように積層として形成されてもよい。また、求められる性能によっては、ポリマーセメント硬化層12と樹脂層13との間に別の層を設けてもよい。
[Structure protection sheet]
The structure protection sheet according to the present invention is used by being attached to the surface of a structure, and has a resin layer on the outermost surface when attached to the structure.
As shown in FIG. 1, the structure protection sheet 10 according to the present invention has an adhesive layer 15, a polymer cement hardening layer 12 and a resin layer 13 provided in this order. Both the polymer cement hardened layer 12 and the resin layer 13 may be formed as single layers as shown in FIG. 1(A), or may be formed as laminated layers as shown in FIG. 1(B). may be Another layer may be provided between the polymer cement hardened layer 12 and the resin layer 13 depending on the required performance.
 本発明に係る構造物保護シート10は、水蒸気透過率が10~50g/m・dayであることが好ましい。ポリマーセメント硬化層12はセメント成分を含有しているので、一定程度の水蒸気透過率を有することが期待できるが、ポリマーセメント硬化層12上に設けられる樹脂層13は水蒸気透過率が劣る結果になると推測されるところ、本発明においてはこのような問題は起きず、構造物保護シート10全体で水蒸気透過率が所定の範囲にあることで、コンクリート等の構造物に貼り付けた後内部の水蒸気を好適に透過させて外部に排出できるため、膨れの発生を好適に防止でき、更には接着性の低下も防止できる。水蒸気透過率が所定の範囲にあるメリットは、蒸気を逃がしやすい構造ゆえ、構造物中の金属(例えば鉄筋)の腐食の抑制ができる傾向になることが挙げられる。また、雨の日に構造物保護シート10を構造物に施工する場合には、構造物の表面が濡れると共に、構造物自体が水分を含んだ状態での施工となるが、構造物保護シート10が上記水蒸気透過率を有することで、施工後(補強された構造物の製造後)に構造物にしみこんだ水分が外部へと抜けやすくなる。さらに、硬化直後のコンクリートは内部に多くの水分を含むが、このようなコンクリートに対しても本発明に係る構造物保護シート10は好適に使用できる。
 本発明に係る構造物保護シート10のもう一つの利点は、その水蒸気透過率を制御できるので、例えば構造物のセメントが硬化していないような状態でも当該構造物の表面に貼り付けることができる点にある。すなわち、セメントを成型して硬化させる際に急激に水分が抜けるとセメントがポーラスになって構造物の強度が落ちる傾向となるが、本発明に係る構造物保護シート10を硬化前のセメントに貼り付けることで、セメントの硬化時の水分除去のスピード等をコントロールでき、上記ポーラス構造になるのを避けやすくなるメリットもある。
 上記水蒸気透過率が10g/m・day未満であると、本発明に係る構造物保護シート10が十分に水蒸気を透過させることができず、構造物に貼り付けたあとの膨れ現象等を防止できず接着性が不十分となることがある。50g/m・dayを超えると、セメントの硬化時の水分除去のスピードが過剰に早くなり、セメントの硬化物がポーラスになる不具合が生じる可能性がある。上記水蒸気透過率の好ましい範囲は20~50g/m・dayである。
 このような水蒸気透過率を有する本発明に係る構造物保護シート10は、例えば、後述するポリマーセメント硬化層12と、所定の水蒸気透過率を有する樹脂を樹脂層13に用いることにより得ることができる。
 本発明における水蒸気透過率は、後述する方法で測定することができる。
The structure protection sheet 10 according to the present invention preferably has a water vapor transmission rate of 10 to 50 g/m 2 ·day. Since the hardened polymer cement layer 12 contains a cement component, it can be expected to have a certain level of water vapor transmission rate, but the resin layer 13 provided on the hardened polymer cement layer 12 has a poor water vapor transmission rate. Presumably, such a problem does not occur in the present invention, and since the water vapor transmission rate of the entire structure protection sheet 10 is within a predetermined range, water vapor inside the structure protection sheet 10 can be removed after it is attached to a structure such as concrete. Since it can be suitably permeated and discharged to the outside, it is possible to suitably prevent the occurrence of blistering and further prevent deterioration of adhesiveness. The advantage of having a water vapor transmission rate within a predetermined range is that, because of the structure that allows vapor to escape easily, corrosion of metal (for example, reinforcing bars) in the structure tends to be suppressed. When the structure protection sheet 10 is applied to a structure on a rainy day, the surface of the structure is wet and the structure itself contains moisture. has the above-mentioned water vapor transmission rate, water permeated into the structure after construction (after manufacture of the reinforced structure) can easily escape to the outside. Furthermore, concrete immediately after hardening contains a lot of moisture inside, and the structure protection sheet 10 according to the present invention can be suitably used for such concrete as well.
Another advantage of the structure protection sheet 10 according to the present invention is that its water vapor transmission rate can be controlled, so that it can be attached to the surface of the structure even when the cement of the structure is not hardened, for example. at the point. That is, when the cement is molded and hardened, if water is rapidly removed, the cement becomes porous and the strength of the structure tends to decrease. By attaching it, it is possible to control the speed of water removal when the cement hardens, and there is also the advantage that it becomes easier to avoid the porous structure described above.
If the water vapor transmission rate is less than 10 g/m 2 ·day, the structure protection sheet 10 according to the present invention cannot sufficiently transmit water vapor, preventing swelling after being attached to a structure. Otherwise, the adhesion may become insufficient. If it exceeds 50 g/m 2 ·day, the speed of water removal during hardening of the cement becomes excessively fast, and there is a possibility that the hardened cement will become porous. A preferable range of the water vapor transmission rate is 20 to 50 g/m 2 ·day.
The structure protection sheet 10 according to the present invention having such a water vapor transmission rate can be obtained, for example, by using a polymer cement hardening layer 12 described later and a resin having a predetermined water vapor transmission rate for the resin layer 13. .
The water vapor transmission rate in the present invention can be measured by the method described below.
 また、本発明に係る構造物保護シートは、2層以上重ねた状態で使用されてもよい。本発明に係る構造物保護シートで保護した構造物に対し、更に重ねて保護を行うことができるため、例えば、2枚の本発明に係る構造物保護シートを並べて貼り付けた場合、これらの構造物保護シート同士の境目を覆うように別の本発明に係る構造物保護シートを貼り付けることができる。
 本発明に係る構造物保護シート10は、ポリマーセメント硬化層12がセメントと樹脂成分とを含有するものであるため、先に構造物に貼り付けた本発明に係る構造物保護シート10の樹脂層13に対しても好適な接着性を示す。そのため、重ねた状態で本発明に係る構造物保護シート10は好適に使用できる。
Moreover, the structure protection sheet according to the present invention may be used in a state in which two or more layers are stacked. Since the structure protected by the structure protection sheet according to the present invention can be further protected by stacking, for example, when two sheets of the structure protection sheet according to the present invention are attached side by side, these structures can be protected. Another structure protection sheet according to the present invention can be attached so as to cover the boundaries between the object protection sheets.
In the structure protection sheet 10 according to the present invention, the polymer cement hardened layer 12 contains cement and a resin component. 13 also exhibits suitable adhesion. Therefore, the structure protection sheet 10 according to the present invention can be suitably used in a stacked state.
 本発明に係る構造物保護シート10は、厚さ分布が±100μm以内であることが好ましい。この構造物保護シート10は、厚さ分布が上記範囲内であることで、熟練した作業者でなくても厚さバラツキの小さい層を構造物の表面に安定して設けることができる。また、厚さ分布を上記範囲内に制御することによって、構造物の補強を均一に行いやすくなる。
 構造物側に設けられたポリマーセメント硬化層12は、構造物との密着性等に優れ、ポリマーセメント硬化層12上に設けられた樹脂層13は、防水性、遮塩性、中性化阻止性等に優れた性質を容易に付与できる。
 また、本発明に係る構造物保護シート10は、工場の生産ラインでの塗工工程と乾燥工程により量産できるので低コスト化、現場での作業工期の大幅削減、構造物の長期保護を実現することができる。
 また、本発明に係る構造物保護シート10は、接着層15が設けられているので、作業現場で接着剤を塗布して接着剤層を形成する必要がなく、熟練の職人でなくても均一な厚さの接着層を介して構造物の表面への貼り付けが容易となる。その結果、構造物の表面に貼り合わせる際の工期を大幅に削減できるとともに構造物を長期にわたって保護することができる。
The structure protection sheet 10 according to the present invention preferably has a thickness distribution within ±100 μm. Since the structure protection sheet 10 has a thickness distribution within the above range, even an unskilled worker can stably form a layer with small thickness variations on the surface of the structure. Further, by controlling the thickness distribution within the above range, it becomes easier to uniformly reinforce the structure.
The polymer cement hardened layer 12 provided on the structure side has excellent adhesion to the structure, etc., and the resin layer 13 provided on the polymer cement hardened layer 12 has waterproof, salt-blocking, and neutralization prevention properties. It is possible to easily impart excellent properties such as toughness.
In addition, since the structure protection sheet 10 according to the present invention can be mass-produced by the coating process and the drying process on the production line of the factory, it realizes cost reduction, a drastic reduction in work period at the site, and long-term protection of the structure. be able to.
In addition, since the structure protection sheet 10 according to the present invention is provided with the adhesive layer 15, it is not necessary to form an adhesive layer by applying an adhesive at the work site. It becomes easy to attach to the surface of the structure via an adhesive layer with an appropriate thickness. As a result, it is possible to greatly reduce the time required for attaching the film to the surface of the structure and to protect the structure for a long period of time.
 以下、各構成要素の具体例について詳しく説明する。 Specific examples of each component are described in detail below.
 (構造物)
 上記構造物は、構造物保護シート10が適用される相手部材である。
 構造物としては、コンクリートからなる構造物を挙げることができる。
 上記コンクリートは、一般的には、セメント系無機物質と骨材と混和剤と水とを少なくとも含有するセメント組成物を打設し、養生して得られる。こうしたコンクリートは、道路橋、トンネル、水門等河川管理施設、下水道管渠、港湾岸壁等の土木構造物として広く使用される。本発明では、コンクリートからなる構造物に構造物保護シート10を適用することで、コンクリートに生じたひび割れや膨張に追従でき、コンクリート内に水や塩化物イオン等の劣化因子を浸透させず、コンクリート中の水分を水蒸気として排出できる、という格別の利点がある。
(Structure)
The structure is a mating member to which the structure protection sheet 10 is applied.
As a structure, a structure made of concrete can be mentioned.
The concrete is generally obtained by placing and curing a cement composition containing at least a cementitious inorganic substance, an aggregate, an admixture and water. Such concrete is widely used as civil engineering structures such as road bridges, tunnels, water gates and other river management facilities, sewer pipes, harbor quays and the like. In the present invention, by applying the structure protection sheet 10 to a structure made of concrete, it is possible to follow the cracks and expansion that occur in the concrete, and prevent deterioration factors such as water and chloride ions from penetrating into the concrete. There is a special advantage that the moisture inside can be discharged as steam.
 本発明において、構造物は、表面に直線状の複数の段差が平行に形成されていることが好ましい。
 このような表面を有する構造物としては、例えば、図4(a)に示したように、第1平坦部2a、第1段差3a、第2平坦部2b、第2段差3b、第3平坦部2cのように平坦部と段差とが繰り返し形成された表面を有するものが挙げられる。このような表面を有する構造物としては特に限定されないが、例えば、スレート屋根、ガルバリウム鋼板(登録商標)、瓦屋根(棟部・平部)等が好適に挙げられる。
In the present invention, it is preferable that the structure has a plurality of parallel linear steps formed on its surface.
As a structure having such a surface, for example, as shown in FIG. 2c, which has a surface in which flat portions and steps are repeatedly formed. The structure having such a surface is not particularly limited, but suitable examples thereof include a slate roof, a Galvalume steel plate (registered trademark), a tiled roof (ridge/flat), and the like.
 (ポリマーセメント硬化層)
 ポリマーセメント硬化層12は、構造物側に配置される層である。このポリマーセメント硬化層12は、図1(A)に示したように単層であっても図1(B)に示したように積層であってもよいが、単層とするか積層とするかは、全体厚さ、付与機能(追従性、構造物への接着性等)、工場の製造ライン、生産コスト等を考慮して任意に設定され、例えば製造ラインが短くて単層では所定の厚さにならない場合は、2層以上重ね塗りして形成することができる。なお、例えば2層の重ね塗りは、1層目の層を乾燥した後に2層目の層を形成する。
 また、ポリマーセメント硬化層12は、性質の異なるもの同士が積層された構成であってもよい。例えば、樹脂層13側に樹脂成分の割合をより高めた層とすることで、樹脂成分の高い層が樹脂層と接着し、セメント成分の高い層がコンクリート構造物と接着することとなり両者に対する接着性が極めて優れたものとなる。
(polymer cement hardened layer)
The polymer cement hardening layer 12 is a layer arranged on the structure side. The hardened polymer cement layer 12 may be a single layer as shown in FIG. 1(A) or a laminate as shown in FIG. 1(B). The thickness is arbitrarily set in consideration of the overall thickness, imparted functions (followability, adhesion to structures, etc.), factory production line, production cost, etc. For example, if the production line is short and a single layer If it does not become thick, it can be formed by coating two or more layers. For example, when two layers are overcoated, the second layer is formed after drying the first layer.
The hardened polymer cement layer 12 may also have a structure in which layers having different properties are layered together. For example, by forming a layer with a higher resin component ratio on the resin layer 13 side, the layer with a high resin component adheres to the resin layer, and the layer with a high cement component adheres to the concrete structure. It has excellent properties.
