WO2023286561A1 - Structure protection sheet, and production method for reinforced structure - Google Patents

Structure protection sheet, and production method for reinforced structure Download PDF

Info

Publication number
WO2023286561A1
WO2023286561A1 PCT/JP2022/025215 JP2022025215W WO2023286561A1 WO 2023286561 A1 WO2023286561 A1 WO 2023286561A1 JP 2022025215 W JP2022025215 W JP 2022025215W WO 2023286561 A1 WO2023286561 A1 WO 2023286561A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protection sheet
young
polymer cement
resin
Prior art date
Application number
PCT/JP2022/025215
Other languages
French (fr)
Japanese (ja)
Inventor
利克 古永
正夫 足利
辰範 北里
知 谷
晃史 寺本
有希 松野
宏介 保野
Original Assignee
恵和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恵和株式会社 filed Critical 恵和株式会社
Publication of WO2023286561A1 publication Critical patent/WO2023286561A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/04Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/63Macromolecular compounds
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • the present invention relates to a structure protection sheet and a method for manufacturing a reinforced structure.
  • it can significantly reduce the construction period when providing a protective layer on the surface of a structure such as concrete, protect the structure for a long time, and prevent tearing and permanent deformation when affixed to the structure. and a method for manufacturing a reinforced structure using the structure protection sheet.
  • Overcoating in such repair work and reinforcement work is performed on concrete in the order of undercoating, intermediate coating, and topcoating.
  • undercoating For example, when applying a total of 5 layers of undercoat, 1st intermediate coat, 2nd intermediate coat, 1st topcoat, and 2nd topcoat, it takes at least 5 days.
  • the painting since the painting is done outdoors, it is affected by the weather. Therefore, it is difficult to shorten the construction period, labor costs are high, and the quality of the construction and coating film (film thickness, surface roughness, moisture content, etc.) depends on the external environment (humidity, temperature, etc.) during the coating process. As a result of being affected, it is difficult to become stable.
  • Patent Document 1 proposes a sheet and method that is simple, inexpensive, shortens the construction period, and reliably prevents deterioration of concrete.
  • a concrete repair sheet comprising an intermediate layer having a resin film and surface layers made of a fabric material laminated on both sides with an adhesive resin is attached to the concrete surface to be repaired with a construction adhesive. and then coating the surface layer of the pasted sheet for repairing concrete on the side opposite to the concrete surface with a coating material.
  • Patent Document 2 it prevents alkali-aggregate reaction, has excellent conformability to cracks in concrete structures, does not cause blistering of the coating film even when the temperature rises after the coating film is formed.
  • a method for protecting a concrete structure using a coating material capable of preventing concrete from spalling has been proposed.
  • This technique is a method of forming a substrate conditioning material coating film on the surface of a concrete structure and then forming a coating film on the coating film surface.
  • the base conditioning material coating film is formed from a composition containing a cationic (meth)acrylic polymer emulsion and an inorganic hydraulic substance.
  • the coating film formed on the surface of the base conditioning material coating film is a coating film formed from a composition containing an alkyl (meth)acrylate emulsion and an inorganic hydraulic substance, and has an elongation rate of 50 to 2000% at 20°C. , the salt barrier property is 10 ⁇ 2 to 10 ⁇ 4 mg/cm 2 ⁇ day, the water vapor permeability is 5 g/m ⁇ day or more, and the film thickness is 100 to 5000 ⁇ m.
  • the adhesive layer provided on the concrete repair sheet is softened by heating or the like and is bonded to the concrete. It may not work.
  • the concrete repair sheet after the concrete repair sheet was applied, the concrete sometimes swelled over time. This phenomenon was caused by the presence of the repair sheet, which has low water vapor permeability, and prevented the water vapor inside the concrete from escaping. It is considered to be
  • the conventional concrete repair sheet has a problem that the elongation against the applied stress is very large and the sheet is torn or permanently deformed.
  • the method of forming a coating film by coating on site takes one day for each coating layer, and from the undercoat to the topcoat layer, for example, a six-layer coating film. It takes as long as 6 days to form , and there are problems that the film thickness varies and the quality and characteristics such as surface roughness and water content are difficult to stabilize.
  • the repair target of the concrete repair sheet is usually large concrete members such as road bridges, tunnels, river management facilities such as water gates, sewage pipes, and civil engineering structures such as quay walls
  • the concrete repair sheet itself is sufficient.
  • strength tensile strength, bending strength, hardness, surface strength, punching strength, toughness, etc.; the same applies hereinafter
  • conventional concrete repair sheets are considered to have sufficient strength. is difficult to say.
  • the present invention has been made to solve the above problems, and its object is to significantly reduce the construction period when providing a protective layer on the surface of a structure such as concrete, and to protect the structure over a long period of time.
  • a structure protection sheet which is capable of being reinforced, has excellent strength, and is not torn or permanently deformed when attached to a structure, and to provide a method for manufacturing a reinforced structure using the structure protection sheet. to do.
  • the present inventors have researched a concrete protective sheet that can stably protect concrete for a long period of time and prevent breakage and permanent deformation during construction without relying on a construction method that forms a layer on the surface of concrete by coating means. bottom. As a result, it was found that the concrete protection sheet should be given performance according to the characteristics of the concrete. In addition to waterproofing, salt shielding, neutralization prevention, and water vapor permeability that allows the water in the concrete to be discharged as water vapor, the concrete protective sheet itself must have an appropriate Young's modulus. Realized and completed the present invention. This technical idea can also be applied as a structure protection sheet to structures other than those for concrete.
  • a structure protection sheet according to the present invention is a structure protection sheet comprising a polymer cement hardened layer provided on the structure side and a resin layer provided on the polymer cement hardened layer, wherein Young's modulus is 20 to 300 MPa.
  • the polymer cement hardened layer provided on the structure side has excellent adhesion to the structure, etc., and has moderate strength and moderate elongation. It is possible to prevent problems such as tearing and permanent deformation due to the pulling of the wire.
  • the structure protection sheet can be mass-produced by coating and drying processes on the factory production line, it is possible to reduce costs, significantly reduce the work period on site, and achieve long-term protection of structures.
  • the Young's modulus is 10 to 300 MPa in the range where the stress is 2.0 MPa or less and the elongation is 5% or less.
  • the structure protection sheet when attached to the structure, it exhibits sufficient elasticity when pulled after positioning.
  • the structure protection sheet according to the present invention may have a Young's modulus adjusting layer in contact with the polymer cement hardening layer.
  • the elasticity of the structure protection sheet can be controlled by the Young's modulus adjusting layer, and problems such as tearing and permanent deformation due to tension after positioning the structure protection sheet according to the present invention when it is attached to the structure. can be suitably prevented.
  • the Young's modulus adjusting layer is selected from the group consisting of a nonwoven fabric layer, an elastic layer, a metal fiber layer, a particle dispersion layer, a needle-like and rod-like dispersion layer, and a network structure layer. At least one selected is preferred.
  • a desired range of Young's modulus can be suitably imparted to the structure protection sheet according to the invention.
  • the polymer cement-hardening layer is a layer containing a cement component and a resin, and may contain 10% by weight or more and 40% by weight or less of the resin. More preferably, the resin content is 20% by weight or more and 30% by weight or less.
  • the polymer cement hardened layer tends to be a layer with excellent conformability and good compatibility. It tends to improve the adhesiveness of itself. Furthermore, the cement component contained in the polymer-cement-hardened layer on the structure side acts to enhance adhesion to structures such as concrete.
  • a method for manufacturing a reinforced structure according to the present invention is a method for manufacturing a structure using the structure protection sheet according to the present invention, wherein the structure is coated with an adhesive after applying an adhesive to the structure. It is characterized by sticking an object protection sheet together.
  • a structure protection sheet that is composed only of layers that do not contain a base material or a reinforcing member is used, so that it can be easily attached to the surface of the structure.
  • a structure protection sheet with excellent strength to the surface of a structure, significantly reducing the construction period and protecting the structure over a long period of time. Furthermore, it prevents tearing and permanent deformation during tensioning after positioning.
  • an undercoat layer may be provided between the structure and the adhesive.
  • the undercoat layer provided between the structure and the adhesive acts to enhance mutual adhesion, so that the structure protection sheet can stably protect the structure for a long period of time.
  • a structure protection sheet capable of protecting a structure such as concrete for a long period of time and preventing breakage and permanent deformation when attached to the structure, and a structure protection sheet thereof are used.
  • a method of manufacturing a reinforced structure can be provided.
  • the structure protection sheet is given performance according to the characteristics of the structure, so that it can follow the cracks and expansion that occur in the structure, and it prevents deterioration factors such as water and chloride ions from penetrating into the structure.
  • it has the advantage of being able to improve the stability and uniformity of quality compared to layers that have been formed by hand coating.
  • the structure protection sheet 1 As shown in FIG. 1 or FIG. 2C, the structure protection sheet 1 according to the present invention comprises a hardened polymer cement layer 3 provided on the side of a structure 21, and a hardened polymer cement layer 3 provided on the hardened polymer cement layer 3. layer 2; Both the polymer cement hardened layer 3 and the resin layer 2 may be formed as a single layer or as a laminate. Another layer may be provided between the hardened polymer cement layer 3 and the resin layer 2 depending on the required performance.
  • the structure protection sheet 1 according to the present invention has a Young's modulus of 20 to 300 MPa. If the Young's modulus is less than 20 MPa, when the structure protection sheet 1 according to the present invention is attached to the structure 21, it is torn or permanently deformed when pulled for the purpose of smoothing out wrinkles after positioning. If the Young's modulus exceeds 300 MPa, the structure protection sheet 1 according to the present invention is too stiff, and when the structure protection sheet 1 according to the present invention is attached to the structure 21, it cannot be sufficiently pulled after positioning.
  • a preferable lower limit of the Young's modulus of the structure protection sheet 1 according to the present invention is 30 MPa, and a preferable upper limit thereof is 280 MPa. The Young's modulus can be measured, for example, using a known tensile tester.
  • Such a Young's modulus may be achieved by appropriately selecting the material constituting the hardened polymer cement layer 3 constituting the structure protection sheet 1 according to the present invention. It is preferable to have a structure in which the Young's modulus adjusting layer 5 is in contact with the polymer cement hardening layer 3, since the Young's modulus can be adjusted more easily.
  • the Young's modulus adjusting layer 5 will be described later.
  • the structure protection sheet 1 according to the present invention is elastically deformed when the structure protection sheet 1 according to the present invention is pulled after positioning when the structure protection sheet 1 according to the present invention is attached to the structure 21 .
  • Elastic deformation of the structure protection sheet 1 according to the present invention can prevent tearing and permanent deformation due to pulling.
  • the structure protection sheet 1 according to the present invention is preferably elastically deformed in the range of stress of 2.0 MPa or less and elongation of 5% or less, and the Young's modulus in this range is 20 to 300 MPa. is preferred.
  • the structure protection sheet 1 preferably has a thickness distribution within ⁇ 100 ⁇ m. Since the structure protection sheet 1 has a thickness distribution within the above range, even an unskilled worker can stably form a layer with small thickness variations on the surface of the structure 21 . Further, by controlling the thickness distribution within the above range, it becomes easier to uniformly reinforce the structure.
  • the hardened polymer cement layer 3 provided on the side of the structure 21 has excellent adhesion to the structure 21, and since it has the Young's modulus adjusting layer 5, it can also provide the property of ensuring strength. Moreover, the resin layer 2 provided on the polymer cement hardened layer 3 can impart properties such as waterproofness, salt barrier properties, and neutralization prevention properties.
  • the structure protection sheet 1 can be mass-produced by the coating process and the drying process on the production line of the factory, it is possible to reduce the cost, significantly reduce the work period at the site, and achieve long-term protection of the structure. As a result, it is possible to greatly reduce the time required for attaching the film to the surface of the structure 21 and to protect the structure 21 for a long period of time.
  • the structure 21 is a mating member to which the structure protection sheet 1 according to the present invention is applied.
  • a structure made of concrete can be mentioned.
  • the concrete is generally obtained by placing and curing a cement composition containing at least a cementitious inorganic substance, an aggregate, an admixture and water.
  • Such concrete is widely used as civil engineering structures such as road bridges, tunnels, water gates and other river management facilities, sewer pipes, harbor quays and the like.
  • by applying the structure protection sheet 1 to the structure 21 made of concrete it is possible to follow the cracks and expansion that occur in the concrete, and prevent deterioration factors such as water and chloride ions from penetrating into the concrete.
  • water in concrete can be discharged as steam.
  • the polymer cement hardening layer 3 is a layer arranged on the structure side, as shown in FIG. 2(C).
  • This polymer cement hardening layer 3 may be a single layer or a laminate. ), can be arbitrarily set in consideration of the production line of the factory, production cost, etc. For example, if the production line is short and a single layer does not have a predetermined thickness, two or more layers can be overcoated. For example, when two layers are overcoated, the second layer is formed after drying the first layer.
  • the hardened polymer cement layer 3 may also have a structure in which layers having different properties are laminated. For example, by forming a layer with a higher resin component ratio on the resin layer 2 side, the layer with a high resin component adheres to the resin layer, and the layer with a high cement component adheres to the concrete structure. It has excellent properties.
  • the hardened polymer cement layer 3 is obtained by coating a resin containing a cement component (resin component) in the form of a coating.
  • a cement component include various cements, limestones containing calcium oxide, and clays containing silicon dioxide.
  • cement is preferable, and examples thereof include portland cement, alumina cement, high-early strength cement, fly ash cement, and the like. Which cement is selected is selected according to the properties that the hardened polymer cement layer 3 should have, for example, the degree of conformability to the concrete structure 21 is considered.
  • Portland cement defined in JIS R5210 is particularly preferred.
  • the resin component examples include acrylic resin, acrylic urethane resin, acrylic silicone resin, fluororesin, flexible epoxy resin, polybutadiene rubber, acrylic resin exhibiting rubber properties (e.g., synthetic rubber containing acrylic acid ester as a main component), etc. can be mentioned.
  • a resin component is preferably the same as the resin component constituting the resin layer 2 described later, from the viewpoint of enhancing the adhesion between the polymer cement hardened layer 3 and the resin layer 2 .
  • any of a thermoplastic resin, a thermosetting resin, and a photocurable resin may be used as the resin component.
  • cured in the polymer cement cured layer 3 does not mean that the resin component is limited to a resin that cures and polymerizes, such as a thermosetting resin or a photocurable resin. It is used in the sense that it is sufficient to use a material that hardens to a certain degree.
  • the content of the resin component is adjusted appropriately according to the material used, etc., but is preferably 10% by weight or more and 40% by weight or less with respect to the total amount of the cement component and the resin component. If it is less than 10% by weight, the adhesion to the resin layer 2 tends to decrease and it becomes difficult to maintain the polymer cement hardening layer 3 as a layer. Adhesion may be insufficient. From the above viewpoint, the content of the resin component is more preferably 15% by weight or more and 35% by weight or less, and more preferably 20% by weight or more and 30% by weight or less.
  • the paint for forming the hardened polymer cement layer 3 is a coating liquid obtained by mixing a cement component and a resin component with a solvent.
  • the resin component is preferably an emulsion.
  • an acrylic emulsion is polymer fine particles obtained by emulsion polymerization of a monomer such as an acrylic ester using an emulsifier.
  • An acrylic acid-based polymer emulsion obtained by polymerizing a polymer mixture in water containing a surfactant is preferably mentioned.
  • the content of the acrylic acid ester and the like constituting the acrylic emulsion is not particularly limited, but is selected within the range of 20 to 100% by mass.
  • the amount of the surfactant is also blended according to need, and the amount is not particularly limited, but the surfactant is blended to the extent that it forms an emulsion.
  • the hardened polymer cement layer 3 is formed by applying the coating solution onto a release sheet and then removing the solvent (preferably water) by drying.
  • a mixed composition of a cement component and an acrylic emulsion is used as a coating liquid to form the hardened polymer cement layer 3 .
  • the resin layer 2 may be formed on the release sheet after forming the polymer cement hardened layer 3
  • the polymer cement hardened layer 3 is formed after the resin layer 2 is formed on the release sheet.
  • a process paper as a release sheet is coated with a resin layer, and after drying, a coating liquid for polymer cement is applied, and a Young's modulus adjusting layer is attached in a wet state before drying. dry.
  • a coating liquid for polymer cement is further applied to the surface to which the Young's modulus adjusting layer is attached, and dried to obtain a structure protection sheet in which the Young's modulus adjusting layer is present in the polymer cement hardened layer according to the present invention.
  • a step of coating a resin layer on a process paper as a release sheet applying a coating liquid for polymer cement after drying, laminating a Young's modulus adjusting layer in a wet state before drying, and then drying.