 ポリマーセメント硬化層12は、セメント成分を含有する樹脂(樹脂成分)を塗料状にした、この塗料を塗工して得られる。
 上記セメント成分としては、各種のセメント、酸化カルシウムからなる成分を含む石灰石類、二酸化ケイ素を含む粘土類等を挙げることができる。なかでもセメントが好ましく、例えば、ポルトランドセメント、アルミナセメント、早強セメント、フライアッシュセメント等を挙げることができる。いずれのセメントを選択するかは、ポリマーセメント硬化層12が備えるべき特性に応じて選択され、例えば、コンクリート製の構造物への追従性の程度を考慮して選択される。特に、JIS R5210に規定されるポルトランドセメントを好ましく挙げることができる。
The hardened polymer cement layer 12 is obtained by coating a resin containing a cement component (resin component) in the form of a coating.
Examples of the cement component include various cements, limestones containing calcium oxide, and clays containing silicon dioxide. Among them, cement is preferable, and examples thereof include portland cement, alumina cement, high-early strength cement, fly ash cement, and the like. Which cement is selected is selected according to the properties that the polymer-cement-hardened layer 12 should have, for example, considering the degree of conformability to a concrete structure. Portland cement defined in JIS R5210 is particularly preferred.
 上記樹脂成分としては、アクリル樹脂、アクリルウレタン樹脂、アクリルシリコーン樹脂、フッ素樹脂、柔軟エポキシ樹脂系、ポリブタジエンゴム系、ゴム特性を示すアクリル系樹脂(例えばアクリル酸エステルを主成分に持つ合成ゴム)等を挙げることができる。こうした樹脂成分は、後述の樹脂層13を構成する樹脂の成分と同じものであることが、ポリマーセメント硬化層12と樹脂層13との密着性を高める観点から好ましい。
 また、上記樹脂成分は熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂のいずれを使用してもよい。ポリマーセメント硬化層12の「硬化」の文言は、樹脂成分を熱硬化性樹脂又は光硬化性樹脂等、硬化して重合する樹脂に限定されるという意味ではなく、最終的な層となった場合に硬化するような材料を用いればよいという意味で用いている。
Examples of the resin component include acrylic resin, acrylic urethane resin, acrylic silicone resin, fluororesin, flexible epoxy resin, polybutadiene rubber, acrylic resin exhibiting rubber properties (e.g., synthetic rubber containing acrylic acid ester as a main component), etc. can be mentioned. Such a resin component is preferably the same as the resin component constituting the resin layer 13 described later, from the viewpoint of enhancing the adhesion between the polymer cement hardening layer 12 and the resin layer 13 .
Moreover, any of a thermoplastic resin, a thermosetting resin, and a photocurable resin may be used as the resin component. The term "cured" in the polymer cement cured layer 12 does not mean that the resin component is limited to resins that cure and polymerize, such as thermosetting resins or photocurable resins. It is used in the sense that it is sufficient to use a material that hardens to a certain degree.
 上記樹脂成分の含有量としては、使用する材料等に応じて適宜調整されるが、好ましくはセメント成分と樹脂成分との合計量に対して10重量%以上、40重量%以下とする。10重量%未満であると、樹脂層13に対する接着性の低下やポリマーセメント硬化層12を層として維持することが難しくなる傾向となることがあり、40重量%を超えると、構造物に対する接着性が不十分となることがある。上記観点から上記樹脂成分の含有量のより好ましい範囲は15重量%以上、35重量%以下であるが、さらに好ましくは20重量%以上、30重量%以下である。 The content of the resin component is adjusted appropriately according to the material used, etc., but is preferably 10% by weight or more and 40% by weight or less with respect to the total amount of the cement component and the resin component. If it is less than 10% by weight, the adhesion to the resin layer 13 tends to decrease and it becomes difficult to maintain the polymer cement hardened layer 12 as a layer. may be insufficient. From the above viewpoint, the content of the resin component is more preferably 15% by weight or more and 35% by weight or less, and more preferably 20% by weight or more and 30% by weight or less.
 ポリマーセメント硬化層12を形成するための塗料は、セメント成分と樹脂成分とを溶媒で混合した塗工液である。樹脂成分については、エマルションであることが好ましい。例えば、アクリル系エマルションは、アクリル酸エステル等のモノマーを乳化剤を使用して乳化重合したポリマー微粒子であり、一例としては、アクリル酸エステル及びメタクリル酸エステルの一種以上を含有する単量体又は単量体混合物を、界面活性剤を配合した水中で重合してなるアクリル酸系重合物エマルジョンを好ましく挙げることができる。
 上記アクリル系エマルションを構成するアクリル酸エステル等の含有量は特に限定されないが、20~100質量%の範囲内から選択される。また、界面活性剤も必要に応じた量が配合され量も特に限定されないが、エマルションとなる程度の界面活性剤が配合される。
The coating material for forming the polymer cement hardening layer 12 is a coating liquid obtained by mixing a cement component and a resin component with a solvent. The resin component is preferably an emulsion. For example, an acrylic emulsion is polymer fine particles obtained by emulsion polymerization of a monomer such as an acrylic ester using an emulsifier. An acrylic polymer emulsion obtained by polymerizing a mixture in water containing a surfactant is preferably used.
The content of the acrylic acid ester and the like constituting the acrylic emulsion is not particularly limited, but is selected within the range of 20 to 100% by mass. Further, the amount of the surfactant is also blended according to need, and the amount is not particularly limited, but the surfactant is blended to the extent that it forms an emulsion.
 ポリマーセメント硬化層12は、その塗工液を離型シート上に塗布し、その後に溶媒(好ましくは水)を乾燥除去することで形成される。例えば、セメント成分とアクリル系エマルジョンとの混合組成物を塗工液として使用し、ポリマーセメント硬化層12を形成する。なお、上記離型シート上には、ポリマーセメント硬化層12を形成した後に樹脂層13を形成してもよいが、離型シート上に樹脂層13を形成した後にポリマーセメント硬化層12を形成してもよい。
 具体的には、例えば、離型シートとしての工程紙上に樹脂層をコーティングし、乾燥後ポリマーセメント用の塗工液を塗工、乾燥前のウエットの状態でヤング率調整層を貼り合わせた後乾燥させる。
 しかる後ヤング率調整層を貼り合わせた面に更にポリマーセメント用の塗工液を塗工し、乾燥させることで本発明に係るポリマーセメント硬化層にヤング率調整層が存在する構造物保護シートを得ることができる。
 また、離型シートとしての工程紙上に樹脂層をコーティングし、乾燥後ポリマーセメント用の塗工液を塗工、乾燥前のウエットの状態でヤング率調整層を貼り合わせた後、乾燥させるステップを経ずにヤング率調整層を貼り合わせた面に更にポリマーセメント用の塗工液を塗工し、しかる後全体を乾燥させることでポリマーセメント硬化層にヤング率調整層が存在する構造物保護シートを得ることも可能である。
The hardened polymer cement layer 12 is formed by applying the coating solution onto a release sheet and then removing the solvent (preferably water) by drying. For example, a mixed composition of a cement component and an acrylic emulsion is used as a coating liquid to form the polymer cement hardened layer 12 . Although the resin layer 13 may be formed on the release sheet after forming the polymer cement hardened layer 12, the polymer cement hardened layer 12 may be formed after the resin layer 13 is formed on the release sheet. may
Specifically, for example, a process paper as a release sheet is coated with a resin layer, and after drying, a coating liquid for polymer cement is applied, and a Young's modulus adjusting layer is attached in a wet state before drying. dry.
After that, a coating liquid for polymer cement is further applied to the surface to which the Young's modulus adjusting layer is attached, and dried to obtain a structure protection sheet in which the Young's modulus adjusting layer is present in the polymer cement hardened layer according to the present invention. Obtainable.
In addition, a step of coating a resin layer on a process paper as a release sheet, applying a coating liquid for polymer cement after drying, laminating a Young's modulus adjusting layer in a wet state before drying, and then drying. A structure protection sheet in which a Young's modulus adjusting layer is present in the polymer cement hardened layer by further coating the surface to which the Young's modulus adjusting layer is attached without drying, and then drying the entire surface. It is also possible to obtain
 ポリマーセメント硬化層12の厚さは特に限定されず、構造物の使用形態、経年度合い、形状等によって任意に設定される。具体的なポリマーセメント硬化層12の厚さとしては、例えば、0.5mm~1.5mmの範囲とすることができる。一例として1mmの厚さとした場合は、その厚さバラツキは、±100μm以内となることが好ましい。こうした精度の厚さは、現場での塗工では到底実現できないものであり、工場の製造ラインで安定して塗工されることにより実現することができる。なお、1mmより厚い場合でも、厚さバラツキを±100μm以内とすることができる。また、1mmよりも薄い場合は、厚さバラツキをさらに小さくすることができる。 The thickness of the polymer cement hardened layer 12 is not particularly limited, and is arbitrarily set depending on the usage pattern, aging degree, shape, etc. of the structure. A specific thickness of the hardened polymer cement layer 12 can be, for example, in the range of 0.5 mm to 1.5 mm. As an example, when the thickness is 1 mm, the thickness variation is preferably within ±100 μm. Such a precise thickness cannot be achieved by on-site coating, but can be achieved by stably coating on a factory production line. Even if the thickness is greater than 1 mm, the thickness variation can be kept within ±100 μm. Moreover, when the thickness is less than 1 mm, the thickness variation can be further reduced.
 このポリマーセメント硬化層12は、セメント成分の存在により、後述の樹脂層13に比べて水蒸気が容易に透過する。このときの水蒸気透過率は、例えば20~60g/m・day程度である。さらに、セメント成分は、例えばコンクリートを構成するセメント成分との相溶性がよく、コンクリート表面との密着性に優れたものとすることができる。また、構造物保護シート10は接着層を有するが、セメント成分を含有するポリマーセメント硬化層12が接着層に密着性よく接着する。また、このポリマーセメント硬化層12は、延伸性があるので、構造物にひび割れや膨張が生じた場合であっても、コンクリートの変化に追従することができる。 Due to the presence of the cement component, the hardened polymer cement layer 12 is more easily permeable to water vapor than the resin layer 13, which will be described later. The water vapor transmission rate at this time is, for example, about 20 to 60 g/m 2 ·day. Furthermore, the cement component has good compatibility with, for example, the cement component that constitutes concrete, and can be made to have excellent adhesion to the concrete surface. Also, the structure protection sheet 10 has an adhesive layer, and the polymer cement hardened layer 12 containing a cement component adheres to the adhesive layer with good adhesion. In addition, since the polymer cement hardened layer 12 has extensibility, it can follow changes in the concrete even if cracks or expansion occurs in the structure.
(メッシュ層)
 本発明は、更にメッシュ層を備えることが好ましい。
 本発明に係る構造物保護シートがメッシュ層を更に備えることで、本発明に係る構造物保護シートは、十分な強度を備えることができる。
(mesh layer)
Preferably, the present invention further comprises a mesh layer.
Since the structure protection sheet according to the present invention further includes a mesh layer, the structure protection sheet according to the present invention can have sufficient strength.
 図5(A)に示したように、本発明に係る構造物保護シート10は、付着強度が優れたものとなることからメッシュ層17をポリマーセメント硬化層12と樹脂層13との界面に備えることが好ましい。
 上記付着強度とは、本発明に係る構造物保護シート10のポリマーセメント硬化層12側の面をコンクリート表面に接着層15を介して貼り付け、樹脂層13の表面に引張治具を固定して該引張治具をコンクリート側と反対側に1500n/minの速度で引っ張ることで引張り層間剥離が生じる強度を測定することで得られる。
As shown in FIG. 5(A), the structure protection sheet 10 according to the present invention has excellent adhesion strength, and thus the mesh layer 17 is provided at the interface between the hardened polymer cement layer 12 and the resin layer 13. is preferred.
The adhesion strength is determined by attaching the polymer cement hardening layer 12 side surface of the structure protection sheet 10 according to the present invention to the concrete surface via the adhesive layer 15 and fixing a tension jig to the surface of the resin layer 13. It is obtained by measuring the strength at which tensile delamination occurs by pulling the tensile jig to the side opposite to the concrete side at a speed of 1500 n/min.
 また、メッシュ層17は、図5(B)に示したようにポリマーセメント硬化層12の内部に存在していてもよい。メッシュ層17は、ポリマーセメント硬化層12の樹脂層13と接する面の反対側の面に配設されていてもよいが、メッシュ層17はポリマーセメント硬化層12の内部に埋設されていることが好ましい。メッシュ層17がポリマーセメント硬化層12の内部に埋設されていることで、メッシュ層17とポリマーセメント硬化層12との接触面積が増大し、両者の接着強度が優れたものとしやすくなり、ポリマーセメント硬化層12全体の強度も確保しやすくなる。メッシュ層17がポリマーセメント硬化層12の内部に埋設されていないと、該メッシュ層17とポリマーセメント硬化層12との界面で剥離が生じ易くなる。
 また、メッシュ層17がポリマーセメント硬化層12の内部に存在している場合、該メッシュ層17は、ポリマーセメント硬化層12の厚みの半分の位置に存在していればよいが、より樹脂層13側に存在することが望ましい。メッシュ層17がポリマーセメント硬化層12中で樹脂層13側に存在している場合、付着力は平均的に1.3倍向上する。
Moreover, the mesh layer 17 may exist inside the polymer cement hardened layer 12 as shown in FIG. 5(B). The mesh layer 17 may be disposed on the surface of the polymer cement hardened layer 12 opposite to the surface in contact with the resin layer 13 , but the mesh layer 17 may be embedded inside the polymer cement hardened layer 12 . preferable. By embedding the mesh layer 17 inside the polymer cement hardened layer 12, the contact area between the mesh layer 17 and the polymer cement hardened layer 12 is increased, and the adhesion strength between the two is easily improved, and the polymer cement It becomes easy to ensure the strength of the hardened layer 12 as a whole. If the mesh layer 17 is not embedded inside the polymer cement-hardened layer 12, separation is likely to occur at the interface between the mesh layer 17 and the polymer cement-hardened layer 12.
Moreover, when the mesh layer 17 exists inside the polymer cement hardened layer 12, the mesh layer 17 may exist at a position half the thickness of the polymer cement hardened layer 12, but the resin layer 13 It is desirable to be on the side. When the mesh layer 17 exists on the resin layer 13 side in the polymer cement hardened layer 12, the adhesive strength is improved by 1.3 times on average.
 本発明において、メッシュ層17にポリマーセメント硬化層12を構成する材料(例えばセメント成分又は樹脂成分)が含侵されていることが好ましい。
 メッシュ層17にポリマーセメント硬化層12を構成する材料が含侵されている状態とは、メッシュ層17を構成する繊維間にポリマーセメント硬化層12を構成する材料が充填された状態にあることを意味し、このような含侵状態にあることで、メッシュ層17とポリマーセメント硬化層12との接着強度が極めて優れたものとしやすくなる。また、メッシュ層17とポリマーセメント硬化層12の材料との相互作用がより強固となりやすく、構造物保護シート10の強度をより良好にしやすくなる。
In the present invention, it is preferable that the mesh layer 17 is impregnated with a material (for example, a cement component or a resin component) that constitutes the polymer cement-hardened layer 12 .
The state in which the mesh layer 17 is impregnated with the material constituting the hardened polymer cement layer 12 means that the material constituting the hardened polymer cement layer 12 is filled between the fibers constituting the mesh layer 17. In other words, such an impregnated state makes it easier to make the adhesive strength between the mesh layer 17 and the polymer cement hardened layer 12 extremely excellent. Further, the interaction between the mesh layer 17 and the material of the polymer cement hardening layer 12 tends to become stronger, and the strength of the structure protection sheet 10 tends to be improved.
 メッシュ層17は、図6に示したように、経糸、緯糸の繊維を格子状にした構造が挙げられる。
 上記繊維としては、例えば、ポリプロピレン系繊維、ビニロン系繊維、炭素繊維、アラミド繊維、ガラス繊維、ポリエステル繊維、ポリエチレン繊維、ナイロン繊維及びアクリル繊維からなる群より選択される少なくとも1種の繊維から構成されたものである好ましく、なかでも、ポリプロピレン繊維、ビニロン繊維を好適に使用することができる。
 またその形状は、特に限定されず、図6に示したような二軸組布のほか、例えば、三軸組布等任意のメッシュ層17を用いることができる。
As shown in FIG. 6, the mesh layer 17 has a structure in which warp and weft fibers are arranged in a grid pattern.
The above fibers are composed of, for example, at least one fiber selected from the group consisting of polypropylene fibers, vinylon fibers, carbon fibers, aramid fibers, glass fibers, polyester fibers, polyethylene fibers, nylon fibers and acrylic fibers. Among them, polypropylene fibers and vinylon fibers can be preferably used.
Further, the shape thereof is not particularly limited, and any mesh layer 17 such as a triaxial fabric can be used in addition to the biaxial fabric as shown in FIG.
 メッシュ層17は、線ピッチ50mm~1.2mm(線密度0.2本~8.0本/cm)であることが望ましい。ピッチが1.2mm以下であると、メッシュの上下のポリマーセメント層の結合が不十分になり、構造物保護シート10の表面強度が不十分となることがある。また、線ピッチが50mmを超えると、構造物保護シート10の表面強度に悪影響はないが、引張強度が弱くなることがある。
 本発明に係る構造物保護シート10において、引張強度と表面強度はトレードオフの関係にあり、本発明に適用するに適したメッシュ層17は、線ピッチ50mm~1.2mmの範囲にあるものである。
The mesh layer 17 preferably has a line pitch of 50 mm to 1.2 mm (line density of 0.2 to 8.0 lines/cm). If the pitch is 1.2 mm or less, the bonding between the polymer cement layers above and below the mesh may be insufficient, and the surface strength of the structure protection sheet 10 may be insufficient. Also, if the line pitch exceeds 50 mm, the surface strength of the structure protection sheet 10 is not adversely affected, but the tensile strength may be weakened.
In the structure protection sheet 10 according to the present invention, there is a trade-off relationship between tensile strength and surface strength, and the mesh layer 17 suitable for application to the present invention has a line pitch in the range of 50 mm to 1.2 mm. be.
 メッシュ層17は、ポリマーセメント硬化層12の上面側から見たときに、ポリマーセメント硬化層12の全面をカバーする大きさであってもよく、ポリマーセメント硬化層12よりも小さくてもよい。
 すなわち、メッシュ層17の平面視したときの面積は、ポリマーセメント硬化層12の平面視したときの面積と同じであってもよく、小さくてもよいが、メッシュ層17の平面視面積は、ポリマーセメント硬化層12の平面視面積に対し60%以上、95%以下であることが好ましい。60%未満であると本発明に係る構造物保護シート10の強度が不十分となることがあり、また、強度のバラツキが生じることもある。95%を超えると、メッシュ層17を介してポリマーセメント硬化層12が積層された構成において、ポリマーセメント硬化層12同士の接着強度が劣ることがあり、本発明に係る構造物保護シート10を構造物に施工したときに、ポリマーセメント硬化層12部分に剥離が生じる危険性が高まる。なお、上記メッシュ層17等の平面視面積は、公知の方法で測定できる。
The mesh layer 17 may have a size that covers the entire surface of the polymer cement-hardened layer 12 when viewed from the top side of the polymer cement-hardened layer 12 , or may be smaller than the polymer cement-hardened layer 12 .
That is, the area of the mesh layer 17 when viewed in plan may be the same as or smaller than the area of the polymer cement hardening layer 12 when viewed in plan. It is preferably 60% or more and 95% or less of the plan view area of the cement-hardened layer 12 . If it is less than 60%, the strength of the structure protection sheet 10 according to the present invention may be insufficient, and the strength may vary. If it exceeds 95%, in the structure in which the polymer cement-hardened layers 12 are laminated via the mesh layer 17, the adhesive strength between the polymer-cement hardened layers 12 may be inferior, and the structure protection sheet 10 according to the present invention may not be structured. When applied to an object, the risk of delamination at the polymer cement hardened layer 12 increases. The planar view area of the mesh layer 17 and the like can be measured by a known method.
 (樹脂層)
 樹脂層13は、構造物1とは反対側に配置されて、表面に現れる層である。この樹脂層13は、例えば、図1(A)に示すように単層であってもよいし、図1(B)に示すように少なくとも2層からなる積層であってもよい。単層とするか多層とするかは、全体厚さ、付与機能(防水性、遮塩性、中性化阻止性、水蒸気透過性等)、工場の製造ラインの長さ、生産コスト等を考慮に設定され、例えば製造ラインが短くて単層では所定の厚さにならない場合は、2層以上重ね塗りして形成することができる。なお、重ね塗りは、1層目の層を乾燥した後に2層目の層を塗工する。2層目の層は、その後乾燥される。
(resin layer)
The resin layer 13 is a layer arranged on the side opposite to the structure 1 and appearing on the surface. The resin layer 13 may be, for example, a single layer as shown in FIG. 1(A), or may be a laminate of at least two layers as shown in FIG. 1(B). Whether to use a single layer or multiple layers takes into account the overall thickness, the functions to be imparted (waterproofness, salt barrier, neutralization prevention, water vapor permeability, etc.), the length of the factory production line, the production cost, etc. For example, if the production line is short and a single layer does not have a predetermined thickness, two or more layers can be overcoated. In the case of overcoating, the second layer is applied after drying the first layer. The second layer is then dried.
 樹脂層13は、柔軟性を有し、コンクリートに発生したひび割れや亀裂に追従できるとともに防水性、遮塩性、中性化阻止性及び水蒸気透過性に優れた樹脂層を形成できる塗料を塗工して得られる。樹脂層13を構成する樹脂としては、ゴム特性を示すアクリル系樹脂(例えばアクリル酸エステルを主成分に持つ合成ゴム)、アクリルウレタン樹脂、アクリルシリコーン樹脂、フッ素樹脂、柔軟エポキシ樹脂、ポリブタジエンゴム等を挙げることができる。この樹脂材料は、前記したポリマーセメント硬化層12を構成する樹脂成分と同じものであること好ましい。特にゴム等の弾性膜形成成分を含有する樹脂であることが好ましい。 The resin layer 13 is coated with a paint that has flexibility, can follow cracks and cracks that occur in concrete, and can form a resin layer that is excellent in waterproofness, salt resistance, neutralization resistance, and water vapor permeability. obtained by Resins constituting the resin layer 13 include acrylic resins exhibiting rubber characteristics (for example, synthetic rubber containing acrylic acid ester as a main component), acrylic urethane resins, acrylic silicone resins, fluorine resins, flexible epoxy resins, polybutadiene rubbers, and the like. can be mentioned. This resin material is preferably the same as the resin component constituting the polymer cement hardening layer 12 described above. In particular, it is preferably a resin containing an elastic film-forming component such as rubber.
 これらのうち、ゴム特性を示すアクリル系樹脂は、安全性と塗工性に優れている点で、アクリルゴム系共重合体の水性エマルションからなることが好ましい。なお、エマルション中のアクリルゴム系共重合体の割合は例えば30~70質量%である。アクリルゴム系共重合体エマルションは、例えば界面活性剤の存在下で単量体を乳化重合することにより得られる。界面活性剤は、アニオン系、ノニオン系、カチオン系のいずれもが使用できる。  Among these, acrylic resins exhibiting rubber properties are preferably composed of aqueous emulsions of acrylic rubber copolymers in terms of excellent safety and coatability. Incidentally, the proportion of the acrylic rubber copolymer in the emulsion is, for example, 30 to 70% by mass. An acrylic rubber copolymer emulsion is obtained, for example, by emulsion polymerization of monomers in the presence of a surfactant. Any of anionic, nonionic and cationic surfactants can be used.
 樹脂層13を形成するための塗料は、樹脂組成物と溶媒との混合塗工液を作製し、その塗工液を離型シート上に塗布し、その後に溶媒を乾燥除去することで、樹脂層13を形成する。溶媒は、水又は水系溶媒であってもよいし、キシレン・ミネラルスピリット等の有機系溶媒であってもよい。後述の実施例では、水系溶媒を用いており、アクリル系ゴム組成物で樹脂層13を作製している。なお、離型シート上に形成される層の順番は制限されず、例えば、上記のとおり樹脂層13、ポリマーセメント硬化層12の順番であってもよいし、ポリマーセメント硬化層12、樹脂層13の順番であってもよい。 The paint for forming the resin layer 13 is prepared by preparing a mixed coating liquid of a resin composition and a solvent, applying the coating liquid on a release sheet, and then removing the solvent by drying. A layer 13 is formed. The solvent may be water, an aqueous solvent, or an organic solvent such as xylene/mineral spirit. In Examples described later, a water-based solvent is used, and the resin layer 13 is made of an acrylic rubber composition. The order of the layers formed on the release sheet is not limited. may be in that order.
 樹脂層13の厚さは、構造物1の使用形態、経年度合い、形状等によって任意に設定される。一例としては、50~150μmの範囲内のいずれかの厚さとし、その厚さバラツキは、±50μm以内とすることが好ましい。こうした精度の厚さは、現場での塗工ではとうてい実現できないものであり、工場の製造ラインで安定して実現することができる。 The thickness of the resin layer 13 is arbitrarily set depending on the type of usage, degree of aging, shape, etc. of the structure 1. As an example, it is preferable that the thickness be within the range of 50 to 150 μm, and that the thickness variation be within ±50 μm. Thickness with such precision cannot be achieved by coating on site, and can be stably achieved on the production line of the factory.
 この樹脂層13は、高い防水性、遮塩性、中性化阻止性を有するが、水蒸気は透過することが好ましい。このときの水蒸気透過率としては、例えば、10~50g/m・day程度とすることが望ましい。こうすることにより、構造物保護シート10に高い防水性、遮塩性、中性化阻止性と所定の水蒸気透過性を持たせることができる。さらに、ポリマーセメント硬化層12と同種の樹脂成分で構成されることにより、ポリマーセメント硬化層12との相溶性がよく、密着性に優れたものとすることができる。水蒸気透過性は、JIS Z0208「防湿包装材料の透湿度試験方法」に準拠して測定した。 This resin layer 13 has high waterproof properties, salt-shielding properties, and neutralization-preventing properties, but is preferably permeable to water vapor. At this time, the water vapor transmission rate is preferably about 10 to 50 g/m 2 ·day, for example. By doing so, the structure protection sheet 10 can have high waterproof properties, salt barrier properties, neutralization prevention properties, and predetermined water vapor permeability. Furthermore, by being composed of the same kind of resin component as the polymer cement hardening layer 12, the compatibility with the polymer cement hardening layer 12 is good and the adhesion can be excellent. The water vapor permeability was measured according to JIS Z0208 "Test method for moisture permeability of moisture-proof packaging materials".
 また、樹脂層13は、構造物保護シート10のカラーバリエーションを豊富にできる観点から顔料を含有していてもよい。
 また、樹脂層13は、無機物を含有していてもよい。無機物を含有することで樹脂層13に耐擦傷性を付与することができる。上記無機物としては特に限定されず、例えば、シリカ、アルミナ、チタニア等の金属酸化物粒子等従来公知の材料が挙げられる。
 更に、樹脂層13は、公知の防汚剤を含有していてもよい。構造物保護シート10は、通常屋外に設置されるコンクリート構造物の補修に用いられるため、樹脂層13は汚染されることが多いが、防汚剤を含有することで構造物保護シート10が汚染されることを好適に防止できる。上記防汚剤としては特に限定されず従来公知の材料が挙げられる。
 また、樹脂層13は様々な機能を付与できる添加剤を含有していてもよい。このような添加剤としては、例えば、セルロールナノファイバー等が挙げられる。
Moreover, the resin layer 13 may contain a pigment from the viewpoint of increasing the color variation of the structure protection sheet 10 .
Moreover, the resin layer 13 may contain an inorganic substance. By containing the inorganic substance, the resin layer 13 can be provided with scratch resistance. The inorganic material is not particularly limited, and examples thereof include conventionally known materials such as metal oxide particles such as silica, alumina, and titania.
Furthermore, the resin layer 13 may contain a known antifouling agent. Since the structure protection sheet 10 is usually used for repairing concrete structures installed outdoors, the resin layer 13 is often contaminated. can be suitably prevented. The antifouling agent is not particularly limited and includes conventionally known materials.
Moreover, the resin layer 13 may contain an additive capable of imparting various functions. Examples of such additives include cellulose nanofibers and the like.
(接着層)
 本発明において、構造物保護シート10は、ポリマーセメント硬化層12の樹脂層13と反対側面(構造物1側の面)に接着層15が設けられている。
 接着層15がポリマーセメント硬化層12の表面に設けられていることで、構造物保護シート10を構造物に貼り付ける際に、作業現場で接着剤を塗布して接着剤層を形成する必要がないため極めて作業効率に優れ、また、熟練の職人によらずに均一な厚みの接着層15を介して構造物保護シート10を構造物に貼り付けることができる。また、接着層15が設けられていることで、構造物の表面に形成された直線状の段差に粘着層15を沿わせて構造物保護シート10の密着性を高めることができる。