  • the Young's modulus adjusting layer is present in the hardened layer of the polymer cement according to the present invention by further coating the surface to which the Young's modulus adjusting layer is attached without drying, and then drying the entire surface. It is also possible to obtain a structure protection sheet.
  • the thickness of the hardened polymer cement layer 3 is not particularly limited, and the type of use of the structure 21 (road bridges, tunnels, river facilities such as water gates, civil engineering structures such as sewer pipes, harbor quays, etc.), age, and shape. etc. is arbitrarily set.
  • the thickness of the hardened polymer cement layer 3 can be, for example, in the range of 0.5 mm to 1.5 mm.
  • the thickness variation is preferably within ⁇ 100 ⁇ m.
  • Such a precise thickness cannot be achieved by on-site coating, but can be achieved by stably coating on a factory production line. Even if the thickness is greater than 1 mm, the thickness variation can be kept within ⁇ 100 ⁇ m.
  • the thickness variation can be further reduced.
  • this hardened polymer cement layer 3 is more easily permeable to water vapor than the resin layer 2 which will be described later.
  • the water vapor transmission rate at this time is, for example, about 20 to 60 g/m 2 ⁇ day.
  • the cement component has good compatibility with, for example, the cement component that constitutes concrete, and can be made to have excellent adhesion to the concrete surface.
  • the polymer cement hardened layer 3 containing the cement component adheres well to the adhesive 23. Glue.
  • the hardened polymer cement layer 3 since the hardened polymer cement layer 3 has extensibility, it can follow changes in the concrete even if the structure 21 cracks or expands.
  • the Young's modulus adjusting layer 5 is provided in contact with the polymer cement hardening layer 3 because the Young's modulus of the structure protective sheet 1 according to the present invention can be adjusted to the range described above.
  • the Young's modulus adjusting layer 5 may exist inside the polymer cement hardening layer 3 as shown in FIG. It may be disposed on the surface in contact with the resin layer 2 or the surface on the opposite side thereof.
  • the Young's modulus adjusting layer 5 is preferably embedded inside the polymer cement hardened layer 3 .
  • the contact area between the Young's modulus adjusting layer 5 and the polymer cement hardening layer 3 is increased, and the adhesion strength between the two is easily made excellent. As a result, the strength of the entire polymer cement hardened layer 3 can be easily ensured.
  • the Young's modulus adjusting layer 5 is impregnated with a material (for example, a cement component or a resin component) constituting the polymer cement hardened layer 3 .
  • a material for example, a cement component or a resin component constituting the polymer cement hardened layer 3 .
  • the state in which the Young's modulus adjusting layer 5 is impregnated with the material constituting the polymer cement hardening layer 3 means that the material constituting the polymer cement hardening layer 3 is filled between the materials such as fibers constituting the Young's modulus adjusting layer 5.
  • This impregnation state facilitates making the bonding strength between the Young's modulus adjusting layer 5 and the polymer cement hardened layer 3 extremely excellent.
  • the interaction between the Young's modulus adjusting layer 5 and the material of the polymer cement hardening layer 3 tends to become stronger, and the strength of the structure protection sheet 1 tends to be improved.
  • the Young's modulus adjusting layer 5 is at least one selected from the group consisting of a nonwoven fabric layer, an elastic layer, a metal fiber layer, a particle dispersion layer, a needle-like and rod-like dispersion layer, and a network structure layer.
  • a nonwoven fabric layer Preferably, it is a nonwoven fabric layer.
  • the nonwoven fabric constituting the nonwoven fabric layer is not particularly limited as long as it is a nonwoven fabric formed into a sheet without weaving fibers.
  • natural fibers and chemical fibers can be used as the fibers constituting the nonwoven fabric.
  • Examples of the chemical fibers include fibers made of polyolefin resins such as polypropylene and polyethylene, polyester resins, polyacrylic resins, polyamide resins such as nylon, copolymers and modified products of these resins, and combinations thereof. Synthetic fibers and the like made of can be mentioned. Among these, polyester fibers are preferred because they are excellent in water resistance, heat resistance, dimensional stability, weather resistance, and the like.
  • the basis weight of the nonwoven fabric is not particularly limited as long as it is in a range that satisfies the above - described Young's modulus . The following are more preferred. If the basis weight of the nonwoven fabric is less than the above range, the nonwoven fabric may become thin and may not satisfy the range of Young's modulus described above. Conversely, if the basis weight of the nonwoven fabric exceeds the above range, the structure protection according to the present invention There is a possibility that the air permeability of the seat 1 may be lowered.
  • the Young's modulus adjusting layer 5 may have a size that covers the entire surface of the polymer cement hardened layer 3 when viewed from the upper surface side of the polymer cement hardened layer 3, or may be smaller than the polymer cement hardened layer 3. . That is, the area of the Young's modulus adjusting layer 5 when viewed in plan may be the same as or smaller than the area of the polymer cement hardened layer 3 when viewed in plan. The area is preferably 60% or more, more preferably 90% or more, of the planar view area of the polymer cement-hardened layer 3 . If it is less than 60%, the strength of the structure protection sheet according to the present invention may be insufficient, and the strength may vary.
  • the plan view area of the Young's modulus adjusting layer 5 and the like can be measured by a known method.
  • the Young's modulus adjusting layer 5 may be a uniform layer, for example, a grid-like, staggered, striped, island-like, or irregularly crimped layer. By providing the above-mentioned crimped portion, it is possible to prevent the assembly of fibers from unraveling during the lamination process when the Young's modulus adjusting layer 5 is a nonwoven fabric layer.
  • the resin layer 2 is a layer arranged on the side opposite to the structure 21 and appearing on the surface, as shown in FIG. 2(C).
  • the resin layer 2 may be, for example, a single layer as shown in FIG. 1(A), or may be a laminate consisting of at least two layers as shown in FIG. 1(B).
  • Whether to use a single layer or multiple layers takes into account the overall thickness, the functions to be imparted (waterproofness, salt barrier, neutralization prevention, water vapor permeability, etc.), the length of the factory production line, the production cost, etc. For example, if the production line is short and a single layer does not have a predetermined thickness, two or more layers can be overcoated. In the case of overcoating, the second layer is applied after drying the first layer. The second layer is then dried.
  • the resin layer 2 is coated with a paint that has flexibility, can follow cracks and cracks that occur in concrete, and can form a resin layer that is excellent in waterproofness, salt shielding, neutralization prevention, and water vapor permeability.
  • the resin constituting the resin layer 2 include acrylic resins exhibiting rubber characteristics (for example, synthetic rubber containing acrylic acid ester as a main component), acrylic urethane resins, acrylic silicone resins, fluorine resins, flexible epoxy resins, polybutadiene rubbers, and the like. can be mentioned.
  • This resin material is preferably the same as the resin component constituting the polymer cement layer 2 described above. In particular, it is preferably a resin containing an elastic film-forming component such as rubber.
  • acrylic resins exhibiting rubber properties are preferably composed of aqueous emulsions of acrylic rubber copolymers in terms of excellent safety and coatability.
  • the proportion of the acrylic rubber copolymer in the emulsion is, for example, 30 to 70% by mass.
  • An acrylic rubber copolymer emulsion is obtained, for example, by emulsion polymerization of monomers in the presence of a surfactant. Any of anionic, nonionic and cationic surfactants can be used.
  • the paint for forming the resin layer 2 is prepared by preparing a mixed coating liquid of a resin composition and a solvent, applying the coating liquid on a release sheet, and then removing the solvent by drying.
  • the solvent may be water, an aqueous solvent, or an organic solvent such as xylene/mineral spirit. In Examples described later, a water-based solvent is used, and the resin layer 2 is made of an acrylic rubber composition.
  • the order of the layers formed on the release sheet is not limited. may be in that order. However, it is preferable to form the resin layer 2 on the release sheet and then form the hardened polymer cement layer 3, as shown in Examples described later.
  • the thickness of the resin layer 2 is arbitrarily set according to the type of use of the structure 21 (road bridge, tunnel, river management facility such as a water gate, civil engineering structure such as a sewage pipe, port quay, etc.), degree of aging, shape, and the like. be. As an example, it is preferable that the thickness be within the range of 50 to 150 ⁇ m, and that the thickness variation be within ⁇ 50 ⁇ m. Thickness with such precision cannot be achieved by coating on site, and can be stably achieved on the production line of the factory.
  • This resin layer 2 has high waterproof properties, salt-shielding properties, and neutralization-preventing properties, but is preferably permeable to water vapor.
  • the water vapor transmission rate is preferably about 10 to 50 g/m 2 ⁇ day, for example.
  • the structure protection sheet 1 can be endowed with high waterproof properties, salt barrier properties, neutralization prevention properties, and predetermined water vapor permeability.
  • the compatibility with the polymer cement hardening layer 3 is good and the adhesion can be excellent.
  • the water vapor permeability was measured according to JIS Z0208 "Test method for moisture permeability of moisture-proof packaging materials".
  • the resin layer 2 may contain a pigment from the viewpoint of increasing the color variations of the structure protection sheet 1 according to the present invention.
  • the resin layer 2 may contain an inorganic substance. By containing an inorganic substance, the resin layer 2 can be imparted with scratch resistance.
  • the inorganic material is not particularly limited, and examples thereof include conventionally known materials such as metal oxide particles such as silica, alumina, and titania.
  • the resin layer 2 may contain a known antifouling agent. Since the structure protection sheet according to the present invention is usually used for repairing concrete structures installed outdoors, the resin layer 2 is often contaminated. It is possible to suitably prevent the structure protection sheet from being contaminated.
  • the antifouling agent is not particularly limited and includes conventionally known materials.
  • the resin layer 2 may contain additives capable of imparting various functions. Examples of such additives include cellulose nanofibers and the like.
  • the manufactured structure protection sheet 1 may have a release sheet on one side of the polymer cement hardening layer 3 and the resin layer 2 .
  • the release sheet can protect the surface of the structure protection sheet 1 when it is sent to the construction site, and at the construction site, it is applied on the target structure 21 (or via the undercoat layer 22 or the adhesive 23). 3) Adhering the structure protection sheet 1 to which the release sheet is attached and then easily peeling off the release sheet greatly improves workability at the construction site.
  • the release sheet is preferably process paper used in the production process of the structure protection sheet 1 .
  • the material of the process paper used as the release sheet is not particularly limited as long as it is conventionally known and used in the manufacturing process.
  • laminated paper having an olefin resin layer such as polypropylene or polyethylene or a silicon-containing layer, like known process paper, can be preferably used.
  • the thickness is not particularly limited, but it can be any thickness, for example, about 50 to 500 ⁇ m, as long as the thickness does not impede handling in terms of manufacturing and construction.
  • the structure protection sheet 1 described above can protect the structure 21 such as concrete for a long period of time.
  • the structure protection sheet 1 is given performance according to the characteristics of the structure 21 to follow cracks and expansions that occur in the structure 21, and permeation of deterioration factors such as water and chloride ions into the structure 21. It is possible to prevent tearing and permanent deformation because it can be made to have a permeability that can discharge moisture and deterioration factors in the structure, and can be suitably pulled when attached to the structure. Since such a structure protection sheet 1 can be manufactured in a factory, it is possible to mass-produce high-quality sheets with stable characteristics. As a result, it can be constructed without relying on the skill of the craftsman, shortening the construction period and reducing labor costs.
  • the method for manufacturing a reinforced structure using the structure protection sheet according to the present invention is a construction method using the structure protection sheet 1 according to the present invention, as shown in FIG. It is characterized in that the structure protection sheet 1 is pasted after the adhesive 23 is applied thereon.
  • This construction method can easily bond the structure protection sheet 1 to the surface of the structure 21 .
  • an unskilled worker can provide the structure protection sheet 1 composed of a layer with a small thickness variation on the structure 21, thereby significantly reducing the construction period and extending the structure 21. can be protected over
  • FIG. 2 is an explanatory diagram of the construction method of the structure protection sheet 1 (manufacturing method of a reinforced structure).
  • Construction forms the undercoat layer 22 on the surface of the structure 21, as shown in FIG. 2(A).
  • the undercoat layer 22 can be formed by coating the structure 21 with a coating liquid obtained by mixing a resin such as an epoxy resin and a solvent, and then volatilizing and drying the solvent in the coating liquid. Examples of the solvent at this time include water and the like similar to those described above.
  • the thickness of the undercoat layer 22 is not particularly limited, it can be in the range of 100 to 150 ⁇ m, for example.
  • the structure protection sheet 1 can stably protect the structure 21 for a long period of time. If the structure 21 is cracked or damaged, it is preferable to provide the undercoat layer 22 after repairing it. Also, the repair is not particularly limited, but usually cement mortar, epoxy resin, or the like is used.
  • an adhesive 23 is applied as shown in FIG. 2(B). Without drying the applied adhesive 23, the structure protection sheet 1 is adhered thereon as shown in FIG. 2(C).
  • the adhesive 23 include urethane-based adhesives, epoxy-based adhesives, and adhesives using acrylic resins exhibiting rubber characteristics (for example, synthetic rubber containing acrylic acid ester as a main component).
  • the adhesive 23 composed of the same resin component as the resin component constituting the polymer cement hardened layer 3 of the structure protection sheet 1 is more preferable because the adhesive strength with the polymer cement hardened layer 3 is increased.
  • the thickness of the adhesive 23 is not particularly limited.
  • the adhesive 23 is usually applied to concrete by means of brushing or spraying, and then naturally dried and hardened over time.
  • FIG. 3 is an explanatory diagram showing an example of applying the structure protection sheet 1 to the cast-in-place construction method.
  • the cast-in-place method is a construction method in which a formwork 24 is formed at a work site, a concrete composition 21' is poured into the formwork 24, and left to harden to obtain a concrete structure 21.
  • the structure protection sheet 1 is attached to the surface of the hardened concrete structure 21, so that the structure 21 that is less likely to deteriorate can be obtained.
  • the undercoat layer 22 is applied to the surface of the concrete structure 21 and dried, and the adhesive 23 is applied thereon, after which the structure protection sheet 1 is bonded. After that, the structure protection sheet 1 is adhered by drying and curing the adhesive 23 by letting it stand naturally.
  • the structure protection sheet 1 is attached by the same construction method as above after repairing the damaged portion.
  • the life of the concrete structure 21 can be extended.
  • Example 1 A release sheet made of PP-laminated paper and having a thickness of 130 ⁇ m was used. A resin layer was formed on this release sheet by the following method. First, an emulsion composition containing 60 parts by mass of acrylic silicone resin, 25 parts by mass of titanium dioxide, 10 parts by mass of ferric oxide, and 5 parts by mass of carbon black was prepared. After the emulsion composition was applied onto the release sheet, it was cured by heat treatment to form a resin layer. The thickness of the resin layer was set to 0.1 mm. Next, a polymer cement hardening layer was formed on the resin layer. Specifically, a water-based acrylic emulsion containing 45 parts by mass of a cement mixture was prepared as a composition for forming a polymer cement layer.
  • the cement mixture contains at least 70 ⁇ 5 parts by mass of Portland cement, 10 ⁇ 5 parts by mass of silicon dioxide, 2 ⁇ 1 parts by mass of aluminum oxide, and 1 to 2 parts by mass of titanium oxide. It contains at least 53 ⁇ 2 parts by mass of an acrylic polymer obtained by emulsion polymerization using an acid ester monomer as an emulsifier and 43 ⁇ 2 parts by mass of water.
  • the polymer cement hardened layer obtained by coating and drying the polymer cement layer-forming composition in which these are mixed is a composite layer containing 50% by mass of Portland cement in the acrylic resin.
  • the Young's modulus adjusting layer made of a polyester nonwoven fabric having a basis weight of 12 g/m 2 is applied. was arranged.
  • the composition for forming a polymer cement hardened layer is further applied onto the resin layer so that the thickness before drying is 1.0 mm, and then dried. to form a hardened layer 3 of polymer cement having a thickness of 1.29 mm.
  • a structure protection sheet having a total thickness of 1.39 mm was produced.
  • this structure protection sheet was continuously produced in a factory controlled at about 25° C., and was wound into a roll while including a release sheet.
  • Example 1 The Young's modulus of the structure protection sheet 1 obtained in Example 1 was measured using a tensile tester (AGX-V, manufactured by Shimadzu Corporation). The Young's modulus of Example 1 was 20 MPa.
  • the structure protection sheet 1 according to Example 1 has excellent strength and maintains appropriate elasticity when attached to a structure, so that it is convenient for construction work and is not broken or permanently deformed.
  • [Measurement of thickness variation] About A4 size (200 mm x 300 mm) was cut out from the structural protection sheet 1 wound into a roll for Example 1, the thickness was measured at 14 points in each part, and the thickness variation was calculated. In Example 1, the thickness variation was 26 ⁇ m.
  • a Young's modulus adjusting layer (Example 2) composed of a polyester nonwoven fabric having a basis weight of 20 g/m 2 was composed of a polyester nonwoven fabric having a basis weight of 50 g/m 2 and a surface temperature of 80°C.
  • a structure protection sheet 1 was produced in the same manner as in Example 1 except that the Young's modulus adjusting layer (Example 3) provided with a pressure-bonded portion by pressing with a metal roll of No. 2 was used.
  • Example 1 A structure protection sheet was produced in the same manner as in Example 1, except that a mesh layer made of aramid fibers having a density of 1.0 fibers/cm and a pitch of 10 mm was provided instead of the Young's modulus adjusting layer.
  • Example 2 A structure protective sheet was produced in the same manner as in Example 1, except that the Young's modulus adjusting layer was not provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Laminated Bodies (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

Provided is a structure protection sheet that enables a substantial reduction in construction time when providing a protection layer on a surface of a structure of, e.g., concrete, is capable of protecting the structure on a long-term basis, exhibits excellent strength, and does not rupture or undergo permanent deformation when attached to the structure. The structure protection sheet comprises a polymer cement cured layer provided on the structure side and a resin layer provided on the polymer cement cured layer, the structure protection sheet being characterized by having a Young's modulus of 20-300 MPa.

Description

構造物保護シート及び補強された構造物の製造方法Structural protection sheet and method for manufacturing reinforced structure
 本発明は、構造物保護シート及び補強された構造物の製造方法に関する。さらに詳しくは、コンクリート等の構造物の表面に保護層を設ける際の工期を大幅に削減できるとともに、構造物を長期にわたって保護することができ、構造物へ貼り付ける際に破れや永久変形を防止できる構造物保護シート、及びその構造物保護シートを用いた補強された構造物の製造方法に関する。 The present invention relates to a structure protection sheet and a method for manufacturing a reinforced structure. In more detail, it can significantly reduce the construction period when providing a protective layer on the surface of a structure such as concrete, protect the structure for a long time, and prevent tearing and permanent deformation when affixed to the structure. and a method for manufacturing a reinforced structure using the structure protection sheet.
 道路橋、トンネル、水門等河川管理施設、下水道管渠、港湾岸壁等の土木構造物は、その老朽化に伴い、補修工事や補強工事が行われる。補修工事は、欠損部分や脆弱部分を補修した後に塗装材を複数回重ね塗りして行われる。一方、補強工事は、補強すべき部分は全体に補強用塗装材を複数回重ね塗りして行われる。  Civil engineering structures such as road bridges, tunnels, water gates and other river management facilities, sewer pipes, and harbor quay walls are undergoing repair and reinforcement work as they age. Repair work is carried out by recoating the coating material several times after repairing the defective or weak parts. On the other hand, the reinforcement work is carried out by coating the entire portion to be reinforced with a reinforcing coating material multiple times.
 こうした補修工事や補強工事で施工する重ね塗りは、例えば、コンクリート上に、下塗り、中塗り、上塗りを順に行うが、通常は、中塗りやそれぞれの塗り工程は、塗装を乾燥させるために連続して行うことができず、例えば下塗り、中塗り1回目、中塗り2回目、上塗り1回目、上塗り2回目の計5層の塗装を行う場合は、少なくとも5日間の工期がかかる。しかも、屋外での塗装なので、天候に左右され、雨天では十分な乾燥ができなかったり、塗装工事自体ができないこともある。そのため、工期の短縮が難しく、その分の労務費がかかり、工事、塗工膜の品質(膜厚、表面粗さ、含水量等)が、塗り工程時の外部環境(湿度、温度等)によって影響を受ける結果安定したものとなりにくい。 Overcoating in such repair work and reinforcement work, for example, is performed on concrete in the order of undercoating, intermediate coating, and topcoating. For example, when applying a total of 5 layers of undercoat, 1st intermediate coat, 2nd intermediate coat, 1st topcoat, and 2nd topcoat, it takes at least 5 days. Moreover, since the painting is done outdoors, it is affected by the weather. Therefore, it is difficult to shorten the construction period, labor costs are high, and the quality of the construction and coating film (film thickness, surface roughness, moisture content, etc.) depends on the external environment (humidity, temperature, etc.) during the coating process. As a result of being affected, it is difficult to become stable.
 また、塗装はこて塗りやスプレー塗り等で行われるが、均一な塗工による安定した補修や補強は、職人の技量によるところが大きい。したがって、職人の技量によっても塗工膜の品質はばらつくことになる。さらに、建設従事者の高齢化及び人口の減少に伴い、コンクリートの補修作業や補強作業の従事者が減少している昨今、熟練した職人でなくとも行うことができるより簡易な補修工法が求められている。 In addition, although painting is done by troweling, spraying, etc., stable repair and reinforcement with uniform coating largely depends on the skill of the craftsman. Therefore, the quality of the coating film varies depending on the skill of the craftsmen. Furthermore, with the aging of construction workers and the declining population, the number of workers engaged in concrete repair and reinforcement work is decreasing. ing.
 こうした課題を解決する技術として、例えば特許文献1では、簡便で、低費用で、工期が短くなり、確実にコンクリートの劣化を防ぐシート及び方法が提案されている。この技術は、樹脂フィルムを有する中間層とその両面に接着樹脂を介して積層された布帛材料からなる表面層とを備えたコンクリート補修用シートを、補修すべきコンクリート面に施工用接着剤で貼付し、その後、貼付したコンクリート補修用シートのコンクリート面とは反対側の表面層に塗料を塗布する、コンクリートの補修方法である。 As a technique for solving these problems, Patent Document 1, for example, proposes a sheet and method that is simple, inexpensive, shortens the construction period, and reliably prevents deterioration of concrete. In this technique, a concrete repair sheet comprising an intermediate layer having a resin film and surface layers made of a fabric material laminated on both sides with an adhesive resin is attached to the concrete surface to be repaired with a construction adhesive. and then coating the surface layer of the pasted sheet for repairing concrete on the side opposite to the concrete surface with a coating material.
 なお、塗装材についての改良も行われている。例えば特許文献2には、アルカリ骨材反応を防止し、コンクリート構造物のひび割れに対しても優れた追従性を有し、塗膜形成後の温度上昇によっても塗膜のふくれを発生させず、コンクリートの剥落を防止することを可能にする塗工材料を用いたコンクリート構造物の保護方法が提案されている。この技術は、コンクリート構造物の表面に、下地調整材塗膜を形成させ、その塗膜表面に塗膜を形成させる方法である。下地調整材塗膜は、カチオン系(メタ)アクリル重合体エマルション及び無機質水硬性物質を含有する組成物から形成される。下地調整材塗膜表面に形成される塗膜は、アルキル(メタ)アクリレート系エマルション及び無機質水硬性物質を含有する組成物から形成された塗膜であり、20℃における伸び率が50~2000%であり、遮塩性が10-2~10-4mg/cm・dayであり、水蒸気透過性が5g/m・day以上であり、膜厚が100~5000μmである。 Improvements have also been made to coating materials. For example, in Patent Document 2, it prevents alkali-aggregate reaction, has excellent conformability to cracks in concrete structures, does not cause blistering of the coating film even when the temperature rises after the coating film is formed, A method for protecting a concrete structure using a coating material capable of preventing concrete from spalling has been proposed. This technique is a method of forming a substrate conditioning material coating film on the surface of a concrete structure and then forming a coating film on the coating film surface. The base conditioning material coating film is formed from a composition containing a cationic (meth)acrylic polymer emulsion and an inorganic hydraulic substance. The coating film formed on the surface of the base conditioning material coating film is a coating film formed from a composition containing an alkyl (meth)acrylate emulsion and an inorganic hydraulic substance, and has an elongation rate of 50 to 2000% at 20°C. , the salt barrier property is 10 −2 to 10 −4 mg/cm 2 ·day, the water vapor permeability is 5 g/m·day or more, and the film thickness is 100 to 5000 μm.
特開2010-144360号公報JP 2010-144360 A 特開2000-16886号公報JP-A-2000-16886
 特許文献1等の従来のコンクリート補修シートは、基材と他の層(例えば接着剤層や補強部材)との接着力の違い、基材、接着剤層及び補強部材等の伸びの違い、接着剤層とコンクリートとの接着強度の問題等、解決すべき課題がある。具体的には、基材と補強部材とは接着剤層で貼り合わされているが、コンクリート補修シートの施工時や施工後のコンクリート補修シートに応力が加わった場合、基材、接着剤層及び補強部材等の伸びの違いは、基材と接着剤層との接着力と接着剤層と補強部材との接着力との相違に基づいた層界面の剥離の原因になり得る。 Conventional concrete repair sheets such as those disclosed in Patent Document 1 have differences in adhesive strength between the substrate and other layers (e.g., adhesive layer and reinforcing member), differences in elongation of the substrate, adhesive layer, reinforcing member, etc., and adhesion There are problems to be solved, such as the problem of adhesive strength between the agent layer and concrete. Specifically, the base material and the reinforcing member are bonded together with an adhesive layer. Differences in the elongation of members and the like can cause peeling at the layer interface based on the difference in the adhesive strength between the substrate and the adhesive layer and the adhesive strength between the adhesive layer and the reinforcing member.
 また、コンクリート補修シートに設けられた接着剤層は加熱等で軟化されてコンクリートに貼り合わされるが、十分な接着強度が得られない場合は、コンクリートの表面からコンクリート補修シートが剥がれて補修シートとして機能しないおそれがある。また、コンクリート補修シートを施工した後のコンクリートは、時が経つと膨れる現象が生じることがあったが、この現象は、コンクリート内部の水蒸気が水蒸気透過性の低い補修シートの存在によって逃げ場を失ったためであると考えられる。
 更に、コンクリート補修シートをコンクリートに貼り付ける際には、一旦構造物にコンクリート補修シートを貼り付けて位置合わせした後、引っ張ってシワを防ぎつつ所望の形状及び位置に貼り付けられた状態にする必要がある。
 しかしながら、従来のコンクリート補修シートでは印加応力に対する伸びが非常に大きく破れたり永久変形したりする問題があった。
In addition, the adhesive layer provided on the concrete repair sheet is softened by heating or the like and is bonded to the concrete. It may not work. In addition, after the concrete repair sheet was applied, the concrete sometimes swelled over time. This phenomenon was caused by the presence of the repair sheet, which has low water vapor permeability, and prevented the water vapor inside the concrete from escaping. It is considered to be
Furthermore, when attaching the concrete repair sheet to the concrete, it is necessary to once attach the concrete repair sheet to the structure, align the sheet, and then pull the sheet to prevent wrinkles while maintaining the desired shape and position of the sheet. There is
However, the conventional concrete repair sheet has a problem that the elongation against the applied stress is very large and the sheet is torn or permanently deformed.
 また、現場で塗工によって塗膜を形成する方法は、上記背景技術の欄で説明したように、1層塗工する毎に1日かかり、下塗りから上塗り層まで例えば、6層の塗工膜を形成する場合には6日もかかり、しかも膜厚がばらつき、表面粗さや含水量等の品質や特性も安定しにくいという課題がある。 In addition, the method of forming a coating film by coating on site, as described in the background art section above, takes one day for each coating layer, and from the undercoat to the topcoat layer, for example, a six-layer coating film. It takes as long as 6 days to form , and there are problems that the film thickness varies and the quality and characteristics such as surface roughness and water content are difficult to stabilize.
 更に、コンクリート補修シートの補修対象は、通常、道路橋、トンネル、水門等河川管理施設、下水道管渠、湾岸壁等の土木構造物等の大型コンクリート部材であるため、コンクリート補修シート自体にも十分な強度(引張強度、曲げ強度、硬度、表面強度、打ち抜き強度靱性等をいい、本明細書において以下同様とする。)が求められるが、従来のコンクリート補修シートでは十分な強度を備えているとは言い難いという課題がある。 Furthermore, since the repair target of the concrete repair sheet is usually large concrete members such as road bridges, tunnels, river management facilities such as water gates, sewage pipes, and civil engineering structures such as quay walls, the concrete repair sheet itself is sufficient. strength (tensile strength, bending strength, hardness, surface strength, punching strength, toughness, etc.; the same applies hereinafter) is required, but conventional concrete repair sheets are considered to have sufficient strength. is difficult to say.
 本発明は、上記課題を解決するためになされたものであり、その目的は、コンクリート等の構造物の表面に保護層を設ける際の工期を大幅に削減できるとともに、構造物を長期にわたって保護することができ、強度にも優れ、構造物に貼り付ける際に破れたり永久変形したりすることのない構造物保護シート、及びその構造物保護シートを用いた補強された構造物の製造方法を提供することにある。 The present invention has been made to solve the above problems, and its object is to significantly reduce the construction period when providing a protective layer on the surface of a structure such as concrete, and to protect the structure over a long period of time. To provide a structure protection sheet which is capable of being reinforced, has excellent strength, and is not torn or permanently deformed when attached to a structure, and to provide a method for manufacturing a reinforced structure using the structure protection sheet. to do.
 本発明者等は、コンクリートの表面に塗工手段で層を形成する施工方法によらないで、コンクリートを長期間安定して保護できるとともに施工時の破れや永久変形を防止できるコンクリート保護シートを研究した。その結果、コンクリート保護シートに、コンクリートの特性に応じた性能を付与すること、具体的には、コンクリートに生じたひび割れや膨張に追従できる追従性、コンクリート内に水や塩化物イオン等の劣化因子を浸透させない防水性、遮塩性、中性化阻止性、及び、コンクリート中の水分を水蒸気として排出できる水蒸気透過性、等をさらに備えるとともに、コンクリート保護シート自身が適度なヤング率を有することを実現し、本発明を完成させた。そして、この技術思想は、コンクリート用でない他の構造物に対しても構造物保護シートとして応用可能である。 The present inventors have researched a concrete protective sheet that can stably protect concrete for a long period of time and prevent breakage and permanent deformation during construction without relying on a construction method that forms a layer on the surface of concrete by coating means. bottom. As a result, it was found that the concrete protection sheet should be given performance according to the characteristics of the concrete. In addition to waterproofing, salt shielding, neutralization prevention, and water vapor permeability that allows the water in the concrete to be discharged as water vapor, the concrete protective sheet itself must have an appropriate Young's modulus. Realized and completed the present invention. This technical idea can also be applied as a structure protection sheet to structures other than those for concrete.
(1)本発明に係る構造物保護シートは、構造物側に設けられるポリマーセメント硬化層と、該ポリマーセメント硬化層上に設けられた樹脂層とを備える構造物保護シートであって、ヤング率が20~300MPaであることを特徴とする。 (1) A structure protection sheet according to the present invention is a structure protection sheet comprising a polymer cement hardened layer provided on the structure side and a resin layer provided on the polymer cement hardened layer, wherein Young's modulus is 20 to 300 MPa.
 この発明によれば、構造物側に設けられるポリマーセメント硬化層は、構造物との密着性等に優れ、適度な強度と適度な伸びとを有するものとなり構造物への貼り付け時の位置決め後の引っ張りによる破れや永久変形といった問題を防止できる。
 また、構造物保護シートは工場の生産ラインでの塗工工程と乾燥工程により量産できるので、低コスト化、現場での作業工期の大幅削減、構造物の長期保護を実現することができる。
According to this invention, the polymer cement hardened layer provided on the structure side has excellent adhesion to the structure, etc., and has moderate strength and moderate elongation. It is possible to prevent problems such as tearing and permanent deformation due to the pulling of the wire.
In addition, since the structure protection sheet can be mass-produced by coating and drying processes on the factory production line, it is possible to reduce costs, significantly reduce the work period on site, and achieve long-term protection of structures.
 本発明に係る構造物保護シートにおいて、応力が2.0MPa以下、伸度が5%以下の範囲におけるヤング率が10~300MPaであることが好ましい。 In the structure protection sheet according to the present invention, it is preferable that the Young's modulus is 10 to 300 MPa in the range where the stress is 2.0 MPa or less and the elongation is 5% or less.
 この発明によれば、構造物保護シートを構造物に貼り付ける際の位置決め後の引っ張り時に十分な弾性を示すこととなる。 According to this invention, when the structure protection sheet is attached to the structure, it exhibits sufficient elasticity when pulled after positioning.
 本発明に係る構造物保護シートにおいて、前記ポリマーセメント硬化層に接した状態でヤング率調整層を有していてもよい。 The structure protection sheet according to the present invention may have a Young's modulus adjusting layer in contact with the polymer cement hardening layer.
 この発明によれば、ヤング率調整層による構造物保護シートの弾性の制御ができ、本発明に係る構造物保護シートの構造物への貼り付け時の位置決め後の引っ張りによる破れや永久変形といった問題を好適に防止できる。 According to this invention, the elasticity of the structure protection sheet can be controlled by the Young's modulus adjusting layer, and problems such as tearing and permanent deformation due to tension after positioning the structure protection sheet according to the present invention when it is attached to the structure. can be suitably prevented.
 本発明に係る構造物保護シートにおいて、前記ヤング率調整層は、不織布層、弾性層、金属繊維層、粒子分散体層、針状及び棒状物分散体層、網目状構造物層からなる群より選択される少なくとも1種であることが好ましい。 In the structure protection sheet according to the present invention, the Young's modulus adjusting layer is selected from the group consisting of a nonwoven fabric layer, an elastic layer, a metal fiber layer, a particle dispersion layer, a needle-like and rod-like dispersion layer, and a network structure layer. At least one selected is preferred.
 この発明によれば、本発明に係る構造物保護シートに所望の範囲のヤング率を好適に付与できる。 According to this invention, a desired range of Young's modulus can be suitably imparted to the structure protection sheet according to the invention.
 本発明に係る構造物保護シートにおいて、前記ポリマーセメント硬化層は、セメント成分及び樹脂を含有する層であって、樹脂が10重量%以上、40重量%以下含有されていてもよい。さらに好ましくは樹脂が20重量%以上、30重量%以下であることが望ましい。 In the structure protection sheet according to the present invention, the polymer cement-hardening layer is a layer containing a cement component and a resin, and may contain 10% by weight or more and 40% by weight or less of the resin. More preferably, the resin content is 20% by weight or more and 30% by weight or less.
 この発明によれば、セメント成分と樹脂成分との比率を制御することでポリマーセメント硬化層を形成しやすくなると共に、ポリマーセメント硬化層は追従性に優れた相溶性のよい層となりやすいので、層自体の密着性が改善される傾向となる。さらに、構造物側のポリマーセメント硬化層が含有するセメント成分はコンクリート等の構造物との密着性を高めるように作用する。 According to the present invention, by controlling the ratio of the cement component and the resin component, it becomes easier to form the polymer cement hardened layer, and the polymer cement hardened layer tends to be a layer with excellent conformability and good compatibility. It tends to improve the adhesiveness of itself. Furthermore, the cement component contained in the polymer-cement-hardened layer on the structure side acts to enhance adhesion to structures such as concrete.
(2)本発明に係る補強された構造物の製造方法は、上記本発明に係る構造物保護シートを使用した構造物の製造方法であって、構造物上に接着剤を塗布した後に前記構造物保護シートを貼り合わせる、ことを特徴とする。 (2) A method for manufacturing a reinforced structure according to the present invention is a method for manufacturing a structure using the structure protection sheet according to the present invention, wherein the structure is coated with an adhesive after applying an adhesive to the structure. It is characterized by sticking an object protection sheet together.