(adhesion layer)
In the present invention, the structure protection sheet 10 is provided with an adhesive layer 15 on the side of the polymer cement hardened layer 12 opposite to the resin layer 13 (the side facing the structure 1).
Since the adhesive layer 15 is provided on the surface of the polymer cement hardening layer 12, when the structure protection sheet 10 is attached to the structure, it is not necessary to apply an adhesive to form an adhesive layer at the work site. Since there is no adhesive layer, the work efficiency is extremely high, and the structure protection sheet 10 can be attached to the structure via the adhesive layer 15 having a uniform thickness without relying on a skilled craftsman. In addition, since the adhesive layer 15 is provided, the adhesive layer 15 can be aligned with linear steps formed on the surface of the structure, thereby enhancing the adhesion of the structure protection sheet 10 .
 接着層15は、粘着剤を用いてなる粘着層であってもよく、接着剤を用いてなる接着層であってもよいが、接着層15のポットライフを考慮すると粘着層が好ましい。
 上記粘着剤としては特に限定されず、例えば、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ゴム系粘着剤等公知のものが挙げられるが、本発明において接着層15は、アクリル系粘着剤を主成分として含有することが好ましい。アクリル系粘着剤は、構造物に対する粘着力の調整が容易で材料設計の自由度が高く、また、透明性、耐候性及び耐熱性にも優れているため、構造物保護シート10による構造物の保護をより好適に行うことができる。
 上記アクリル系粘着剤としては特に限定されず市販品を使用するとことができ、例えば、オリバイン(登録商標)6574(トーヨーケム社製)等が挙げられる。
The adhesive layer 15 may be an adhesive layer using an adhesive, or may be an adhesive layer using an adhesive. Considering the pot life of the adhesive layer 15, the adhesive layer is preferable.
The adhesive is not particularly limited, and examples thereof include known adhesives such as acrylic adhesives, silicone adhesives, urethane adhesives, and rubber adhesives. In the present invention, the adhesive layer 15 is an acrylic adhesive. It is preferable to contain an adhesive as a main component. The acrylic pressure-sensitive adhesive has a high degree of freedom in material design because it is easy to adjust the adhesive force to the structure, and is excellent in transparency, weather resistance, and heat resistance. Protection can be done better.
The acrylic pressure-sensitive adhesive is not particularly limited, and a commercial product can be used.
 上記アクリル系粘着剤を主成分として含有する接着層15(以下、粘着層ともいう)の積層量としては、コンクリート等の構造物の表面への十分な付着力を発揮できることから、20g/m以上250g/m以下が好ましい。
 また、上記粘着層を介して構造物の表面に貼り付けた時の付着力が0.5N/mm以上あることが好ましい。0.5N/mm未満であると構造物保護シート10の構造物表面に対する密着性が不十分となることがある。
The amount of the adhesive layer 15 (hereinafter also referred to as the adhesive layer) containing the acrylic adhesive as a main component is 20 g/m 2 because it can exhibit sufficient adhesion to the surface of a structure such as concrete. More than 250 g/m 2 or less is preferable.
Further, it is preferable that the adhesive layer has an adhesive force of 0.5 N/mm 2 or more when attached to the surface of the structure via the adhesive layer. If it is less than 0.5 N/mm 2 , the adhesion of the structure protection sheet 10 to the structure surface may be insufficient.
 構造物保護シート10における接着層15が接着剤から構成される接着層である場合、上記接着剤としては特に限定されず、紫外線硬化型接着剤、熱硬化型接着剤等公知の接着剤が挙げられる。
 このような接着剤としては、例えば、ウレタン系接着剤、エポキシ系接着剤、ゴム特性を示すアクリル系樹脂(例えばアクリル酸エステルを主成分に持つ合成ゴム)を用いた接着剤等が挙げられる。なかでも、構造物保護シート10のポリマーセメント硬化層12を構成する樹脂成分と同種の樹脂成分からなる接着剤は、ポリマーセメント硬化層12との接着強度が高くなるのでより好ましい。
When the adhesive layer 15 in the structure protection sheet 10 is an adhesive layer composed of an adhesive, the adhesive is not particularly limited, and known adhesives such as ultraviolet curable adhesives and heat curable adhesives can be mentioned. be done.
Such adhesives include, for example, urethane-based adhesives, epoxy-based adhesives, and adhesives using acrylic resins exhibiting rubber characteristics (for example, synthetic rubbers containing acrylic acid ester as a main component). Among them, an adhesive composed of the same kind of resin component as that constituting the polymer cement hardened layer 12 of the structure protection sheet 10 is more preferable because the adhesive strength with the polymer cement hardened layer 12 is increased.
 構造物保護シート10において、接着層15は、硬化剤を含むことが好ましい。記硬化剤を含むことで構造物に対するより優れた付着力を有するものとなり、また、構造物保護シート10の押し抜き強度も優れたものとなる。
 構造物保護シート10は、JSCE-K-533に規定の押し抜き試験による押し抜き強度が1.5kN以上であることが好ましい。上記押し抜き強度が1.5kN以上であることで、構造物保護シート10により構造物の表面からコンクリート等の剥落といった問題を好適に防止できる。
In the structure protection sheet 10, the adhesive layer 15 preferably contains a curing agent. By including the curing agent, the structure-protecting sheet 10 has excellent adhesion to structures, and the structure-protecting sheet 10 also has excellent punching strength.
The structure protection sheet 10 preferably has a punch strength of 1.5 kN or more in a punch test specified in JSCE-K-533. When the punch strength is 1.5 kN or more, the structure protection sheet 10 can suitably prevent the problem of concrete or the like falling off the surface of the structure.
 上記硬化剤としては特に限定されず、イソシアネート系硬化剤、アミン系硬化剤、エポキシ系硬化剤、金属キレート系硬化剤等公知の硬化剤を使用できる。 The curing agent is not particularly limited, and known curing agents such as isocyanate curing agents, amine curing agents, epoxy curing agents, and metal chelate curing agents can be used.
 構造物保護シート10において、構造物に対する付着力及び構造物保護シート10の押し抜き強度に優れることから、接着層15はゲル分率が30%~70%であることが好ましく、より好ましい下限は40%、より好ましい上限は65%である。 In the structure protection sheet 10, the adhesive layer 15 preferably has a gel fraction of 30% to 70%, since the adhesion to the structure and the punching strength of the structure protection sheet 10 are excellent, and the lower limit is more preferable. 40%, and a more preferable upper limit is 65%.
 構造物保護シート10において、接着層15の厚さとしては50~500μmであることが好ましい。50μm未満であると構造物保護シート10の構造物に対する付着力が不十分となることがあり、500μmを超えると、厚みにバラツキが生じやすく、また、施工時に平滑な施工面を得るためにローラー等で馴らした時に、端部から余分な接着剤がはみ出てしまうことがある。接着層15の厚みのより好ましい下限は90μm、より好ましい上限は200μmである。 In the structure protection sheet 10, the adhesive layer 15 preferably has a thickness of 50 to 500 µm. If the thickness is less than 50 μm, the adhesion of the structure protection sheet 10 to the structure may be insufficient, and if it exceeds 500 μm, the thickness tends to vary. Excess adhesive may protrude from the end when it is flattened. A more preferable lower limit of the thickness of the adhesive layer 15 is 90 μm, and a more preferable upper limit thereof is 200 μm.
(離型シート)
 構造物保護シート10は、接着層15の表面保護のために、接着層15のポリマーセメント硬化層12と反対側面に離型シート16が貼り付けられている。このような離型シート16は、図2(A)に示すように構造物21の表面への貼り付けに際して剥離される。そして図2(B)に示したように、接着層を露出させた後構造物保護シート10は、該接着層側から構造物21の表面に貼り付けられる。
 このような離型シート16としては特に限定されず、例えば、基材層と離型層とを有するシートが挙げられる。
 上記基材層を構成する材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、ナイロン6等のポリアミド、ポリ塩化ビニル等のビニル樹脂、ポリメチルメタクリレート等のアクリル樹脂、セルロースアセテート等のセルロース樹脂、ポリカーボネートなどの合成樹脂が挙げられる。また、上記基材層は、紙を主成分として形成されてもよい。さらに、上記基材層は、2層以上の積層体であってもよい。
(release sheet)
In order to protect the surface of the adhesive layer 15 , the structure protection sheet 10 has a release sheet 16 attached to the side of the adhesive layer 15 opposite to the polymer cement hardened layer 12 . Such a release sheet 16 is peeled off when it is attached to the surface of the structure 21 as shown in FIG. 2(A). Then, as shown in FIG. 2B, after exposing the adhesive layer, the structure protection sheet 10 is attached to the surface of the structure 21 from the adhesive layer side.
Such a release sheet 16 is not particularly limited, and examples thereof include a sheet having a base material layer and a release layer.
Examples of materials constituting the base material layer include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene and polymethylpentene, polyamides such as nylon 6, vinyl resins such as polyvinyl chloride, polymethyl Examples include acrylic resins such as methacrylate, cellulose resins such as cellulose acetate, and synthetic resins such as polycarbonate. Moreover, the said base material layer may be formed considering paper as a main component. Furthermore, the base material layer may be a laminate of two or more layers.
 上記離型層を構成する材料としては、例えば、シリコーン樹脂、メラミン樹脂、フッ素化重合体等が挙げられる。上記離型層は、上記離型層を構成する材料及び有機溶剤を含む塗工液を上記基材層上にグラビアコート法、ロールコート法、コンマコート法、リップコート法等の公知の方法によって塗布し、乾燥及び硬化させる塗工法によって形成することができる。また、上記離型層の形成に当たっては、基材層の積層面にコロナ処理や易接着処理を施してもよい。 Examples of materials that constitute the release layer include silicone resins, melamine resins, and fluorinated polymers. The release layer is formed by a known method such as a gravure coating method, a roll coating method, a comma coating method, a lip coating method, or the like, by applying a coating liquid containing a material constituting the release layer and an organic solvent onto the base material layer. It can be formed by a coating method of coating, drying and curing. In addition, in forming the release layer, the lamination surface of the base material layer may be subjected to corona treatment or adhesion facilitating treatment.
 本発明において、離型シート16には1又は2以上のスリットが形成されている。
 このような本発明に係る構造物保護シートは、幅広であっても貼り付ける部分に該当する離型シートのみを剥離して構造物の表面への貼り付けが可能となるためシワの発生やエアー噛みの発生を好適に防止できる。また、段差のある構造物の表面であっても貼り付け対象部分の離型シートのみを剥離して接着層を露出させることで、シワ及び隙間なくかつ効率的に構造物保護シートの施工が可能となる。
In the present invention, the release sheet 16 is formed with one or more slits.
Even if the structure protection sheet according to the present invention is wide, it can be attached to the surface of the structure by peeling off only the release sheet corresponding to the part to be attached, so that wrinkles and air bubbles are generated. The occurrence of biting can be suitably prevented. In addition, even on the surface of a structure with steps, it is possible to apply the structure protection sheet efficiently without wrinkles and gaps by peeling off only the release sheet on the part to be pasted and exposing the adhesive layer. becomes.
 本発明において、上記構造物の表面には直線状の複数の段差が平行に形成されており、上記離型シートに形成されたスリットは、上記段差が形成する角部に相対する箇所に形成されていることが好ましい。
 上記「段差が形成する角部」とは、構造物の表面の平坦部と該平坦部に隣接する段差とが形成する角部であり、例えば、図4(a)に示したように、第1段差3aに対して高所に配置された第1平坦部2aとなす角部(凸状角部)、又は、第1段差3aに対して低所に配置された第2平坦部2bとなす角部(凹状角部)が挙げられる。
 上記スリットは、本発明に係る構造物保護シート10を離型シート16側から構造物1の表面に重ねた際に、構造物の表面の段差が形成する角部(凸状角部及び/又は凹状角部)に相対する部分に形成されていることが好ましい。
In the present invention, a plurality of linear steps are formed in parallel on the surface of the structure, and the slits formed in the release sheet are formed at locations facing the corners formed by the steps. preferably.
The "corner formed by a step" is a corner formed by a flat portion on the surface of the structure and a step adjacent to the flat portion. A corner (convex corner) formed with the first flat portion 2a arranged at a high position with respect to the first step 3a, or formed with a second flat portion 2b arranged at a low position with respect to the first step 3a. Corners (concave corners) can be mentioned.
The slits are corners formed by steps on the surface of the structure (convex corners and/or It is preferably formed in a portion facing the concave corner).
 上記スリットが形成された離型シート16は、形成されたスリットにより複数の領域に分けられる。具体的には、例えば、構造物が図4(a)に示したように、第1段差3aに対して高所に配置された第1平坦部2aとなす角部(凸状角部)と、第1段差3aに対して低所に配置された第2平坦部2bとなす角部(凹状角部)とを有し、凸状角部と凹状角部の全てに相対する箇所にスリットが形成されている場合、図3に示したように、一方の長辺側から順にスリット毎に区分けされた領域(1)~(4)が挙げられる。
 上記領域(1)は、図4(a)に示すように、構造物1の表面の第1平坦部2aに相対する離型シート16であり、該領域(1)部分の離型シート16を剥離することで第1平坦部2aにのみ構造物保護シート10を貼り付けることができる。同様に、領域(2)は第1段差3aに、領域(3)は第2平坦部2bに、領域(4)は第2段差3bにそれぞれ相対する離型シート16である。
 図4に示した構造物1の表面には更に段差と平坦部とが形成されているが、これらの平坦部及び段差に構造物保護シート10を貼り付ける場合、上述した方法を繰り返すことでシワ及び隙間を形成することなく、かつ、効率的に構造物保護シート10の貼り付けができる。なお、上述した貼り付け方法を繰り返す場合、後から貼り付ける構造物保護シートは、先に貼り付けた構造物保護シートと一部重なった状態で貼り付けることが好ましい。構造物保護シート間で隙間が形成されることを防止できるためである。
 また、上述した第1段差3aと第1平坦部2aとに対して構造物保護シートを貼り付ける場合、例えば、図8(a)に示したように構造物保護シート10は、離型シート16の第1平坦部2aと第1段差3aとが成す角部(凸状角部)に相対する箇所にスリットを設け、領域(1)部分の離型シート16を剥離することで第1平坦部2aにのみ構造物保護シート10を貼り付け、その後領域(2)部分の離型シート16を剥離することで第1段差3aにのみ構造物保護シート10を貼り付けることができる。
 また、例えば、上記凸状角部又は凹状角部のいずれかに相対する位置にのみスリットが形成されている場合、構造物保護シートは、形成されたスリットと、構造物に貼り付ける際に折り曲げられる折り曲げ部とにより複数の領域に分けられる。具体的には、例えば、上記スリットが構造物の表面の上述した凸状角部に相対する箇所に形成されている場合、図8(b)に示したように、領域(1)部分の離型シート16を剥離して第1平坦部2aにのみ構造物保護シート10を貼り付け、その後、領域(2)及び(3)部分の離型シート16を剥離して、第1段差3aに構造物保護シート10を貼り付けるとともに、第1段差3aと第2平坦部2bとの成す角部で折り曲げ部を形成し、第2平端部2bに構造物保護シート10を貼り付けることができる。同様に、領域(4)は第2段差3bに相対する離型シート16である。なお、図8(b)では凸状角部に相対する箇所のスリットを実線で示し、凹状角部に相対する箇所に形成した折り曲げ部を破線で示したが、凸状角部に相対する箇所に折り曲げ部を形成し、凹状角部に相対する箇所にスリットを形成してもよい。
 図4に示した構造物1の表面には更に段差と平坦部とが形成されているが、これらの平坦部及び段差に構造物保護シート10を貼り付ける場合、上述した方法を繰り返すことでシワ及び隙間を形成することなく、かつ、効率的に構造物保護シート10の貼り付けができる。なお、上述した貼り付け方法を繰り返す場合、後から貼り付ける構造物保護シートは、先に貼り付けた構造物保護シートと一部重なった状態で貼り付けることが好ましい。構造物保護シート間で隙間が形成されることを防止できるためである。
The release sheet 16 formed with the slits is divided into a plurality of regions by the formed slits. Specifically, for example, as shown in FIG. , corners (concave corners) formed with the second flat portion 2b disposed at a low position with respect to the first step 3a, and slits are provided at locations facing all of the convex corners and the concave corners. When it is formed, as shown in FIG. 3, regions (1) to (4) are divided into slits in order from one long side.
The region (1) is, as shown in FIG. By peeling off, the structure protection sheet 10 can be attached only to the first flat portion 2a. Similarly, region (2) is the release sheet 16 facing the first step 3a, region (3) the second flat portion 2b, and region (4) the second step 3b.
Steps and flat portions are further formed on the surface of the structure 1 shown in FIG. And the structure protection sheet 10 can be attached efficiently without forming a gap. In addition, when repeating the pasting method described above, it is preferable that the structure protection sheet to be pasted later is pasted in a state in which it partially overlaps the previously pasted structure protection sheet. This is because it is possible to prevent a gap from being formed between the structure protection sheets.
When a structure protection sheet is attached to the first step 3a and the first flat portion 2a, for example, as shown in FIG. A slit is provided at a location facing the corner (convex corner) formed by the first flat portion 2a and the first step 3a, and the release sheet 16 in the region (1) is peeled off to form the first flat portion The structure protection sheet 10 can be attached only to the first step 3a by attaching the structure protection sheet 10 only to 2a and then peeling off the release sheet 16 in the area (2).
Further, for example, when a slit is formed only at a position facing either the convex corner portion or the concave corner portion, the structure protection sheet may be folded when attached to the structure. It is divided into a plurality of regions by the bent portion and the bent portion. Specifically, for example, when the slits are formed on the surface of the structure at locations facing the convex corners, as shown in FIG. The mold sheet 16 is peeled off, and the structure protection sheet 10 is attached only to the first flat portion 2a. The structure protection sheet 10 can be attached to the second flat end portion 2b by forming a bent portion at the corner formed by the first stepped portion 3a and the second flat portion 2b while attaching the object protection sheet 10 to the second flat portion 2b. Similarly, area (4) is release sheet 16 facing second step 3b. In FIG. 8(b), the solid line indicates the slit at the location facing the convex corner, and the broken line indicates the bent portion formed at the location facing the concave corner. It is also possible to form a bent portion at the edge and form a slit at a portion opposite to the concave corner portion.
Steps and flat portions are further formed on the surface of the structure 1 shown in FIG. And the structure protection sheet 10 can be attached efficiently without forming a gap. In addition, when repeating the pasting method described above, it is preferable that the structure protection sheet to be pasted later is pasted in a state in which it partially overlaps the previously pasted structure protection sheet. This is because it is possible to prevent a gap from being formed between the structure protection sheets.
 このような本発明に係る構造物保護シートの施工方法も本発明の一つである。
 すなわち、本発明に係る構造物保護シートの施工方法は、構造物の表面には直線状の複数の段差が平行に形成されており、離型シートに形成されたスリットは、前記段差が形成する角部に相対する箇所に形成されており、構造物の角部と離型シートのスリットとが相対するように前記構造物の表面に前記構造物保護シートを配置する工程、前記構造物の角部と相対させたスリットから一方の端部までの前記離型シートを剥離して接着層を露出させる工程と、露出させた前記接着層を前記構造物の表面に貼り付ける工程とを有することを特徴とする。
The construction method of the structure protection sheet according to the present invention is also one aspect of the present invention.
That is, in the construction method of the structure protection sheet according to the present invention, a plurality of linear steps are formed in parallel on the surface of the structure, and the slits formed in the release sheet are formed by the steps. a step of disposing the structure protection sheet on the surface of the structure so that the corners of the structure and the slits of the release sheet face each other; exposing the adhesive layer by peeling the release sheet from the slit facing the part to one end; and attaching the exposed adhesive layer to the surface of the structure. Characterized by
 本発明に係る構造物保護シートの施工方法は、図3、図4、図8を用いて説明したように、本発明に係る構造物保護シート10が所定のスリットが離型シートに形成されているので、構造物の表面の貼り付け時に必要な部分の離型シートのみを剥離して接着層を露出させて構造物の表面への貼り付けができ、直線状の複数の段差が平行に形成された構造物の表面に隙間及びシワを生じることなく好適に貼り付けることができる。
 また、コンクリート等の構造物中の水分も排出でき、コンクリート製の構造物1を長期にわたって保護することができる。特に、構造物保護シート10に構造物1の特性に応じた性能を付与し、構造物1に生じたひび割れや膨張に追従させること、構造物1に水や塩化物イオン等の劣化因子を浸透させないようにすること、構造物1中の劣化因子を排出できる透過性を持たせることもできる。
 そして、こうした構造物保護シート10は、工場で製造できるので、特性の安定した高品質のものを量産することができる。その結果、職人の技術に寄らずに施工でき、工期の短縮と労務費の削減を実現できる。
As described with reference to FIGS. 3, 4 and 8, the construction method of the structure protection sheet according to the present invention is such that the structure protection sheet 10 according to the present invention has predetermined slits formed in the release sheet. Therefore, when attaching to the surface of a structure, it is possible to peel off only the necessary part of the release sheet to expose the adhesive layer and attach it to the surface of the structure, forming multiple linear steps in parallel. It can be suitably pasted on the surface of the structure with no gaps or wrinkles.
In addition, the moisture in the structure such as concrete can be discharged, and the concrete structure 1 can be protected for a long period of time. In particular, the structure protection sheet 10 is given performance according to the characteristics of the structure 1 to follow cracks and expansions that occur in the structure 1, and permeation of deterioration factors such as water and chloride ions into the structure 1. In addition, the structure 1 can be made permeable so that deterioration factors in the structure 1 can be discharged.
Since such a structure protection sheet 10 can be manufactured in a factory, it is possible to mass-produce high-quality sheets with stable characteristics. As a result, it can be constructed without relying on the skills of craftsmen, shortening the construction period and reducing labor costs.
 本発明に係る構造物保護シートの施工方法では、構造物の表面には、硬化性樹脂材料を含有するプライマー層が形成されていてもよい。
 上記硬化性樹脂材料としては、熱硬化、光硬化その他の方法で硬化して樹脂となるような性質を有する材料であれば特に制限はないが、好ましくは、エポキシ化合物が挙げられる。この場合、上記プライマー層が硬化することで形成される硬化プライマー層は、エポキシ硬化物となる。エポキシ硬化物は、一般には、2つ以上のエポキシ基を有するエポキシ化合物を硬化剤により硬化させたものである。以下、エポキシ硬化物をプライマー層に用いる場合を例にとって説明する。
In the construction method of the structure protection sheet according to the present invention, a primer layer containing a curable resin material may be formed on the surface of the structure.
The curable resin material is not particularly limited as long as it is a material that can be cured by heat curing, photocuring or other methods to become a resin, but epoxy compounds are preferred. In this case, the cured primer layer formed by curing the primer layer is a cured epoxy material. An epoxy cured product is generally obtained by curing an epoxy compound having two or more epoxy groups with a curing agent. An example in which a cured epoxy material is used as a primer layer will be described below.
 上記エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、フェノール類のジグリシジルエーテル化物、アルコール類のジグリシジルエーテル化物等が挙げられる。
 また、硬化剤としては、多官能フェノール類、アミン類、ポリアミン類、メルカプタン類、イミダゾール類、酸無水物、含リン化合物等が挙げられる。これらのうち、多官能フェノール類としては、単環二官能フェノールであるヒドロキノン、レゾルシノール、カテコール、多環二官能フェノールであるビスフェノールA、ビスフェノールF、ナフタレンジオール類、ビフェノール類、及び、これらのハロゲン化物、アルキル基置換体等が挙げられる。更に、これらのフェノール類とアルデヒド類との重縮合物であるノボラック、レゾールを用いることができる。アミン類としては、脂肪族又は芳香族の第一級アミン、第二級アミン、第三級アミン、第四級アンモニウム塩及び脂肪族環状アミン類、グアニジン類、尿素誘導体等が挙げられる。
 上記例示のうち、プライマー層の材料(硬化性樹脂材料を含む。)としては、エポキシ樹脂系プライマーとして、例えば、ビスフェノールA型エポキシ又はビスフェノールF型エポキシの主剤と、ポリアミン類又はメルカプタン類の硬化剤とを用いるもの等が挙げられる。また、上記エポキシ樹脂系プライマーは、上記主剤と硬化剤以外に、例えば、カップリング剤、粘度調整剤及び硬化促進剤等を含んでもよい。このようなプライマー層として、例えば、東亞合成社製2液反応硬化形水系エポキシ樹脂エマルション「アロンブルコートP-300」(商品名・なお「アロンブルコート」は東亞合成社の登録商標である。)を用いることができる。
Examples of the epoxy compounds include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, ortho-cresol novolac type epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, and diglycidyl ethers of phenols. , diglycidyl ethers of alcohols, and the like.
Curing agents include polyfunctional phenols, amines, polyamines, mercaptans, imidazoles, acid anhydrides, phosphorus-containing compounds, and the like. Among these, polyfunctional phenols include monocyclic and bifunctional phenols such as hydroquinone, resorcinol, and catechol, polycyclic and bifunctional phenols such as bisphenol A, bisphenol F, naphthalene diols, biphenols, and halides thereof. , alkyl group-substituted products, and the like. Furthermore, novolacs and resoles, which are polycondensates of these phenols and aldehydes, can be used. Amines include aliphatic or aromatic primary amines, secondary amines, tertiary amines, quaternary ammonium salts and aliphatic cyclic amines, guanidines, urea derivatives and the like.
Among the above examples, materials for the primer layer (including curable resin materials) include epoxy resin primers such as bisphenol A type epoxy or bisphenol F type epoxy as a main agent and polyamines or mercaptans as a curing agent. and the like. Further, the epoxy resin-based primer may contain, for example, a coupling agent, a viscosity modifier, a curing accelerator, etc., in addition to the main agent and the curing agent. As such a primer layer, for example, Toagosei Co., Ltd.'s two-liquid reaction-curing water-based epoxy resin emulsion "Aron Bull Coat P-300" (trade name, "Aron Blue Coat" is a registered trademark of Toagosei Co., Ltd.). ) can be used.
 上記プライマー層は、一般的には構造物の下塗材として使用される。その塗布は、例えば、下塗材としては溶剤タイプのエポキシ樹脂溶剤溶液、又はエポキシ樹脂エマルション及びその他一般のエマルション、又は、粘着剤等を構造物の表面に塗布すればよい。この場合、下塗材は通常の方法で施工することができ、例えば、劣化防止すべき構造物の表面に、刷毛又はローラー等により塗布したり、又は、スプレーガン等で吹き付ける一般的な方法により塗布し、塗膜を形成させる。
 上記プライマー層の厚さは特に限定されないが、好ましくはウエットの状態で50μm以上、300μm以下の範囲内とすることができる。50μm以上とすることでプライマー層の材料のコンクリート等の構造物へのしみ込みを考慮した上でプライマー層の厚さを均一にしやすくなると共に、構造物と構造物保護シートとの接着性を確保しやすくなる。プライマー層の厚さの上限は特に制限はされないが、塗布のしやすさや接着時の両層のずれを最小化する意味、また材料の使用料の最適化から、300μm以下とすることが好ましい。構造物の下塗り層として設けるプライマー層、構造物と構造物保護シートとの相互の密着を高めるように作用するので、プライマー層を上記厚さにすれば、構造物保護シートは長期間安定して構造物を補強し保護しやすくなる。
 なお、構造物にひび割れや欠損が生じている場合には、プライマー層を塗布する前に、上記ひび割れや欠損を補修した後にプライマー層を設けることが好ましい。補修の方法は特に限定されないが、通常セメントモルタルやエポキシ樹脂等が使って補修が行われる。
The primer layer is generally used as a primer for construction. For the coating, for example, a solvent-type epoxy resin solvent solution, an epoxy resin emulsion and other general emulsions, or a pressure-sensitive adhesive may be applied to the surface of the structure as the undercoat material. In this case, the undercoat material can be applied by a normal method, for example, by applying it to the surface of the structure to be prevented from deterioration with a brush or roller, or by spraying with a spray gun or the like. to form a coating film.