 この発明によれば、基材や補強部材を含まない層だけで構成された構造物保護シートを使用するので、構造物の表面に容易に貼り合わせることができる。その結果、熟練した作業者でなくても構造物の表面に強度に優れた構造物保護シートを安定して設けることができ、工期を大幅に削減できるとともに、構造物を長期にわたって保護することができ、更に位置決め後の引っ張りにおいて破れや永久変形を防止できる。 According to the present invention, a structure protection sheet that is composed only of layers that do not contain a base material or a reinforcing member is used, so that it can be easily attached to the surface of the structure. As a result, even an unskilled worker can stably apply a structure protection sheet with excellent strength to the surface of a structure, significantly reducing the construction period and protecting the structure over a long period of time. Furthermore, it prevents tearing and permanent deformation during tensioning after positioning.
 本発明に係る補強された構造物の製造方法において、前記構造物と前記接着剤との間に下塗り層を設けてもよい。 In the method for manufacturing a reinforced structure according to the present invention, an undercoat layer may be provided between the structure and the adhesive.
 この発明によれば、構造物と接着剤との間に設ける下塗り層は、相互の密着を高めるように作用するので、構造物保護シートは、長期間安定して構造物を保護することができる。 According to this invention, the undercoat layer provided between the structure and the adhesive acts to enhance mutual adhesion, so that the structure protection sheet can stably protect the structure for a long period of time. .
 本発明によれば、コンクリート等の構造物を長期にわたって保護することができるとともに構造物への貼り付けの際に破れや永久変形を防止できる構造物保護シート、及びその構造物保護シートを用いた補強された構造物の製造方法を提供することができる。特に、構造物保護シートに構造物の特性に応じた性能を付与し、構造物に生じたひび割れや膨張に追従させること、構造物に水や塩化物イオン等の劣化因子を浸透させないようにすること、構造物中の水分や劣化因子を排出できる透過性を持たせること、強度を向上させること等を実現した構造物保護シートを提供することができる。さらに、これまで手塗りで形成されてきた層と比較して品質の安定性、均一性を改善できる利点を有する。 INDUSTRIAL APPLICABILITY According to the present invention, a structure protection sheet capable of protecting a structure such as concrete for a long period of time and preventing breakage and permanent deformation when attached to the structure, and a structure protection sheet thereof are used. A method of manufacturing a reinforced structure can be provided. In particular, the structure protection sheet is given performance according to the characteristics of the structure, so that it can follow the cracks and expansion that occur in the structure, and it prevents deterioration factors such as water and chloride ions from penetrating into the structure. In addition, it is possible to provide a structure protection sheet that realizes permeability that enables the discharge of water and deterioration factors in the structure, and that the strength is improved. Furthermore, it has the advantage of being able to improve the stability and uniformity of quality compared to layers that have been formed by hand coating.
本発明に係る構造物保護シートの一例を示す断面構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional block diagram which shows an example of the structure protection sheet which concerns on this invention. 構造物保護シートの施工方法の説明図である。It is explanatory drawing of the construction method of a structure protection sheet. 現場打ち工法に構造物保護シートを適用した例を示す説明図である。It is explanatory drawing which shows the example which applied the structure protection sheet to the cast-in-place construction method.
 以下、本発明に係る構造物保護シート及びそれを用いた施工方法について図面を参照しつつ説明する。なお、本発明は、その技術的特徴を有する限り各種の変形が可能であり、以下の説明及び図面の形態に限定されない。 A structure protection sheet according to the present invention and a construction method using the sheet will be described below with reference to the drawings. The present invention can be modified in various ways as long as it has the technical features, and is not limited to the following description and drawings.
 [構造物保護シート]
 本発明に係る構造物保護シート1は、図1又は図2(C)に示すように、構造物21側に設けられたポリマーセメント硬化層3と、ポリマーセメント硬化層3上に設けられた樹脂層2とを備えている。このポリマーセメント硬化層3と樹脂層2の両層は、それぞれ、単層で形成されてもよいし積層として形成されてもよい。また、求められる性能によっては、ポリマーセメント硬化層3と樹脂層2との間に別の層を設けてもよい。
[Structure protection sheet]
As shown in FIG. 1 or FIG. 2C, the structure protection sheet 1 according to the present invention comprises a hardened polymer cement layer 3 provided on the side of a structure 21, and a hardened polymer cement layer 3 provided on the hardened polymer cement layer 3. layer 2; Both the polymer cement hardened layer 3 and the resin layer 2 may be formed as a single layer or as a laminate. Another layer may be provided between the hardened polymer cement layer 3 and the resin layer 2 depending on the required performance.
 本発明に係る構造物保護シート1は、ヤング率が20~300MPaである。ヤング率が20MPa未満であると、本発明に係る構造物保護シート1を構造物21に貼り付ける際、位置決め後シワを伸ばす目的等で引っ張ったときに破れたり永久変形したりする。ヤング率が300MPaを超えると本発明に係る構造物保護シート1が強直に過ぎ、本発明に係る構造物保護シート1を構造物21に貼り付ける際、位置決め後に十分に引っ張りができない。本発明に係る構造物保護シート1のヤング率の好ましい下限は30MPa、好ましい上限は280MPaである。
 上記ヤング率は、例えば、公知の引張試験機を用いて測定することができる。
The structure protection sheet 1 according to the present invention has a Young's modulus of 20 to 300 MPa. If the Young's modulus is less than 20 MPa, when the structure protection sheet 1 according to the present invention is attached to the structure 21, it is torn or permanently deformed when pulled for the purpose of smoothing out wrinkles after positioning. If the Young's modulus exceeds 300 MPa, the structure protection sheet 1 according to the present invention is too stiff, and when the structure protection sheet 1 according to the present invention is attached to the structure 21, it cannot be sufficiently pulled after positioning. A preferable lower limit of the Young's modulus of the structure protection sheet 1 according to the present invention is 30 MPa, and a preferable upper limit thereof is 280 MPa.
The Young's modulus can be measured, for example, using a known tensile tester.
 このようなヤング率は、本発明に係る構造物保護シート1を構成するポリマーセメント硬化層3を構成する材料を適宜選択して達成してもよいが、本発明に係る構造物保護シート1をポリマーセメント硬化層3に接した状態でヤング率調整層5を有する構成とすることがより簡単にヤング率の調整が可能となるため好ましい。なお、ヤング率調整層5については後述する。 Such a Young's modulus may be achieved by appropriately selecting the material constituting the hardened polymer cement layer 3 constituting the structure protection sheet 1 according to the present invention. It is preferable to have a structure in which the Young's modulus adjusting layer 5 is in contact with the polymer cement hardening layer 3, since the Young's modulus can be adjusted more easily. The Young's modulus adjusting layer 5 will be described later.
 本発明に係る構造物保護シート1は、本発明に係る構造物保護シート1を構造物21に貼り付ける際の位置決め後の引っ張り時に弾性変形することが好ましい。本発明に係る構造物保護シート1が弾性変形することで引っ張りによる破れや永久変形を防止できる。
 具体的には、本発明に係る構造物保護シート1は、応力が2.0MPa以下、伸度が5%以下の範囲で弾性変形することが好ましく、この範囲におけるヤング率が20~300MPaであることが好ましい。
It is preferable that the structure protection sheet 1 according to the present invention is elastically deformed when the structure protection sheet 1 according to the present invention is pulled after positioning when the structure protection sheet 1 according to the present invention is attached to the structure 21 . Elastic deformation of the structure protection sheet 1 according to the present invention can prevent tearing and permanent deformation due to pulling.
Specifically, the structure protection sheet 1 according to the present invention is preferably elastically deformed in the range of stress of 2.0 MPa or less and elongation of 5% or less, and the Young's modulus in this range is 20 to 300 MPa. is preferred.
 本発明に係る構造物保護シート1は、厚さ分布が±100μm以内であることが好ましい。この構造物保護シート1は、厚さ分布が上記範囲内であることで、熟練した作業者でなくても厚さバラツキの小さい層を構造物21の表面に安定して設けることができる。また、厚さ分布を上記範囲内に制御することによって、構造物の補強を均一に行いやすくなる。
 構造物21側に設けられたポリマーセメント硬化層3は、構造物21との密着性等に優れると共に、ヤング率調整層5を有しているので、強度の確保という性質も付与できる。また、ポリマーセメント硬化層3上に設けられた樹脂層2は、防水性、遮塩性、中性化阻止性等の性質を付与できる。
また、構造物保護シート1は工場の生産ラインでの塗工工程と乾燥工程により量産できるので低コスト化、現場での作業工期の大幅削減、構造物の長期保護を実現することができる。その結果、構造物21の表面に貼り合わせる際の工期を大幅に削減できるとともに構造物21を長期にわたって保護することができる。
The structure protection sheet 1 according to the present invention preferably has a thickness distribution within ±100 μm. Since the structure protection sheet 1 has a thickness distribution within the above range, even an unskilled worker can stably form a layer with small thickness variations on the surface of the structure 21 . Further, by controlling the thickness distribution within the above range, it becomes easier to uniformly reinforce the structure.
The hardened polymer cement layer 3 provided on the side of the structure 21 has excellent adhesion to the structure 21, and since it has the Young's modulus adjusting layer 5, it can also provide the property of ensuring strength. Moreover, the resin layer 2 provided on the polymer cement hardened layer 3 can impart properties such as waterproofness, salt barrier properties, and neutralization prevention properties.
In addition, since the structure protection sheet 1 can be mass-produced by the coating process and the drying process on the production line of the factory, it is possible to reduce the cost, significantly reduce the work period at the site, and achieve long-term protection of the structure. As a result, it is possible to greatly reduce the time required for attaching the film to the surface of the structure 21 and to protect the structure 21 for a long period of time.
 以下、各構成要素の具体例について詳しく説明する。  Specific examples of each component are described in detail below. 
 (構造物)
 構造物21は、本発明に係る構造物保護シート1が適用される相手部材である。
構造物21としては、コンクリートからなる構造物を挙げることができる。
上記コンクリートは、一般的には、セメント系無機物質と骨材と混和剤と水とを少なくとも含有するセメント組成物を打設し、養生して得られる。こうしたコンクリートは、道路橋、トンネル、水門等河川管理施設、下水道管渠、港湾岸壁等の土木構造物として広く使用される。本発明では、コンクリートからなる構造物21に構造物保護シート1を適用することで、コンクリートに生じたひび割れや膨張に追従でき、コンクリート内に水や塩化物イオン等の劣化因子を浸透させず、コンクリート中の水分を水蒸気として排出できる、という格別の利点がある。
(Structure)
The structure 21 is a mating member to which the structure protection sheet 1 according to the present invention is applied.
As the structure 21, a structure made of concrete can be mentioned.
The concrete is generally obtained by placing and curing a cement composition containing at least a cementitious inorganic substance, an aggregate, an admixture and water. Such concrete is widely used as civil engineering structures such as road bridges, tunnels, water gates and other river management facilities, sewer pipes, harbor quays and the like. In the present invention, by applying the structure protection sheet 1 to the structure 21 made of concrete, it is possible to follow the cracks and expansion that occur in the concrete, and prevent deterioration factors such as water and chloride ions from penetrating into the concrete. There is a particular advantage that water in concrete can be discharged as steam.
 (ポリマーセメント硬化層)
 ポリマーセメント硬化層3は、図2(C)に示すように、構造物側に配置される層である。このポリマーセメント硬化層3は、単層であっても積層であってもよいが、単層とするか積層とするかは、全体厚さ、付与機能(追従性、構造物への接着性等)、工場の製造ライン、生産コスト等を考慮して任意に設定され、例えば製造ラインが短くて単層では所定の厚さにならない場合は、2層以上重ね塗りして形成することができる。なお、例えば2層の重ね塗りは、1層目の層を乾燥した後に2層目の層を形成する。
 また、ポリマーセメント硬化層3は、性質の異なるもの同士が積層された構成であってもよい。例えば、樹脂層2側に樹脂成分の割合をより高めた層とすることで、樹脂成分の高い層が樹脂層と接着し、セメント成分の高い層がコンクリート構造物と接着することとなり両者に対する接着性が極めて優れたものとなる。
(polymer cement hardening layer)
The polymer cement hardening layer 3 is a layer arranged on the structure side, as shown in FIG. 2(C). This polymer cement hardening layer 3 may be a single layer or a laminate. ), can be arbitrarily set in consideration of the production line of the factory, production cost, etc. For example, if the production line is short and a single layer does not have a predetermined thickness, two or more layers can be overcoated. For example, when two layers are overcoated, the second layer is formed after drying the first layer.
The hardened polymer cement layer 3 may also have a structure in which layers having different properties are laminated. For example, by forming a layer with a higher resin component ratio on the resin layer 2 side, the layer with a high resin component adheres to the resin layer, and the layer with a high cement component adheres to the concrete structure. It has excellent properties.
 ポリマーセメント硬化層3は、セメント成分を含有する樹脂(樹脂成分)を塗料状にした、この塗料を塗工して得られる。
上記セメント成分としては、各種のセメント、酸化カルシウムからなる成分を含む石灰石類、二酸化ケイ素を含む粘土類等を挙げることができる。なかでもセメントが好ましく、例えば、ポルトランドセメント、アルミナセメント、早強セメント、フライアッシュセメント等を挙げることができる。いずれのセメントを選択するかは、ポリマーセメント硬化層3が備えるべき特性に応じて選択され、例えば、コンクリート構造物21への追従性の程度を考慮して選択される。特に、JIS R5210に規定されるポルトランドセメントを好ましく挙げることができる。
The hardened polymer cement layer 3 is obtained by coating a resin containing a cement component (resin component) in the form of a coating.
Examples of the cement component include various cements, limestones containing calcium oxide, and clays containing silicon dioxide. Among them, cement is preferable, and examples thereof include portland cement, alumina cement, high-early strength cement, fly ash cement, and the like. Which cement is selected is selected according to the properties that the hardened polymer cement layer 3 should have, for example, the degree of conformability to the concrete structure 21 is considered. Portland cement defined in JIS R5210 is particularly preferred.
 上記樹脂成分としては、アクリル樹脂、アクリルウレタン樹脂、アクリルシリコーン樹脂、フッ素樹脂、柔軟エポキシ樹脂系、ポリブタジエンゴム系、ゴム特性を示すアクリル系樹脂(例えばアクリル酸エステルを主成分に持つ合成ゴム)等を挙げることができる。こうした樹脂成分は、後述の樹脂層2を構成する樹脂の成分と同じものであることが、ポリマーセメント硬化層3と樹脂層2との密着性を高める観点から好ましい。
 また、上記樹脂成分は熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂のいずれを使用してもよい。ポリマーセメント硬化層3の「硬化」の文言は、樹脂成分を熱硬化性樹脂又は光硬化性樹脂等、硬化して重合する樹脂に限定されるという意味ではなく、最終的な層となった場合に硬化するような材料を用いればよいという意味で用いている。
Examples of the resin component include acrylic resin, acrylic urethane resin, acrylic silicone resin, fluororesin, flexible epoxy resin, polybutadiene rubber, acrylic resin exhibiting rubber properties (e.g., synthetic rubber containing acrylic acid ester as a main component), etc. can be mentioned. Such a resin component is preferably the same as the resin component constituting the resin layer 2 described later, from the viewpoint of enhancing the adhesion between the polymer cement hardened layer 3 and the resin layer 2 .
Moreover, any of a thermoplastic resin, a thermosetting resin, and a photocurable resin may be used as the resin component. The term "cured" in the polymer cement cured layer 3 does not mean that the resin component is limited to a resin that cures and polymerizes, such as a thermosetting resin or a photocurable resin. It is used in the sense that it is sufficient to use a material that hardens to a certain degree.
 上記樹脂成分の含有量としては、使用する材料等に応じて適宜調整されるが、好ましくはセメント成分と樹脂成分との合計量に対して10重量%以上、40重量%以下とする。10重量%未満であると、樹脂層2に対する接着性の低下やポリマーセメント硬化層3を層として維持することが難しくなる傾向となることがあり、40重量%を超えると、コンクリート構造物21に対する接着性が不十分となることがある。上記観点から上記樹脂成分の含有量のより好ましい範囲は15重量%以上、35重量%以下であるが、さらに好ましくは20重量%以上、30重量%以下である。 The content of the resin component is adjusted appropriately according to the material used, etc., but is preferably 10% by weight or more and 40% by weight or less with respect to the total amount of the cement component and the resin component. If it is less than 10% by weight, the adhesion to the resin layer 2 tends to decrease and it becomes difficult to maintain the polymer cement hardening layer 3 as a layer. Adhesion may be insufficient. From the above viewpoint, the content of the resin component is more preferably 15% by weight or more and 35% by weight or less, and more preferably 20% by weight or more and 30% by weight or less.
 ポリマーセメント硬化層3を形成するための塗料は、セメント成分と樹脂成分とを溶媒で混合した塗工液である。樹脂成分については、エマルションであることが好ましい。例えば、アクリル系エマルションは、アクリル酸エステル等のモノマーを乳化剤を使用して乳化重合したポリマー微粒子であり、一例としては、アクリル酸エステル及びメタクリル酸エステルの一種以上を含有する単量体又は単量体混合物を、界面活性剤を配合した水中で重合してなるアクリル酸系重合物エマルションを好ましく挙げることができる。
上記アクリル系エマルションを構成するアクリル酸エステル等の含有量は特に限定されないが、20~100質量%の範囲内から選択される。また、界面活性剤も必要に応じた量が配合され量も特に限定されないが、エマルションとなる程度の界面活性剤が配合される。
The paint for forming the hardened polymer cement layer 3 is a coating liquid obtained by mixing a cement component and a resin component with a solvent. The resin component is preferably an emulsion. For example, an acrylic emulsion is polymer fine particles obtained by emulsion polymerization of a monomer such as an acrylic ester using an emulsifier. An acrylic acid-based polymer emulsion obtained by polymerizing a polymer mixture in water containing a surfactant is preferably mentioned.
The content of the acrylic acid ester and the like constituting the acrylic emulsion is not particularly limited, but is selected within the range of 20 to 100% by mass. Further, the amount of the surfactant is also blended according to need, and the amount is not particularly limited, but the surfactant is blended to the extent that it forms an emulsion.
 ポリマーセメント硬化層3は、その塗工液を離型シート上に塗布し、その後に溶媒(好ましくは水)を乾燥除去することで形成される。例えば、セメント成分とアクリル系エマルジョンとの混合組成物を塗工液として使用し、ポリマーセメント硬化層3を形成する。なお、上記離型シート上には、ポリマーセメント硬化層3を形成した後に樹脂層2を形成してもよいが、離型シート上に樹脂層2を形成した後にポリマーセメント硬化層3を形成してもよい。
 具体的には、例えば、離型シートとしての工程紙上に樹脂層をコーティングし、乾燥後ポリマーセメント用の塗工液を塗工、乾燥前のウエットの状態でヤング率調整層を貼り合わせた後乾燥させる。
 しかる後ヤング率調整層を貼り合わせた面に更にポリマーセメント用の塗工液を塗工し、乾燥させることで本発明に係るポリマーセメント硬化層にヤング率調整層が存在する構造物保護シートを得ることができる。
 また、離型シートとしての工程紙上に樹脂層をコーティングし、乾燥後ポリマーセメント用の塗工液を塗工、乾燥前のウエットの状態でヤング率調整層を貼り合わせた後、乾燥させるステップを経ずにヤング率調整層を貼り合わせた面に更にポリマーセメント用の塗工液を塗工し、しかる後全体を乾燥させることで本発明に係るポリマーセメント硬化層にヤング率調整層が存在する構造物保護シートを得ることも可能である。
The hardened polymer cement layer 3 is formed by applying the coating solution onto a release sheet and then removing the solvent (preferably water) by drying. For example, a mixed composition of a cement component and an acrylic emulsion is used as a coating liquid to form the hardened polymer cement layer 3 . Although the resin layer 2 may be formed on the release sheet after forming the polymer cement hardened layer 3, the polymer cement hardened layer 3 is formed after the resin layer 2 is formed on the release sheet. may
Specifically, for example, a process paper as a release sheet is coated with a resin layer, and after drying, a coating liquid for polymer cement is applied, and a Young's modulus adjusting layer is attached in a wet state before drying. dry.
After that, a coating liquid for polymer cement is further applied to the surface to which the Young's modulus adjusting layer is attached, and dried to obtain a structure protection sheet in which the Young's modulus adjusting layer is present in the polymer cement hardened layer according to the present invention. Obtainable.
In addition, a step of coating a resin layer on a process paper as a release sheet, applying a coating liquid for polymer cement after drying, laminating a Young's modulus adjusting layer in a wet state before drying, and then drying. The Young's modulus adjusting layer is present in the hardened layer of the polymer cement according to the present invention by further coating the surface to which the Young's modulus adjusting layer is attached without drying, and then drying the entire surface. It is also possible to obtain a structure protection sheet.
 ポリマーセメント硬化層3の厚さは、特に限定されず、構造物21の使用形態(道路橋、トンネル、水門等河川施設、下水道管渠、港湾岸壁等の土木構造物等)、経年度合い、形状等によって任意に設定される。具体的なポリマーセメント硬化層3の厚さとしては、例えば、0.5mm~1.5mmの範囲とすることができる。一例として1mmの厚さとした場合は、その厚さバラツキは、±100μm以内となることが好ましい。こうした精度の厚さは、現場での塗工では到底実現できないものであり、工場の製造ラインで安定して塗工されることにより実現することができる。なお、1mmより厚い場合でも、厚さバラツキを±100μm以内とすることができる。また、1mmよりも薄い場合は、厚さバラツキをさらに小さくすることができる。 The thickness of the hardened polymer cement layer 3 is not particularly limited, and the type of use of the structure 21 (road bridges, tunnels, river facilities such as water gates, civil engineering structures such as sewer pipes, harbor quays, etc.), age, and shape. etc. is arbitrarily set. Specifically, the thickness of the hardened polymer cement layer 3 can be, for example, in the range of 0.5 mm to 1.5 mm. As an example, when the thickness is 1 mm, the thickness variation is preferably within ±100 μm. Such a precise thickness cannot be achieved by on-site coating, but can be achieved by stably coating on a factory production line. Even if the thickness is greater than 1 mm, the thickness variation can be kept within ±100 μm. Moreover, when the thickness is less than 1 mm, the thickness variation can be further reduced.
 このポリマーセメント硬化層3は、セメント成分の存在により、後述の樹脂層2に比べて水蒸気が容易に透過する。このときの水蒸気透過率は、例えば20~60g/m・day程度である。さらに、セメント成分は、例えばコンクリートを構成するセメント成分との相溶性がよく、コンクリート表面との密着性に優れたものとすることができる。また、図2に示すように、構造物21の表面に下塗り層22と接着剤23が順に設けられている場合にも、セメント成分を含有するポリマーセメント硬化層3が接着剤23に密着性よく接着する。また、このポリマーセメント硬化層3は、延伸性があるので、構造物21にひび割れや膨張が生じた場合であっても、コンクリートの変化に追従することができる。 Due to the presence of the cement component, this hardened polymer cement layer 3 is more easily permeable to water vapor than the resin layer 2 which will be described later. The water vapor transmission rate at this time is, for example, about 20 to 60 g/m 2 ·day. Furthermore, the cement component has good compatibility with, for example, the cement component that constitutes concrete, and can be made to have excellent adhesion to the concrete surface. Also, as shown in FIG. 2, when the undercoat layer 22 and the adhesive 23 are provided in order on the surface of the structure 21, the polymer cement hardened layer 3 containing the cement component adheres well to the adhesive 23. Glue. In addition, since the hardened polymer cement layer 3 has extensibility, it can follow changes in the concrete even if the structure 21 cracks or expands.
 (ヤング率調整層)
 ヤング率調整層5は、ポリマーセメント硬化層3に接した状態で設けられることが本発明に係る構造物保護シート1のヤング率を上述した範囲に調整することができるため好ましい。
 具体的には例えば、ヤング率調整層5は、図1に示したようにポリマーセメント硬化層3の内部に存在していてもよいし、ポリマーセメント硬化層3の表面(ポリマーセメント硬化層3と樹脂層2とが接する面又はその反対側の面)に配設されていてもよい。なかでも、ヤング率調整層5はポリマーセメント硬化層3の内部に埋設されていることが好ましい。ヤング率調整層5がポリマーセメント硬化層3の内部に埋設されていることで、ヤング率調整層5とポリマーセメント硬化層3との接触面積が増大し、両者の接着強度が優れたものとしやすくなり、ポリマーセメント硬化層3全体の強度も確保しやすくなる。
(Young's modulus adjustment layer)
It is preferable that the Young's modulus adjusting layer 5 is provided in contact with the polymer cement hardening layer 3 because the Young's modulus of the structure protective sheet 1 according to the present invention can be adjusted to the range described above.
Specifically, for example, the Young's modulus adjusting layer 5 may exist inside the polymer cement hardening layer 3 as shown in FIG. It may be disposed on the surface in contact with the resin layer 2 or the surface on the opposite side thereof. Among others, the Young's modulus adjusting layer 5 is preferably embedded inside the polymer cement hardened layer 3 . By embedding the Young's modulus adjusting layer 5 inside the polymer cement hardening layer 3, the contact area between the Young's modulus adjusting layer 5 and the polymer cement hardening layer 3 is increased, and the adhesion strength between the two is easily made excellent. As a result, the strength of the entire polymer cement hardened layer 3 can be easily ensured.
 本発明において、ヤング率調整層5にポリマーセメント硬化層3を構成する材料(例えばセメント成分又は樹脂成分)が含侵されていることが好ましい。
 ヤング率調整層5にポリマーセメント硬化層3を構成する材料が含侵されている状態とは、ヤング率調整層5を構成する繊維等の材料間にポリマーセメント硬化層3を構成する材料が充填された状態にあることを意味し、このような含侵状態にあることで、ヤング率調整層5とポリマーセメント硬化層3との接着強度が極めて優れたものとしやすくなる。また、ヤング率調整層5とポリマーセメント硬化層3の材料との相互作用がより強固となりやすく、構造物保護シート1の強度をより良好にしやすくなる。
In the present invention, it is preferable that the Young's modulus adjusting layer 5 is impregnated with a material (for example, a cement component or a resin component) constituting the polymer cement hardened layer 3 .
The state in which the Young's modulus adjusting layer 5 is impregnated with the material constituting the polymer cement hardening layer 3 means that the material constituting the polymer cement hardening layer 3 is filled between the materials such as fibers constituting the Young's modulus adjusting layer 5. This impregnation state facilitates making the bonding strength between the Young's modulus adjusting layer 5 and the polymer cement hardened layer 3 extremely excellent. Further, the interaction between the Young's modulus adjusting layer 5 and the material of the polymer cement hardening layer 3 tends to become stronger, and the strength of the structure protection sheet 1 tends to be improved.
 ヤング率調整層5は、不織布層、弾性層、金属繊維層、粒子分散体層、針状及び棒状物分散体層、網目状構造物層からなる群より選択される少なくとも1種であることが好ましく、なかでも不織布層であることが好ましい。
 上記不織布層を構成する不織布としては、繊維を織らずにシート状に形成した不織布であれば特に限定されるものではない。また、不織布を構成する繊維としては天然繊維及び化学繊維を用いることができる。上記化学繊維としては、例えば、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂、ポリエステル系樹脂、ポリアクリル系樹脂、ナイロン等のポリアミド系樹脂からなる繊維、及びこれら樹脂の共重合物、変性物及びこれらの組み合わせからなる合成繊維等をあげることができる。これらの中でも耐水性、耐熱性、寸法安定性、耐候性等に優れるポリエステル繊維が好ましい。
The Young's modulus adjusting layer 5 is at least one selected from the group consisting of a nonwoven fabric layer, an elastic layer, a metal fiber layer, a particle dispersion layer, a needle-like and rod-like dispersion layer, and a network structure layer. Preferably, it is a nonwoven fabric layer.
The nonwoven fabric constituting the nonwoven fabric layer is not particularly limited as long as it is a nonwoven fabric formed into a sheet without weaving fibers. Moreover, natural fibers and chemical fibers can be used as the fibers constituting the nonwoven fabric. Examples of the chemical fibers include fibers made of polyolefin resins such as polypropylene and polyethylene, polyester resins, polyacrylic resins, polyamide resins such as nylon, copolymers and modified products of these resins, and combinations thereof. Synthetic fibers and the like made of can be mentioned. Among these, polyester fibers are preferred because they are excellent in water resistance, heat resistance, dimensional stability, weather resistance, and the like.
  上記不織布の坪量としては、上述したヤング率を満たすことができる範囲であれば特に限定されないが、例えば、5g/m以上100g/m以下が好ましく、10g/m以上50g/m以下がより好ましい。不織布の坪量が上記範囲未満の場合、不織布が薄くなって上述したヤング率の範囲を満たさないことがあり、逆に、不織布の坪量が上記範囲を超える場合、本発明に係る構造物保護シート1の通気性が低下するおそれがある。 The basis weight of the nonwoven fabric is not particularly limited as long as it is in a range that satisfies the above - described Young's modulus . The following are more preferred. If the basis weight of the nonwoven fabric is less than the above range, the nonwoven fabric may become thin and may not satisfy the range of Young's modulus described above. Conversely, if the basis weight of the nonwoven fabric exceeds the above range, the structure protection according to the present invention There is a possibility that the air permeability of the seat 1 may be lowered.
 ヤング率調整層5は、ポリマーセメント硬化層3の上面側から見たときに、ポリマーセメント硬化層3の全面をカバーする大きさであってもよく、ポリマーセメント硬化層3よりも小さくてもよい。すなわち、ヤング率調整層5の平面視したときの面積は、ポリマーセメント硬化層3の平面視したときの面積と同じであってもよく、小さくてもよいが、ヤング率調整層5の平面視面積は、ポリマーセメント硬化層3の平面視面積に対し60%以上であることが好ましく、90%以上であることがより好ましい。60%未満であると本発明に係る構造物保護シートの強度が不十分となることがあり、また、強度のバラツキが生じることもある。なお、上記ヤング率調整層5等の平面視面積は、公知の方法で測定できる。 The Young's modulus adjusting layer 5 may have a size that covers the entire surface of the polymer cement hardened layer 3 when viewed from the upper surface side of the polymer cement hardened layer 3, or may be smaller than the polymer cement hardened layer 3. . That is, the area of the Young's modulus adjusting layer 5 when viewed in plan may be the same as or smaller than the area of the polymer cement hardened layer 3 when viewed in plan. The area is preferably 60% or more, more preferably 90% or more, of the planar view area of the polymer cement-hardened layer 3 . If it is less than 60%, the strength of the structure protection sheet according to the present invention may be insufficient, and the strength may vary. The plan view area of the Young's modulus adjusting layer 5 and the like can be measured by a known method.
 また、ヤング率調整層5は、均一な層であってもよく、例えば、碁盤目状、千鳥状、縞状、島状、又は、不規則に圧着部分を設けた層であってもよい。上記圧着部分を設けると、ヤング率調整層5が不織布層である場合の積層加工工程中に繊維の集合体が解けることを防止できる。 Also, the Young's modulus adjusting layer 5 may be a uniform layer, for example, a grid-like, staggered, striped, island-like, or irregularly crimped layer. By providing the above-mentioned crimped portion, it is possible to prevent the assembly of fibers from unraveling during the lamination process when the Young's modulus adjusting layer 5 is a nonwoven fabric layer.
 (樹脂層)
 樹脂層2は、図2(C)に示すように、構造物21とは反対側に配置されて、表面に現れる層である。この樹脂層2は、例えば、図1(A)に示すように単層であってもよいし、図1(B)に示すように少なくとも2層からなる積層であってもよい。単層とするか多層とするかは、全体厚さ、付与機能(防水性、遮塩性、中性化阻止性、水蒸気透過性等)、工場の製造ラインの長さ、生産コスト等を考慮に設定され、例えば製造ラインが短くて単層では所定の厚さにならない場合は、2層以上重ね塗りして形成することができる。なお、重ね塗りは、1層目の層を乾燥した後に2層目の層を塗工する。2層目の層は、その後乾燥される。
(resin layer)
The resin layer 2 is a layer arranged on the side opposite to the structure 21 and appearing on the surface, as shown in FIG. 2(C). The resin layer 2 may be, for example, a single layer as shown in FIG. 1(A), or may be a laminate consisting of at least two layers as shown in FIG. 1(B). Whether to use a single layer or multiple layers takes into account the overall thickness, the functions to be imparted (waterproofness, salt barrier, neutralization prevention, water vapor permeability, etc.), the length of the factory production line, the production cost, etc. For example, if the production line is short and a single layer does not have a predetermined thickness, two or more layers can be overcoated. In the case of overcoating, the second layer is applied after drying the first layer. The second layer is then dried.
 樹脂層2は、柔軟性を有し、コンクリートに発生したひび割れや亀裂に追従できるとともに防水性、遮塩性、中性化阻止性及び水蒸気透過性に優れた樹脂層を形成できる塗料を塗工して得られる。樹脂層2を構成する樹脂としては、ゴム特性を示すアクリル系樹脂(例えばアクリル酸エステルを主成分に持つ合成ゴム)、アクリルウレタン樹脂、アクリルシリコーン樹脂、フッ素樹脂、柔軟エポキシ樹脂、ポリブタジエンゴム等を挙げることができる。この樹脂材料は、前記したポリマーセメント層2を構成する樹脂成分と同じものであること好ましい。特にゴム等の弾性膜形成成分を含有する樹脂であることが好ましい。 The resin layer 2 is coated with a paint that has flexibility, can follow cracks and cracks that occur in concrete, and can form a resin layer that is excellent in waterproofness, salt shielding, neutralization prevention, and water vapor permeability. obtained by Examples of the resin constituting the resin layer 2 include acrylic resins exhibiting rubber characteristics (for example, synthetic rubber containing acrylic acid ester as a main component), acrylic urethane resins, acrylic silicone resins, fluorine resins, flexible epoxy resins, polybutadiene rubbers, and the like. can be mentioned. This resin material is preferably the same as the resin component constituting the polymer cement layer 2 described above. In particular, it is preferably a resin containing an elastic film-forming component such as rubber.
 これらのうち、ゴム特性を示すアクリル系樹脂は、安全性と塗工性に優れている点で、アクリルゴム系共重合体の水性エマルションからなることが好ましい。なお、エマルション中のアクリルゴム系共重合体の割合は例えば30~70質量%である。アクリルゴム系共重合体エマルションは、例えば界面活性剤の存在下で単量体を乳化重合することにより得られる。界面活性剤は、アニオン系、ノニオン系、カチオン系のいずれもが使用できる。  Among these, acrylic resins exhibiting rubber properties are preferably composed of aqueous emulsions of acrylic rubber copolymers in terms of excellent safety and coatability. Incidentally, the proportion of the acrylic rubber copolymer in the emulsion is, for example, 30 to 70% by mass. An acrylic rubber copolymer emulsion is obtained, for example, by emulsion polymerization of monomers in the presence of a surfactant. Any of anionic, nonionic and cationic surfactants can be used.
 樹脂層2を形成するための塗料は、樹脂組成物と溶媒との混合塗工液を作製し、その塗工液を離型シート上に塗布し、その後に溶媒を乾燥除去することで、樹脂層2を形成する。溶媒は、水又は水系溶媒であってもよいし、キシレン・ミネラルスピリット等の有機系溶媒であってもよい。後述の実施例では、水系溶媒を用いており、アクリル系ゴム組成物で樹脂層2を作製している。なお、離型シート上に形成される層の順番は制限されず、例えば、上記のとおり樹脂層2、ポリマーセメント硬化層3の順番であってもよいし、ポリマーセメント硬化層3、樹脂層2の順番であってもよい。もっとも、後述の実施例に示すように、離型シート上に樹脂層2を形成し、その後にポリマーセメント硬化層3を形成することが好ましい。 The paint for forming the resin layer 2 is prepared by preparing a mixed coating liquid of a resin composition and a solvent, applying the coating liquid on a release sheet, and then removing the solvent by drying. Form layer 2; The solvent may be water, an aqueous solvent, or an organic solvent such as xylene/mineral spirit. In Examples described later, a water-based solvent is used, and the resin layer 2 is made of an acrylic rubber composition. The order of the layers formed on the release sheet is not limited. may be in that order. However, it is preferable to form the resin layer 2 on the release sheet and then form the hardened polymer cement layer 3, as shown in Examples described later.
 樹脂層2の厚さは、構造物21の使用形態(道路橋、トンネル、水門等河川管理施設、下水道管渠、港湾岸壁等の土木構造物等)、経年度合い、形状等によって任意に設定される。一例としては、50~150μmの範囲内のいずれかの厚さとし、その厚さバラツキは、±50μm以内とすることが好ましい。こうした精度の厚さは、現場での塗工ではとうてい実現できないものであり、工場の製造ラインで安定して実現することができる。 The thickness of the resin layer 2 is arbitrarily set according to the type of use of the structure 21 (road bridge, tunnel, river management facility such as a water gate, civil engineering structure such as a sewage pipe, port quay, etc.), degree of aging, shape, and the like. be. As an example, it is preferable that the thickness be within the range of 50 to 150 μm, and that the thickness variation be within ±50 μm. Thickness with such precision cannot be achieved by coating on site, and can be stably achieved on the production line of the factory.
 この樹脂層2は、高い防水性、遮塩性、中性化阻止性を有するが、水蒸気は透過することが好ましい。このときの水蒸気透過率としては、例えば、10~50g/m・day程度とすることが望ましい。こうすることにより、構造物保護シート1に高い防水性、遮塩性、中性化阻止性と所定の水蒸気透過性を持たせることができる。さらに、ポリマーセメント硬化層3と同種の樹脂成分で構成されることにより、ポリマーセメント硬化層3との相溶性がよく、密着性に優れたものとすることができる。水蒸気透過性は、JIS Z0208「防湿包装材料の透湿度試験方法」に準拠して測定した。  This resin layer 2 has high waterproof properties, salt-shielding properties, and neutralization-preventing properties, but is preferably permeable to water vapor. At this time, the water vapor transmission rate is preferably about 10 to 50 g/m 2 ·day, for example. By doing so, the structure protection sheet 1 can be endowed with high waterproof properties, salt barrier properties, neutralization prevention properties, and predetermined water vapor permeability. Further, by being composed of the same kind of resin component as the polymer cement hardening layer 3, the compatibility with the polymer cement hardening layer 3 is good and the adhesion can be excellent. The water vapor permeability was measured according to JIS Z0208 "Test method for moisture permeability of moisture-proof packaging materials".
 また、樹脂層2は、本発明に係る構造物保護シート1のカラーバリエーションを豊富にできる観点から顔料を含有していてもよい。
 また、樹脂層2は、無機物を含有していてもよい。無機物を含有することで樹脂層2に耐擦傷性を付与することができる。上記無機物としては特に限定されず、例えば、シリカ、アルミナ、チタニア等の金属酸化物粒子等従来公知の材料が挙げられる。