Although the thickness of the primer layer is not particularly limited, it is preferably in the range of 50 μm or more and 300 μm or less in a wet state. By setting the thickness to 50 μm or more, it becomes easier to make the thickness of the primer layer uniform considering the penetration of the material of the primer layer into the structure such as concrete, and the adhesion between the structure and the structure protection sheet is ensured. easier to do. Although the upper limit of the thickness of the primer layer is not particularly limited, it is preferably 300 μm or less from the viewpoint of ease of application, minimization of displacement between both layers during adhesion, and optimization of material usage. The primer layer provided as the undercoat layer of the structure acts to enhance the mutual adhesion between the structure and the structure protection sheet, so if the primer layer has the above thickness, the structure protection sheet will be stable for a long period of time. Helps strengthen and protect structures.
If the structure has cracks or defects, it is preferable to provide the primer layer after repairing the cracks or defects before applying the primer layer. The repair method is not particularly limited, but cement mortar, epoxy resin, or the like is usually used for repair.
 実施例と比較例により本発明をさらに具体的に説明する。 The present invention will be explained more specifically with examples and comparative examples.
(実施例1)
 PPラミネート紙からなる厚さ130μmの離型シート16上に、アクリル系樹脂を含む樹脂層形成用組成物を塗工し乾燥して単層からなる厚さ100μmの樹脂層13を形成した。その後、その樹脂層13上に、ポリマーセメント硬化層形成用組成物を塗工し乾燥して単層からなる厚さ1.00mmのポリマーセメント硬化層12を形成した。
 ポリマーセメント硬化層12の表面に、アクリル系粘着剤(オリバイン(登録商標)6574(トーヨーケム社製))100質量部に対してイソシアネート系硬化剤(BHS8515(トーヨーケム社製))6質量部を混合し、ゲル分率が57%の粘着剤用混合液を調製した。この粘着剤用混合液を樹脂層13の表面に塗布、乾燥させて厚さ200μmの接着層15(粘着層)を形成し、合計厚みが1300μmの構造物保護シート10を製造した。
 この構造物保護シート10は、約25℃に管理された工場内で連続生産され、PPラミネート紙離型シートを含んだ態様でロール状に巻き取ることで図1に示した構成とした。
 また、図8(a)に示したように離型シート16には予め、一方の長辺側から185mmの位置にスリットを設けて領域(1)を形成し、スリットから他方の長辺側までの15mmを領域(2)とした。
(Example 1)
A resin layer-forming composition containing an acrylic resin was applied onto a 130 μm thick release sheet 16 made of PP laminated paper and dried to form a 100 μm thick single layer resin layer 13 . After that, a composition for forming a hardened polymer cement layer was applied on the resin layer 13 and dried to form a hardened polymer cement layer 12 having a thickness of 1.00 mm consisting of a single layer.
On the surface of the polymer cement hardened layer 12, 100 parts by mass of an acrylic adhesive (Olivine (registered trademark) 6574 (manufactured by Toyochem)) and 6 parts by mass of an isocyanate hardening agent (BHS8515 (manufactured by Toyochem)) are mixed. , to prepare a pressure-sensitive adhesive mixture having a gel fraction of 57%. This pressure-sensitive adhesive mixture was applied to the surface of the resin layer 13 and dried to form an adhesive layer 15 (adhesive layer) having a thickness of 200 μm, thereby manufacturing a structure protection sheet 10 having a total thickness of 1300 μm.
This structure protection sheet 10 was continuously produced in a factory controlled at about 25° C., and was wound into a roll including a PP laminated paper release sheet to form the structure shown in FIG.
Further, as shown in FIG. 8A, the release sheet 16 is provided with a slit in advance at a position of 185 mm from one long side to form a region (1), and from the slit to the other long side 15 mm was defined as the region (2).
 ポリマーセメント硬化層形成用組成物は、セメント混合物を45質量部含む水系のアクリルエマルジョンである。セメント混合物は、ポルトランドセメント70±5質量部、二酸化ケイ素10±5質量部、酸化アルミニウム2±1質量部、酸化チタン1~2質量部を少なくとも含むものであり、アクリルエマルジョンは、アクリル酸エステルモノマーを乳化剤を使用して乳化重合したアクリル酸系重合物53±2質量部、水43±2質量部を少なくとも含むものである。これらを混合したポリマーセメント硬化層形成用組成物を塗布乾燥して得られたポリマーセメント硬化層は、ポルトランドセメントをアクリル樹脂中に50質量%含有する複合層である。一方、樹脂層形成用組成物は、アクリルシリコーン系樹脂である。このアクリルシリコーン系樹脂は、アクリルシリコーン樹脂60質量部と、二酸化チタン25質量部と、酸化第二鉄10質量部と、カーボンブラック5質量部とを含有するエマルジョン組成物である。 The composition for forming a polymer cement hardened layer is a water-based acrylic emulsion containing 45 parts by mass of a cement mixture. The cement mixture contains at least 70 ± 5 parts by mass of Portland cement, 10 ± 5 parts by mass of silicon dioxide, 2 ± 1 parts by mass of aluminum oxide, and 1 to 2 parts by mass of titanium oxide. The acrylic emulsion contains acrylic acid ester monomers. contains at least 53±2 parts by mass of an acrylic polymer obtained by emulsion polymerization using an emulsifier and 43±2 parts by mass of water. The polymer cement hardened layer obtained by coating and drying the composition for forming the polymer cement hardened layer in which these are mixed is a composite layer containing 50% by mass of Portland cement in the acrylic resin. On the other hand, the resin layer-forming composition is an acrylic silicone resin. This acrylic silicone resin is an emulsion composition containing 60 parts by mass of acrylic silicone resin, 25 parts by mass of titanium dioxide, 10 parts by mass of ferric oxide, and 5 parts by mass of carbon black.
 [構造物の表面への施工]
 実施例1に係る構造物保護シートをスレート屋根に横方向(段差に平行な方向)に接着層側から貼り付けた。
 具体的には、まず、スレート屋根の最上部の第1平坦部に構造物保護シートの領域(1)に相対させ、該領域(1)の離型シートを剥離しながら露出させた接着層を第1平坦部に貼り付けた。
 次いで、上記領域(2)の離型シートを剥離しながら露出させた接着層を第1段差に貼り付けた。
 その結果、スレート屋根の平坦部分と段差とにシワや隙間は形成されず均一な表面を有する構造物保護シートを効率よく施工できた。
[Construction on the surface of structures]
The structure protection sheet according to Example 1 was adhered to the slate roof in the lateral direction (direction parallel to the step) from the adhesive layer side.
Specifically, first, the first flat portion at the top of the slate roof faces the region (1) of the structure protection sheet, and the adhesive layer exposed while peeling the release sheet of the region (1) is applied. Affixed to the first flat portion.
Next, the exposed adhesive layer was attached to the first step while peeling off the release sheet in the region (2).
As a result, a structure protection sheet having a uniform surface without wrinkles or gaps formed between the flat portion and the steps of the slate roof could be efficiently applied.
(実施例2)
 実施例1と同様の層構成の構造物保護シート10を製造した。
 この構造物保護シート10は、約25℃に管理された工場内で連続生産され、PPラミネート紙離型シートを含んだ態様でロール状に巻き取ることで図1に示した構成とした。
 また、図8(b)に示したように離型シート16には予め、一方の長辺側から185mmの位置に第1のスリットを設けて領域(1)を形成し、第1のスリットから他方の長辺側に15mmの位置に折り曲げ部を設けて領域(2)を形成し、前記折り曲げ部から他方の長辺側に185mmの位置に第2のスリットを設けて領域(3)を形成し、第2のスリットから他方の長辺側までの15mmを領域(4)とした。
(Example 2)
A structure protection sheet 10 having the same layer structure as in Example 1 was produced.
This structure protection sheet 10 was continuously produced in a factory controlled at about 25° C., and was wound into a roll including a PP laminated paper release sheet to form the structure shown in FIG.
Further, as shown in FIG. 8B, the release sheet 16 is previously provided with a first slit at a position 185 mm from one long side to form a region (1). A bent portion is provided at a position of 15 mm on the other long side to form a region (2), and a second slit is provided at a position of 185 mm from the bent portion on the other long side to form a region (3). A region (4) was defined as 15 mm from the second slit to the other long side.
 [構造物の表面への施工]
 実施例2に係る構造物保護シートをスレート屋根に横方向(段差に平行な方向)に接着層側から貼り付けた。
 具体的には、まず、スレート屋根の最上部の第1平坦部に構造物保護シートの領域(1)に相対させ、該領域(1)の離型シートを剥離しながら露出させた接着層を第1平坦部に貼り付けた。
 次いで、上記領域(2)及び領域(3)の離型シートを剥離しながら露出させた接着層を第1段差及び第2平坦部に貼り付け、領域(4)の離型シートを剥離しながら露出させた接着層を第2段差に貼り付けた。
 その結果、スレート屋根の平坦部分と段差とにシワや隙間は形成されず均一な表面を有する構造物保護シートを効率よく施工できた。
[Construction on the surface of structures]
The structure protection sheet according to Example 2 was adhered to the slate roof in the lateral direction (direction parallel to the step) from the adhesive layer side.
Specifically, first, the first flat portion at the top of the slate roof faces the region (1) of the structure protection sheet, and the adhesive layer exposed while peeling the release sheet of the region (1) is applied. Affixed to the first flat portion.
Next, the adhesive layer exposed while peeling off the release sheet of the region (2) and the region (3) is attached to the first step and the second flat portion, and while peeling the release sheet of the region (4) The exposed adhesive layer was attached to the second step.
As a result, a structure protection sheet having a uniform surface without wrinkles or gaps formed between the flat portion and the steps of the slate roof could be efficiently applied.
(実施例3)
 実施例1と同様の層構成の構造物保護シート10を製造した。
 離型シート16には予め、一方の長辺側から180mmの位置に第1のスリットを設けて領域(1)を形成し、第1のスリットから15mmの位置に第2のスリットを設けて領域(2)を形成し、第2のスリットから180mmの位置に第3のスリットを設けて領域(3)を形成し、第3のスリットから15mmの位置に第4のスリットを設けて領域(4)を形成してスリット毎に区分けされた領域(1)~(4)を形成した。なお、領域(1)~(4)は、構造物であるスレート屋根に貼り付ける対象となる平坦部及び段差にそれぞれ相対するよう形成した。
 その後、スレート屋根の最上部の第1平坦部に構造物保護シートの領域(1)に相対させ、該領域(1)の離型シートを剥離しながら露出させた接着層を第1平坦部に貼り付けた。
 次いで、上記第1平坦部に隣接する第1段差に相対する領域(2)の離型シートを剥離しながら露出させた接着層を第1段差に貼り付けた。
 次いで、上記第1段差に隣接する第2平坦部に相対する領域(3)の離型シートを剥離しながら露出させた接着層を第2平坦部に貼り付けた。
 次いで、上記第2平坦部に隣接する第2段差に相対する領域(4)の離型シートを剥離しながら露出させた接着層を第2段差に貼り付けた。
 その結果、スレート屋根の平坦部分と段差とにシワや隙間は形成されず均一な表面を有する構造物保護シートを効率よく施工できた。
(Example 3)
A structure protection sheet 10 having the same layer structure as in Example 1 was produced.
The release sheet 16 was previously provided with a first slit at a position of 180 mm from one long side to form a region (1), and a second slit was provided at a position of 15 mm from the first slit to form a region (1). (2) is formed, a third slit is provided at a position 180 mm from the second slit to form region (3), and a fourth slit is provided at a position 15 mm from the third slit to form region (4 ) to form regions (1) to (4) divided by slits. The regions (1) to (4) were formed so as to face the flat portions and the steps to be attached to the slate roof structure.
After that, the first flat portion of the top of the slate roof is made to face the region (1) of the structure protection sheet, and the adhesive layer exposed while peeling the release sheet of the region (1) is applied to the first flat portion. pasted.
Next, the exposed adhesive layer was attached to the first step by peeling off the release sheet in the region (2) facing the first step adjacent to the first flat portion.
Next, the exposed adhesive layer was attached to the second flat portion while peeling off the release sheet in the region (3) facing the second flat portion adjacent to the first step.
Next, the exposed adhesive layer was attached to the second step while peeling off the release sheet in the region (4) facing the second step adjacent to the second flat portion.
As a result, a structure protection sheet having a uniform surface without wrinkles or gaps formed between the flat portion and the steps of the slate roof could be efficiently applied.
(実施例4)
 アクリル系粘着剤(オリバイン(登録商標)6574(トーヨーケム社製))100質量部に対してイソシアネート系硬化剤(BHS8515(トーヨーケム社製))3質量部を混合し、ゲル分率が46%の粘着剤用混合液を用いた以外は実施例3と同様にして構造物保護シートを製造した。
 その後、実施例3と同様にして構造物の表面への施工を行ったところ、スレート屋根の平坦部分と段差とにシワや隙間は形成されず均一な表面を有する構造物保護シートを効率よく施工できた。
(Example 4)
Mix 3 parts by mass of an isocyanate curing agent (BHS8515 (manufactured by Toyochem Co., Ltd.)) with 100 parts by mass of an acrylic adhesive (Oribain (registered trademark) 6574 (manufactured by Toyochem Co., Ltd.)) to give an adhesive with a gel fraction of 46%. A structure protection sheet was produced in the same manner as in Example 3, except that the mixed solution for agents was used.
After that, when the surface of the structure was applied in the same manner as in Example 3, the structure protection sheet was efficiently applied with a uniform surface without wrinkles or gaps between the flat part and the step of the slate roof. did it.
(比較例1)
 離型シートにスリットを形成しなかった以外は実施例3と同様にして構造物保護シートを製造した。
 その後、離型シートを剥離しつつ実施例3と同様のスレート屋根に対して施工を行ったところ、平坦部と段差とを同時に貼り付けることができず、施工効率が劣りまた貼り付けた構造物保護シートはシワ及び隙間が形成されていた。
(Comparative example 1)
A structure protection sheet was produced in the same manner as in Example 3, except that no slits were formed in the release sheet.
After that, when construction was performed on the same slate roof as in Example 3 while peeling off the release sheet, the flat part and the step could not be attached at the same time, and the construction efficiency was poor. The protective sheet had wrinkles and gaps.
1、21 構造物
2a 第1平坦部
2b 第2平坦部
2c 第3平坦部
3a 第1段差
3b 第2段差
10 構造物保護シート
12 ポリマーセメント硬化層
13 樹脂層
15 接着層
16 離型シート
17 メッシュ層
30 屋根
31 ブルーシート
32 土嚢

 
1, 21 structure 2a first flat part 2b second flat part 2c third flat part 3a first step 3b second step 10 structure protection sheet 12 polymer cement hardened layer 13 resin layer 15 adhesive layer 16 release sheet 17 mesh layer 30 roof 31 blue sheet 32 sandbag

Claims (9)

  1.  離型シート、接着層、ポリマーセメント硬化層及び樹脂層がこの順に設けられ、構造物の表面に貼り合せて用いられる構造物保護シートであって、
     前記離型シートには、1又は2以上のスリットが形成されている
     ことを特徴とする構造物保護シート。
    A structure protection sheet provided with a release sheet, an adhesive layer, a polymer cement hardened layer and a resin layer in this order and used by bonding to the surface of a structure,
    A structure protection sheet, wherein one or more slits are formed in the release sheet.
  2.  前記離型シートのスリットが長手方向に形成されている請求項1記載の構造物保護シート。 The structure protection sheet according to claim 1, wherein the slits of the release sheet are formed in the longitudinal direction.
  3.  構造物の表面には直線状の複数の段差が平行に形成されており、
     離型シートに形成されたスリットは、前記段差が形成する角部に相対する箇所に形成されている請求項1又は2に記載の構造物保護シート。
    Multiple linear steps are formed in parallel on the surface of the structure,
    3. The structure protection sheet according to claim 1, wherein the slits formed in the release sheet are formed at locations facing the corners formed by the steps.
  4.  更にメッシュ層を有する請求項1又は2記載の構造物保護シート。 The structure protection sheet according to claim 1 or 2, further comprising a mesh layer.
  5.  接着層は、アクリル系粘着剤を主成分として含有する請求項1又は2に記載の構造物保護シート。 The structure protection sheet according to claim 1 or 2, wherein the adhesive layer contains an acrylic pressure-sensitive adhesive as a main component.
  6.  構造物の表面に接着層を介して貼り付けた時の付着力が0.5N/mm以上である請求項1又は2記載の構造物保護シート。 3. The structure protective sheet according to claim 1 or 2, which has an adhesive strength of 0.5 N/mm< 2 > or more when attached to the surface of a structure via an adhesive layer.
  7.  接着層の厚さが50~500μmである請求項1又は2記載の構造物保護シート。 The structure protection sheet according to claim 1 or 2, wherein the adhesive layer has a thickness of 50 to 500 µm.
  8.  ポリマーセメント硬化層は、セメント成分及び樹脂を含有する層であって、前記樹脂が10重量%以上、40重量%以下含有されている請求項1又は2記載の構造物保護シート。 The structure protection sheet according to claim 1 or 2, wherein the polymer cement hardening layer is a layer containing a cement component and a resin, and the resin is contained in an amount of 10% by weight or more and 40% by weight or less.
  9.  請求項3に記載の構造物保護シートの施工方法であって、
     構造物の角部と離型シートのスリットとが相対するように前記構造物の表面に前記構造物保護シートを配置する工程、
     前記構造物の角部と相対させたスリットから一方の端部までの前記離型シートを剥離して接着層を露出させる工程と、
     露出させた前記接着層を前記構造物の表面に貼り付ける工程とを有する
     ことを特徴とする構造物保護シートの施工方法。
     

     
    A construction method for the structure protection sheet according to claim 3,
    disposing the structure protection sheet on the surface of the structure so that the corners of the structure and the slits of the release sheet face each other;
    exposing the adhesive layer by peeling the release sheet from the slit facing the corner of the structure to one end;
    and attaching the exposed adhesive layer to the surface of the structure.


PCT/JP2022/037484 2021-10-07 2022-10-06 Structure protection sheet and method for installing structure protection sheet WO2023058726A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021165495 2021-10-07
JP2021-165495 2021-10-07
JP2022-161767 2022-10-06
JP2022161767A JP2023056514A (en) 2021-10-07 2022-10-06 Structure protection sheet and construction method of structure protection sheet

Publications (1)

Publication Number Publication Date
WO2023058726A1 true WO2023058726A1 (en) 2023-04-13

Family

ID=85804310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037484 WO2023058726A1 (en) 2021-10-07 2022-10-06 Structure protection sheet and method for installing structure protection sheet

Country Status (2)

Country Link
TW (1) TW202331075A (en)
WO (1) WO2023058726A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129617A (en) * 2001-10-26 2003-05-08 Tomei Giken Kk Waterproofing sheet for repairing rooftop
JP2004027718A (en) * 2002-06-27 2004-01-29 Sho Bond Constr Co Ltd Sheet for repair / reinforcement / deterioration prevention of concrete structure and repair / reinforcement / deterioration prevention method of concrete structure
WO2021010456A1 (en) * 2019-07-17 2021-01-21 恵和株式会社 Structure protection sheet, execution method and precast member using structure protection sheet, and method for manufacturing precast member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129617A (en) * 2001-10-26 2003-05-08 Tomei Giken Kk Waterproofing sheet for repairing rooftop
JP2004027718A (en) * 2002-06-27 2004-01-29 Sho Bond Constr Co Ltd Sheet for repair / reinforcement / deterioration prevention of concrete structure and repair / reinforcement / deterioration prevention method of concrete structure
WO2021010456A1 (en) * 2019-07-17 2021-01-21 恵和株式会社 Structure protection sheet, execution method and precast member using structure protection sheet, and method for manufacturing precast member

Also Published As

Publication number Publication date
TW202331075A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2021010456A1 (en) Structure protection sheet, execution method and precast member using structure protection sheet, and method for manufacturing precast member
JP7323699B2 (en) Structural protection sheet, concrete block and method for manufacturing reinforced structure
WO2023058726A1 (en) Structure protection sheet and method for installing structure protection sheet
JP2023056514A (en) Structure protection sheet and construction method of structure protection sheet
WO2022255145A1 (en) Structure protection sheet, and method for manufacturing reinforced structure
WO2022255312A1 (en) Structure protection sheet and method for installing structure protection sheet
WO2023181379A1 (en) Creasing member, creasing member attachment method, and structure protection sheet construction method
JP2022184760A (en) Structure protection sheet and method for manufacturing reinforced structure
TWI837630B (en) Drainage components, methods of pasting drainage components, and construction methods of structure protection sheets
JP2022184805A (en) Structure protection sheet and construction method of structure protection sheet
JP2022085739A (en) Draining member, method for attaching draining member, and installation method of protection sheet for structure
JP2023152559A (en) Construction method of structure protection sheet
WO2023286561A1 (en) Structure protection sheet, and production method for reinforced structure
TW202340578A (en) Drainage component, applying method of the same and construction method of structure protection sheet wherein the structure protection sheet includes a polymeric adhesive curing layer and a resin layer
JP2022175085A (en) Construction method of smoother and protective sheet
WO2024034599A1 (en) Roof repair method
JP2022080242A (en) Hand roller, protective sheet construction method and coating liquid application method
WO2023008097A1 (en) Structure protection sheet, and method for manufacturing reinforced structure
JP2022117750A (en) Hand roller and protective sheet construction method
JP2023153127A (en) Roof repair method and roof repair structure
JP2024018250A (en) Repair method of folded-plate roof
CN117425760A (en) Structure protection sheet and method for manufacturing reinforced structure
JP2024025715A (en) Roof repair method
JP2023128027A (en) Reinforcing method of ridge portion of roof
TW202417719A (en) Methods for repairing structures and structures for repairing structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878593

Country of ref document: EP

Kind code of ref document: A1