 更に、樹脂層2は、公知の防汚剤を含有していてもよい。本発明に係る構造物保護シートは、通常屋外に設置されるコンクリート構造物の補修に用いられるため、樹脂層2は汚染されることが多いが、防汚剤を含有することで本発明に係る構造物保護シートが汚染されることを好適に防止できる。上記防汚剤としては特に限定されず従来公知の材料が挙げられる。
 また、樹脂層2は様々な機能を付与できる添加剤を含有していてもよい。このような添加剤としては、例えば、セルロールナノファイバー等が挙げられる。
Moreover, the resin layer 2 may contain a pigment from the viewpoint of increasing the color variations of the structure protection sheet 1 according to the present invention.
Moreover, the resin layer 2 may contain an inorganic substance. By containing an inorganic substance, the resin layer 2 can be imparted with scratch resistance. The inorganic material is not particularly limited, and examples thereof include conventionally known materials such as metal oxide particles such as silica, alumina, and titania.
Furthermore, the resin layer 2 may contain a known antifouling agent. Since the structure protection sheet according to the present invention is usually used for repairing concrete structures installed outdoors, the resin layer 2 is often contaminated. It is possible to suitably prevent the structure protection sheet from being contaminated. The antifouling agent is not particularly limited and includes conventionally known materials.
Moreover, the resin layer 2 may contain additives capable of imparting various functions. Examples of such additives include cellulose nanofibers and the like.
 (その他の構成)
 作製された構造物保護シート1は、ポリマーセメント硬化層3と樹脂層2との一方の面に離型シートを備えてもよい。離型シートは、例えば、施工現場への際に構造物保護シート1の表面を保護することができ、施工現場では、対象となる構造物21の上(又は下塗り層22又は接着剤23を介して)離型シートを貼り付けたままの構造物保護シート1を接着し、その後離型シートを容易に剥がすことで、施工現場での作業性が大きく改善される。なお、離型シートは、構造物保護シート1の生産工程で利用する工程紙であることが好ましい。
(Other configurations)
The manufactured structure protection sheet 1 may have a release sheet on one side of the polymer cement hardening layer 3 and the resin layer 2 . For example, the release sheet can protect the surface of the structure protection sheet 1 when it is sent to the construction site, and at the construction site, it is applied on the target structure 21 (or via the undercoat layer 22 or the adhesive 23). 3) Adhering the structure protection sheet 1 to which the release sheet is attached and then easily peeling off the release sheet greatly improves workability at the construction site. The release sheet is preferably process paper used in the production process of the structure protection sheet 1 .
 離型シートとして使用される工程紙は、製造工程で使用される従来公知のものであれば、その材質等は特に限定されない。例えば、公知の工程紙と同様、ポリロピレンやポリエチレン等のオレフィン樹脂層やシリコンを含有する層を有するラミネート紙等を好ましく挙げることができる。その厚さも特に限定されないが、製造上及び施工上、取り扱いを阻害する厚さでなければ例えば50~500μm程度の任意の厚さとすることができる。 The material of the process paper used as the release sheet is not particularly limited as long as it is conventionally known and used in the manufacturing process. For example, laminated paper having an olefin resin layer such as polypropylene or polyethylene or a silicon-containing layer, like known process paper, can be preferably used. The thickness is not particularly limited, but it can be any thickness, for example, about 50 to 500 μm, as long as the thickness does not impede handling in terms of manufacturing and construction.
 以上説明した構造物保護シート1は、コンクリート等の構造物21を長期にわたって保護することができる。特に、構造物保護シート1に構造物21の特性に応じた性能を付与し、構造物21に生じたひび割れや膨張に追従させること、構造物21に水や塩化物イオン等の劣化因子を浸透させないようにすること、構造物中の水分や劣化因子を排出できる透過性を持たせることができ、更に構造物への貼り付け時に好適に引っ張ることができるので破れや永久変形を防止できる。そして、こうした構造物保護シート1は、工場で製造できるので、特性の安定した高品質のものを量産することができる。その結果、職人の技術によらずに施工でき、工期の短縮と労務費の削減を実現できる。 The structure protection sheet 1 described above can protect the structure 21 such as concrete for a long period of time. In particular, the structure protection sheet 1 is given performance according to the characteristics of the structure 21 to follow cracks and expansions that occur in the structure 21, and permeation of deterioration factors such as water and chloride ions into the structure 21. It is possible to prevent tearing and permanent deformation because it can be made to have a permeability that can discharge moisture and deterioration factors in the structure, and can be suitably pulled when attached to the structure. Since such a structure protection sheet 1 can be manufactured in a factory, it is possible to mass-produce high-quality sheets with stable characteristics. As a result, it can be constructed without relying on the skill of the craftsman, shortening the construction period and reducing labor costs.
 [構造物保護シートを用いた補強された構造物の製造方法]
 本発明に係る構造物保護シートを用いた補強された構造物の製造方法は、図2に示すように、上記本発明に係る構造物保護シート1を使用した施工方法であって、構造物21上に接着剤23を塗布した後に構造物保護シート1を貼り合わせる、ことを特徴とする。この施工方法は、構造物21の表面に構造物保護シート1を容易に貼り合わせることができる。その結果、熟練した作業者でなくとも厚さのバラツキの小さい層で構成された構造物保護シート1を、構造物21に設けることができ、工期を大幅に削減できるとともに、構造物21を長期にわたって保護することができる。
[Method for manufacturing reinforced structure using structure protection sheet]
The method for manufacturing a reinforced structure using the structure protection sheet according to the present invention is a construction method using the structure protection sheet 1 according to the present invention, as shown in FIG. It is characterized in that the structure protection sheet 1 is pasted after the adhesive 23 is applied thereon. This construction method can easily bond the structure protection sheet 1 to the surface of the structure 21 . As a result, even an unskilled worker can provide the structure protection sheet 1 composed of a layer with a small thickness variation on the structure 21, thereby significantly reducing the construction period and extending the structure 21. can be protected over
 図2は、構造物保護シート1の施工方法(補強された構造物の製造方法)の説明図である。施工は、図2(A)に示すように、構造物21の表面に下塗り層22を形成する。下塗り層22は、エポキシ樹脂等の樹脂と溶媒とを混合した塗工液を、構造物21に塗工し、その後、塗工液中の溶媒を揮発乾燥させて形成することができる。このときの溶媒も上記同様の水等を挙げることができる。下塗り層22の厚さは特に限定されないが、例えば100~150μmの範囲内とすることができる。構造物21と接着剤23との間に設ける下塗り層22は、相互の密着を高めるように作用するので、構造物保護シート1は、長期間安定して構造物21を保護することができる。なお、構造物21にひび割れや欠損が生じている場合には、それを補修した後に下塗り層22を設けることが好ましい。また、補修は特に限定されないが、通常セメントモルタルやエポキシ樹脂等が使われる。 FIG. 2 is an explanatory diagram of the construction method of the structure protection sheet 1 (manufacturing method of a reinforced structure). Construction forms the undercoat layer 22 on the surface of the structure 21, as shown in FIG. 2(A). The undercoat layer 22 can be formed by coating the structure 21 with a coating liquid obtained by mixing a resin such as an epoxy resin and a solvent, and then volatilizing and drying the solvent in the coating liquid. Examples of the solvent at this time include water and the like similar to those described above. Although the thickness of the undercoat layer 22 is not particularly limited, it can be in the range of 100 to 150 μm, for example. Since the undercoat layer 22 provided between the structure 21 and the adhesive 23 acts to enhance mutual adhesion, the structure protection sheet 1 can stably protect the structure 21 for a long period of time. If the structure 21 is cracked or damaged, it is preferable to provide the undercoat layer 22 after repairing it. Also, the repair is not particularly limited, but usually cement mortar, epoxy resin, or the like is used.
 下塗り層22を形成した後、図2(B)に示すように、接着剤23が塗布される。塗布された接着剤23は、乾燥させることなく、図2(C)に示すように、その上に構造物保護シート1を貼り合わせる。接着剤23としては、ウレタン系接着剤、エポキシ系接着剤、ゴム特性を示すアクリル系樹脂(例えばアクリル酸エステルを主成分に持つ合成ゴム)を用いた接着剤等を挙げることができる。なかでも、構造物保護シート1のポリマーセメント硬化層3を構成する樹脂成分と同種の樹脂成分からなる接着剤23は、ポリマーセメント硬化層3との接着強度が高くなるのでより好ましい。接着剤23の厚さは特に限定されない。接着剤23は、通常、コンクリートに刷毛塗り又はスプレー塗り等の手段で塗布した後に時間経過によって自然乾燥させて硬化する。  After forming the undercoat layer 22, an adhesive 23 is applied as shown in FIG. 2(B). Without drying the applied adhesive 23, the structure protection sheet 1 is adhered thereon as shown in FIG. 2(C). Examples of the adhesive 23 include urethane-based adhesives, epoxy-based adhesives, and adhesives using acrylic resins exhibiting rubber characteristics (for example, synthetic rubber containing acrylic acid ester as a main component). Among them, the adhesive 23 composed of the same resin component as the resin component constituting the polymer cement hardened layer 3 of the structure protection sheet 1 is more preferable because the adhesive strength with the polymer cement hardened layer 3 is increased. The thickness of the adhesive 23 is not particularly limited. The adhesive 23 is usually applied to concrete by means of brushing or spraying, and then naturally dried and hardened over time. 
 図3は、現場打ち工法に構造物保護シート1を適用した例を示す説明図である。現場打ち工法とは、作業現場で型枠24を形成し、その型枠24内にコンクリート組成物21’を流し込み、放置して硬化させてコンクリート構造物21を得る工法である。この現場打ち工法において、硬化したコンクリート構造物21を形成した後、その表面に構造物保護シート1を貼り合わせることで、劣化が生じにくい構造物21とすることができる。貼り合せに当たっては、コンクリート構造物21の表面に下塗り層22を塗工・乾燥し、その上に接着剤23を塗工した後、構造物保護シート1を貼り合せる。その後、通常、自然放置して接着剤23を乾燥硬化して、構造物保護シート1を接着する。 FIG. 3 is an explanatory diagram showing an example of applying the structure protection sheet 1 to the cast-in-place construction method. The cast-in-place method is a construction method in which a formwork 24 is formed at a work site, a concrete composition 21' is poured into the formwork 24, and left to harden to obtain a concrete structure 21. In this cast-in-place construction method, after forming the hardened concrete structure 21, the structure protection sheet 1 is attached to the surface of the hardened concrete structure 21, so that the structure 21 that is less likely to deteriorate can be obtained. In bonding, the undercoat layer 22 is applied to the surface of the concrete structure 21 and dried, and the adhesive 23 is applied thereon, after which the structure protection sheet 1 is bonded. After that, the structure protection sheet 1 is adhered by drying and curing the adhesive 23 by letting it stand naturally.
 一方、既にひび割れ等が生じた構造物21に対しては、欠損部分を補修した後に、上記同様の施工方法により構造物保護シート1を貼り合わせる。こうしてコンクリート構造物21の寿命を延ばすことができる。 On the other hand, for the structure 21 that already has cracks, etc., the structure protection sheet 1 is attached by the same construction method as above after repairing the damaged portion. Thus, the life of the concrete structure 21 can be extended.
 実施例と比較例により本発明をさらに具体的に説明する。 The present invention will be explained more specifically with examples and comparative examples.
(実施例1)
 PPラミネート紙からなる厚さ130μmの離型シートを用いた。この離型シート上に樹脂層を以下の方法で形成した。
 まず、アクリルシリコーン樹脂60質量部と、二酸化チタン25質量部と、酸化第二鉄10質量部と、カーボンブラック5質量部とを含有するエマルジョン組成物を準備した。このエマルジョン組成物を上記離型シート上に塗布した後、加熱処理をしてこれを硬化させて、樹脂層を形成した。樹脂層の厚さは0.1mmとなるようにした。
 次に、樹脂層の上にポリマーセメント硬化層を形成した。
 具体的には、セメント混合物を45質量部含む水系のアクリルエマルジョンをポリマーセメント層形成用組成物として準備した。ここで、セメント混合物は、ポルトランドセメント70±5質量部、二酸化ケイ素10±5質量部、酸化アルミニウム2±1質量部、酸化チタン1~2質量部を少なくとも含むものであり、アクリルエマルジョンは、アクリル酸エステルモノマーを乳化剤として使用して乳化重合したアクリル酸系重合物53±2質量部、水43±2質量部を少なくとも含むものである。これらを混合したポリマーセメント層形成用組成物を塗布乾燥して得られたポリマーセメント硬化層は、ポルトランドセメントをアクリル樹脂中に50質量%含有する複合層である。
 上記ポリマーセメント硬化層形成用組成物を、樹脂層の上に乾燥前の厚さが1.0mmとなるように塗工した後、坪量が12g/mのポリエステル不織布からなるヤング率調整層を配設した。次いで、そのヤング率調整層の上にさらに、上記ポリマーセメント硬化層形成用組成物を、樹脂層の上に乾燥前の厚さが1.0mmとなるように塗工した後、これを乾燥させて、厚さ1.29mmのポリマーセメント硬化層3を形成した。
 こうして合計厚さ1.39mmの構造物保護シートを作製した。なお、この構造物保護シートは、約25℃に管理された工場内で連続生産され、離型シートを含んだ態様でロール状に巻き取った。 
(Example 1)
A release sheet made of PP-laminated paper and having a thickness of 130 μm was used. A resin layer was formed on this release sheet by the following method.
First, an emulsion composition containing 60 parts by mass of acrylic silicone resin, 25 parts by mass of titanium dioxide, 10 parts by mass of ferric oxide, and 5 parts by mass of carbon black was prepared. After the emulsion composition was applied onto the release sheet, it was cured by heat treatment to form a resin layer. The thickness of the resin layer was set to 0.1 mm.
Next, a polymer cement hardening layer was formed on the resin layer.
Specifically, a water-based acrylic emulsion containing 45 parts by mass of a cement mixture was prepared as a composition for forming a polymer cement layer. Here, the cement mixture contains at least 70 ± 5 parts by mass of Portland cement, 10 ± 5 parts by mass of silicon dioxide, 2 ± 1 parts by mass of aluminum oxide, and 1 to 2 parts by mass of titanium oxide. It contains at least 53±2 parts by mass of an acrylic polymer obtained by emulsion polymerization using an acid ester monomer as an emulsifier and 43±2 parts by mass of water. The polymer cement hardened layer obtained by coating and drying the polymer cement layer-forming composition in which these are mixed is a composite layer containing 50% by mass of Portland cement in the acrylic resin.
After applying the composition for forming a polymer cement hardening layer on the resin layer so that the thickness before drying is 1.0 mm, the Young's modulus adjusting layer made of a polyester nonwoven fabric having a basis weight of 12 g/m 2 is applied. was arranged. Next, on the Young's modulus adjusting layer, the composition for forming a polymer cement hardened layer is further applied onto the resin layer so that the thickness before drying is 1.0 mm, and then dried. to form a hardened layer 3 of polymer cement having a thickness of 1.29 mm.
Thus, a structure protection sheet having a total thickness of 1.39 mm was produced. In addition, this structure protection sheet was continuously produced in a factory controlled at about 25° C., and was wound into a roll while including a release sheet.
 [ヤング率の測定]
 実施例1で得られた構造物保護シート1のヤング率を、引張試験機(株式会社島津製作所製、AGX-V)を用いて測定した。
 実施例1のヤング率は20MPaであった。
 実施例1に係る構造物保護シート1は強度に優れ構造物に貼り付ける際に適切な弾性を保つため施工作業の都合がよく、破れたり永久変形したりすることがないものであった。
 [厚さバラツキの測定]
 実施例1について、ロール状に巻き取った構造物保護シート1から、A4サイズ程度(200mm×300mm)を切り出し、各部で14箇所の厚さを測定し、その厚さバラツキを計算した。実施例1では、厚さバラツキが26μmであった。 
[Measurement of Young's modulus]
The Young's modulus of the structure protection sheet 1 obtained in Example 1 was measured using a tensile tester (AGX-V, manufactured by Shimadzu Corporation).
The Young's modulus of Example 1 was 20 MPa.
The structure protection sheet 1 according to Example 1 has excellent strength and maintains appropriate elasticity when attached to a structure, so that it is convenient for construction work and is not broken or permanently deformed.
[Measurement of thickness variation]
About A4 size (200 mm x 300 mm) was cut out from the structural protection sheet 1 wound into a roll for Example 1, the thickness was measured at 14 points in each part, and the thickness variation was calculated. In Example 1, the thickness variation was 26 μm.
(実施例2、3)
 ヤング率調整層として、坪量20g/mのポリエステルからなる不織布から構成されるヤング率調整層(実施例2)、坪量50g/mのポリエステルからなる不織布から構成され、表面温度80℃の金属ロールでプレスして圧着部分を設けたヤング率調整層(実施例3)を用いた以外は、実施例1と同様にして構造物保護シート1を作製した。
(Examples 2 and 3)
As the Young's modulus adjusting layer, a Young's modulus adjusting layer (Example 2) composed of a polyester nonwoven fabric having a basis weight of 20 g/m 2 was composed of a polyester nonwoven fabric having a basis weight of 50 g/m 2 and a surface temperature of 80°C. A structure protection sheet 1 was produced in the same manner as in Example 1 except that the Young's modulus adjusting layer (Example 3) provided with a pressure-bonded portion by pressing with a metal roll of No. 2 was used.
(比較例1)
 ヤング率調整層に替えて、密度1.0本/cm、ピッチ10mmであるアラミド繊維からなるメッシュ層を設けた以外は実施例1と同様にして構造物保護シートを作製した。
(Comparative example 1)
A structure protection sheet was produced in the same manner as in Example 1, except that a mesh layer made of aramid fibers having a density of 1.0 fibers/cm and a pitch of 10 mm was provided instead of the Young's modulus adjusting layer.
(比較例2)
 ヤング率調整層を設けなかった以外は実施例1と同様にして構造物保護シートを作製した。
(Comparative example 2)
A structure protective sheet was produced in the same manner as in Example 1, except that the Young's modulus adjusting layer was not provided.
 [ヤング率の測定]
 実施例1と同様にして実施例2、3、比較例1、2に係る構造物保護シートのヤング率を測定した。
 実施例2では50MPa、実施例3では250MPa、比較例1では10MPa、比較例2では500MPaであり、実施例に係る構造物保護シートは強度に優れ構造物に貼り付ける際に破れたり永久変形したりすることがないものであったが、比較例1に係る構造物保護シートは強度に劣り、構造物への貼り付けの際に破れたり永久変形が生じるものであり、比較例2に係る構造物保護シートは強直に過ぎ、構造物への貼り付けの際に十分引っ張ることができなかった。 
[Measurement of Young's modulus]
The Young's moduli of the structure protection sheets according to Examples 2 and 3 and Comparative Examples 1 and 2 were measured in the same manner as in Example 1.
Example 2 is 50 MPa, Example 3 is 250 MPa, Comparative Example 1 is 10 MPa, and Comparative Example 2 is 500 MPa. However, the structure protection sheet according to Comparative Example 1 was inferior in strength, and when it was attached to the structure, it was torn or permanently deformed. The object protection sheet was too rigid and could not be stretched sufficiently during application to the structure.
1 構造物保護シート
2 樹脂層
3 ポリマーセメント硬化層
5 ヤング率調整層
21 構造物(コンクリート) 
21’ コンクリート組成物(構造物形成組成物)
22 下塗り層 
23 接着剤 
24 型枠
1 structure protection sheet 2 resin layer 3 polymer cement hardening layer 5 Young's modulus adjusting layer 21 structure (concrete)
21' concrete composition (structure-forming composition)
22 Undercoat layer
23 Adhesive
24 Formwork

Claims (7)

  1.  構造物側に設けられるポリマーセメント硬化層と、該ポリマーセメント硬化層上に設けられた樹脂層とを備える構造物保護シートであって、
     ヤング率が20~300MPaである
     ことを特徴とする構造物保護シート。
    A structure protection sheet comprising a polymer cement hardened layer provided on the structure side and a resin layer provided on the polymer cement hardened layer,
    A structure protection sheet characterized by having a Young's modulus of 20 to 300 MPa.
  2.  応力が2.0MPa以下、伸度が5%以下の範囲におけるヤング率が10~300MPaである請求項1記載の構造物保護シート。 The structure protection sheet according to claim 1, which has a Young's modulus of 10 to 300 MPa when the stress is 2.0 MPa or less and the elongation is 5% or less.
  3.  前記ポリマーセメント硬化層に接した状態でヤング率調整層を有する請求項1又は2記載の構造物保護シート。 The structure protection sheet according to claim 1 or 2, which has a Young's modulus adjusting layer in contact with the polymer cement hardening layer.
  4.  前記ヤング率調整層は、不織布層、弾性層、金属繊維層、粒子分散体層、針状及び棒状物分散体層、網目状構造物層からなる群より選択される少なくとも1種である請求項3記載の構造物保護シート。 The Young's modulus adjusting layer is at least one selected from the group consisting of a nonwoven fabric layer, an elastic layer, a metal fiber layer, a particle dispersion layer, a needle-like and rod-like dispersion layer, and a network structure layer. 3. The structure protection sheet according to 3.
  5.  前記ポリマーセメント硬化層は、セメント成分及び樹脂を含有する層であって、前記樹脂が10重量%以上、40重量%以下含有されている請求項1、2、3又は4記載の構造物保護シート。 5. The structure protection sheet according to claim 1, 2, 3 or 4, wherein the polymer cement hardening layer is a layer containing a cement component and a resin, and the resin is contained in an amount of 10% by weight or more and 40% by weight or less. .
  6.  請求項1、2、3、4又は5記載の構造物保護シートを使用した補強された構造物の製造方法であって、構造物上に接着剤を塗布した後に前記構造物保護シートを貼り合わせることを特徴とする補強された構造物の製造方法。 6. A method for manufacturing a reinforced structure using the structure protection sheet according to claim 1, 2, 3, 4 or 5, wherein the structure protection sheet is laminated after applying an adhesive onto the structure. A method of manufacturing a reinforced structure, characterized by:
  7.  前記構造物と前記接着剤との間に下塗り層を設ける、請求項6記載の補強された構造物の製造方法。
     

     
    7. A method of making a reinforced structure according to claim 6, wherein a primer layer is provided between said structure and said adhesive.


PCT/JP2022/025215 2021-07-16 2022-06-24 Structure protection sheet, and production method for reinforced structure WO2023286561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021118117A JP2023013731A (en) 2021-07-16 2021-07-16 Structure protective sheet and manufacturing method of reinforced structure
JP2021-118117 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023286561A1 true WO2023286561A1 (en) 2023-01-19

Family

ID=84920023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025215 WO2023286561A1 (en) 2021-07-16 2022-06-24 Structure protection sheet, and production method for reinforced structure

Country Status (3)

Country Link
JP (1) JP2023013731A (en)
TW (1) TW202317374A (en)
WO (1) WO2023286561A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144294A (en) * 2006-12-07 2008-06-26 Ube Nitto Kasei Co Ltd Mesh-like material made of polyolefin-based resin, and method for repairing or reinforcing concrete structure using this mesh-like material
JP2014156742A (en) * 2013-02-18 2014-08-28 Nippon Kasei Chem Co Ltd Repair method of concrete structure and repaired concrete structure
WO2021010456A1 (en) * 2019-07-17 2021-01-21 恵和株式会社 Structure protection sheet, execution method and precast member using structure protection sheet, and method for manufacturing precast member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144294A (en) * 2006-12-07 2008-06-26 Ube Nitto Kasei Co Ltd Mesh-like material made of polyolefin-based resin, and method for repairing or reinforcing concrete structure using this mesh-like material
JP2014156742A (en) * 2013-02-18 2014-08-28 Nippon Kasei Chem Co Ltd Repair method of concrete structure and repaired concrete structure
WO2021010456A1 (en) * 2019-07-17 2021-01-21 恵和株式会社 Structure protection sheet, execution method and precast member using structure protection sheet, and method for manufacturing precast member

Also Published As

Publication number Publication date
TW202317374A (en) 2023-05-01
JP2023013731A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
JP7442527B2 (en) Structure protection sheet, construction method using the same, precast member, and method for manufacturing precast member
JP7323699B2 (en) Structural protection sheet, concrete block and method for manufacturing reinforced structure
WO2023286561A1 (en) Structure protection sheet, and production method for reinforced structure
WO2023074610A1 (en) Structure protection sheet and method for manufacturing reinforced structure
WO2023008097A1 (en) Structure protection sheet, and method for manufacturing reinforced structure
JP2023066394A (en) Structure protection sheet and method for manufacturing reinforced structure
WO2022255145A1 (en) Structure protection sheet, and method for manufacturing reinforced structure
JP2022184760A (en) Structure protection sheet and method for manufacturing reinforced structure
WO2023058726A1 (en) Structure protection sheet and method for installing structure protection sheet
WO2023181379A1 (en) Creasing member, creasing member attachment method, and structure protection sheet construction method
TWI833190B (en) Roof repair methods and roof repair structures
JP2023152559A (en) Construction method of structure protection sheet
JP2022175085A (en) Construction method of smoother and protective sheet
TW202415542A (en) Structure protection sheet, concrete block and method for manufacturing reinforced structure
JP2022085739A (en) Draining member, method for attaching draining member, and installation method of protection sheet for structure
TW202417719A (en) Methods for repairing structures and structures for repairing structures
JP2023056514A (en) Structure protection sheet and construction method of structure protection sheet
CN117425760A (en) Structure protection sheet and method for manufacturing reinforced structure
TW202340591A (en) Method for protecting concrete column capable of greatly reducing the construction time when a protective layer is provided to the surface of an existing concrete column and protecting the existing concrete column over an extended period of time
JP2022080242A (en) Hand roller, protective sheet construction method and coating liquid application method
JP2022117750A (en) Hand roller and protective sheet construction method
TW202340578A (en) Drainage component, applying method of the same and construction method of structure protection sheet wherein the structure protection sheet includes a polymeric adhesive curing layer and a resin layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE